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Chapter 8
Applications of Biopolymeric Gels
in Agricultural Sector

Sumit Mishra, Nandkishore Thombare,
Mohd Ali and Saurabh Swami

Abstract Hydrogels are three-dimensional cross-linked polymeric network having
substantial affinity for water. Classes of hydrogels which are derived from
biopolymers have been widely used in number of industries because of their bio-
compatibility and environmental safety. In agricultural sector, they are extensively
used as soil conditioners, water retainers, and bio-remediating agents. Their recent
application claims customized diffusion of different materials such as fertilizers and
pesticides into surrounding soil matrix. They are proving very useful for crops in
efficient distribution of water with minimum wastage, and utilization of fertilizer
nutrients and pesticides in targeted zones. This chapter covers the recent advances
on biopolymeric gels and different aspects of their usage with respect to agricultural
sector.

Keywords Polysaccharide � Gum � Hydrogel � Soil conditioner
Pesticide � Water retainer

1 Introduction

Biopolymers are polymeric materials that are obtained from living beings.
According to Dr. Pat Smith, “Biopolymers are not only materials of ‘green birth’
but polymers with ‘green death’ as well.” The examples of biopolymers include
carbohydrates, nucleic acids, proteins, lipids, peptides, and polysaccharides.
Among these, polysaccharides have large popularity owing to their manifold uses,
particularly in the field of agriculture, food, pharmacotherapy and pharmacy, cos-
metic, and mining industry. Polysaccharides have high molecular weight and are
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composed of one or different types of monosaccharide units arranged in linear or
branched fashion via glycosidic linkages. On hydrolysis, polysaccharides give their
constituent oligosaccharides or monosaccharides. Cellulose, starch, gum arabic,
guar gum, alginate, chitosan, xanthan, etc., are commercially exploited polysac-
charides which find application in various industries. Polysaccharides are generally
heterogeneous, containing slight modifications of the repeating units. Depending on
the molecular structure and chemical composition, polysaccharides have different
physicochemical properties derived from their building blocks. They may be
amorphous or even insoluble in water (Varki et al. 1999, 2008). When a
polysaccharide is composed of same units of monosaccharides, the polysaccharide
is called a homoglycan or homo-polysaccharide, but when different units of
monosaccharides are present, the polysaccharides are called heteroglycans or
heteropolysaccharides.

1.1 Advantages of Natural Polysaccharide

Biodegradability: Biopolymers are naturally available and are produced by living
organisms. They represent truly renewable source, and they are easily degraded by
microbes; hence, they do not have any unfavorable effect on the environmental
well-being.

Non-toxic and biocompatible: Natural polysaccharides being biocompatible are
non-toxic and can be used in different commodities, ranging from foods to phar-
maceuticals and cosmetics to drug delivery.

Environment-friendly processing: Polysaccharides from various natural sources
are effortlessly gathered or harvested in various seasons in substantial amounts
because the processes involved in their production are mostly natural and simple.

Low cost: As there is no specialized set up or infrastructure required to produce
natural polysaccharide, the cost of production is also much lower compared to
synthetic material.

Easy availability: Most of the natural polysaccharides are obtained either from
cropping or plants or sea; hence, they are readily available. Also, for most of them
production can be increased as per demand, e.g., guar gum.

Gums are important class of biopolymers which are heterogeneous, water sol-
uble or water swellable, high molecular weight polysaccharides extracted from
terrestrial or marine plants or from microorganisms. They have gelling capability or
ability to contribute viscosity to their dispersions (Abu Baker et al. 2007).
Generally, gums are insoluble in nonpolar or organic solvents such as hexane,
alcohols, ether, and other hydrocarbons. On hydrolysis, depending on their
chemical composition, gums yield mannose, dextrose, rhamnose, xylose, arabinose,
galactose, glucuronic acid, galacturonic acid, etc. Due to their unique physico-
chemical properties, gums have broad applications in both food and non-food
industries. All applications rely on the properties given by macromolecules in
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various states of hydration, but mostly depend on the properties they impart to
solutions and gels.

2 Classification of Natural Polysaccharides

Natural polysaccharides are available in large amounts as they are obtained from
large varieties of animals, plants, fungi and microbes, and seaweed sources; where
they perform various structural and metabolic functions. Naturally obtained
polysaccharides from various sources can be classified as follows (Jani et al. 2009)
(Figs. 1, 2 and 3).

Based on their origin/sources, the natural gums are differentiated into four major
groups. Out of these four groups, polysaccharides with plant origin are mostly
utilized commercially and found in numerous day-to-day life applications.

Classification of polysaccharides based on 
the chemical structure of monomeric units

Homoglycans
Cellulose, 
Amylose, 
Arabinans

Diheteroglycans 
Galactomannans,

Algins, 
Carragennans

Tri-heteroglycans
Gellan, 

Arabinoxylans, 
 Xanthan

Tetra-
heteroglycans
Psyllium seed 

gum, 
Gum Arabic

Penta-
heteroglycans

Tragacanth, 
Ghatti gum

Fig. 2 Classification of polysaccharides based on the chemical structure of monomeric unit

Classification of polysaccharides based on the shape

Linear 
Algins, Amylose, 
Cellulose, pectins

Branched

Branch-on-branch
Amylopectin, 

Tragacanth, Gum 
arabic

Short branches
Galactomannans, 
Xanthan, Xylan

Fig. 1 Classification of polysaccharides based on the shape
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2.1 Polysaccharides with Plant Origin

2.1.1 Tree Exudates

Exudate gums are one of the oldest natural polysaccharides, which were already
being used 5000 years ago as a thickening and stabilizing agents. Exudate gums are
formed from the breakdown of internal plant tissues (mainly cellulose) in a process
called gummosis. They are exudated naturally from stems, in response to
mechanical wounding or after an insect, bacterial, or fungal attack. Though large
numbers of gums are available, only few of them could find commercial applica-
tions and are produced or collected in substantial quantity. Some of them are
discussed below:

Gum Arabic:

Gum arabic is an edible gum and approved as food additive by European Food
Safety Authority with E-Number 414. This is obtained from the stems and branches
of diverse subspecies of trees and shrubs of genus Acacia, in the form of dried,
gummy exudates (Nishinari and Doi 2012). Gum arabic is predominantly collected
from Acacia nilotica in India and from Acacia senegal and Acacia seyal in different
parts of the world. A. senegal and A. seyal grow naturally in the semiarid
sub-Saharan regions of Africa. Major gum arabic-producing countries are Sudan,
Nigeria, Mali, Niger, Burkina Faso, Chad, India, Tanzania, and Kenya. Among
these countries, Sudan alone produces 80% of gum arabic, followed by Nigeria
which is the second largest producer (Iqbal 1993). A. senegal is found in some parts
of India mainly in dry rocky hills of south east Punjab, in north Aravalli hills, and in
other drier parts of Rajasthan and Gujarat.

Gum arabic has been extensively used as a stabilizer (Chung et al. 2016; Kong
et al. 2014), thickening agent and emulsifier (Hosseini et al. 2015),
micro-encapsulant (Ramakrishnan et al. 2007), in fruit coating (Addai et al. 2013),
corrosion inhibitor of aluminum (Umoren et al. 2006), antioxidant (Gamal el-din
et al. 2003; Al-Majed et al.2002, 2003; Abd-Allah 2002) as an adsorbent for heavy

Classification of polysaccharides based on origin

Plant originated Marine 
originated 

Carrageenans, 
Agar, Alginic 

acid and 
Laminarin

Microbial originated 
Xanthan, Zanflo, Dextran, 
ullulan,Curdian,  Emulsan, 

Schizophyllan, 
Baker’ s yeast glycan, 

Lentinan, Krestin, 
scleroglucan, etc.

Animal 
originated

 Hyaluronic acid, 
Chitin Chitosan, 

Chondroitin 
sulfate, etc.

Tree exudates 
Gum ghatti, Gum 

arabic, 
Gum karaya, 
Albizia gums,

Gum tragacanth, etc.

Seed originated 
Locust bean gum, 

Guar gum, 
Tamarind gum, 
Cassia tora, etc.

