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Abstract Haloarchaea are predominant in the salt crys-

tallizers of the Rann of Kutch when the concentration of

salts approaches saturation levels. The obligate and

extreme halophilic archaeon 3A1-DGR, isolated from a salt

crystallizer pond of the Little Rann of Kutch, India, needs

minimum of 10 % NaCl in the growth medium. To

understand the mechanism(s) of osmotolerance and adap-

tation at extreme osmolarity, and to mine relevant gene(s),

the genome of this haloarchaeon, 3A1-DGR, was

sequenced. We report here, the 2.88 Mb draft genome

sequence of the haloarchaeon 3A1-DGR, with G?C con-

tent of 68 % and the possible involvement of 43 genes in

stress tolerance. Further studies of the genome of this

haloarchaeon would be required to identify gene(s) that

might be responsible for imparting extreme osmotolerance.
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Archaea are believed to have evolved 4 billion years ago

[1], and can survive in the extremities of pH, temperature,

pressure, salts, etc., besides playing significant roles in the

bio-geochemical cycles [2]. The salt marshes of the Great

and the Little Rann of Kutch of Gujarat, India, harbour

extreme halophilic archaea, besides few genera of bacilli

like Bacillus, Salinibacillus, Thalassobacillus, Sedimini-

bacillus, etc. The concentration of salts in these hypersaline

regions and that of the salt crystallizers gradually approa-

ches the point of saturation when salt starts crystallizing,

allowing specific group of organisms to thrive in such

conditions. The genomes of a number of bacilli of the

genera Bacillus, Salinibacillus, Thalassobacillus, and

Sediminibacillus, isolated from the salt crystallizers of the

Little and Great Rann of Kutch, have been sequenced

recently to understand the mechanism(s) of halophil-

ism(s) and to isolate relevant gene(s) [3–7].

The present haloarchaeon 3A1-DGR was isolated from a

sample (W3A; total salts concentration of 418.7 g/l; pH:

6.7) collected from a salt crystallizer pond (N 23�44.300 E

71�10.810) of the Little Rann of Kutch, Gujarat, India. This

extreme halophilic archaeon was isolated by spread plating

of the diluted samples into different known standard hal-

ophilic media including complex medium (CM), minimum

growth medium (MGM), modified growth medium for

haloarchaea, halophilic medium (HM), standard growth

medium (SGM), DSMZ medium 1184, DSMZ medium 97,

etc. containing different concentrations of NaCl (18–23 %)

[8–11]. The Petri dishes were incubated at different tem-

peratures (28, 37 and 42 �C) for 15–20 days.

The haloarchaeon 3A1-DGR is an isolate of a lineage of

isolates from the salt crystallizers of the Little Rann of

Kutch, India and has been described recently [12]; which

lies between Natronomonas and Halopenitus on the basis of

partial 16S rRNA sequences. The lineage consists of three

haloarchaeal isolates, namely 3A1-DGR (16S rRNA Gen-

Bank acccession no. JF802160), H9-DGR, and 2ANA-DGR.

Electronic supplementary material The online version of this
article (doi:10.1007/s12088-014-0483-7) contains supplementary
material, which is available to authorized users.

K. K. Pal (&) � R. Dey � M. Thomas � S. Ghorai �
D. Sherathia � S. Vanpariya � R. Rupapara � P. Rawal �
M. Mandaliya � B. Sukhadiya

Microbiology Section, Directorate of Groundnut Research

(ICAR), Ivnagar Road, PB No. 5, Junagadh, Gujarat 362001,

India

e-mail: pal@nrcg.res.in; kkpal9426476749@gmail.com

A. K. Saxena

Division of Microbiology, Indian Agricultural Research

Institute, New Delhi 110012, India

123

Indian J Microbiol (Oct–Dec 2014) 54(4):471–473

DOI 10.1007/s12088-014-0483-7

Author's personal use

http://dx.doi.org/10.1007/s12088-014-0483-7


Comparison of 3A1-DGR with Halopenitus revealed

that whereas Halopenitus persicus DC30(T) is pleomorphic

(rod to triangular or disc shaped), forms pale pink-pig-

mented colonies, needs at least 0.02 M MgCl2 for growth,

optimum being 0.1 M [13], the cells of 3A1-DGR are

irregularly coccoid (outer diameter of 1.4–1.5 lm) and

formed hard and tough colonies which produce creamy

pigmentation when incubated in dark, and light red pig-

mentation in illuminated conditions [12], and does not

require any MgCl2 for growth. Moreover, G ? C content

of 3A1-DGR is 68 % and contains phosphotidylglycerol

phosphate (PGP), phosphotidyl glycerol phosphate methyl

ester (PGPME) and diglycosyl diether (DGD) as major

polar lipids against G?C content of 66 % and major polar

lipids of PGP and PGPME in Halopenitus persicus

DC30(T). It also differs from Halopenitus malekzadehii

CC65 (T) by the fact that CC65(T) needs at least 0.02 M

MgCl2 for initiation of growth, 0.4 M being optimum;

