

ISSN: 0190-4167 (Print) 1532-4087 (Online) Journal homepage: http://www.tandfonline.com/loi/lpla20

Zinc Biofortification in Sixty Groundnut Cultivars **Through Foliar Application of Zinc Sulphate**

A. L. Singh & V. Chaudhari

To cite this article: A. L. Singh & V. Chaudhari (2015) Zinc Biofortification in Sixty Groundnut Cultivars Through Foliar Application of Zinc Sulphate, Journal of Plant Nutrition, 38:11, 1734-1753, DOI: 10.1080/01904167.2015.1042165

To link to this article: http://dx.doi.org/10.1080/01904167.2015.1042165

Accepted author version posted online: 18 May 2015.

Submit your article to this journal 🗹

Article views: 52

View related articles

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lpla20

ZINC BIOFORTIFICATION IN SIXTY GROUNDNUT CULTIVARS THROUGH FOLIAR APPLICATION OF ZINC SULPHATE

A. L. Singh and V. Chaudhari

Directorate of Groundnut Research, Junagadh, India

□ A field experiment with 60 groundnut cultivars, in a calcareous soil having 1.20 mg kg⁻¹ available zinc (Zn), foliar application of 0.2% aqueous solution of zinc sulphate thrice at 40, 55 and 70 days at 500, 500 and 1000 L ha⁻¹, respectively, increased the number of pods, pod yield, shelling and 100 seed mass and seed zinc (Zn) content, significantly. The seeds Zn content in groundnut cultivars ranged 38–70 mg kg⁻¹ with an average of 48 mg kg⁻¹ without Zn and 58 mg kg⁻¹ with Zn. Foliar Zn application increased 22% Zn in seed. This increase was more than 10% in 48 out of 60 cultivars. The cultivars GG 7, GG 20, Tirupati 4, DH 8, JSP 19, TKG 19 A, CSMG 884 and S 206 showed > 50 mg kg⁻¹ Zn, > 10% increase in seed Zn with Zn application and > 250 g m⁻² pod yield.

Keywords: biofortification of Zn, groundnut, foliar Zn application, Zn responsive cultivars, pod yield, 100-seed mass, seed Zn content

INTRODUCTION

The groundnut (*Arachis hypogaea* L.) is an important food legume crop of the world grown on about 24 million hectare (ha) of land under different agro-climatic regions in Asian (11.5 m ha), African (11.5 m ha) and North and South American (1.1 m ha) countries and on large scale mainly in India, China, Nigeria, USA, Myanmar, Indonesia, Sudan, Senegal, Argentina and Vietnam. In India alone it is grown on about 6.5 m ha. Although the average groundnut productivity of the world is around 1500 kg ha⁻¹, it is less than 1000 kg ha⁻¹ in more than 50% of the groundnut growing countries due to vagaries of weather conditions and poor soil fertility. However, because of its high-energy, protein and mineral contents at a comparatively low price, the demand of groundnut, as food crop, is increasing worldwide (Singh, 2011).

Received 27 November 2012; accepted 19 March 2014.

Address correspondence to A. L. Singh, Directorate of Groundnut Research, P.B. 5, Junagadh 362 001, Gujarat, India. E-mail: alsingh@nrcg.res.in

Zinc (Zn) is an essential nutrient for plant and human health and its deficiency affects billions of people, hampering growth, development, and immune systems. About two billion people world-wide are at the risk of Zn deficiency, which necessitate a food-based solution to combat Zn malnutrition (WHO, 2002). Presently in India, the Zn deficiency occurs in 48% soils and is expected to increase upto 63% by the year 2025 (Singh, 2009). As a result the Zn content in edible parts is decreasing and may have a strong impact on human health. Biofortification of crops by enriching micronutrient in seeds is a better option for providing a sustainable solution to zinc deficiency in food. The biofortification strategies for the crops are, mineral fertilization, screening, breeding and transgenic approaches and intercropping systems increasing zinc content in the seeds (Cakmak et al., 2010; Lal and Singh, 2007; Singh et al., 2011a, 2011b; Zuo and Zhan, 2009).

Groundnut is a good source of Zn (Singh, 2007; Singh et al., 2011a), the seeds of which are eaten after roasting, frying, salting or boiling and in many preparations and confectionery products (Singh, 2011). However, in India, as the groundnut crop is mostly grown on marginal soil where its productivity, shelling outturn and 100 seed mass as well Zn concentration in seed is low, leading to less per-capita availability of groundnut and Zn (Singh, 2004, 2011; Singh and Basu, 2005; Singh et al., 2004). High Zn density groundnuts may be a solution to ensure adequate level of Zn intake which necessitate increasing of Zn concentration of seed through fortification and selection of high Zn density genotypes (Lal and Singh, 2007; Singh et al., 2011a, 2011b). Extensive research demonstrated the role of Zn fertilizers in increasing the Zn density of grain in cereals, suggesting that wherever fertilizers are available, making full use of Zn fertilizers can provide an immediate and effective option to increase grain Zn concentration, and productivity under soil conditions showing Zn deficiency (Cakmak et al., 2010). However, such studies are lacking in groundnut. Thus an effort was made to increase the seed Zn content in a number of groundnut cultivars through foliar application of zinc sulfate. As India has a diverse climate and a number of groundnut cultivars are grown, 60 high yielding cultivars were taken, to study the influence of foliar spray of zinc sulfate on pod and haulm yields, plant height, number of pods, shelling outturn, 100 seed mass and oil contents along with their effect on seed Zn content.

MATERIALS AND METHODS

Field experiments were conducted, during two consecutive dry seasons of the year 2010 and 2011 at the Directorate of Groundnut Research, Junagadh, India in a medium black, calcareous [10% calcium carbonate (CaCO₃)] clayey soil with 7.9 pH, 1.31% organic carbon, 850 mg kg⁻¹ total nitrogen

(N), 10 mg kg⁻¹ available phosphorus (Olsen P), 12 mg kg⁻¹ heat soluble sulfur (available S), 4.1, 32, 1.20 and 3.30 mg kg⁻¹ diethylentriaminepentaacetic acid (DTPA) extractable iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), respectively and 0.76 mg kg^{-1} water extractable boron (B). The field was prepared and 10 cm deep furrows were opened at 45 cm spacing. Sixty groundnut cultivars were grown under two treatments, control and foliar application of Zn in two replicates. These cultivars, each in one row plots of 5 m length, were sown at 10 cm spacing in two sets one for control and another for foliar application of zinc in a factorial randomized block design. A basal dose of 40 kg N and 33 kg P ha⁻¹ as diammonium phosphate and urea, 50 kg potassium (K ha⁻¹⁾ as muriate of potash and 30 kg S ha⁻¹ as elemental sulphur were mixed in the soil before sowing and 500 kg ha⁻¹ gypsum mixed in the soil at flowering. The crop was grown under recommended package of practices with proper plant protection during the cropping season. For foliar Zn treatment, the aqueous solution of 0.2% zinc sulfate was applied on the groundnut foliage, thrice at 40, 55 and 70 DAE (days after emergence) at 500, 1000 and 1000 L ha⁻¹, respectively. Thus a total of 5 kg ha⁻¹ zinc sulfate containing 1.13 kg Zn was applied. The crop was harvested at maturity, dried in Sun for a week and pod and haulm yields, shelling out turn and 100-seed mass recorded. Five plants from each plot were uprooted randomly at maturity and plant height and numbers of pods per plant were recorded. From these plant samples the oven-dried leaf and seed tissues were ground to a fine powder and analyzed for Zn contents using atomic absorption spectrophotometer. All the data were analyzed statistically.