Fig. 3 Classification of polysaccharides based on origin
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metal (Banerjee and Chen 2007), and also used in lithography, textile, pottery,
cosmetics, and pharmaceutical industries (Verbeken et al. 2003).

Karaya Gum:

The Joint Expert Committee on Food Additives (JECFA/FAO) defines gum
karaya as the dried exudates obtained from Sterculia urens Roxburgh and other
related species of Sterculia (family Sterculiaceae) or Cochlospermum gossypium
(Mbuna and Mhinzi 2003) or other species of Cochlospermum kunth (family
Bixaceae). The other two contributing species are Sterculia setigera and Sterculia
villosa. Karaya gum is acetylated polysaccharide which on acid or base hydrolysis
gives galactose, rhamnose, galacturonic acid with little quantity of glucuronic acid.
S. urens is indigenous to India having wide distribution. It is abundantly found in
the dry deciduous forests of Madhya Pradesh, Chhattisgarh, and central India.
Conventionally, India is the largest producer and exporter of karaya gum, while
Europe is its largest importer (Verbeken et al. 2003). Gum karaya trees are also
found in Australia, Pakistan, Panama, Philippines, Indonesia, Sudan, and Vietnam.
Owing to its high viscosity, acid stability, and suspension properties, it is widely
used in both non-food and food applications (Verbeken et al. 2003). It is also used
for the removal of heavy metals (Vinod et al. 2011), dyes, cationic dyes (Mittal
et al. 2016), methylene blue (Mittal et al. 2015a, b), as an excipient for
muco-adhesive drug delivery systems (Bahulkar et al. 2015), as a thickening agents
(Ibrahim et al. 2010). Other major exudate gums are gum ghatti, albizia gums, salai,
jhingan, moringa gum, etc.

2.1.2 Seed Derived

Seeds are also a source of polysaccharides. Most seeds contain starch as the
principal food stored for use by the embryonic plant in its initial growth. Most of
the plants which are used as food produce seeds with starch as a carbohydrate
reserve. Few plant species produce seeds without starch food reserves, which can be
harvested to produce the seed gums. More ancient seed gums were extracted from
quince, psyllium, flax, and locust seeds, and some of these are still quite important.

Those gum-producing seeds that are amenable to normal agricultural production
are lower in price. These are the seeds from annual plants with a normal growing
season, which can be grown on agricultural land by normal methods, and which can
be planted and harvested by standard agricultural machinery. In the last few dec-
ades, guar gum has emerged as very important seed gum.

Guar gum:

Guar gum is one of the outstanding representatives of green and eco-friendly
biopolymers. It is a water-soluble nonionic polysaccharide isolated from the seeds
of Cyamopsis tetragonolobus (Family leguminosae) (Whistler and BeMiller 1993).
This plant is cultivated for centuries in semiarid and subtropical areas of India and
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Pakistan and in some areas of North Africa and South America. Guar was intro-
duced into the USA from India in 1903 (Whistler and BeMiller 1993). Guar is also
known as “Black Gold” because its demand supply pattern has turned it into cash
crop and hence a precious commodity. The main guar gum-producing states in
India are Rajasthan, Uttar Pradesh, Gujarat, Tamil Nadu, Karnataka, Haryana,
Punjab, Madhya Pradesh, and Andhra Pradesh. India is the largest exporter of guar
gum to the world and has exported 3388.4 thousand tons of guar gum in 2013–14
(Yogi et al. 2015) to USA, Canada, China, Russia, and Germany (APEDA).

Due to its unique gelling properties and rheology, it is being widely used across
various industries such as oil well drilling (Robinson et al. 1982), pharmaceuticals
(Celkan et al. 2016; Vollmer 2003), textiles (Aggarwal and Sharma 2010), cement
(Blackburn 2004), cosmetics (Vijn et al. 2002), food (Cretois et al. 2000), paper
(Anderson et al. 1993), paint, explosives (Thombare et al. 2016), agriculture
(Chandrika et al. 2014).

Tamarind gum:

Tamarind seed polysaccharide (TSP) derived from endosperm of tamarind
kernels is an important natural polysaccharide. Tamarind (Tamarindus indica) is
also known as “Indian date.” Tamarind is long-lived, medium growth, bushy
evergreen tree belonging to the family Fabaceae. Tamarind tree grows well in
clayey, loamy, sandy, and acidic soil types, with a high drought and aerosol salt
resistance (Joseph et al. 2012). This is liberally found in dry tracks of central and
south Indian states, furthermore in other Southeast Asian nations.

Tamarind seed polysaccharide is a multifunctional polymer, which plays the role
of stabilizer, thickener, binder (Kulkarni et al.1998), release retardant (Srinivasan
et al. 2011), modifier (Kulkarni et al. 2005), emulsifying agent, and suspending
agent (Deveswaran et al. 2009), as a carrier for novel drug delivery systems for oral
(Alka et al. 2011; Srinivasan et al. 2011), buccal (Patel et al. 2009; Bangale et al.
2011; Jana et al. 2010), colon (Mishra and Khandare 2011), ocular systems
(Rolando and Valente 2007; Mehra et al. 2010), nanofabrication, wound dressing
(Patil et al. 2011; Burgalassi et al. 2000), food (Shirakawa and Yamatoya 2003;
Glicksman 1996), cosmetics, confectionery, bakery, etc.

2.2 Marine Origin

Gum extraction from seaweeds which was originally practiced in oriental countries
has spread to many parts of the world where shallow waters and seaweeds are
abundant. The cost of production of seaweed extracts are soared up due to tedious
harvesting and processing practices used in the extraction processes, which remove
a large portion of the dry weight of the weeds. When harvesting is done manually,
as with agar weed, or when the seaweeds are picked from beaches where they are
deposited by the tides, labor costs become high. These days, advance engineering
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practices are being used for harvesting and collection of seaweeds, e.g., harvesting
of giant kelp (Macrocystis pyrifera) in California. Cut kelp is collected and lifted by
a rake to the barge top where it is stacked with a claw on a drag line. By such simple
mechanical means, many tons of trimmings can be harvested rapidly and brought to
the processing plant on the coast. Rapid growth of the kelp beds permits retrimming
within a few months. Such standard mechanical practices lower harvesting cost and
tend to stabilize weed cost at the extraction point. Few important marine
polysaccharides are discussed here.

Carrageenans:

Carrageenans are straight sulphated polysaccharides extracted from cell wall of
red sea weed of the Rhodophyceae class. Seaweeds commonly used for the car-
rageenans are Kappaphycus alvarezii and Eucheuma denticulatum (McHugh 2003).
These seaweeds are harvested, washed several times with seawater to remove
sediments, and sun-dried until they acquire 30–40% moisture content. Major
countries producing carrageenans include Indonesia, Tanzania, Malaysia,
Philippines, Kenya, Kiribati, Fiji, and Madagascar. Overall business sector volume
now surpasses 140,000 tons per annum with an estimation of more than $70 mil-
lion (Bixler and Porse 2011). Primarily, wild-collected genera, for example,
Gigartina, Chondrus, Mazzaella, Furcellaria, Sarcothalia, Iridaea, Mazzaella,
Tichocarpus, and Mastocarpus, are additionally delivered as carrageenan crude
materials. Carrageenan-producing nations also include Japan, North Korea, Canada,
Argentina, Russia, Chile, Spain, Denmark, South Korea, France, Mexico, Portugal,
Spain, USA, and Morocco. Carrageenan has numerous applications in both food
and non-food industries (Hambleton et al. 2009; Necas and Bartosikova 2013) and
can be utilized as stabilizer (Hsu and Chung 1999) in dairy items, for example,
flavored products (Varela and Fiszman 2011), pet nourishment (McHugh 2003),
newborn child sustenance, and dietary supplement refreshments. Carrageenan have
been utilized to postpone microbial development in gels containing antimicrobial
agent (Varela and Fiszman 2011). The capacity of suspending cocoa in chocolate
milk at low concentration is special in carrageenan (Necas and Bartosikova 2013).
Mostly, they are utilized as a part of pharmaceuticals, beautifying agents, printing
and as a material for commercial enterprises (Cosenza et al. 2014).

