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Introduction 

The narrow genetic base of crops today isalarming as it is threat to food security for growing population [1]. Current 

improved agricultural practices becomes the serious problem to our rich biodiversity, as the genetically uniform 

modern varieties has replaced the highly diverse local cultivars and landraces in traditional agro-ecosystems, resulted 

in increased genetic vulnerability of the cultivars for pests and diseases. In addition to this changing climate also 

demands for the search for new genes/traits for better adaptation. Therefore, necessitatesthe identification and 

utilization of diverse germplasm sources to develop new high-yielding cultivars with a broad genetic base [2]. These 

factors motivate the plant breeders to look for new sources of desirable genes in gene banks, which is the storehouse 

for the genetic diversity. Therefore there is need to increase the germplam stock of crops and their better 
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management.Plant germplasm management comprises two phases i.e. germplasm conservation (includes exsitu 

conservation via acquisition&maintenance and in situ protection) and germplasm utilization. Conservation is 

preserving its original genetic profile with maximum fidelity, monitoring its viability and health in storage or in situ, 

and maintaining associated passport information and other data.Pre-breeding is different from conservation it also 

includes genetic enhancement i.e. making particular genes more accessible and usable to breeders by adapting 

“exotic” germplasm to local environments without losing its essential exotic genetic profile, and/or introgressing high 

value traits from exotic germplasm into adapted varieties [3]. Simmonds [4] subdivided genetic enhancement into 

introgression i.e. backcrossing a few genes controlling desired characters into adapted stocks and incorporation i.e.the 

large-scale development of locally adapted populations good enough to enter the adapted genetic bases of the crops 

concerned. 

Wild relatives with enhanced levels of resistance/tolerance to multiple stresses like heat, drought pest and 

diseases provide important sources of genetic variation for crop improvement. However, their exploitation for cultivar 

improvement is limited by different sexual incongruity and linkage drags.  

India has made a significant progress in vegetable production in last three decades. It is the second largest 

vegetable producer next to China [69]. However, to meet the challenges in the domestic market as well as to compete 

in the international market, there is a need of evolving strategies for the development and breeding of suitable 

varieties/ hybrids and quality planting material to be provided to the growers. The introduction of new genetic 

information can result in increased resistance to insect pest, diseases tolerance to environmental condition, improved 

quality etc. India is bestowed with varied agro-climatic conditions which allow growing of all types of vegetables in 

one part of the country or other. The conservation of vegetable crop genetic resources is jointly managed by NBPGR 

along with National Active Germplasm Sites (NAGS). NBPGR has assembled a total of 1,678 exotic germplasm 

accessions comprising various vegetable crops namely tomato (934), brinjal (232), okra (273), vegetable pea (5), 

vegetable soybean (2), cabbage (56), radish (26), carrot (6), methi (28) and spinach (9) [70-71]. There is a need to 

undertake intensive research programme to make best use of available germplasm in the country and above all to 

conserve this valuable genetic resource. Pre-breeding provides a unique opportunity, through the introgression of 

desirable genes from wild germplasm into widely adopted genetic backgrounds for many desirable traits [5]. 

Concept of pre-breeding 

 
Figure 1 Pre-breeding as a bridge between germplasm and its end use.  

Source: Sharma, S. et al., 2013[9]. 

 

Pre-breeding refers to all activities designed to identify desirable characteristics and/or genes from un-adapted 

germplasm resources and transfer them to an intermediate product that breeder can manipulate to any kind of 

selection for improvement.The Global Crop Diversity Trust defined pre-breeding as ‘the art of identifying desired 

traits, and incorporation of these into modern breeding materials’[6]. As pre-breeding is being carried out, the 

resulting materials will be suitable to included in ordinary breeding programs. Although there are some different 
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concepts of exotics, Hallauer & Miranda Filho [7] consider that exotics for pre-breeding purposes include any 

germplasm that does not have immediate usefulness without selection for adaptation for a given area. Overall, pre-

breeding includes all activities directed at identification of desirable crop traits and their subsequent transfer into a 

suitable set of parents for further selection. Pre-breeding identifies useful character(s) or genes that can be exploited in 

cultivar development [8]. 

Characterization of Germplasms 

Germplasmcomprises of landraces, obsolete cultivars, wild relatives, advanced breeding lines, popular varieties, 

synthetic aneuploids & polyploids lines etc. These unique genotypic lines harbor useful genes for early maturity, yield 

associated traits, local adaptability, disease and pest resistance and other desired traits [10]. They can also be used to 

define or generate a new trait not available in domesticated germplasm.In the present era of genomics and proteomics 

they can be characterized using various markers (biochemical, physiological, morphological and molecular markers) 

for breeding and to determine the level of genetic variation [11, 12]. In developing countries local varieties are 

predominantly grown for their farmers-preferred traits [13, 14] which may have many untapped use. 

