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The deficit of charges on the clay surface is balanced by the cations in soil water forming the electric double layer
(EDL). In sodic soil monovalent Na+ ions are dominant and hence, thickness of the EDL (β) is more than in the
nonsodic soil where bivalent Ca2+ ions are dominant. For reclaiming the sodic soil, gypsum is added as a source
of Ca2+ ions to replace the Na+ ions from the EDL as well as for reducing β. In this paper, an analytical solution is
derived to the nonlinear Poisson–Boltzman equation and the solution is used for computing β exactly. A compar-
ison is made between β computed from the solutions of linearized and nonlinear Poisson–Boltzman equation.
The solution to the linearized Poisson–Boltzman equation overestimates β. Therefore, it is appropriate to adopt
the solution of the nonlinear Poisson–Boltzman equation for computing β.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The soil water is never chemically pure and contains various
types of solutes (Hillel, 1998). Five cations (Na+, K+, Mg2+, Ca2+,
and NH4

+) and four anions (NO3
−, HCO3

−, Cl−, and SO4
2−) are the

dominant solutes in almost all soil solutions (Sumner, 2000). The
types of ions and their proportions in soil water influence the soil
physical and chemical properties (United States Salinity Laboratory
Staff, 1954). Any accumulation of soluble salts that may be harmful
to plants may be defined as soil salinity. In saline soil, the electrical
conductivity of saturation extract (ECe) is more than 4 dS m−1 at
25 °C and the exchangeable sodium percentage (ESP) is less than
15. Most of the salts in the soil solution have a positive effect on
the soil structure. Therefore, water infiltration is not a major prob-
lem for the saline soil. But, in case of sodic soil, ESP is greater than
15 and ECe is less than 4 dS m−1 at 25 °C. Also the soil structure is
poor and the hydraulic conductivity (eK) is low.

During the formation of the clay minerals, the lower valence cations
isomorphically substitute the higher valence cations (Essington, 2004;
Grim, 1953; Sparks, 1999). The deficit charges thus formed are customar-
ily considered to be distributed uniformly over the clay surface. The over-
whelming majority of surface area and electrostatic charge in a soil

residue in the less than 1 μm size fraction, with particles with radii
between 20 and 1000 nm constitute the major part of the soil surface
area (Borkovec et al., 1993). The negative charge on the clay surface is
screened by an equivalent swarm of counter ions (e.g., Ca2+, Mg2+, K+,
Na+, etc.) on the exterior surface (Bolt, 1978; Newman, 1987; Plaster,
2009). The negative charge on the clay surface and the swarm of pos-
itive counter ions is called electric double layer (Tan, 1982). The
cations are heavily concentrated at the clay surface and their concen-
tration reduces exponentially away from the surface. The case is
opposite in the case of anions where the concentration of anions is
lowest at the clay surface which increases away from the clay sur-
face. There is still little consensus concerning the fraction of ions lo-
cated within the double layer (Jougnot et al., 2009; Tournassat and
Appelo, 2011; Tournassat et al., 2009). The triple layer model of
Leroy and Revil (2004) includes a speciation model of the active
crystallographic surface sites plus a classical description of the
Stern and diffuse layers. The possibility of a truncature of the diffuse
double layer has been studied by Goncalves et al. (2007). The EDL
thickness (β) is the size of effective double layer where the cations
are heavily concentrated and obstructs the flow of water through
the pore of fixed size. When β is more, the effective pore space as
well as permeability is less (Bagarello et al., 2005; Chiang et al.,
1987; Yousaf et al., 1987). The Poisson–Boltzmann equation is the
governing equation for the EDL theory. The solution of this equation
is required to compute the EDL thickness. The EDL has been studied
for one type of ions and its analytical solutions already exist (Appelo
and Postma, 2005; Hunter, 1981; Mahanta et al., 2012). In sodic soils
sodium ions are dominant and because of these monovalent ions elec-
tric double layer is larger than the EDL if multivalent ions would have
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been there. Hence, it is more difficult to leach the salts for reclaiming
the sodic soil than to reclaim the saline soil (Aringhieri and Giachetti,
2001; United States Salinity Laboratory Staff, 1954). The electric dou-
ble layer thickness is governed by the concentrations of salts and
types of cations in the soil water (Anandarajah, 2003; Park and
O'Connor, 1980; Ranade and Gupta, 1987; Schofield, 1947; So and
Aylmore, 1993).