Alginate:

Alginate is a water-soluble straight anionic polysaccharide, isolated from cell
wall of brown algae Ascophyllum nodosum and Laminaria digitata, where it as
present as magnesium, sodium, and calcium salt of alginic acid (Vu and Won 2013;
McHugh 2003; Hambleton et al. 2011). Microorganisms can also produce alginate
(Blanco-Pascual et al. 2014; Alboofetileh et al. 2014).

Among the world edible seaweed producers, China ranks first with a production
of about five million tons and most of this is for Kombu, obtained from Laminaria
japonica grown on hundreds of hectares on suspended ropes in the oceans. Korea
mainly grows three species and produces eight million tons, and almost 50% of this
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is for Wakame obtained from Undaria pinnatifida in a similar way to that of
Laminaria in China. Japan produces about six lakh tons mainly from three species,
among these species 75% of this for Nori, obtained from Porphyra sp.

Alginate has wide range of applications and can be used as a colloidal stabilizer,
gel forming agent, and thickening agent in beverage industries (Liakos et al. 2013),
as an anti-dehydrating agent on natural products such as fruits, meat, and fish
(Hambleton et al. 2011; Varela and Fiszman 2011), for encapsulation of protein,
DNA, drugs, cell, etc. (Ashikin et al. 2010), as a binder in fish feed, welding rods,
paper, releasing agents, and immobilizing catalyst and also used in medical and
pharmaceuticals, and material printing (Vu and Won, 2013).

2.3 Polysaccharides with Microbial Origin

Microbial polysaccharides are extracellular polysaccharides produced by certain
microorganisms. Such gums are fashioned by selected, and perhaps carefully
mutated, organisms growing on low-cost energy sources, such as grains or
molasses. A variety of microbial origin gums having different physicochemical
properties are already available and many more can be found. Thus, a class of
fermentation gums may be developed to cater to the numerous industrial needs.
Homoglycans comprising of one kind of sugar unit can be made, as exemplified in
the generation of dextran. However, synthesis of enzyme-catalyzed polysaccharides
from simple sugars and enzyme modification of existing polysaccharides will
eventually develop and become common technique in future. Important microbial
polysaccharides include:

Xanthan:

China is the world’s largest producer of xanthan and exports about 66% of its
produce to the world. Countries such as USA, Australia, Japan, and France are
other producers and exporters of xanthan gum. Xanthan is complex extracellular
bacterial exo-polysaccharide produced by the yellow-pigmented gram-negative
bacteria Xanthomonas campestris (Ielpi et al. 1981; Ashraf et al. 2008). Xanthan is
an anionic, acidic polymer produced by microbial fermentation of glucose. It is
chemically composed of repeating units of pentasaccharide having two units of
mannose, two units of glucose and a glucuronic acid (Becker et al. 1998). The
anionic nature of xanthan is because of the presence of two acidic groups, i.e.,
glucuronic acid and pyruvic acid in the side chain (Sandford and Baird 1983).
Xanthan is highly stable over wide range of pH and temperature and also resistant
to enzymatic hydrolysis. It is highly water-soluble gum and also shown synergistic
interaction with other gums. These properties are very unique to xanthan gum, and
it makes it versatile hydrocolloid with applications in many industries such as
pharmaceuticals as a stabilizer, film forming, thickening, gelling agent, and emul-
sifier. It is also used in agriculture, paint, oil, paper, cosmetics, and textile
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industries. Xanthan gum finds applications in petroleum production, oil well dril-
ling fluids, fracturing, pipeline cleaning, enhanced oil recovery (EOR), textile
printing and dyeing, ceramic glazes, cleaners, slurry explosives. In food industry, it
is used in dressing, dry mixing, beverages, dairy products, and baked foods.
Besides, it is used in animal feed, agricultural chemicals, pharmaceuticals, and
cosmetics.

2.4 Polysaccharides with Animal Origin

Chitin and chitosan:

Chitin is the second most ubiquitous natural polysaccharide after cellulose on
earth. It is a hard and inelastic polysaccharide, found in invertebrate exoskeleton
and internal structure. Chitin and chitosan are very promising biomaterials. The
deacetylated chitin derivative, chitosan, is more useful and interesting bioactive
polymer. It has many reactive amino side groups, which offer possibilities of
chemical modifications, formation of a large variety of useful derivatives that are
commercially available or can be made available via graft reactions and ionic
interactions.

Due to its unique physicochemical properties, it is being used in number of
industries such as cosmetics (Libio et al. 2016), textiles (Dutta et al. 2002), food
processing (Klein et al. 2010), agriculture (Kashyap et al. 2015), photography
(Dutta et al. 2002), chromatographic separations (Rhee et al. 1998), and biomedical
applications such as tissue engineering (Pangon et al. 2016; Suh and Matthew
2000), burn treatment (Sohrabi et al. 2016), ophthalmology (Cheng et al. 2016),
wound healing/wound dressing (Dragostin et al. 2016), and drug delivery systems
(Soares et al. 2016; Pathania et al. 2016).

3 Chemical Modification of Polysaccharides

The natural raw polysaccharides have wide applications, yet there is a lot of scope
to enhance their applications by improving their physicochemical properties.
Properties of natural raw gum can be improved or modified by chemical methods
such as grafting, derivatization, and cross-linking by least affecting its inherent
properties. This is because chemical modification yields the hybrid derivatives of
raw polysaccharides, which can fit into various applications (Zhang et al. 2005). For
example, by synthesizing the hybrid derivatives of guar gum such as hydroxypropyl
or carboxymethyl, its properties such as solubilization time, viscosity, and clarity of
solution can be significantly improved (Dumitriu 2002).
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3.1 Grafting

Graft copolymerization is one of the powerful tools for the modification of
biopolymers as it functionalizes these natural polymers with improved and desirable
properties. Therefore, these days much attention has been paid to grafting method
as a tool for chemical modifications (Mishra et al. 2010; Tripathy et al. 2009).
Grafting of natural gums can be done by various methods such as microwave
irradiation (Pal et al. 2011; Adhikary et al. 2011), chemical initiator, or c-radiation
(Abdel-Halim and Al-Deyab 2011; Srivastava et al. 2007). The grafted polymers
can be utilized in drug delivery, pharmaceuticals, and agriculture for controlled
release of nutrient and agrochemicals.

3.2 Derivatization

Another method for the improvement of physicochemical properties of polysac-
charides is derivatization. A large number of natural polysaccharide-based deriva-
tives have already been synthesized and many more will be added in the future.
Some of derivatized products of natural polysaccharides which are synthesized,
characterized, and evaluated for their applications are dodecenyl succinic anhydride
gum arabic (Wang et al. 2014) hydroxymethyl guar gum (Lapasin et al. 1991),
hydroxypropyl guar gum (Lapasin et al. 1995), o-carboxymethyl-o-hydroxypropyl
guar gum (CMHPG) (Shi and Zhang 2007), quaternary ammonium chitosan
derivatives (De-Oliveira-Pedro et al. 2016), triazolyl-functionalized chitosan
derivatives (Li et al. 2015), amphiphilic alginate-amide derivatives (Vallée et al.
2009), thiolated karaya gum (Bahulkar et al. 2015), carboxymethyl cellulose
derivatives (Monier et al. 2016), metallo-terpyridine carboxymethyl cellulose
derivatives, etc.

3.3 Cross-linking

Natural gums are biopolymers having numbers of free hydroxyl groups in their
linear or branched long chain, which on dispersion in water form viscous solution.
This is due to interaction of free hydroxyl groups of gum with water molecules by
forming intra- and intermolecular hydrogen bonding, which increases viscosity of
solution. Natural raw gum as such cannot be used as hydrogel due to low swelling
and water-holding capacity, but it can be improved by using the synthetic
cross-linkers. The cross-linker binds the chains of biopolymers by chemical or
physical means and increases the stability, swelling, and water-holding capacity of
hydrogels. This is because the cross-linkers undergo intra-molecular bonding with
hydroxyl group of biopolymers and form a three-dimensional structure (Fig. 4).
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When water is added, the molecules of water are entrapped in this
three-dimensional structure and cannot escape easily. Commonly used cross-linkers
are methylene-bis-acrylamide, divinyl-benzene, glutaraldehyde, derivatives of
ethylene-glycol-di(meth)acrylate, etc.