Molecular characterization 

Genomics techniques such as DNA markers (RFLP, RAPD, SSRs etc.), Sequencing technology, isozyme marker etc. 

can be easily used nowadays to characterize germplasms. DNA fingerprinting of germplasm has become a daily 

routine of all centres dealing with plant germplasm conservation. Molecular diversity analysis and its use in grouping 

of germplasm is almost reliable nowadays with improved marker type; such as with the use of gene based, or 

functional markers [15-17].  

Tagging or mapping of gene/QTLs 

Molecular mapping and gene tagging for several disease resistance genes has enhanced the use of wild material as 

source of resistance. QTL mapping and gene cloning has a gameplay nowadays. There are many traits such as plant 

height, male sterility, yield associated traits, different biotic and abiotic stress related traits as well as several quality 

traits has been found and mapped easily in various crops [18-20]. 

Identification of novel allele 

A lot of variation for a single gene/QTL can be now identified with the help of allele mining approaches. Several 

reverse breeding approaches, such as site-directed mutagenesis, genome editing, TILLING, EcoTILLING etc. are 

now being used to find novel mutation which can confer a particular trait and can be effectively be utilized in plant 

breeding. Germplasm materials can be used to decipher the causal mutation during due course of evolution which has 

led the popularity of a particular crop [21-22]. 

Mechanical and precision phenotyping (Phenomics tools) 

Mechanical and precision phenotyping approaches has led to the fast progress in evaluation of germplasm and their 

reliable results. Several direct or indirect approaches are being developed for better use in evaluation. There are many 

techniques such as NDVI estimation [23] drone phenotyping [24] GIS based phenotyping, non-destructive root 

phenotyping etc, has given excellent opportunities to characterize germplasm at mass in several crops [25]. 

Introgression of new traits from germplasms 

The plant breeder tries to transfers one or more desirable traits from unrelated, exotic or semi-exotic or related 

germplasm into an intermediate variety with good agronomic potential but lacks one or few desirable trait [4]. 

Therefore, by the introgression, new variety will be developed with novel gene(s) in the existing genetic background 

that was not available earlier. Exotic germplasm may constitute races, populations, clones, inbred lines, or other forms 

of genetic stock [7]. During conventional backcrosses while introgressing genes from unrelated, exotic, primitive or 

wild germplasm a considerable amount of undesirable genetic material is introduced into the progeny that has to be 

removed through a series of backcrosses to the recurrent parent [28]. This undesirable gene(s) that has passed to 
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recipient is termed as linkage drag. Removal of such linkage drag always seems to be cumbersome. Unmatchable 

success has been achieved in transferring the particular gene(s) with the help of molecular markers. 

There are many successful achievement have been reported in tomato in transferring disease resistance genes 

from wild relatives into cultivated tomato. One of the first examples was the exploitation of Cladosporium 

fulvum resistance from Solanum pimpinellifolium in 1934 [29]. In tomato, several sets of Introgression lines have been 

developed from wild relatives of tomato. Among that S. pennellii [30], S. Lycopersicoides, S. sitiens [31-33] and S. 

habrochaites [34]. are of much importance.These introgression libraries have potential in breeding for quantitative 

and quality traits and can be pyramided into new breeding lines [35]. Thus, these pre breeding lines will offer tomato 

breeders a powerful tool to optimize the uses of genetic variation in nature by bringing together in one genotype 

alleles that maximize yield, resistance to different stressand also improve quality etc. 

Identification and Creation of novel traits 

Mutations can lead to spontaneous changes of the genetics of individuals that are often heritable. Induced mutagenesis 

is an important tool in plant breeding and functional genomics to increase the frequency of mutations and 

consequently to enhance genetic variation in crop species. This technique has the merit of overcoming genetic barriers 

such as cross-incompatibility, linkage, etc. In plant breeding strategies induced mutagenesis has become an effective 

way of supplementing the existing germplasm and improving new varieties [36]. The novel mutational events can 

either be directly developed as essentially derived varieties or novel genes introgressed into candidate parents through 

a backcross program.Resistance to bacterial wilt (Ralstonia solanacearum) in tomato has been developed with the use 

of induced mutation [37]. Cassava with high amylose content is preferred by diabetic patients because insulin lowers 

the insulin level in body, which prevents quick spikes in glucose contents. This quality trait improvement could 

possible with the help of mutation breeding in cassava [38]. Waycott and co worker [39] used EMS (mutagenic agent) 

to treatment of lettuce seeds to generate dwarf mutants and found that it is controlled by four dwarfing loci. These 

recessive lettuce dwarfs had reduced stature, shortened internodes, darker green leaves, and modified flower 

morphology as well as dwarf mutants have lost their ability either to produce active gibberellic acid (GA) or to 

respond to active GA that are involved in regulating lettuce stem elongation. Therefore these mutants could be used as 

a pre-breeding line in lettuce breeding program for resistance to premature bolting. 