The chemical amendments having calcium source are necessary to re-
place the existing sodium ions for augmenting the sodic soil reclamation
(Borselli et al., 1996; FAO/UNESCO, 1973; Favaretto et al., 2006; Hillel,
1998; Sumner, 1993). When higher valence ions such as Ca2 + are ap-
plied through gypsum, less number of ions are required to compensate
the same charge on the clay surface, which results in reduction of the
EDL thickness and consequently increment in the hydraulic conductivity
(eK). Thus, EDL is the main factor which influences the sodic soil reclama-
tion (FAO/UNESCO, 1973; Schmitz, 2006) and consideration of these two
types of ions (both monovalent and divalent) is necessary for any
sodification and desodification study. The Poisson–Boltzman equation is
the governing equation of the EDL theory (Appelo and Postma, 2005;
Van Olphen, 1977) and its solution is used to compute the thickness of
EDL, β. The Poisson–Boltzmann (PB) theory has been a well-established
model in a broad range of scientific research areas. In electrochemistry,
it is known as the Gouy–Chapman (GC) theory (Chapman, 1913; Gouy,
1910); in solution chemistry, it is known as the Debye–Huckel theory
(Debye and Huckel, 1923); in colloid chemistry, it is known as the
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory (Derjaguin and
Landau, 1941; Verwey and Overbeek, 1948); and in biophysics, it is
known as the PB theory (Davis and McCammon, 1990; Honig and
Nicholls, 1995). The Poisson–Boltzmann equation (PBE) represents a typ-
ical implicit solventmodel, and provides a simplified continuum descrip-
tion of the discrete particle (e.g., water, ion, and protein molecule)
distributions in solution. The numerical methods used to solve the

Poisson–Boltzmann equation are: 1) finite element method (Chen et al.,
2005; Xie and Zhou, 2007), 2) finite difference method (Wang, 2004;
Zhou et al., 1996), 3) hybrid of finite element/boundary element method
(Lu et al., 2007) and 4) hybrid of finite difference/boundary element
method (Boschitsch and Fenley, 2004). For solving the Poisson–Boltzman
equation, when the higher order terms of the expanded exponential
function are neglected for simplification, does not give accurate result
and the solution is an approximate one. Chapman (1913) and Gouy
(1910)had given an approximate solution to the Poisson–Boltzmanequa-
tion for single type of ions. Voyutsky had given an approximate solution
to the linearized Poisson–Boltzman equation when more than one
type of ions are present in soil water (Voyutsky, 1978). A more accu-
rate β and potential distribution with distance from the pore wall is
critical for the study of (among other subjects): transport properties
in clay material (e.g. Tournassat and Appelo, 2011), clay–rock pore
water composition (e.g. Appelo et al., 2008; Leroy et al., 2007), electro-
kinetic coupling (e.g. Pride, 1994), or surface tension prediction at air–
water interface (e.g. Leroy et al., 2010). In this paper, a method is given
to compute β exactly for two types of ions.

2. Material and methods

The nonlinear Poisson–Boltzman equation has been solved here
by an analytical method adopting Gaussian numerical integration
for evaluating the EDL thickness (β) when both monovalent (Na+,
Cl−) and divalent (Ca2+, SO4

2−) ions are present in the soil water.
Voyutsky (1978) has solved the Poisson–Boltzman equation for
multiple ions neglecting the higher order terms and linearizing
the equation. Therefore, his solution is the approximate one. The so-
lution of the nonlinear Poisson–Boltzman equation and the compu-
tation of β using the solution are given in the Appendix. Solutions of
the linearized and nonlinear Poisson–Boltzman equations have
been compared.