The groundnut cultivars, with and without Zn treatment, were arranged for their Zn content in seed and categorized into high (above $50 \text{ mg kg}^{-1} \text{ Zn}$) and low (less than 50 mg kg⁻¹ Zn) Zn density cultivars with high (>20%), medium(10–20%), and low (<10%), response to Zn application.

RESULTS AND DISCUSSIONS

Plant Height, Number of Pods, and Pod and Haulm Yields

There was a large variation in plant height, number of pods and pod and haulm yields among the 60 groundnut cultivars studied (Table 1). Foliar application of Zn decreased the plant height and haulm yield, but increased the number of pods significantly during both the years. The mean plant height of 60 groundnut cultivars was 47 cm during the year 2010 and 50 cm during 2011 in control plot, which with application of Zn decreased to 45 and 48 cm, respectively (Table 1). The plant height for control and Zn treatment in different cultivars ranged 32–56 cm during 2010 and 37–68 cm during 2011. Similarly, the haulm yield in groundnut cultivars ranged from 203–670 g m⁻² during 2010 and 241–760 g m⁻² during 2011. The haulm

Downloaded by [N R C Medicinal & Aromatic Plants] at 23:05 07 January 2016

TABLE 1 Influence of Zn spray on plant height, number of pods and haulm yield of 60 groundnut cultivars during two years

Σ <u>bo</u> Haulm yield (₁ m⁻²) $\begin{array}{c} 4117\\ 5551\\ 5551\\ 5551\\ 5551\\ 5551\\ 5551\\ 5551\\ 5552\\$ Zn 515 $\begin{array}{c} 5554\\ 5555\\$ C Σ Pods plant⁻¹ 201 Zn

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 113

 1 \mathbf{O} Σ Plant ht. (cm) Zn
 4
 7
 4
 4
 7
 4
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 C $\begin{array}{c} 361\\ 387\\ 387\\ 3887\\ 3887\\ 3887\\ 3887\\ 3896\\ 3896\\ 3873\\ 38$ Σ $\widehat{\mathfrak{o}}$ Haulm yield (m⁻²) Zn U Σ $\rm Pods \ plant^{-1}$ 2010Zn U

 11
 12
 13
 14
 14
 15
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 <td Σ Plant ht. (cm) Zn
 4
 4
 4
 6
 4
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 U Groundnut cultivar 4 MH 1 RS 1 JL 501 ICG (FDRS) 4 UF 70-103 Cirupati 3 Tirupati 4 Kadiri 3 S 230 R 8808 3G 141 CGS 5 LGN 2 SB XI SG 99 SG 94 JL 24 CO 1 VRI 2 CO 2 CO 2 CG 2 GG 7 GG 7 GG 20 GG 20 S 206 SS

1737

age

Continued on nex

						2010									2011				
		Pla	Plant ht. (cm)	(mc	Pot	Pods plant ⁻¹		Haı	Haulm yield (g m ⁻²)	1 (g	Plai	Plant ht. (cm)	m)	Po	Pods plant ⁻¹	-	Haı	Haulm yield (g ${ m m}^{-2}$)	(g
SN	Groundnut cultivar	C	Zn	M	U	Zn	M	U	Zn	M	U	Zn	M	ں ا	Zn	M	U	Zn	M
26	ICGS 76	42	42	42	12	15	14	380	444	412	52	55	54	20	18	19	605	569	587
27	TPG 41	33	37	35	6	12	11	414	368	391	45	35	40	25	20	23	512	451	482
28	Tirupati 2	45	48	47	10	16	13	296	301	298	46	43	45	24	25	25	514	477	495
29	CSMG 884	49	49	49	7	10	6	430	506	468	61	62	62	27	32	30	626	541	584
30	TG 17	38	36	37	17	13	15	314	256	285	38	43	41	24	12	18	535	465	500
31	\mathbf{B} 95	48	50	49	10	12	11	462	495	478	45	46	46	30	31	30	601	500	550
32	DRG 17	48	46	47	14	12	13	378	319	349	42	46	44	19	17	18	386	361	374
33	R 9251	46	46	46	×	16	12	499	383	441	48	43	46	22	21	21	437	374	406
34	RS 138	48	47	48	14	15	14	689	652	670	51	45	48	21	16	19	639	521	580
35	TG 26	33	31	32	11	12	12	210	196	203	37	40	39	23	26	24	263	218	241
36	TKG 19 A	46	44	45	12	11	12	443	408	426	52	43	48	15	17	16	680	497	589
37	DH 8	57	49	53	11	7	6	346	199	273	44	42	43	10	11	10	443	343	393
38	JL 220	50	40	45	10	13	12	281	323	302	37	38	38	11	13	12	259	275	267
39	TAG 24	41	36	39	13	13	13	212	199	206	36	38	37	19	17	18	256	226	241
40	ALR 3	57	45	51	13	14	14	639	476	558	49	53	51	19	21	20	706	558	632
41	ALR 2	56	42	49	12	14	13	469	209	339	66	70	68	22	27	25	536	656	596
42	HNG 10	48	44	46	10	13	12	417	354	385	46	44	45	22	32	27	290	307	299
43	DSG 1	41	43	42	10	10	10	413	380	396	44	42	43	24	22	23	549	516	532

TABLE 1 Influence of Zn spray on Plant height, number of pods and haulm yield of 60 groundnut cultivars during two years (Continued)