Table 1 List of land races and their potential use in some of the vegetable crops 

Sl. No. Crops  Traits  Germplasm conserved 

1 Melon Powdery mildew PMR 45, PMR 450, PMR 5, PMR 6, PI 124111 

Downy mildew DMDR-1, DMDR-2 

Fruitfly Cucumis callosus 

Nematode Cucumis metuliferus 

Whitefly Cucumis denteri, Cucumis dipsaceus, Cucumis 

sagittatus 

2 Watermelon 

 

Fusarium wilt Summit, Conqueror, Charleston gray, Dixilee, Crimson 

sweet 

Anthracnose Charleston gray, Congo, PI 189225 

3 Bottle gourd CMV, SqMV, WMVPI 271353 

Fusarium Wilt Taiwan variety Renshi 

4 Cucumber 

 

Downy mildew, powdery 

mildew 

Poinsette 

Anthracnose  PI 175111, PI 175120, PI 179676, PI 182445 

Powdery mildew PI 200818, Cucumis hardwikkii 

CMV Wisc SMR-12, SMR-15, SMR-18 

5 Pumpkin 

 

Powdery Mildew and Viruses Cucurbita lundelliana, Cucurbita martenezii 

ZYMV, WMVC. Cucurbita ecuadorensis, Cucurbita faetidistima, 

Cucurbita martenezii 

6 Tomato Bacterial wilt  

 

EC 467725-935, EC 438314-317, EC 182761-182874, 

EC 26511-13 

  Fusarium wilt Pan American, Florida, PI 79532 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759208/#MCM150C7


Chemical Science Review and Letters  ISSN 2278-6783  

Chem Sci Rev Lett 2017, 6(22), 752-762                                                            Article CS142048033                        756 

  Root knot Nematode Nemared, VNF-8, Florida, Hawaii cross 

  Heat tolerant lines EC 198416, EC 501573-83, EC 479027, 31, 34, 36, 

139, 140, 141 and 143 

7 Brinjal Bacterial wilt EC 104107, Florida Market 

  Phomopsis fruit rot EC 305069, 316274 

  Tolerance to frost Black torpedo, Long Tom '4' 

  Tolerance to drought Supreme, Violette round 

8 Chilli Cucumber mosaic virus EC 312342-312349 

  PBNV mosaic virus EC 121490 

  Aphids EC 28, 30 and 34 

  YVMV EC 133408, EC169333, EC 169334, Ghana red, 

Abelmoschus manihot ssp tetraphyllus, Abelmoschus 

manihot ssp manihot 

9 Okra Jassids EC 305656, 305694, 305695 

10 Cabbage Black rot EC 24855, EC 28770, Cabbage Standby 

11 Cauliflower  Black rot Aemel, Olympus, Lawyana 

12 Onion Purple blotch 

 

EC 328494, EC 328492, EC 328501, 

EC 321463 

13 Pea  Powdery mildew EC 342007 

14 Muskmelon 

 

Downey mildew, Powdery 

mildew, Anthracnose 

Crimson sweet, shipper 

Source: Modified from Pandey, P and co worker [26] 

 

Table 2 Registered germplasm of cucurbits with unique traits with the NBPGR, New Delhi. [27] 

Crop Line Registered name Trait associated 

1. Pointed gourd IIVR PG- 105 INGR-03035 Parthenocarpic fruits 

2. Bitter gourd GY-63 INGR-03037 Gynoecious sex with high yield 

3. Water melon RW-187-2 INGR-01037 High yield and yellow coloured flesh 

RW-177-2 INGR-01038 Leaf mutant with simple unlobed leaves 

4. Bottel gourd Androman-6 INGR-99009 Andromonoecious sex 

PBOG-54 INGR-99022 Segmented leaves 

5. Cucumber 

 

AHC-2 INGR-98017 High yield and long fruit 

AHC-13 INGR-98018 Small fruit, drought and temperature tolerant 

6. Cucumismelovar. callosus AHK-119 INGR-98013 High yield and drought tolerance 

7. Round melon HT-10 INGR-99038 Tolerant to downy mildew and root rot wilt 

8. Snap melon AHS-10 INGR-98015 High yield and drought tolerance 

AHS-82 INGR-98016 High yield and drought tolerance 

B-159 INGR-07044 Downy mildew resistance 

New and modern breeding techniques can assist in improving selection response. These include development of 

moreefficient conventional selection procedures, biotechnology, molecular marker technologies and identification of 

markerslinked to traits of interest, effective gametocides and cytomlasmic sterility systems with a desired genetic 

background [28, 40, 41]. 