2.1. Distributions of cations and anions and volumetric charge density, ρ(x)

When both monovalent (Na+ and Cl−) and divalent (Ca2+ and
SO4

2−) ions are present in the soil water, concentrations of ions at dis-
tance x from the clay surface are given by Boltzman theorem as:

CNaþ xð Þ ¼ Cb
Naþe

− FZ1ϕ xð Þ
RT ð1Þ

CCa2þ xð Þ ¼ Cb
Ca2þe

− FZ2ϕ xð Þ
RT ð2Þ

CCl− xð Þ ¼ Cb
Cl−e

FZ1ϕ xð Þ
RT ð3Þ

Table 1
φ(x) corresponding to the linearized and nonlinear Poisson–Boltzman equation for
σ = −0.058 Cm−2, Cb

Naþ = 30 mol m−3 and Cb
Ca2þ = 10 mol m−3, corresponding

κ = 8.7 × 108 m−1.

Assumed
x (nm)

Potential, φ(x)(V) computed by
approximate method for the
assumed x

x (nm) corresponding to the potential
given in column (2) computed by exact
method {Eq.(A-9)}

0 −0.096 0
0.5 −0.062 0.185
1 −0.040 0.509
2 −0.017 1.387
3 −0.007 2.365
4 −0.003 3.361
5 −0.001 4.360
6 −0.0005 5.360
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Fig. 1. The variation of φ(x) obtained by the approximate method and by the analytical
method when σ = −0.058 Cm−2, Cb

Naþ = 30 mol m−3 and Cb
Ca2þ = 10 mol m−3.
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Fig. 2. The variation in dimensionless potential φ(x) / φ(0) with respect to κx obtained
by the approximate method and by the analytical method when σ = −0.058 Cm−2,
Cb
Naþ = 30 mol m−3 and Cb

Ca2þ = 10 mol m−3.
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and

CSO4
2− xð Þ ¼ Cb

SO4
2−e

FZ2ϕ xð Þ
RT ð4Þ

where ϕ(x) = the potential at distance x from the surface of the clay
when both monovalent and divalent ions are present in the soil
water (V); F = Faraday's number i.e. 96,487 C/g-equivalent;
R = gas constant (8.314 J mol−1 K−1); T = absolute temperature
(K); C is the concentration of ion indicated in the subscript while su-
perscript ‘b’ stands for the bulk concentration of that ion (mol m−3);
Z1 = valence of the Na+ and Cl− ions; Z2 = valence of the Ca2+ and
SO4

2− ions; Eqs. (1) and (2) as well as Eqs. (3) and (4) are implicitly
related as ϕ(x) is the function of both monovalent (Na+, Cl−) and di-
valent (Ca2 +, SO4

2−) ions which are present in the soil water. When
these two types of ions are present in the soil water, volumetric charge
density, ρ(x) is given by:

ρ xð Þ ¼ FZ1C
b
Naþ e

− FZ1ϕ xð Þ
RT −e

FZ1ϕ xð Þ
RT

� �
þ FZ2C

b
Ca2þ e

− FZ2ϕ xð Þ
RT −e

FZ2ϕ xð Þ
RT

� �
ð5Þ

which is similar to the expression given by Voyutsky formore than one

type of ions (Voyutsky, 1978). In Eq. (5),Cb
Naþe

− FZ1ϕ xð Þ
RT represents the dis-

tribution of concentrations of Na+ ions and Cb
Naþe

FZ1ϕ xð Þ
RT represents the

distribution of concentrations of Cl− ions, as Na+ and Cl− are symmet-

rical electrolytes and Cb
Cl− = Cb

Naþ (Newman, 1987). Similarly, Cb
Ca2þ

e
− FZ2ϕ xð Þ

RT represents the distribution of concentrations of Ca2 + ions

and Cb
Ca2þ e

FZ2ϕ xð Þ
RT represents the distribution of concentrations of

SO4
2− ions, as Ca2 + and SO4

2− are symmetrical electrolytes and

Cb
SO4

2− = Cb
Ca2þ .

2.2. Poisson–Boltzman equation when both monovalent (Na+, Cl−) and
divalent (Ca2+, SO4

2−) ions are present in soil water

The Poisson equation relates the potential, ϕ(x) and the volumetric
charge density, ρ(x) (Bard and Faulkner, 2001; Butt and Graf, 2003;
Yeung, 1992) as:

d2ϕ xð Þ
dx2

¼ −ρ xð Þ
ε

ð6Þ

where ε = γε0 = permittivity of the medium (C2 J−1 m−1);γ = di-
electric constant of the medium (=78.5 at 25 °C for water, a
dimensionless constant); and ε0 = permittivity of vacuum (=
8.854 × 10−12 C2 J−1 m−1).