Hydrogels are three-dimensional matrix constituted by linear or branched
hydrophilic polymers that are cross-linked chemically or physically, with the ability
to absorb large quantity of water or biological fluids (Chang et al. 2010; Pourjavadi
et al. 2004). Further, even in the swollen state hydrogels keep their network stable
because of their cross-linked structure which imparts stability in different envi-
ronments. The final properties and applications of hydrogels depend on the type of
cross-linking methods used for hydrogel preparation. Important properties such as
water uptake, swelling, kinetics, rheological properties, porosity, degradation rate,
and toxicity are closely related to cross-linking methods (Bordi et al. 2013; Ahmed
2013). Therefore, hydrogels are synthesized to possess properties such as fast
swelling, porosity, degradability. Due to these properties, they find applications in
many fields such as biomedical (Pangon et al. 2016), agriculture (Pourjavadi et al.
2007), cosmetics, tissue engineering (Kim et al. 2007), drug delivery (Rodrı ́guez
et al. 2003; Zhang et al. 2002), biosensors (Adhikari and Majumdar 2004;
Pourjavadi et al. 2007), and sorbents for the removal of heavy metals (Guilherme
et al. 2007).

The structural strength of hydrogels depends upon the nature of bonds (Chemical
or physical) between the biopolymers and the cross-linker (Kamath and Park 1993).
Hydrogels can be classified on the following basis:

• Physical structure: hydrogen bonded or supramolecular, amorphous, or
semicrystalline;

• Electric charge: neutral or ionic (charged);
• Cross-link: chemically or physically cross-linked;
• Responses to external stimuli: sensitive and insensitive;
• Origin: natural, semisynthetic, and synthetic.

After the first polymerization of acrylic acid and divinylbenzene in 1938, it took
a decade for the first group of hydrogels to become commercially viable. These
hydrogels were made of hydroxyalkyl methacrylate and other monomers having

Fig. 4 Schematic diagram of synthesis of hydrogel through grafting and cross-linking
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similar structures. However, they had swelling capacity of only 40–50% and were
used for production of contact lenses. HSPAN (hydrolyzed starch-polyacrylonitrile)
was developed in the 1970s by USDA as first commercial superadsorbent hydrogel
by alkaline hydrolysis of starch-grafted polyacrylonitrile (Buchholz and Peppas
1994). The product could not succeed because of its poor mechanical properties and
high cost. The polymeric material used for hydrogel preparation affects its
hydrophilicity and biodegradability. Polyacrylamides and acrylates have been
extensively used over the years for synthesis of highly hydrophilic hydrogels
(Laftah et al. 2011; Rodrigues et al. 2014).

However, increasing environmental concerns have led to the development of
hydrogels based on natural polymers. Among natural polymers, polysaccharides
have been widely used to develop hydrogels due to their high hydrophilicity,
compatibility, low cost, and biodegradability (Wang and Wang 2010a, b; Wang
et al. 2013). The interconnected porous structure of hydrogel materials leads to high
water absorption capacity by capillary action (Kuang et al. 2011; Hemvichian et al.
2014). Various natural polymers such as starch, chitosan, chitin, pectin, gum arabic,
cashew gum, and others have been used to develop hydrogels for specific use in
biomedical, agriculture, biotechnological, and wastewater treatment applications
(Omidian et al. 2005; Kazanskii and Dubrovskii 1992; Mekonnen et al. 2013;
Rinaudo 2006; Heinze et al. 2006).

4 Applications of Hydrogels in Agriculture

In recent years, the use of biopolymer-based hydrogels in agriculture has been
widely studied because they are ecologically and economically viable alternatives
for soil conditioning and water and nutrient retention (Kazanskii and Dubrovskii
1992). Also, these biopolymer gels are biodegradable, non-toxic, and abundantly
available and have great application potential (Sinha and Kumria 2001; Thakur
et al. 2015; Thakur and Kessler 2015). Hydrogels are suitable for use in agricultural
fields because of their susceptibility to degradation by physical, chemical, and
microbial agents (Baldrian and Valášková 2008; Villay et al. 2012). These materials
retain water and nutrients and release them over a long period of time. The rate of
release of nutrients throughout the degradation of hydrogel can be made harmo-
nious to the plant nutrient requirements.

The polysaccharides in their native form may not produce hydrogels stable
enough for use as pesticide or nutrient carriers in agriculture. These hydrogels are
prepared using physical or chemical methods of cross-linking or both. Various
polysaccharides such as gum arabic, cashew gum, starch, and pectin have been
modified by introducing vinyl groups to develop hydrogels (Fajardo et al. 2013;
Sannino and Nicolais 2005; Lionetto et al. 2005; Marcì et al. 2006; Sannino et al.
2003).

Though large numbers of hydrogels have been developed at laboratory stage,
only very few satisfy the requisite environment safety parameters such as
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biodegradability and non-toxicity for their use in agriculture (Pillai 2010).
Economic considerations also play a major role in final release of the product in the
market. The use of hydrogel for water retention and as soil conditioner has been
investigated long back in 1966. The commercial sale of these hydrogels started in
the 1980s mainly as disposable diapers (Castel et al. 1990; Kataja et al. 1992). In
later years, various reports on the structure and properties of such hydrogels were
published owing to the growing interest in commercialization of these materials for
use in agriculture (Buchholz and Graham 1998). The most common application
method of these hydrogels in agriculture is by mixing granular hydrogel particles in
soil at required concentration.

4.1 Water Retention

Globally, agriculture is predominantly dependent on rainfall. Around 65–95% of
cultivated land in sub-Saharan Africa, Latin America, North Africa, East Asia, and
South Asia is under rainfed agriculture (IWMI 2010). Uncertainties in frequency
and pattern of rainfall in arid areas result in crop losses every year. Climate change
has further aggravated the problem of water scarcity. Various methods are being
employed to increase the water use efficiency in agriculture. One of the strategies is
to use water retainers to grab and preserve limited irrigation or rainwater for a
prolonged period. Owing to their water imbibing property, hydrogel materials are
being widely investigated for water retention in agriculture. For example, in sandy
areas the use of hydrogels may help in improving the water-holding capacity and
thus the growth and quality of crops (Wang and Wang 2010a, b). The hydrogel
particles act as miniature reservoirs through which water is drawn when required by
the osmotic pressure difference. The use of hydrogels in agriculture is showing very
good results. Some of the advantages of hydrogels can be listed as follows (Lee and
Mooney 2001; Shalviri et al. 2010; Ulery et al. 2011):

• Reduction in requirement of water for irrigation purpose,
• Increase in availability of soil water which results in longer survival of plants

under stress conditions,
• Improved fertilizer use efficiency and decreased contamination of ground water,
• Decrease in plant evapotranspiration rate,
• Improved soil physical properties such as reduced compaction and better soil

aeration,
• Enhanced microbial activity,
• Prevention of excess runoff and thus reduction in soil erosion,
• Adsorption of heavy metals and reducing their effect on plants,
• Maintenance of soil moisture that helps in reducing the effects of salinity, and
• Better germination and establishment of seedlings.
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Hydrogels are known for their capacity of absorbing large amounts of water.
Materials commonly used as absorbents exhibit absorption capacity of around
hundred times of their weight; in case of hydrogels, it increases up to thousand
times. For example, Guilherme et al. (2005) synthesized a hydrogel having water
absorption capacity of 1500 times. The hydrogel was prepared by copolymerization
of cashew gum with acrylamide followed by partial hydrolysis of the acrylamide
repeat units. Hydrogels have such high water absorption capacity due to the ther-
modynamic compatibility found between functional groups of hydrogel matrix and
water molecules.