324	537	358	291	540	546	376	504	406	551	566	511	457	413	531	506	576	463	111					
320	601	351	307	623	477	361	480	440	563	528	456	434	430	348	501	574	412	111		30	164	NS	
329	473	365	276	456	615	391	527	371	538	603	566	480	396	713	511	578	475	126					
18	19	14	21	22	18	18	17	20	23	22	23	23	16	19	24	21	20	4.2					
18	23	16	24	24	20	17	18	23	26	24	22	24	18	18	27	23	21	5.2		1.5	8.2	NS	
18	15	12	19	19	16	18	16	16	19	19	23	22	14	20	21	20	19	4.0					
42	52	40	47	52	46	52	55	50	48	52	38	43	43	51	09	58	49	7.0					
39	50	40	47	50	44	51	54	48	45	48	35	41	41	45	58	55	48	7.3		1.6	8.7	NS	
45	53	39	46	53	47	53	56	51	50	55	41	44	45	56	61	09	50	7.6					.
210	343	258	417	400	465	491	593	501	365	408	314	505	260	351	377	402	379	94					
184	336	230	351	353	385	374	560	418	264	366	234	397	260	330	402	358	355	67		45	SN	\mathbf{NS}	
235	349	287	483	447	544	608	626	584	466	449	395	613	260	372	353	446	402	108					. . .
12	6	6	17	12	11	12	x	16	10	16	×	14	10	13	17	x	12	2.2					
12	10	x	15	11	14	11	10	16	10	17	10	12	6	12	17	6	13	2.5		1.2	6.6	NS	8
11	6	10	18	14	6	12	7	15	10	14	4	16	11	14	16	x	11	2.6					
33	47	35	40	40	47	52	52	46	45	48	40	44	39	49	52	45	46	5.4					
30	50	33	37	38	47	52	51	47	45	48	39	46	38	48	52	44	45	5.9		1.7	9.3	NS	t
35	43	36	42	42	46	52	53	45	45	47	40	42	40	49	51	46	47	5.8					:
Gangapuri	Chitra	Girnar 2	TG 37 A	DRG 12	JSP 19	K 134	BAU 13	M 13	M 145	M 197	M 522	CSMG 84-1	ICGV 86590	ICGV 86325	ICGV 86031	ICGV 88448	Mean	SD	LSD (0.05)	Treatment	Cultivars	Interactions	
44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60							0

C is control, Zn is foliar spray of Zn, M is mean values, SD is standard deviation and NS is not significant.

Downloaded by [N R C Medicinal & Aromatic Plants] at 23:05 07 January 2016

yield in control plot which was 402 and 475 g m⁻², respectively during 2010 and 2011, decreased to 355 and 412 g m⁻² causing 12 and 13% reductions, respectively due to Zn applications. On the other hand the mean number of pods plant⁻¹ were 11 and 19 in control plots which with application of Zn increased to 13 and 21 pods plant⁻¹ during 2010 and 2011, respectively. The number of pods plant⁻¹ ranged from 8-17 during 2010 and 10-30 during 2011. There was no interaction of Zn treatment and cultivars on plant height, pod numbers and haulm yield.

The pod yield of groundnut cultivars ranged from 150–557 g m⁻² with a mean value of 269 g m⁻² during the year 2010 and ranged 192–531 g m⁻² with a mean of 344 g m⁻² during 2011 (Table 2). Application of Zn increased the pod yield of groundnut cultivars during both the years. The mean pod yield of control plot was 258 g m⁻² and 332 g m⁻² which with application of Zn increased to 280 g and 356 g m⁻² during 2010 and 2011, respectively. Thus there was an increase of 9% and 7% in pod yield during those years. The pooled analysis of pod yield data for two years revealed that the pod yield in groundnut cultivars ranged from 201–514 g m⁻² with a mean value of 306 g m⁻². Overall there was 8% increase in pod yield due to Zn application as the mean pod yield of groundnut cultivars in control plot which was 295 g m⁻² increased to 318 g m⁻² with Zn. However, the Zn application did not have any interaction effect with groundnut cultivars on pod yields.

In India about 50% of the groundnut soils show Zn deficiency, a most common in calcareous soils causing up to 20% yield-losses where Zn application is essential for proper growth and development (Singh, 2004, 2007; Singh et al., 2004; Singh and Basu, 2005). The iron-deficiency chlorosis is also a problem of calcareous soil, where foliar application of a iron sulphate is recommended (Singh and Dayal, 1992; Singh et al., 2004). Application of Zn increases the chlorophyll, pod number, yield and fertilizer use efficiency (Singh, 2007). In a Typic Chromustert soil at Parbhani, India, groundnut cvs. M 13, JL 24, L 33 and K-4-11 the pod and haulm yields, 100-seed mass, root weight, root volume and root density increased and were highest with 20 kg ha⁻¹ zinc sulfate (ZnSO₄) (Malewar et al., 1993). In a study at Junagadh the Zn applied at 5 and 10 kg ha⁻¹ in caster, increased available Zn in soil and seed yield by 9.5 and 11.1% and stalk yield by 9.1 and 11.2%, respectively (Mathukia and Khanpara, 2008). In the present study, the data clearly indicated that foliar application of Zn did not allow excess growth as a result both plant height and haulm were decreased, but increased the mobilization as well translocation of photosynthates and hence both the number of pods and pod yield increased due to Zn. The Zn applied through foliar application is readily absorbed by the leaves and further translocated to other parts, hence increased pod yield. Also Zn acted as a balancing nutrient and checked the excessive growth of the crop and reduced both plant height and haulm yield.

			,																			
					Pod	yield (Pod yield (g m^{-2})	_							Zn	conte	Zn content (mg kg ⁻¹)	kg^{-1})				
			2010			2011	_	P.	Pooled data	lata		2010	10				2011			Poole	Pooled data	
SN	Groundnut Cultivar	C	Zn	Μ	U	Zn	Μ	U	Zn	Μ	U	Zn	M	Res	U U	Zn	М	Res	U	Zn	Μ	Res
	SB XI	196	244	220	304	329			286	268	63	69	99	10	69		70	3	99	70	68	9
ы	SG 99	294	370	332	482	7		388	422	405	42	51	47	21	40		56	80	41	62	51	50
3	SG 84	233	258	245	354	349	351	293	303	298	63	65	64	3	09	63	62	ъ	62	64	63	4
4	JL 24	204	259	231	332	349			304	286	56	64	00	14	` 09		57	23	58	69	64	19
ъ	CO 1	196	252	224	280	311			282	260	52	63	58	21	50	61	56	22	51	62	57	22
9	VRI 2	213	265	239	341	• •			307	292	41	57	49	39	56	68	62	21	49	63	56	29
7	CO 2	182	232	207	288	314		235	273	254	45	62	54	38	56	62	59	11	51	62	56	23
x	GG 2	301	313	307	257	•			291	285	55	70	63				51	37	53	70	62	32
6	GG 7	323	416	369	259			291	358	325	59	69	64		09	61	76	52	09	80	70	34
10	GG 12	151	179	165	219				216	201	39	41	40				57	ы	47	50	48	ъ
11	GG 20	553	562	557	430				-	514	00	62	61				57	19	56	62	59	11
12	LGN 2	306	318	312	334				• •	323	39	55	47				46	36	39	54	47	38
13	MH 1	370	360	365	185					291	50	65	58				57	25	55	70	62	28
14	RS 1	192	242	217	299	371	335	246	306	276	57	65	61	14		20	55	79	48	68	58	41
15	JL 501	323	378	350	334					338	42	62	52				57	06	41	68	54	68
16	ICG (FDRS) 4	243	254	248	218					240	44	56	50				42	27	41	52	46	27
17	S 230	347	328	337	351					357	58	60	59		-		44	64	46	57	51	25
18	R 8808	275	268	271	241				267	263	35	42	39				45	28	37	46	42	24
19	S 206	371	394	383	266					346	48	00	54		-	20	61	35	50	65	58	30
20	UF 70-103	289	304	296	296				336	314	40	53	47		-		55	75	40	62	51	54
21	RG 141	290	284	287	247				276	272	38	56	47		-		55	ъ'n	47	55	51	16
22	Tirupati 3	293	280	287	167	216			248	239	49	60	55	22	52	54	53	4	51	57	54	13
23	Tirupati 4	292	322	307	314				335	319	51	68	60		-	99	52	16	54	67	61	24
24	Kadiri 3	281	271	276	389	382	0.7	335	327	331	39	55	47	41	, 39	42	41	×	39	49	44	24
25	ICGS 5	330	365	348	503		531	417	462	439	45	57	51	27	35	52	44	49	40	55	47	36
																			(Continued on next	o pənı	n next	page)