2.3. Voyutsky's solution to linearized Poisson–Boltzman equationwhen two
types of ions are present in soil water

The solution to linearized Poisson–Boltzman equation satisfying the
boundary conditions as given by Voyutsky (1978) is:

ϕ xð Þ ¼ ϕ 0ð Þe−κx ð7Þ

where Debye–Huckel parameter, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 F2
εRT Z1

2Cb
Naþ þ Z2

2Cb
Ca2þ

n or
.

This linearization is possible for only small surface potentials
(ϕ(0) ≪ 25 mV, Z = 1 at 25 °C) (Hunter, 1981; Van Olphen, 1977).

Eq. (7) gives the potential distribution when both monovalent and
divalent ions are present in the soil water. This solution is an approxi-
mate one since the higher order terms appearing in the derivation are
neglected for simplification. The thickness of the EDL (Mitchell, 1976;
Newman, 1987; Van Olphen, 1977) is given by:

β ¼ 1
κ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εRT

2F2 Z1
2Cb

Naþ þ Z2
2Cb

Ca2þ

n ovuut : ð8Þ

Voyutsky has derived this equation for computation of β (Voyutsky,
1978). Thus, β can be determined if the bulk concentrations of Na+ and
Ca2+ ions in soil water are known. The center of gravity of space charge
is located at a distance 1/κ from the surface, hence 1/κ is a measure for
the thickness of the diffuse double layer (1/κ is the Debye characteristic
length introduced in the Debye–Huckel theory of strong electrolyte).
Actually, the EDL extends beyond β (Hunter, 1981).

2.4. Determination of surface charge density (σ)

The surface charge density is estimated from the relation (Newman,
1987; Voyutsky, 1978; Yeung, 1992):

σ ¼ −
Z∞
0

ρ xð Þdx: ð9Þ

Incorporating ρ(x) from the Poisson equation, Eq. (6) in Eq. (9),

σ ¼
Z∞
0

ε
d2ϕ xð Þ
dx2

dx ¼−ε
dϕ xð Þ
dx

� �
x¼0

: ð10Þ

Applying the boundary condition that at x = 0, ϕ(0) = ϕ0 Eq. (10)
yields:

dϕ xð Þ
dx

� �
x¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT
ε

FZ1ϕ 0ð Þ
RT

� �2
Cb
Naþ þ FZ2ϕ 0ð Þ

RT

� �2
Cb
Ca2þ

� �s
: ð11Þ

Substituting dϕ xð Þ
dx

� �
x¼0

in Eq. (10),

σ ¼ −ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT
ε

FZ1ϕ 0ð Þ
RT

� �2
Cb
Naþ þ FZ2ϕ 0ð Þ

RT

� �2
Cb
Ca2þ

� �
:

s
ð12Þ

Rearranging and substituting κ for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F2
εRT Z1

2Cb
Naþ þ Z2

2Cb
Ca2þ

n or
:,

σ ¼ εκϕ 0ð Þ ð13Þ

From the (13), ϕ(0) can be determined when σ and Cb
Naþ , and Cb

Ca2þ

(hence, κ) are known.

Table 2
Obtaining the potential for single type of ions, ψ(x) from the solution of the Poisson–
Boltzman equation i.e. ϕ(x) for two type of ions by the exact method when
σ = −0.058 Cm−2.

Cb
Naþ = 10, Cb

Ca2þ = 0.00001 Cb
Naþ = 10, Cb

Ca2þ = 0

x (nm) ϕ(x) (V) computed using Eq. (A-9) ψ(x) (V) computed using Eq. (14)

0 −0.2537 −0.2537
0.0206 −0.2337 −0.2338
0.0482 −0.2153 −0.2154
0.4272 −0.1315 −0.1315
1.0831 −0.0871 −0.0871
2.0044 −0.0578 −0.0578
3.0919 −0.0383 −0.0383
4.0272 −0.0275 −0.0275
5.2372 −0.0182 −0.0182
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2.5. Analytical solution of nonlinear Poisson–Boltzman equation for single
type of ions

The analytical solution of nonlinear Poisson–Boltzman equation for
single type of ions (Mahanta, 2010; Mahanta et al., 2012) is:

ψ xð Þ ¼ 1
p
ln

1þ A1e
−Bx

1−A1e
−Bx −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A1e

−Bx

1−A1e
−Bx

� �2

−1

s24 35 ð14Þ

whereψ(x) = potential at distance x from the surface of the clay for sin-

gle type of ions (V); p = FZ
2RT,A1 ¼ cosh pψ 0ð Þð Þ−1

cosh pψ 0ð Þð Þþ1 andB ¼ 4p
ffiffiffiffiffiffiffiffiffiffi
2RTCb

ε

q
. The re-

sults of this solution are compared with the results obtained through
the analytical solution for two types of ions by limiting one type of ions.

3. Results and discussion

3.1. Comparison between solutions to the linearized and nonlinear
Poisson–Boltzman equation

A comparison is made between the solutions to the linearized and
nonlinear Poisson–Boltzman equation. The surface charge densities for
fine loamy type of soil and sandy loam soil were computed (Mahanta,
2010) to be σ = −0.058 Cm−2 and σ = −0.168 Cm−2 respectively
using data of Manchanda and Khanna (1981) and Sumner (2000). For
a given value of x, ϕ(x) is computed using Eq. (7) which is the solution
to the linearized Poisson–Boltzman equation. For this computed value
of ϕ(x), the corresponding x is obtained using Eq. (A-9). The results
are presented in Table 1. It is observed in the table that the x computed
by the solution of nonlinear equation for same ϕ(x) was always less
than the x value used in the Voyutsky's solution. When the given x
value increased, the differencewith the x values computed by nonlinear
method increased up to a certain distance. The variations of ϕ(x) with x
as obtained by the analytical (exact) method and by the Voyutsky's so-
lution (approximate) are presented in Fig. 1. As seen from thefigure, the
approximate method overestimates the absolute value of the potential.
The variations of dimensionless potentials, ϕ xð Þ

ϕ 0ð Þ with dimensionless dis-
tance, κx corresponding to the solutions of the linearized and nonlinear
Poisson–Boltzman equation are presented in Fig. 2. Also the variation of
the difference between the dimensionless potentials with κx computed
by these two is shown in the figure. There is no difference between di-
mensionless potentials computed by the exact and the approximate
method at the two extreme dimensionless distances.

The maximum difference in dimensionless potential is 0.23 which
occurs at κx = 0.29 from the clay surface. Thus, the solution to the non-
linear Poisson–Boltzman equation is preferable to the approximate
solution.
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Naþ = 200 mol m−3 (b) Cb
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Fig. 3. The variation of β due to increase in the bulk concentration of Ca ions in soil water
when (a) Cb

Naþ = 50 mol m−3 (b) Cb
Naþ = 100 mol m−3 (c) Cb

Naþ = 150 mol m−3, for
σ = −0.058 Cm−2.
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The results for single type of ions present in soil water can be ob-
tained from the solution derived for two types of ions by limiting the
bulk concentration of one. Potential, ϕ(x) for two types of ions for
Cb
Naþ = 10 mol m−3, and Cb

Ca2þ = 10−05 mol m−3 computed using
Eq. (A-9) is compared with the potential, ψ(x) for single type of ions
obtained from Eq. (14) for Cb

Naþ = 10 mol m−3. A comparison be-
tween the two sets of results is made in Table 2 and it is seen that
there is little difference between the computed values of ϕ(x) and
ψ(x). Therefore, the Gaussian numerical integration adopted for solv-
ing the nonlinear Poisson–Boltzman equation when both monovalent
and divalent ions are present in the soil water is adequate.

3.2. β computed by the exact method and by the approximate method

Gypsum is added for reclaiming the sodic soil. When gypsum is
added, the bulk concentration of Ca ions is increased in the soil water.
With increase in bulk concentration of Ca ions, the thickness of electric
double layer is decreased. In Fig. 3, the reduction in thickness of double
layerwith increase in bulk concentration of Ca for initial bulk concentra-
tion of Na ions equal to (a) 50, (b) 100 and (c) 150 mol m−3 respective-
ly is presented. The electric double layer thickness has been computed
by the exact method as well as by the approximate method. The results
are applicable for fine loamy type of soil for which σ = −0.058 Cm−2