Most of the times, the electrically charged groups (ions) of the hydrogel material
are responsible for electrostatic affinity toward water molecules during the swelling
phase of absorption. Also, the hydrophobic units of the network structure interact
with water molecules by weak van der Walls forces. The free water present in soil is
absorbed into hydrogel by osmosis. When all the hydrophilic and hydrophobic sites
are occupied, the water molecules fill the empty spaces present in hydrogel matrix.
Therefore, the porosity of the hydrogel material, as well as polymer chain density
and extent of cross-linking, affects the water absorption capacity of the hydrogel.
On the other hand, the mechanical strength and rheological properties of the
hydrogel are dependent on the degree of swelling. A high swelling capacity may
significantly reduce the mechanical strength. The swelling of hydrogels by
absorption of high amounts of water is the characteristic property for their use in
water retention, nutrient delivery, and maintenance of various soil properties
(Ramezani et al. 2013; Campos et al. 2015). Poor mechanical strength becomes
significant drawback of such materials when higher and higher amount of water is
absorbed (Omidian et al. 2005). Recently works have been done to overcome this
problem by using materials such as nanofibrils and nanowhiskers as fillers for better
mechanical strength (Rodrigues et al. 2014; Cheng et al. 2012; Spagnol et al. 2012).
The use of filler material helps in obtaining hydrogels having high absorption
capacity as well as mechanical strength.

Among natural biopolymers, starch has advantage for use in hydrogel prepara-
tion because it is abundant, cheaper, and suitable for chemical modification. Starch
also has better plasticity and mechanical resistance. Guilherme et al. (2012)
chemically modified starch with glycidyl methacrylate using 4-(N,N-dimethyla-
mino)pyridine and N,N,Nʹ,Nʹ-tetramethylethylenediamine as catalysts. The resultant
product undergoes hydrogelation by free-radical reaction. The free-radical poly-
merization reaction was carried out in the presence of acrylic acid and acrylamide
assisted by ultrasound. The material displayed 150 times absorption of its dry
weight in a duration of 200 min.

Similarly, hydrogels based on gum arabic were prepared by using glycidyl
methacrylate (GMA) for modification (Guilherme et al. 2007). Organic solvents and
toxic reagents are no longer used for modification process and are replaced by
GMA. Vinylated gum arabic has been obtained without catalyst by using water as
solvent. As GMA is insoluble in water, the system was stirred at high speed at
60–65 °C. The modification reaction occurs at the interface layers of GMA and
water. The hydrogel cross-linking was done by reaction with sodium acrylate and
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acrylamide. The product absorbed water 500 times its dry weight and showed good
mechanical strength.

Pourjavadi and coworkers used agar for development of superabsorbent hydro-
gels. Graft copolymerization of acrylic acid and 2-acrylamido-2-methylpropane
sulfonic acid was done over agar in aqueous medium. A persulfate initiator was used
along with a bifunctional hydrophilic cross-linker. The swelling capacity of the final
product varied with changes in reaction parameters. Maximum of 1100 g/g water
absorption capacity at optimized reaction conditions was reported by the authors
(Pourjavadi et al. 2007).

4.2 Soil Conditioners

A soil conditioner is defined as any synthetic organic chemical or chemically
modified natural substance that stabilizes soil aggregates, and/or favorably modifies
the structural or physical properties (Aslam 1990). Synthetic polymers when used
as soil conditioners improved the physical properties of soil, increased crop growth,
and reduced soil erosion (Boodt 1975). The use of hydrogels in agriculture as such
has not been prevalent because of high cost. Scarcity of water and desertification of
soils are one of the most severe anthropogenic problems in about one-third of lands
around the world. To feed the ever-growing population, it is necessary to restore
these degrading lands. As these lands are also low in organic matter content,
hydrogel materials when added to these soils can act as humus like substance
because of their hydrophilicity and free carboxylic groups. Therefore, along with
water retention, these hydrogels also increase cation exchange capacity and overall
physical properties of the soils (Hüttermann et al. 2009). Hydrogels have been
successfully utilized as soil conditioners in horticultural crops for increasing water
and nutrient retention in sandy soils (Bouranis et al. 1995). Hydrogels affect various
soil properties such as soil structure, porosity, density, texture, permeability, and
water infiltration. They reduce evaporation and irrigation requirement, reduce
erosion, and enhance aeration and micro-flora activity (Abd El-Rehim et al. 2004).

Hydrogel can act as reclamation agent for light sandy soils and for substrates in
hydroponics as it imparts various soil properties which are present in normal arable
land (Azzam 1985). The optimum concentration of application of hydrogel depends
on various factors such as age and nature of the plant as well as soil properties and
environmental conditions. Generally, 0.05–0.1% dry hydrogel is applied with seeds
during planting (Zohuriaan-Mehr 2006). In case of forestry, hydrogel can be used
during transplantation. Hydrogel can be applied over tree roots when they are
transported for transplantation to prevent them from drying. Hydrogel composites
have been used in dry areas of China to grow rice, soybean, sugar beet, etc. It was
found that the hydrogels increased the yield of rice, soybean, and sugar beet crops
(Gao 2003).

Several workers have investigated on application of hydrogels as soil condi-
tioners. Saponified cassava-based starch-graft-poly(acrylamide) hydrogels were
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evaluated for their effect on physical, chemical, and biological properties of soil and
growth-related parameters of chilly (Capsicum annum L.) at different irrigation
intervals (Parvathy and Jyothi 2012). It was reported that the moisture retained in
the soil was dependent on the concentration of hydrogel which provided a con-
trolled release of absorbed water. These hydrogels can be utilized to combat climate
change mainly in moisture stress conditions as they improve the soil moisture levels
and physicochemical properties. Agaba et al. (2011) reported that moisture reten-
tion by using hydrogel is effective for plantation trees in forest establishment and
influences the plant growth and various soil properties such as temperature, aera-
tion, nutrient uptake, transport, and transformation. Demitri et al. (2013) studied the
feasibility of carbodiimide cross-linked cellulose hydrogels in arid areas. Three
formulations of the hydrogel were used for controlled release of nutrients along
with water. It was reported that the water stored in hydrogel is released as the soil
dries, and thus, moisture levels are maintained for longer durations.

Hydrogels also increase the soil porosity and provide better aeration to plant
roots. Chemically modified pectin-based hydrogels were studied for release of urea,
phosphate, and potassium (Guilherme et al. 2010). Swelling capacity of hydrogels
was measured in saline and distilled water at different pressures. It was concluded
that these hydrogels can conserve moisture in a pressure range in which a large
variety of horticultural crops can absorb water. Therefore, such hydrogels can be
used as soil conditioners. Effect of hydrogel type and concentration on germination
and growth of maize (Zea mays) was investigated (Abd El-Rehim et al. 2004). The
plant growth parameters such as plant height, dry weight, and leaf width were
increased with concentration of hydrogel. It was reported that the
polyacrylate-based hydrogels improved soil physical properties and reduced the
wilting period. Optimum concentration of hydrogel was investigated for its use in
soils of Haouz, Morocco. Apart from the water retention capacity of the hydrogel,
the study also focused on effect of pH and ions present in soil. The polymer was
found to increase the water retention in soil and reduce the irrigation requirement
(Bakass et al. 2001).

Hydrogels were evaluated for use as conditioners to help the establishment and
growth of plant in limited irrigation conditions. Starch copolymer and polyacry-
lamide copolymer were studied for their effect on growth of barley and lettuce in
sandy soil medium (Woodhouse and Johnson 1991). The use of hydrogel increased
the period between field capacity and wilting by 300%. Total dry matter produced
and the water use efficiency were also increased by hydrogel use. Effect of hydrogel
on emergence and growth of seedling were studied. The starch-based hydrogels
prepared by graft copolymerization with acrylic acid and acrylamide were studied.
It was reported that the water-absorbing capacity of hydrogels depends on water
conductivity. The use of these hydrogels increased the overall water retention
capacity of soil (Chen et al. 2004). A commercial hydrogel (Stockosorb K 400) was
evaluated for growth of Pinus halepensis seedlings in water stress conditions
(Hüttermann et al. 1999). Maximum survival of plants was observed when the
hydrogel concentration was highest.
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Poly(AA-ethyl acrylate-vinyl acetate) hydrogel was found to increase the growth
and germination of soyabean (Knypl and Knypl 1993). It has been found useful in
decreasing the evaporation loss from soil and water consumption of the crop as
well. When plants were inoculated with Frankia and hydrogel polymer, the root
nodules showed better growth (Kohls et al. 1999). Polyacrylamide-based hydrogels
were prepared by Raju and Raju (2001) and were evaluated for their soil condi-
tioning properties. The hydrogels showed better water retention and growth in
sunflower and bean crop. Hydrogels derived from guar gum have also been reported
for their use as soil additive (Lokhande and Varadarajan 1992). Chu and coworkers
prepared composite hydrogel made up of Polyacrylic acid and sodium humate (Chu
et al. 2006). It was synthesized by acrylic acid graft copolymerization on sodium
humate. The composite hydrogel was evaluated and found to have positive effect on
the growth of maize crop.