TABLE 2 Influence of Zn spray on pod yield and seed Zn concentration of groundnut cultivars during 2010 and 2011

Downloaded by [N R C Medicinal & Aromatic Plants] at 23:05 07 January 2016

			•						,)									
					Pod y	Pod yield (g m^{-2})	m^{-2}								\mathbf{Zn}	conte	Zn content (mg kg ⁻¹)	kg^{-1})				
			2010			2011		Pot	Pooled data	uta		2010	0				2011			Pooled data	l data	
SN	Groundnut Cultivar	C	$\mathbf{Z}\mathbf{n}$	Μ	C	Zn	Μ	С	Zn	Μ	C	Zn	Μ	Res	C	Zn	М	Res	C	Π	М	Res
26	ICGS 76	340	374	357	426	431	429	383	403	393	43	46	45	7			51	59	41	54	48	32
27	TPG 41	334	339	337	436	470	453	385	405	395	35	56	46	. 09		46	40	35	35	51	43	48
28	Tirupati 2	237	263	250	409	445	427	323	354	339	44	51	48	16	54 (64	59	19	49	58	53	17
29	CSMG 884	325	334	330	449	527	488	387	431	409	53	00	57	13	-	09	56	18	52	00	56	15
30	TG 17	262	297	279	346	426	386	304	361	333	46	64	55	39	37	41	39	11	42	53	47	27
31	B 95	320	343	332	344	337	340	332	340	336	48	59	54		35	45	40	29	42	52	47	25
32	DRG 17	220	227	223	371	355	363	295	291	293	32	42	37	31		44	40	26	34	43	38	28
33	R 9251	298	362	330	318	365	341	308	364	336	59	54	57			54	52	10	54	54	54	0
34	RS 138	189	190	189	318	320	319	254	255	254	63	64	64	51	31	39	35	26	47	52	49	10
35	TG 26	186	240	213	311	359	335	248	299	274	54	55	55			52	43	58	44	54	49	23
36	TKG 19 A	250	315	282	510	499	505	380	407	393	57	60	63				51	10	53	61	57	16
37	DH 8	228	292	260	352	380	366	290	336	313	59	68	64	15		74	67	23	00	71	65	19
38	JL 220	204	209	206	230	247	238	217	228	222	57	63	00	11	57		64	25	57	67	62	18
39	TAG 24	191	183	187	231	224	228	211	204	208	63	65	64	<i>с</i> о	-	55	47	45	51	00	55	19
40	ALR 3	187	223	205	391	377	384	289	300	295	58	62	00		-	56	48	44	49	59	54	22
41	ALR 2	233	266	250	304	297	301	269	281	275	48	47	48	ې م	-	54	53	4	50	51	50	1
42	HNG 10	229	264	246	439	433	436	334	348	341	51	61	56	20	1	45	41	25	44	53	48	22
43	DSG 1	240	229	234	276	315	296	258	272	265	46	55	51			20	48	11	46	53	49	15
44	Gangapuri	162	154	158	242	287	264	202	220	211	45	55	50	22	-	57	49	43	43	56	49	32
45	Chitra	296	288	292	313	372	342	304	330	317	52	53	53		1	44	41	16	45	49	47	×

TABLE 2 Influence of Zn spray on pod yield and seed Zn concentration of groundnut cultivars during 2010 and 2011 (Continued)

1742

30	48	×	17	45	16	9	ъ	17	31	ъ	9	18	00	17	22						l
40	58	51	64	62	00	56	55	49	47	45	53	43	52	47	53	1		5	Ξ	91	
45	70	53	69	73	64	58	56	53	53	46	55	47	64	51	58	×					
35	47	49	59	51	55	55	54	45	41	44	52	40	40	43	48	1					
47	49	15	16	81	21	8	6	21	44	6	4	48	127	44	29						
42	61	51	68	59	53	51	47	52	39	46	55	39	54	39	52	6		3	16	NS	
50	73	54	73	76	58	53	49	57	46	46	56	46	75	46	58	11					
34	49	47	63	42	48	49	45	47	32	45	54	31	33	32	45	10					
14	47	ы	19	19	13	ъ	ы	12	22	1	×	ମ	13	51	17						
38	56	52	59	65	66	62	63	46	55	45	51	48	50	55	54	7		હાં	12	S	
40	66	52	64	70	70	63	63	48	00	46	53	47	53	55	58	×		51	1	Z	
35	45	51	54	59	62	00	62	43	49	43	49	48	47	54	50	×					
350	255	278	390	208	259	245	210	283	335	285	358	279	257	389	306	63					
357	276	286	386	215	277	267	215	299	339	291	352	298	266	394	318	65		20	111	\mathbf{NS}	
344	233	271	394	202	242	223	206	267	332	278	363	260	247	383	295	62					2
412	264	306	438	240	353	269	236	323	399	321	402	408	316	502	344	80					
430	287	303	436	250	372	290	235	348	406	325	396	436	339	517	356	81		21	115	NS	
394	241	310	441	230	334	248	237	298	392	317	408	381	294	487	332	81					
289	246	250	341	177	166	221	185	244	272	248	313	150	197	275	269	70					
284	266	269	335	179	182	244	194	251	272	257	308	161	193	272	280	71		19	104	NS	
294	225	231	347	174	150	198	175	236	273	239	319	139	201	278	258	72					;
Girnar 2	TG 37 A	DRG 12	JSP 19	K 134	BAU 13	M 13	M 145	M 197	M 522	CSMG 84-1	ICGV 86590	ICGV 86325	ICGV 86031	ICGV 88448	Mean	SD	LSD (0.05)	Treatment	Cultivars	Interactions	,
46	47																				