(Manchanda and Khanna, 1981). The results for sandy loam soil having
σ = −0.168 Cm−2 are presented in Fig. 4a,b. With higher σ, a higher
value of Cb

Naþ will provide electrical neutrality. For a given σ, there is

minimum bulk concentration for which electrical neutrality is possible.
Therefore, results are presented for higher value of Cb

Naþ .
From Figs. 3 and 4, it can be inferred that when gypsum is added

to the sodic soil, with increase in bulk concentration of Ca ions,
the electric double layer decreases exponentially. The thickness of
the double layer is the maximum when the bulk concentration of
Ca ions is equal to zero. There is about 40 to 50% reduction in thick-
ness when the bulk concentration of Ca ions increases from 0 to
100 mol m−3.

4. Conclusions

Based on the study the following conclusions are drawn:

1) The solution derived for the nonlinear Poisson–Boltzman equation
when both monovalent and divalent ions are present in soil water
is amenable to computation of electric double layer through Gauss-
ian numerical integration.

2) The solution to the linearized Poisson–Boltzman equation overesti-
mates the thickness of the electric double layer. Therefore, it is ap-
propriate to adopt the solution of the nonlinear Poisson–Boltzman
equation for computing β.

3) With increase in bulk concentration of Ca, the electric double layer
decreases exponentially. There is about 40 to 50% reduction in thick-
ness when the bulk concentration of Ca ions increases from 0 to
100 mol m−3.

Appendix A

A.1. Analytical solution of nonlinear Poisson–Boltzman equation when both monovalent (Na+, Cl−) and divalent (Ca2 +, SO4
2−) ions are present in

soil water

Incorporating ρ(x) from Eq. (5) in Eq. (6), the Poisson–Boltzman equation is:

d2ϕ xð Þ
dx2

¼ − F
ε

Z1C
b
Naþ e

− FZ1ϕ xð Þ
RT −e

FZ1ϕ xð Þ
RT

� �
þ Z2C

b
Ca2þ e

− FZ2ϕ xð Þ
RT −e

FZ2ϕ xð Þ
RT

� �	 

: ðA� 1Þ

Arranging and making the same transformations as Voyutsky did for solving the Poisson–Boltzman equation (Voyutsky, 1978),

d
dx

dϕ xð Þ
dx

� �
¼ − F

ε
Z1C

b
Naþ e

− FZ1ϕ xð Þ
RT −e

FZ1ϕ xð Þ
RT

� �
þ Z2C

b
Ca2þ e

− FZ2ϕ xð Þ
RT −e

FZ2ϕ xð Þ
RT

� �	 

: ðA� 2Þ

Simplifying,

2
dϕ xð Þ
dx

d
dϕ xð Þ
dx

� �
¼ −2F

ε
Z1C

b
Naþ e

− FZ1ϕ xð Þ
RT −e

FZ1ϕ xð Þ
RT

� �
þ Z2C

b
Ca2þ e

− FZ2ϕ xð Þ
RT −e

FZ2ϕ xð Þ
RT

� �	 

dϕ xð Þ: ðA� 3Þ

Integrating both sides and taking into account that, as x → ∞, ϕ(x) → 0, and dϕ xð Þ
dx →0,

dϕ xð Þ
dx

� �2
¼ 2

ε
Cb
NaþRT

Zϕ xð Þ

0

e
FZ1ϕ xð Þ

RT −e
− FZ1ϕ xð Þ

RT

� �
d FZ1ϕ xð Þ

RT

� �
þ Cb

Ca2þRT
Zϕ xð Þ

0

e
FZ2ϕ xð Þ

RT −e
− FZ2ϕ xð Þ

RT

� �
d FZ2ϕ xð Þ

RT

� �264
375: ðA� 4Þ

Performing the integration appearing in the right hand side,

dϕ xð Þ
dx

¼¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4RT
ε

Cb
Naþ cosh

FZ1ϕ xð Þ
RT

� �
−1

� �
þ Cb

Ca2þ cosh
FZ2ϕ xð Þ

RT

� �
−1

� �	 
s
: ðA� 5Þ

As dϕ xð Þ
dx is positive, the positive root is considered.