Abedi-Koupai and coworkers studied the effect of hydrogel on water absorption
in soil and other plant growth parameters (Abedi-Koupai and Sohrab 2004).
Application of hydrogel and its effect on water retention properties of three different
soils of Iran was investigated. Plant growth parameters of Cupressus arizonica, an
ornamental plant in water-stressed conditions were also determined (Abedi-Koupai
and Asadkazaemi 2006). The residual water and saturated water contents were
reported to increase by use of hydrogel. Application of 6 g/kg hydrophilic polymer
in sandy loam soil resulted in 2.3 times increase in available water.

Apart from crop plants, hydrogels have also been evaluated for use in cultivation
of mushrooms. Sook and coworkers evaluated the effect of hydrogel as medium for
growth of edible mushrooms, Pleurotus sajor-caju and Hericium erinaceus (Sook
and Jae-Sik 2000). The hydrogel improved the mycelial growth and production of
sporophores of mushrooms. The optimum hydrated level concentration of hydrogel
was determined to be 2–2.5 g/cm3.

Hydrogels have also been studied for use in landscaping and turf grasses (Quinn
1990). The use of hydrogel reduced the amount of irrigation required for mainte-
nance of turf grass especially in hot summer conditions. Hydrogel also improved
the density, color, and coverage of turf.

4.3 Nutrient Delivery

Plant nutrients when applied to soil are subject to various forms of losses such as
leaching, volatilization, runoff. Therefore, only a portion, about 20–25% of applied
nutrients is available to crops and the loss of nutrients in leaching, chemical pro-
cesses, excess rains, and runoff also results in contamination of groundwater and
eutrophication of surface water bodies. Out of these, nutrient loss by leaching is
high in porous sandy soils. An alternative approach that has been more recently
investigated involves the controlled release of nutrients from the fertilizer-loaded
hydrogels (Ni et al. 2009, 2011; Guilherme et al. 2010; Davidson and Gu 2013;
Aouada et al. 2008; Zhou et al. 2014).
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A controlled release system is aimed at protecting the reserve of active ingre-
dient for releasing it in a slow controlled rate so that the concentration in the target
system is maintained at optimum levels for extended period of time without
affecting the efficiency. Controlled release application of agrochemicals is helpful in
maintaining their concentration in the soil at optimum level and also reduces runoff
losses (Aouada et al. 2011). A variety of biopolymers such as cellulose, chitin,
tragacanth gum, guar gum have been used for controlled release application of
fertilizers (Jamnongkan and Kaewpirom 2010; Guilherme et al. 2010; Buchholz
and Graham 1998; Saruchi et al. 2014).

Various controlled nutrient release hydrogels based on natural polysaccharides
have been found to enhance the efficiency of agrochemicals by reducing their cost,
toxicity, and environmental pollution (Noppakundilograt et al. 2015). Another
advantage is that a sustained release of optimum level of nutrients can be achieved
in one application.

The nutrients in hydrogels are loaded by two approaches, viz. post-synthesis
loading and in situ loading. Post-synthesis loading is done after the processing of
hydrogel, while in situ incorporation occurs during the hydrogel processing itself.
In the post-synthesis approach, the hydrogel is swelled together with active
ingredient which diffuses inside the swollen polymer matrix by absorption. The
effectiveness of this method depends upon the physical and chemical affinity of the
active ingredient for the polymeric network of the hydrogel. In case of in situ
loading, the nutrient is incorporated in hydrogel material during synthesis and
remains in dried form before adding to the soil. The hydrogel swells by irrigation or
rainwater, and the release of nutrient is activated. The water absorbed in hydrogel
dissolves the nutrient which can diffuse out through the polymer matrix (Fig. 5).

The release of nutrients outside the hydrogel matrix is affected by the swelling
rate (Ruvalcaba et al. 2009; Gil et al. 2007). The whole quantity of nutrients present
in the matrix is not released, and a portion of it remains as reserve during drier
periods. When irrigation or rainwater appears, the release mechanism is activated
again, thereby providing a prolonged supply of nutrients with minimum leaching
losses. The in situ method is better as it has higher loading efficiency when com-
pared to post-loading method (Zheng et al. 2007). More than one active ingredient

Fig. 5 Entrapping of fertilizer/pesticide and their controlled release through hydrogels

202 S. Mishra et al.

vijay.kumar@cranfield.ac.uk



can be added to single hydrogel, each one of them having separate specific rates of
release. This way, the cost of application can be reduced.

Optimum availability of water and nutrients in soil is important for growth of
agricultural crops. The levels of essential nutrients such as nitrogen, phosphorus,
potassium, calcium, sulfur, copper, iron, and boron are often depleted and are
supplemented by addition of fertilizers and manures (Saruchi et al. 2014). There are
leaching losses from 40 to 70% of applied nitrogen and 50 to 70% of potassium
which require application of large quantities of fertilizers (Wu and Liu 2008), and
consequently, this results into environmental pollution. Therefore, the use of
polysaccharide-based chemical cross-linked hydrogels has been studied for con-
trolled release of fertilizers in soil (Wu and Liu 2008; Wang et al. 2014; Shaviv
2001). Chemically cross-liked hydrogels for nutrient release have been more reli-
able than coated polymers (Zheng et al. 2009). The nutrient delivery in chemically
cross-linked hydrogels is dependent on the concentration gradient of nutrient from
inside of hydrogel to external medium and therefore can provide nutrient as per the
requirement of the plant (Zheng et al. 2009). Other than the nutrient flow by
concentration gradient, processes such as diffusion, convective flow, and chain
relaxation also take place. These processes can be described by Fickian or
non-Fickian mathematical models. There may be combination of diffusion and
convective flows resulting in controlled nutrient release (Shaviv 2001; Wang et al.
2011; Shavit et al. 1997). Macromolecular chain relaxation of polymeric hydrogels
occurs by swelling and deswelling (Brazel and Peppas 1999). However, other than
these processes, the absorption of water and release of nutrients depends upon the
type of polymer and density of cross-linking during the synthesis of polymeric
hydrogel as well as the pH and ionic strength of the solution.

Guilherme and coworkers reported that swelling properties of superabsorbents
based on modified pectin in saline solutions were of same order that of distilled
water and were not affected by presence of salts (Guilherme et al. 2009). These
hydrogels showed controlled release of urea, phosphate, and potassium. Xu and
coworkers prepared acrylic acid and diallyl-dimethyl-ammonium-chloride based
amphoteric hydrogels by solution polymerization for controlled release of ammo-
nium nitrate (Xu et al. 2005). The ratio of anionic groups to cationic groups was
varied to obtain different hydrogels. The effect of salt concentration, pH of solution,
and temperature was also investigated. The hydrogels having lower ratio of anionic
group to the cationic groups had better swelling capacity and tolerance to high salt
concentration. These hydrogels were found to be effective for release of ammonium
nitrate.

Methylcellulose- and polyacrylamide-based hydrogels were evaluated by
Bortolin and coworkers for controlled release of two fertilizers, viz. ammonium
sulfate and potassium phosphate (Bortolin et al. 2012). The addition of methyl
cellulose with polyacrylamide increased the amount of total fertilizer loaded and
prolonged their release. Loading amount as well as release of fertilizers was affected
by the hydrophilicity of the polymer decided by the ratio of acrylamide to
methylcellulose. Recently controlled release fertilizers based on graphene oxide
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were prepared by Zhang and coworkers (2014a, b). The fertilizers encapsulated
with films of graphene oxide had their release prolonged by 8 h.