-	-
	2
	Б
	0
	0
	atment over
	5
	6
	Ę
	8
	ă
	8
	g
	2
	77
Ľ	
	Ξ
	e in Zn trea
	ŝ
	ő
	Ē.
	INC
•	=
2	%
	ŝ
	s
	Ke
6	nd Kes
-	ರ
	Ξ.
	õ
	۲,
	e -
	iean values an
	B
	5
	l 1S II
•	¥
2	
	t Zn, N
	77
1	
ç	e d
	ž
	G.
	Ξ.
	s
	ar sj
:	Ë,
	0
•	ä
	5
Ľ	
-	÷
	2
	nt
	5
	õ
	S
;	
(5

Shelling Outturn, 100 Seed Mass and Oil Content

There was a large genetic variation in the shelling outturn, 100 seed mass and oil content among groundnut cultivars. With foliar application of Zn, the shelling outturn and 100 seed mass in groundnut cultivars increased, but the oil content decreased significantly (Table 3). The range of shelling percentage in groundnut cultivars was 65–81% with a mean value of 73% during the year 2010 and 63–79% with a mean value of 73% during 2011. Similarly the range of the 100 seed mass in groundnut cultivars was 35-82 g with a mean value of 47 g during 2010 and 34-96 g with a mean value of 50 g during 2011. The mean shelling percentage in control was 72% which with Zn application increased to 74%. The mean 100 seed mass in control plot was 46 g during 2010 and 49 g during 2011 which with application of Zn increased to 48 and 51 g, respectively during those years. Thus there was 3% increase in shelling outturn and 2% increase in 100 seed mass due to Zn application. There was no interaction of Zn application and groundnut cultivars on these parameters. Our earlier study has demonstrated that in calcareous soil, application of Zn is essential to enhance yield attributes in groundnut (Singh, 2007; Singh et al., 2004). Here it was clearly demonstrated that foliar application of Zn increased shelling out turn and 100-seed mass.

The oil content in groundnut cultivars ranged from 43-51% with a mean of 48%. Application of Zn decreased the oil content in groundnut cultivars by 2% as a result the mean oil content in groundnut cultivars which was 49% in control plot decreased to 47% with Zn treatment (Table 3).

Zinc Concentrations in Seed

The Zn concentrations in groundnut seeds when analyzed, there was a large variation observed among the groundnut cultivars. The Zn concentrations in seeds of 60 groundnut cultivars ranged from 32–63 mg kg⁻¹ Zn with a mean value of 50 mg kg⁻¹ Zn during 2010, which with foliar application of Zn increased to 41–70 and 58 mg kg⁻¹, respectively indicating a very good response of Zn application (Table 2). Similarly during 2011, the Zn concentrations in seeds of groundnut cultivars ranged from 31–69 mg kg⁻¹ Zn with a mean value of 45 mg kg⁻¹ Zn, which with foliar application of Zn increased to 39-91 and 58 mg kg⁻¹ Rn, which with foliar application of Zn increased to 39-91 and 58 mg kg⁻¹. The content among groundnut cultivars were 37–66 mg kg⁻¹ with a mean value of 53 mg kg⁻¹ during 2011 (Table 2).

Application of zinc sulfate increased the Zn content in seed of most of the groundnut cultivars significantly, though a few did not respond to Zn application. The response of foliar application of Zn in increasing the seed Zn content of groundnut cultivars ranged from -8% to 60% with a mean Downloaded by [N R C Medicinal & Aromatic Plants] at 23:05 07 January 2016

TABLE 3 Influence of Zn spray on shelling outturn, 100 seed mass and oil contents of groundnut cultivars during two years

				Year	Year 2010							Year 2011				
		SI	Shelling (%)	(9)	10(100-seed wt (g)	(g)	Sł	Shelling (%)	(9	100	100 seed wt. (g)	(g)		Oil (%)	
SN	Groundnut cultivar	C	Zn	Μ	С	Zn	Μ	C	Zn	Μ	C	Zn	Μ	C	Zn	Μ
- 1	SB XI	64	82	81	36	36	36	76	75	75	42	39	41	48	47	47
5	SG 99	77	73	75	52	49	50	71	77	74	57	64	60	51	49	50
60	SG 84	71	76	74	38	35	36	66	72	69	33	35	34	47	47	47
4	JL 24	74	71	73	44	43	43	71	80	76	46	45	46	47	45	46
ю	CO 1	73	81	77	43	44	43	75	78	76	36	35	36	50	46	48
9	VRI 2	73	71	72	42	43	42	75	74	75	45	44	45	49	47	48
7	CO 2	71	83	77	39	41	40	72	74	73	41	40	40	49	49	49
8	GG 2	76	77	76	40	44	42	79	78	79	43	44	43	47	47	47
6	66.7	75	77	76	48	56	52	72	73	72	50	52	51	48	46	47
10	GG 12	65	74	69	33	39	36	72	71	72	42	44	43	50	47	48
11	GG 20	75	74	74	51	52	52	72	76	74	62	70	66	49	47	48
12	LGN 2	75	75	75	42	44	43	71	76	73	51	47	49	48	46	47
13	MH I	72	74	73	40	40	40	71	72	71	37	35	36	44	44	44
14	RS 1	68	70	69	46	43	45	72	73	73	46	49	48	49	44	46
15	JL 501	76	75	75	39	39	39	74	77	76	44	43	44	46	47	47
16	ICG (FDRS) 4	68	69	68	40	44	42	65	67	66	36	36	36	50	48	49
17	S 230	74	76	75	46	53	49	72	75	73	45	47	46	48	46	47
18	R 8808	78	76	77	35	37	36	75	76	76	36	38	37	48	46	47
19	S 206	62	80	79	41	41	41	74	75	74	35	39	37	49	47	48
20	UF 70-103	66	64	65	46	46	46	76	73	74	54	53	53	50	48	49
21	RG 141	75	74	74	37	38	37	70	68	69	37	39	38	46	47	47
22	Tirupati 3	69	78	74	43	41	42	70	69	70	48	54	51	53	49	51
23	Tirupati 4	75	72	74	50	48	49	73	74	74	45	45	45	48	45	46
24	Kadiri 3	72	73	72	50	50	50	72	76	74	46	41	43	51	48	49
														(Continu	(Continued on next page)	t page,