Let, B1 = 4RT
ε Cb

Naþ and B2 = 4RT
ε Cb

Ca2þ , where the unit of B1 and B2 is V2m−2.
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Incorporating B1 and B2 and rearranging,

dφ xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1 cosh

FZ1φ xð Þ
RT

� �
þ B2 cosh

FZ2φ xð Þ
RT

� �
− B1 þ B2ð Þ

s ¼ dx: ðA� 6Þ

Integrating Eq. (A-6) between lower limit x = xj − 1, ϕ(x) = ϕ(xj − 1) and upper limit x = xj, ϕ(x) = ϕ(xj),

Zφ x Jð Þ

φ x j−1ð Þ

dφ xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1 cosh

FZ1φ xð Þ
RT

� �
þ B2 cosh

FZ2φ xð Þ
RT

� �
− B1 þ B2ð Þ

s ¼
Zx j

x j−1

dx ðA� 7Þ

or

xj−xj−1 ¼ 1ffiffiffiffiffi
B1

p Zϕ x Jð Þ

ϕ x j−1ð Þ

dϕ xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh

FZ1ϕ xð Þ
RT

� �
þ B2

B1
cosh

FZ2ϕ xð Þ
RT

� �
− 1þ B2

B1

� �s : ðA� 8Þ

For j = 1, xj − 1 = 0 andϕ(xj − 1) = ϕ(0). Gauss quadrature is adopted to carry out the integration numerically. Substituting,ϕ xð Þ ¼ ϕ x j−1ð Þþϕ x jð Þ
2 −

ϕ x j−1ð Þ−ϕ x jð Þ
2 ξ and dϕ xð Þ ¼ − ϕ x j−1ð Þ−ϕ x jð Þ

2 dξ where ξ is a dummy variable with lower limit−1 and upper limit 1.

xj−xj−1 ¼ − 1ffiffiffiffiffi
B1

p �

Z1
−1

ϕ xj−1

� �
−ϕ xj

� �
2
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cosh

FZ1

RT

ϕ xj−1

� �
þ ϕ xj

� �
2

−
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−ϕ xj

� �
2

ξ
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9=;

24 35þ B2
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FZ2

RT

ϕ xj−1
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þ ϕ xj

� �
2

−
ϕ xj−1

� �
−ϕ xj

� �
2

ξ

8<:
9=;

24 35− 1þ B2

B1

� �vuuut
ðA� 9Þ

ϕ(xj) is obtained starting from the origin i.e. φ(0) = φ0 at x = 0 in succession. For an assumed ϕ(xj), corresponding xj is obtained from Eq. (A-9), for

known ϕ(xj − 1) and xj − 1. Ninety six Gaussian abscissa and weights are used for evaluating the integral.

A.2. Estimation of the thickness of EDL

The thickness of EDL can be computed using the analytical solution as follows:
a) Consider the lower limit of potential ϕ(xj − 1) = ϕ(0), and the upper limit ϕ xj

� � ¼ ϕ 0ð Þ
e . Hence,

β ¼ − 1ffiffiffiffiffi
B1

p �
Z1
−1

ϕ 0ð Þ−ϕ 0ð Þ
e

2
dξ

cosh
FZ1

RT

ϕ 0ð Þ þ ϕ 0ð Þ
e

2
−

ϕ 0ð Þ−ϕ 0ð Þ
e

2
ξ

8><>:
9>=>;

264
375þ B2

B1
cosh

FZ2

RT

ϕ 0ð Þ þ ϕ 0ð Þ
e

2
−

ϕ 0ð Þ−ϕ 0ð Þ
e

2
ξ

8><>:
9>=>;

264
375− 1þ B2

B1

� �vuuuut
: ðA� 10Þ

b) The center of gravity of the space charge (x) in the EDL is also called the thickness of the double layer (Van Olphen, 1977). The distance of the
center of gravity from the clay surface (x) is obtained taking moment of ϕ(x) about the origin. x is given by:

x ¼

Z∞
0

φ xð Þx dx

Z∞
0

φ xð Þdx
¼

X∞
j¼0

φ xjþ1

� �
þ φ xj

� �n o
2

xj−xj−1

� �
xj þ

xjþ1−xj

� �
2

0@ 1A
X∞
j¼0

φ xjþ1

� �
þ φ xj

� �n o
2

xj−xj−1

� �: ðA� 11Þ
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