4.4 Pesticide Carriers

Pesticides in soil are also subject to leaching and runoff losses which may con-
taminate groundwater and surface water bodies causing serious hazards. These
losses can be minimized by using slow release pesticide systems. Controlled release
of pesticides benefits crops for longer periods and reduces the dosage and number
of application. In conventional agriculture, application of excessive quantity of
agrochemicals is being practiced to get quick results. But actually, the use of
pesticides beyond recommended doses in the greed to get quick results leads to their
discharge in the environment affecting non-target organisms and causes environ-
mental pollution (Bajpai and Giri 2003; Thakur and Thakur 2014). Due to overuse
of the chemicals, resistance can be developed in the target pests toward the pesti-
cide. By adopting controlled release of agrochemicals, pesticide-related health
hazards can be minimized and residues on food stuffs can also be controlled which
eases handling of the harvested product (Tsuji 2001).

The delivery of agrochemicals using controlled release polymer matrix offers
several advantages by avoiding the use of surplus amounts of active substances and
also delivers active ingredient slowly over a period of time (Wang et al. 2007). It
also reduces quantity of active ingredients required for obtaining same results over a
particular time span due to which other plant or animal species are least affected
(Aouada et al. 2011).

Based on mode of functioning, controlled release polymer systems are divided
into two groups (Mitrus et al. 2009). The first is one where active ingredient is
dissolved, dispersed, or encapsulated within the polymeric matrix. Here, the release
takes place by diffusion or through biological or chemical breakdown of the
releasing polymer. In the second category the active ingredient either constitutes a
part of the macromolecular backbone, or is chemically or physically attached to it.
After biological or chemical cleavage of the bond with the polymer, the bioactive
agent is released in the surrounding matrix.

The advantages of the controlled pesticides release systems include reduced
toxicity, increased efficacy, lesser environmental impact from pesticides and their
applications, and reduced potential transportation hazards. It also addresses new
product development through which advanced pesticide delivery technologies can
be facilitated (Aouada et al. 2011; Abd-El-Rehim et al. 2005). Therefore, it is
economical and reduces the environmental load of pesticides. Several biopolymers
have been tried as matrices for controlled release of agrochemicals.

Kenawy in 1998 synthesized cross-linked polyacrylamide gels by using the
free-radical polymerization technique (Kenawy 1998). Further, their derivatives
were prepared by trans-amidation with different diamines such as ethylenediamine,
hydrazine hydrate. The synthesized gels were studied for release of
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2,4-D (2,4-dichlorophenoxyacetic acid) herbicide. The release from the matrices
was examined and estimated at 25 °C in water solution buffered at pH 4, 7, and 9
by UV–Vis spectrophotometer. Results revealed the pH-dependent release of 2,4-D,
which was lower at pH 4 than in neutral or alkaline medium. Cross-linked poly-
acrylamide hydrogels trans-amidated with bis-(3-aminopropyl) poly(tetrahydrofu-
ran)-1100 showed the best release rate.

Kulkarni et al. (2000) studied the encapsulation and release rate of a natural
liquid pesticide “neem seed oil (NSO)” derived from seeds of Azadirachta indica,
using sodium alginate as a vehicle carrier and glutaraldehyde as a cross-linker. The
absence of any chemical interactions between active ingredients and polymer as
well as cross-linking agent was confirmed by FTIR. With increase in the degree of
cross-linking of the sodium alginate by glutaraldehyde, a significant decrease of
NSO release from the beads was observed. The empirical parameter “n” and the
kinetic constant “k” values calculated for the release of NSO from the beads
indicated that the diffusion deviates slightly from Fickian transport and showed a
decreased release with the increase in cross-linking.

Işıklan (2004) studied the release of carbaryl insecticides through polymeric
beads. They investigated the effect of various factors during bead preparation such
as percent of carboxymethylcellulose, ratio of carbaryl insecticide to car-
boxymethylcellulose, concentration of cross-linker as well as effect of addition of
filler material (kaolin clay). The carbaryl release was increased when the ratio of
carbaryl to carboxymethyl cellulose was low or carboxymethyl cellulose concen-
tration was higher or the quantity of filler added was more.

To study the release of thiram, a dithiocarbamate fungicide, Singh and
coworkers synthesized starch–alginate–clay beads with different compositions by
varying the amount of kaolin and bentonite clays (Singh et al. 2009a, b). The beads
showed good loading capacity of thiram fungicide. The integration of kaolin and
bentonite in starch–alginate beads was found to be effective in controlling the
release of thiram. Bentonite-based formulations showed slower release than
kaolin-based formulations. The release followed non-Fickian diffusion mechanism.
The decrease in the release of thiram from 10 mg in control, to 6.9 and 6.3 mg in
the presence of kaolin and bentonite, respectively, was due to differences in the
intercalation ability of bentonite clay mineral, whereas no such intercalation of
thiram was found with kaolin. Also, the presence of kaolin and bentonite in starch–
alginate bead further reduced the release of the thiram from the formulation.
Likewise, other starch-based hydrogels have also been used for agrochemical
delivery system (Baur 1980; Schreiber et al. 1988; Jana et al. 2001; Frederiksen
et al. 2002).

Roy and coworkers prepared biopolymer microspheres of sodium alginate and
starch by CaCl2 cross-linking. A series of such microspheres was prepared with
different compositions by varying the amounts of sodium alginate, starch, and
CaCl2 (Roy et al. 2009). The prepared beads were loaded with pesticide, chlor-
pyrifos, and studied for its release pattern. The microspheres beads delivered
optimum swelling at 57.3: 42.7 wt% of alginate: starch composition. The
cross-linked beads showed great potential for the release of chlorpyrifos. It was
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observed that the fractional release of chlorpyrifos increases with increasing wt% of
alginate and decreases with increasing content of starch. The sustained and con-
trolled release was given by the beads with more alginate and less starch with
cumulative release up to 14 days.

Chevillard et al. (2011) introduced organically modified nanoclay, montmoril-
lonite (C30B) in wheat gluten (WG)-based formulation, and a model pesticide, and
ethofumesate was imbibed in it in order to obtain slow release pattern. The aim was
to use nanoclay in modulating transfer and biodegradation properties of active
ingredient in bio-sourced polymers. Controlled release properties were examined
through release experiments in water in comparison with the commercial formu-
lations. Degradation study of ethofumesate in soil by respirometric experiments
confirmed its non-biodegradable behavior, whereas after addition of 0.26% of
ethofumesate, biodegradation of WG-based formulation was slightly but signifi-
cantly delayed. This ecotoxic effect of ethofumesate which is responsible for
delaying biodegradation of formulation was reduced after introducing C30B in the
formulation. This also resulted in slower release of pesticide in water that could be
further enhanced by adding organoclays in the materials. Binding of ethofumesate
with nanoclays reduces its hazards to microorganisms and also probably less
subjected to leaching, making this delivery system eco-friendly.

Alemzadeh and Vossoughi (2001) prepared hydrogel systems based on poly-
vinyl alcohol polymeric network and membranes with glutaraldehyde as
cross-linking agent. The product was studied for release of paraquat herbicide. It
was reported that higher concentration of the cross-linking agent decreased the
release of active ingredient from the system. The hydrogel showed higher
adsorption at lower temperature.

Aouada and coworkers synthesized polyacrylamide- and methylcellulose-based
biodegradable hydrogels for the controlled delivery of paraquat herbicide (Aouada
et al. 2009, 2010). The hydrogels were synthesized using N,N-methylene-
bis-acrylamide as cross-linker, N,N,Nʹ,Nʹ-tetramethylethylenediamine as catalyst
agent, and sodium persulfate as initiator. Hydrogels were loaded with paraquat
herbicide by soaking into its aqueous solution for 30 h. Around 82% of the para-
quat from the solution was loaded in the matrix. The adsorption of paraquat was
higher with methylcellulose as compared to the hydrogels without methylcellulose.
Each hydrogel was removed from the solution, and the quantity of paraquat left in
the remaining solution was determined. It was reported that the rate of release was
fast initially indicating the release of active ingredient from surface while swelling.
The release rate was slower in later stages, and the herbicide was released in a
controlled manner at a constant concentration for a period of 15–46 days.