TABLE	FABLE 3 Influence of Zn spray on	Zn spray c		shelling outturn, 100 seed mass and oil contents of groundnut cultivars during two years (<i>Continued</i>)	100 seed	mass and	oil conter	nts of grou	ındnut cu	ıltivars du	ring two y	vears (Con	tinued)			
25	ICGS 5	76	81	78	39	39	39	76	77	76	44	42	43	48	46	47
26	ICGS 76	76	81	79	54	55	54	75	76	75	57	63	60	49	47	48
27	TPG 41	76	73	74	63	66	65	77	77	77	62	64	63	51	49	50
28	Tirupati 2	76	75	75	37	38	37	72	76	74	37	40	38	49	46	47
29	CSMG 884	70	69	70	64	66	65	71	72	71	61	69	65	50	47	48
30	TG 17	72	69	70	47	48	47	75	77	76	55	63	59	49	50	49
31	\mathbf{B} 95	73	67	70	69	78	74	71	70	70	65	67	66	46	47	47
32	DRG 17	77	77	77	40	39	39	75	77	76	51	56	54	48	51	50
33	R 9251	78	73	75	37	37	37	71	76	73	38	36	37	45	47	46
34	RS 138	72	68	70	47	49	48	70	74	72	44	46	45	49	50	50
35	TG 26	75	80	77	37	34	35	72	71	71	35	37	36	45	43	44
36	TKG 19 A	68	70	69	61	61	61	70	76	73	53	56	55	45	49	47
37	DH 8	70	73	72	49	49	49	67	70	68	46	44	45	46	48	47
38	JL 220	69	72	70	48	49	48	69	67	68	52	49	51	49	48	49
39	TAG 24	69	71	70	33	37	35	76	77	76	41	44	42	45	42	43
40	ALR 3	68	71	69	41	44	42	63	65	64	42	45	44	46	51	49
41	ALR 2	67	73	70	39	38	38	74	79	77	33	42	37	53	46	49
42	HNG 10	79	73	76	38	47	42	78	80	79	50	50	50	51	47	49
43	DSG 1	67	68	68	50	50	50	67	73	70	51	54	52	49	48	49
44	Gangapuri	76	78	77	33	39	36	75	76	76	42	45	44	47	46	46
45	Chitra	69	73	11	50	52	51	69	67	68	59	56	57	51	49	50

2016
January
5 07 Ja
] at 23:05
c Plants
Aromati
જ
/ [N R C Medicinal
К
$\overline{\mathbf{Z}}$
Downloaded by

47 TG 37 A 48 DRG 12		73	72	57	59	58	75	75	75	58	55	56	50	50	50
	68	70	69	40	40	40	75	76	75	45	53	49	46	46	46
		76	77	46	44	45	76	81	79	49	56	53	49	49	49
		73	69	54	55	54	76	77	76	66	73	69	47	45	46
		75	73	36	37	37	75	79	77	43	44	43	49	49	49
		67	66	82	82	82	61	65	63	78	88	83	50	48	49
		75	73	63	66	64	76	75	75	70	63	66	50	48	49
		75	72	37	43	40	70	73	71	43	46	44	50	49	49
		74	73	45	46	45	70	76	73	50	56	53	51	46	49
		72	73	67	72	70	68	69	68	63	68	65	52	47	49
		73	72	56	09	58	67	70	68	53	53	53	51	49	50
		68	65	40	42	41	70	72	71	41	44	42	53	47	50
		74	74	44	43	43	73	75	74	72	78	75	48	47	48
		73	74	49	50	49	74	75	75	42	43	42	49	49	49
		68	71	72	73	72	73	66	69	67	95	$\overline{96}$	46	47	47
Mean		74	73	46	48	47	72	74	73	49	51	50	49	47	48
SD		4.0	3.5	10.4	11.0	10.6	3.6	3.9	3.5	12.0	12.9	12.3	2.0	1.8	1.6
LSD (0.05)	-														
Treatment		1.6			1.4			1.8			1.5			1.7	
Cultivars		8.7			7.7			9.6			8.2			9.3	
Interactions	IS	NS			NS			NS			NS			NS	

IC is not significant	s nut significant.
No.	
put	anu
deriotion o	ucviation
ie etondord	n inningi n
5	5
عصيدامي	values,
a M is mean malues	INT IS TILCALL
5	01 211,
o heres rei	spiray
Ę,	
L	
e control	contra or,
	2

value of 17% increase during 2010 and -5% to 127% increase with a mean value of 29% increase during 2011. The mean Zn content of groundnut seeds were 50 and 45 mg kg⁻¹ which with application of Zn increased to 58 and 58 mg kg⁻¹ during 2010 and 2011, respectively. Thus overall there was 17 and 29% increase in seed Zn content due to application of Zn in groundnut over control during 2010 and 2011, respectively.

Under normal condition, without any Zn treatment, 29 cultivars showed 50 mg kg⁻¹ and more Zn in their seed and 31 cultivars showed less than 50 mg kg⁻¹ Zn in their seed during the year 2010, but with foliar application of Zn the number of cultivars showing above 50 mg kg⁻¹ Zn in their seed increased to 51 and only 9 cultivars were left with less than 50 mg kg⁻¹ Zn. So much so with application of Zn, 30 cultivars showed 60 mg kg⁻¹ and above Zn in their seed, the number of which otherwise were only 10 without Zn application during 2010. Similarly during 2011 under normal condition, 22 cultivars showed 50 mg kg⁻¹ Zn in their seed and with foliar application of Zn the number of cultivars showed 50 mg kg⁻¹ Zn and 38 cultivars showed less than 50 mg kg⁻¹ Zn in their seed and with foliar application of Zn the number of cultivars showing above 50 mg kg⁻¹ Zn in their seed increased to 46 and only 14 cultivars were left with less than 50 mg kg⁻¹ Zn. Also with application of Zn, 26 cultivars showed 60 mg kg⁻¹ and above Zn in their seed during 2011, the number of which otherwise were only 4 without Zn application.

When the data for the two years were combined on an average, there was 22% increase in seed Zn content in seed due to foliar application of Zn on groundnut foliage. However, these responses varied with cultivars and there was 1 to 60% increase in seed Zn content over control. The range of seed Zn content varied from 38–70 mg kg⁻¹ with a mean value of 53 mg kg⁻¹. The mean seed Zn content of groundnut seed in control plot was 48 mg kg⁻¹ which with foliar application of Zn increased to 58 mg kg⁻¹. There were 35 groundnut cultivars showing less than 50 mg kg⁻¹ in control plots (without Zn) which with application of Zn were reduced to only 7. Thus application of Zn increased the Zn content in seed of groundnut cultivars and out of 60 groundnut cultivars, 53 cultivars showed more than 50 mg kg⁻¹. This clearly indicated that the groundnut cultivars with low seed Zn are more responsive to foliar application of Zn than the cultivars with high seed Zn. Some of the cultivars not responding to foliar Zn application in increasing seed Zn indicated their genetic makeup. In a preliminary study with several groundnut cultivars 16% increase in the seed Zn content was observed due to foliar application of Zn, though responses varied with cultivars (Singh et al., 2011a). The zinc contents in grains of soyabean cultivars ranged 72–79 mg kg^{-1} (Varsha Rani et al., 2008).