produces light yellow colonies and has G?C content of

63.8 % [14]. Studies revealed that the obligate haloarcha-

eon 3A1-DGR needs a minimum of 10 % NaCl in growth

media for initiation of growth and can continue to grow up

to 35 % NaCl and 42 �C, with optimum growth require-

ment of around 20 % NaCl, 40 �C and pH 7.5 at which it

can reach a log phase of growth in around 5 days (Fig. 1)

in complex medium (CM). The present isolate does not

survive lyophilisation because of obligate halophilic nature

and hence preserved in glycerol stock at -80 �C; in stabs

and in slants at 4 �C, and in liquid broth at room temper-

ature keeping minimum of 10 % of NaCl in the growth

media and sub-cultured bi-monthly for maintenance and

further use.

To understand the mechanisms of obligate halophilism,

the genome of 3A1-DGR was sequenced by Roche 454

genome analyser (GS FLX). Both shotgun and 3 KB mate-

paired library sequencing were performed. In shotgun

sequencing, 842518 reads with average read length of 468

bases were obtained. However, in mate-paired (3 KB)

library sequencing, 153960 and 106333 reads, respectively,

with average read lengths of 455 and 423 bases, respec-

tively, were obtained.

The genome was assembled de novo by GS de novo

assembler v2.9 [15] with genome coverage of about 173X.

The draft assembly of 3A1-DGR resulted into 3 scaffolds

of 2880902 bases with the largest scaffold of 1817982

bases. The N50 scaffold length of 1817982 bases with an

average size of 960300 bases (minimum 5278 bases;

maximum 1817982 bases) was achieved. The assembly

consists of 15 contigs (average size 192033 bases) with the

N50 contig of 425867 bases and largest contigs of 628022

bases. All the assembly data were deposited in the DDBJ/

EMBL/GenBank nucleotide sequence database.

The draft genome of 3A1-DGR was annotated further

using Rapid Annotation of Subsystem Technology (RAST)

server [16], Glimmer 3 [17, 18], GeneMarkS [19], tRNA-

Scan-SE [20], RNAmmer [21], KEGG [22], and Signal P

[23] for predicting subsystems, coding sequences (CDS),

tRNA, rRNA genes, signal peptides, biochemical path-

ways, etc.

Using the different software tools, we identified 2894

coding sequences (CDS). The draft genome also encodes

46 RNA genes (43 tRNA and 3 rRNA genes) and 254

subsystems. There was one each of 5S, 16S and 23S rRNA

in the draft genome of the haloarchaeon 3A1-DGR. Among

the CDS, 1931 are not in a subsystem (nonhypothetical,

540; hypothetical, 1391), whereas 963 (nonhypothetical,

936; hypothetical, 27) are in a subsystem. This indicates

that nearly 66 % of the CDS could not be placed in a

subsystem and nearly 49 % of the CDS have hypothetical

functions. RAST annotation also revealed the association

of 43 genes in stress responses in this organism: 10 in

osmotic stress (10 in choline and betaine uptake and

betaine biosynthesis), 28 in oxidative stress (2 in protection

from reactive oxygen species [ROS], 16 in oxidative stress,

2 in glutathione:biosynthesis and gamma-glutamyl cycle, 4

in glutathione:non-redox reactions, 3 in rubrerythrin, and 1

in glutaredoxins), 2 in detoxification and 3 in no subcate-

gory. Further analysis identified 15 signal peptides, and

three closest neighbours of haloarchaeon 3A1-DGR as

Halogeometricum borinquense DSM 11551 (genome ID

469382.4), Haloquadratum walsbyi DSM 16790 (genome

ID 362976.10) and Haloarcula marismortui ATCC 43049

(genome ID 272569.1) with\90 % similarity. In addition,

306 genes have been mapped to different pathways

involved in the biosynthesis and degradation of amino

acids and derivatives, including 50 in branched-chain

amino acid pathways. Similarly, 167 genes have also been

mapped to different pathways of central carbohydrate

metabolism including 26 in the serine-glyoxylate cycle.

To unravel the mechanism(s) of osmotolerance and to

identify relevant gene(s), comparative genomics will be

initiated on completion of the filling of the gaps in the
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Fig. 1 Growth curve of extreme haloarchaeon 3A1-DGR at 20 %

NaCl in CM medium
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sequence data. Deciphering the functions of hypothetical

proteins would also lead to identification of a number of

novel genes. Future studies are underway in this direction.

Nucleotide sequence accession numbers

This Whole Genome Shotgun (WGS) project has been

deposited at DDBJ/EMBL/GenBank under the accession

number ATCR00000000. The version described in this

paper is version ATCR02000000. Bioproject registered

under accession: PRJNA183189 ID:146531.
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