Singh et al. (2011a, b) have developed polysaccharide-based controlled release
beads of herbicide atrazine. The controlled release formulations were made using
alginate, neem leaf powder, kaolin, and bentonite clays. The use of neem leaves
powder in ionotropic gelation of alginate had added advantage of its natural pes-
ticidal activity. Bead size (diameter), entrapment efficiency, and amount of beads
formed were taken as reaction parameters for the synthesis of various bead
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formulations. It was reported that increase in clay content resulted in increase in size
and yield of beads. Various release characteristics of the formulation such as
entrapment efficiency, gel characteristic, diffusion mechanism, and bead size were
evaluated. The amount of herbicide atrazine released from beads based on calcium
alginate was found to be 14.8 ± 1.2 mg. The release occurred slowly for 300 h,
and the amount was further increased with addition of neem leaf powder.

In vitro release studies of atrazine were conducted by using dry and loaded
formulations in water (Bergaya et al. 2006). The amount of atrazine released from
calcium alginate beads was found to increase when neem leaf powder was added to
the bead. Among clays, bentonite incorporated beads resulted in slower release of
atrazine as compared to those of kaolinite. The rate of release of atrazine was also
higher initially as compared to later stages. Therefore, the overall release of atrazine
occured for a prolonged period and thus was helpful in minimizing environment
hazards. The study concluded that the presence of clays in neem leaf
powder-alginate beads has resulted in slower atrazine release from formulations.

Alginate-based formulations were also evaluated for the release of herbicides
metribuzin and isoproturon. The release of the active ingredients was slower when
compared to conventional formulations (Pepperman and Kuan 1993;
Villafranca-Sánchez et al. 2000). Also, the effectiveness of these delivery systems
were reported to be better when two or more herbicides are used (Johnson and
Pepperman 1998). Herbicides such as atrazine, monolinuron, simazine, chlorida-
zon, chloroxuron, and desmetryn were formulated in beads based on alginate. The
beads were evaluated for controlled release and were found to slower down the
release of herbicides (Pfister et al. 1986).

In case of alginate- and gelatin-based beads, it has been reported that increase in
proportion of gelatin decreases the release of pesticides such as cypermethrin and
neem seed oil (Roy et al. 2009; Kulkarni et al. 2000). Both starch and alginate are
biodegradable in soil. The pesticides are released from these beads by both swelling
and degradation processes. Also, various soil factors such as enzymes like amylase
and alginate lysases affect the release (Trimnell et al. 1985; Wong et al. 2000). Zhu
and coworkers prepared controlled release systems based on gelatin and acacia gum
(Zhu et al. 2009). The delivery systems were prepared by coacervation for insec-
ticide release.

Polyvinyl chloride, carboxymethyl cellulose, and carboxymethyl
cellulose-kaolinite-based composite delivery system were prepared for metribuzin
herbicide. The formulation showed better results by controlling 75% of weeds than
conventional product (57.14%) in wheat crop (Kumar et al. 2010). Singh and
coworkers reported starch- and acrylamide-based slow release hydrogel system for
the release of fungicide thiram (Singh et al. 2007, 2008). Apart from the release, the
hydrogels showed good water-holding capacity. Therefore, such materials can be
used for pesticide delivery as well as for water retention.

Lignin and lignin-based natural polymers have been investigated for the release
of agrochemicals (Thakur and Thakur 2015). The release of pesticides and water
absorption was dependent on the interactions between the functional groups present
in pesticides with that of the polymer. The size of the polymeric granule also
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affected the release. Smaller granules resulted in higher release of pesticides
(Chowdhury 2014). Singh et al. (2015) prepared agar-, starch-, and
polyacrylamide-based hydrogels for the release of atrazine herbicide. The hydrogel
showed maximum 551% swelling. Release studies conducted for 144 h showed that
hydrogel was suitable for slower release of pesticide in agriculture.

Recently, polymeric delivery systems having in situ gelling properties have been
studied for drug delivery applications. It is a new technique in which the solution
containing the drug or bioactive agent converts into a gel when it applied to the
target site. Such gel-based delivery systems can also be explored for their appli-
cations in pesticide delivery. The in situ formation of gels depends on various
factors such as temperature, pH, ions, radiations. These gels forming formulation
shall be able to release the product in controlled manner (Hari et al. 2015). These
gels are polymer-based colloidal solutions, which undergo phase transition from sol
to gel. The physical and chemical changes responsible for release of product are
affected by physiological environment (Geethalakshmi et al. 2012, 2013). Many
researchers have been working on the agricultural applications of biopolymer-based
products, mainly hydrogels. Significant contributions in this field are listed in
Table 1.

4.5 Other Applications

Agriculture relies on an adequate supply of good quality irrigation water. Until
now, irrigation water quality concerns have often been neglected because good
quality water supplies have been plentiful and readily available (Kitila et al. 2014).
But today, the situation is changing in many areas and due to contaminated irri-
gation water toxic chemicals and heavy metals are ruining soil health and also
leaving their residues in the crops. In most of the cases, water is taken from water
bodies such as river, pond, and dam or pumped up from the soil subsurface.
Recently due to increasing industrialization, fair quality water is used in the
industry and its wash water/wastewater is being released in the same water body
which adds to many toxic pollutants in it. Key pollutants in such contaminated
water include heavy metals, industrial dyes, dissolved salts, industrial sludge,
organic pollutants, oils, and excess nutrients due to runoff or leaching down from
cultivated lands. Though there is infrastructure available to recycle and purify this
water for domestic and drinking purpose, no such care is being taken for pre-
treatment of water before irrigation. This leads to accumulation of these pollutants
in agricultural land and subsequently entering into the food chain via crops grown
on that area. Irrigation with such contaminated water can lead to accumulation of
heavy metals such as cadmium, chromium, mercury, lead, and arsenic, all of which
appear in the World Health Organization’s list of 10 chemicals of major public
concern.

In recent researches, lot of emphasis is being given on the use of
biopolymer-based sorbents for removal of the heavy metals and dyes from the
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wastewater, which can be used for the treatment of industrial wastewater, before
being released into the water bodies. The biopolymer-based adsorbents/hydrogels
showed potential to remove heavy metals and dyes from wastewater and can also be
used repetitively in most of the cases. Important research works in this line carried
out in the recent past are summarized in Table 2.

5 Conclusion

This chapter discusses in nut shell the biopolymers, their classification, modification
by different techniques, and application in various fields of agriculture. Due to their
biodegradability, renewability, ease to blend into different products,
cost-effectiveness, easy handling, and storage, biopolymers can be used in agri-
cultural applications such as soil conditioners, moisture retainers, controlled
nutrient, and pesticide release, and also in other applications such as remediation of
heavy metals, dyes form irrigation water. All these properties make biopolymers a
unique natural material and provide an edge over its other synthetic counterparts.

The present discussion on biopolymers signifies that the biopolymers and their
chemically modified derivatives are yet to be fully explored in agriculture industry.
Natural biopolymer-based superabsorbent hydrogels have tremendous potential to
be used as culture media in nursery and tissue culture for growing high value
seedlings. It can be used for multipurpose operations such as moisture retainer and
controlled release of nutrients and pesticides imbibed in it, and being biodegrad-
able, it will improve soil’s physical properties after decomposition. Modified
biopolymers also have potential to be used as drift control agents in sprays and
mists, in liquid flowable pesticides as a stabilizers and emulsifying agents. Recently
emerged concept of in situ gels can be utilized in pesticide formulations. Plants and
soil systems having various specific ions and pH conditions can activate the for-
mation of gel. The in situ gel-based pesticide formulation would have added
advantage of sticking over leaf surface for longer period as compared to conven-
tional foliar spray. For targeting soil application of hydrogels, they need to be
cheaper, available in bulk, and easy to handle. As multistep synthesis and using
high value reagents such as acrylates, increase in cost, the challenge is to prepare
the cheaper hydrogels, which at the same time show good absorption and
mechanical properties. The use of nanotechnology in synthesis or incorporating
nanofillers to improve mechanical strength and performance of the hydrogels can be
one of the important areas to work upon.

Owing to consequences of the issues such as climate change, degrading land,
decreasing cultivable area, scarce resources, population rise, the ever-mounting
food demand has been a greatest challenge for achieving adequate food production.
Biopolymer-based eco-friendly hydrogels ensure potential and high future pro-
spects in building sustainability in agriculture.
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