As there was a large variation in seed Zn content of groundnut cultivars and the response of foliar Zn application on groundnut cultivars, these were categorized into various groups (Table 4). Accordingly, based on two years data among the 25 groundnut cultivars having more than 50 mg kg⁻¹ Zn in

TABLI	E 4 Influence of	f foliar Zn spray	on seed Zn	TABLE 4 Influence of foliar Zn spray on seed Zn content of high and low Zn containing groundnut cultivars (pooled data of two years during dry 2010 and 2011)	ntaining grc	oundnut cultivars (p	ooled data of t	two years o	luring dry 2010 and 2011)
		High Zn	Zn containing cultivars	cultivars			Low Zn containing cultivars	taining cul	tivars
		Zn content (mg kg ⁻¹) in seed	nt (mg kg ⁻¹) 1 seed				Zn content (mg kg ⁻¹) in seed	t (mg seed	
SN	Cultivars	Control	Zn	% increase over control	SN	Cultivars	Control	Zn	% increase over control
				High response >	onse > 20%				
1	GG7	60	80	34	26	VRI 2	49	63	29
6	MH 1	55	70	28	27	ALR 3	49	59	22
6	Tirupati 4	54	67	24	28	RS 1	48	68	41
4	GG 2	53	70	32	29	TG 37 A	47	70	48
Ю	CO 1	51	62	22	30	S 230	46	57	25
9	CO 2	51	62	23	31	TG 26	44	54	23
7	K 134	51	73	45	32	HNG 10	44	53	22
8	S 206	50	65	30	33	Gangapuri	43	56	32
		34	TG 17	42	53	27			
					35	B 95	42	52	25
					36	SG 99	41	62	50
					37	ICGS 76	41	54	32
					38	JL 501	41	68	68
					39	ICG (FDRS) 4	41	52	27
					40	M 522	41	53	31
					41	UF 70-103	40	62	54
					42	ICGS 5	40	55	36
					43	ICGV 86031	40	64	60
					44	LGN 2	39	54	38
		45	Kadiri 3	39	49	24			
					46	R 8808	37	46	24
					47	TPG 41	35	51	48
					48	Girnar 2	35	45	30
					49	DRG 17	34	43	28
									(Continued on next page)

Downloaded by [N R C Medicinal & Aromatic Plants] at 23:05 07 January 2016

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			High Zn containing cultivars	ontaining	cultivars			Low Zn e	Low Zn containing cultivars	cultivars
CultivarsControlZn% increase over controlSNCultivarsControlZnDH 8607119 50 Tirupati 24958JSP 1953607119 50 Tirupati 24955JL 2453661719 50 Tirupati 24955JL 245366197718 52 DSG14649JL 245364167318 53 M1974755JL 245364167057105494755JL 245364167055DSG1444644JL 245364161655DSG14755JL 2453641616 55 DSG14755JL 2453641616 55 DSG14755JL 24536015 56 55 DSG14755JL 24536015 106 55 56 40 47 56JL 2455109 106 106 106 106 106 47 56 JL 2455109 106 106 106 106 106 106 106 JL 335156 106 106 106 106 106 106 106 106			Zn conten kg ⁻¹) in (ıt (mg seed				Zn conter kg ⁻¹) in	at (mg seed	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SN	Cultivars	Control	Zn	% increase over control	SN	Cultivars	Control	Zn	% increase in over control
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					Medium re	esponse 11-	-20%			
	6	DH 8	60	71	19	50		49	58	17
	10	JSP 19	59	69	17	51	RG 141	47	55	16
	11	JL 24	58	69	19	52	DSG 1	46	49	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	JL 220	57	67	18	53	M 197	45	53	17
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	13	GG 20	56	62	11	54	ICGV 88448	43	51	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	BAU 13	55	64	16	55	ICGV 86325	40	47	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	TKG 19 A	53	61	16					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	CSMG 884	52	60	15					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	Tirupati 3	51	57	13					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	TAG 24	51	09	19					
SB XI 66 70 6 56 DRG 12 49 53 SC 84 62 64 4 57 GG 12 47 50 M 13 55 58 6 58 RS 138 47 50 M 13 54 54 0 59 Chitra 45 49 M 145 54 56 5 60 CSMG 84-1 44 AI R 2 50 51 9 141 46					Low res	ponse < 10	%(
SG 84 62 64 4 57 GG 12 47 50 M 13 55 58 6 58 RS 138 47 52 M 13 54 54 54 0 59 Chitra 45 49 M 145 54 56 5 60 CSMG 84-1 44 46 ALR 2 50 51 9 143 46	19	SB XI	66	70	9	56	DRG 12	49	53	8
M13 55 58 6 58 RS 138 47 52 R 9251 54 54 0 59 Chitra 45 49 M 145 54 56 5 60 CSMG 84-1 44 46 M 145 50 55 6 CMG 84-1 44 46 ALR 2 50 51 9 50 51 40	20	SG 84	62	64	4	57	GG 12	47	50	5
R 9251 54 54 0 59 Chitra 45 49 M 145 54 56 5 60 CSMG 84-1 44 46 ICGV 86590 52 55 6 60 CSMG 84-1 44 46 ALR 2 50 51 9 50 51 9	21	M 13	55	58	6	58	RS 138	47	52	10
M 145 54 56 5 60 CSMG 84-1 44 46 ICGV 86590 52 55 6 ALR 2 50 51 2	22	R 9251	54	54	0	59	Chitra	45	49	8
ICGV 86590 52 55 ALR 2 50 51	23	M 145	54	56	5	09	CSMG 84-1	44	46	5
ALR 2 50 51	24	ICGV 86590	52	55	9					
	25	ALR 2	50	51	2					

drv 9010 and 9011) ÷ f to Jod Jots 1 ltiv ÷ 4 tainin r L 10 ու ոք հետհ et c d 7n 7.7 eilolia TARIF 4 Influ

their seeds without any application of Zn, 8 groundnut cultivars GG 7, MH 1, Tirupati 4, GG 2, CO 1, CO 2, K 134 and S 206 showed more than 20% increase in seed Zn content with foliar Zn application, 10 cultivars DH 8, JSP 19, JL 24, JL 220, GG 20, BAU 13, TKG 19 A, CSMG 884, Tirupati 3 and TAG 24 showed 10-20% response and 7 cultivars showed less than 10% response in increasing the Zn content. On the other hand, from the remaining 35 groundnut cultivars having less than 50 mg kg⁻¹ Zn in their seeds, 24 cultivars showed more than 20% increase in seed Zn content, 6 cultivars showed 10-20% and only 5 cultivars showed less than 10% increase in seed Zn content (Table 4). Thus in general the groundnut cultivars having less than 50 mg kg⁻¹ Zn in their seeds showed more response to Zn application in increasing the Zn content in seeds. In India, Zn deficiency a most common in calcareous soils causing up to 20% yield-losses where foliar application of Zn is essential to meet the Zn requirement and also to maintain proper Zn in seed (Singh, 2007; Singh et al, 1993, 2004; Singh and Basu, 2005). In a field study on several groundnut cultivars Singh et al. (2011b) found 17 high Zn density groundnut cultivars having more than 63 mg kg⁻¹ Zn in their seeds, 16 low in Zn density with $< 51 \text{ mg kg}^{-1}$ Zn and 70 cultivars were medium in Zn density with $51-63 \text{ mg kg}^{-1}$ Zn in their seeds.

In this study, foliar application of Zn as zinc sulphate increased the Zn content of groundnut seed in most of the cultivars and out of 60 cultivars, 48 showed more than 10% increase in Zn content. Interestingly among the groundnut cultivars with more than 50 mg kg⁻¹ Zn in their seeds and showing more than 10% increase in Zn content of seed due to foliar Zn application the 8 cultivars GG 7, GG 20, Tirupati 4, DH 8, JSP 19, TKG 19 A, CSMG 884 and S 206 were high yielding one with more than 300 g m⁻² pod yield and 6 cultivars CO 1, CO 2, BAU 13, GG 2, MH 1, JL 24 were high yielder with more than 250 g m⁻² pod yield.

In many micronutrient-deficient regions, wheat is the dominant staple food making up >50% of the diet. Biofortification, or harnessing the powers of plant breeding to improve the nutritional quality of foods, is a new approach being used to improve the nutrient content of a variety of staple crops (Cakmak et al., 2010). Also nitrogen status of plants can have a positive impact on root uptake and the deposition of micronutrients in seed. Several studies have demonstrated the role of Zn fertilizers in increasing the Zn density of grain in cereals, but no studies on groundnut. The present study has clearly demonstrated increase of pod yield and Zn content in seed suggesting that wherever Zn fertilizers are available, making full use of Zn fertilizers can provide an immediate and effective option to increase seed Zn concentration, and productivity on marginal soils with mild to severe Zn deficiencies. The nutrient-efficient species could prevent or mitigate iron and zinc deficiency of plants (Zuo and Zhan, 2009). This study has identified several efficient groundnut cultivars with high Zn mining capacities and also with high performance of foliar application of Zn content resulting in high Zn content in seed.

CONCLUSIONS

Foliar application of zinc sulfate is recommended to increase Zn content of groundnut seed. Further, the groundnut growers are recommended to cultivate Zn responsive, high Zn density and high yielding cultivars such as GG 7, GG 20, Tirupati 4, DH 8, JSP 19, TKG 19 A, CSMG 884 for maximum biofortification of Zn in groundnut seed.

REFERENCES

- Cakmak, I., W. H. Pfeiffer, and B. McClafferty. 2010. Biofortification of durum wheat with zinc and iron. *Cereal Chemistry* 87: 10–20.
- Lal, C., and A. L. Singh. 2007. Screening for high zinc density groundnut genotypes in India. In: Proceedings Zinc Crops 2007 Conference for "Improving Crop Production and Human Health", Istanbul, Turkey 24-26th May 2007. Available at: http://www.researchgate.net/publication/242305823 Screening_for_High_Zinc_Density_Groundnut_Genotypes_in_India (accessed 8 July 2015).
- Malewar, G. U., B. S. Indulkar, and V. G. Takankhar. 1993. Root characteristics and yield attributes as influenced by zinc levels and groundnut varieties. *Annals of Agricultural Research* 14: 478–481.
- Mathukia, R. K., and V. D. Khanpara. 2008. Effect of in-situ moisture conservation and zinc fertilization on soil properties and productivity of castor (*Ricinus communis* L.). Indian Journal of Dryland Agricultural Research and Development 23: 110–111.
- Singh, A. L. 2004. Mineral nutrient requirement, their disorders and remedies in groundnut. In: Groundnut Research in India, eds. M. S. Basu, and N. B. Singh, pp. 137–159. Junagadh, India: National Research center for groundnut (ICAR).
- Singh, A. L. 2007. Prevention and correction of zinc deficiency of groundnut in India. In: Proceedings Zinc Crops 2007 Conference for "Improving Crop Production and Human Health", Istanbul, Turkey 24-26th May 2007. Available at: http://eprints.icrisat.ac.in/id/eprint/10119 (accessed 8 July 2015).
- Singh, M. V. 2009. Micronutrient nutritional problems in soils of India and improvement for human and animal health. *Indian Journal of Fertilizer* 5: 11–16, 19–26, 56.
- Singh, A. L. 2011. Physiological basis for realizing yield potentials in groundnut. In: Advances in Plant Physiology, ed. A. Hemantranjan, pp. 131–242. Jodhpur, India: Scientific Publishers (India).
- Singh, A. L., and M. S. Basu. 2005. Integrated Nutrient Management in Groundnut-A Farmer's Manual. Junagadh, India: National Research center for groundnut (ICAR).
- Singh, A. L., and D. Dayal. 1992. Foliar application of iron for recovering groundnut plants from limeinduced iron-deficiencies chlorosis and accompanying losses in yields. *Journal of Plant Nutrition* 15: 1421–1433.
- Singh, A. L., M. S. Basu, and N. B. Singh. 2004. *Mineral Disorders of Groundnut*. Junagadh, India: National Research Center for Groundnut (ICAR).
- Singh, A. L., V. Chaudhari, and V. G. Koradia. 1993. Spray schedule of multi-micronutrients to overcome chlorosis in groundnut. *Indian Journal of Plant Physiology* 36: 35–39.
- Singh, A. L., V. Chaudhari, and J. B. Misra. 2011a. Zinc fortification in groundnut and identification of zinc responsive cultivars of India. In: *Proceedings Zinc Crops 2011, Conference for "Improving Crop Production and Human Health" Hyderabad, India, 10-14 October, 2011.* Available at: http://www.zinccrops2011.org/presentations/2011_zinccrops2011_al_singh_2_abstract.pdf (accessed 8 July 2015).
- Singh, A. L., V. Chaudhari, and C. B. Patel. 2011b. Identification of high zinc density groundnut cultivars to combat zinc malnutrition in India. Paper presented at Zinc Crops 2011: Improving Crop Production and Human Health, Hyderabad, India, 10-14 October, 2011. Abstract available at: http://www.zinccrops2011.com (accessed 23 June 2015).

- Varsha Rani, R. B. Grewal, and N. Khetarpaul. 2008. Physical characteristics, proximate and mineral composition of some new varieties of soybean (*Glycine max L.*). Legume Research 31: 31–35.
- WHO. 2002. The world health report 2002. Reducing Risk, Promoting Healthy Life. Geneva: World Health Organization.
- Zuo, Y., and F. Zhan. 2009. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. *Agronomy for Sustainable Development* 29: 63–71.