Approaches to pre breeding 

Introgression 

Introgression is the transfer of one or more genes from exotic/un-adapted / wild stock to adapted breeding 

populations. This can be achieved by making crosses between the donor and the recurrent parent. The concept of 

introgression through crop breeding techniques like backcrossing was evolved by Dr. Edgar Anderson.  
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Incorporation 

Incorporation aims to develop locally adapted population using exotic / un-adapted germplasm. This was first 

suggested by Simmonds [4]. In contanary to introgression, incorporation aims at indexing the crop genetic base.  

The following are the genetic principles of incorporation. 

 Use of material covering wide range of variability 

 Use of un-adapted introduced material 

 The process is complementary to conventional breeding 

 The breeding methods will depend on the biology of the crop, its breeding system and reproduction behaviour 

 Maximizing recombination through cyclic or recurrent crossing. 

 Testing for adaptability under diverse agro-climatic conditions 

 Local genetic adaptation - horizontal resistance (HR) to disease 

 The outcome of an effective base-broadening programme will be enhanced genetic variance in economic 

characters and either good materialsper se or good parents for crossing into established programmes. 

Therefore genetic base broadening results in the development of potential parents either from adapted stocks 

through the use of unadapted stocks. E.g. day length adaptation, disease resistance and quality improvement. 

Other Breeding Approaches 

It includes (i) convergent improvement, (ii) modified convergent improvement, (iii) decentralized breeding, and (iv) 

participatory plant breeding 

Use of Omics tools in Pre-breeding 

Genomics approaches are particularly useful when dealing with complex traits as these traits usually have a multi-

genic nature and an important environmental influence [42-44].Genomic tools are thus facilitating the detect of QTL 

and the identification of existing favorable alleles of small effect which have frequently remained unnoticed and have 

not been included in the gene pool used for breeding [45]. 

Recent technologies promise to provide an insight into the way gene(s) are expressed and regulated in cell and to 

unveil metabolic pathways involved in trait(s) of interest for breeders not only in model-/major- but even for under-

resourced crop species which were once considered “orphan” crops. 

DNA based molecular markers and their applications 

Molecular markers reveal genetic differences in the primary structure of DNA between individuals [46, 47]. 

Strategies like Marker assisted Selection, marker assisted backcrossing, marker assisted recurrent selection, marker 

assisted pyramiding and combined marker assisted selection can be utilized to assess the importance of wild relatives 

and to establish its relationship with cultivated improved cultivars.This will facilitate the identification of desirable 

characteristics or genes from unadapted plant genetic resources and transfer them to an intermediate product that 

breeder can manipulate to any kind of selection for improvement.MAS can assist for phenotypic screening by 

determining the allele of a DNA marker, plants that possess particular genes or quantitative trait loci (QTLs) may be 

identified based on their genotype rather than their phenotype. MAS has great advantage in early generation 

selections by eliminating undesirable gene combinations and retaining superior breeding line especially those that 

lack essential disease resistance genes. [48]. The relative efficiency of MAS is greatest for characters which has low 

heritability [49]. Backcrossing is used in plant breeding to transfer favourable traits which is governed by few genes 

from a donor plant into an elite genotype (recurrent parent). While traditional backcrossing the donor segments 

attached to the target allele can remain relatively large, even after many backcrossing generations, soin order to 

minimize this linkage drag, marker assays could be a major advantage [50]. With the use of markers, recurrent 

selection can be accelerated considerably and several selection-cycles are possible within one year, accumulating 

favourable QTL alleles in the breeding population [48]. In order to pyramid disease resistance genes that have similar 

phenotypic effects, and for which the matching races are often not available, MAS might even be the only practical 

method, especially where one gene masks the presence of other genes [49, 51]. The strategic combination of MAS 
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with phenotypic screening is known as ‘combined MAS’. This may have merit over phenotypic screening or MAS 

alone in order to maximize genetic gain [52]. 

Zhou et al. concluded that, MAS combined with phenotypic screening was more effective than phenotypic 

screening alone for a major QTL on chromosome 3BS for Fusarium head blight resistance in wheat [53]. The 

remarkable genetic gain through MARS is probably higher than that achievable through MABC [54]. For a major 

resistance gene, marker based recurrent backcross programs are using frequently [55].Tagging of gene in important 

vegetable crops has been made viz., in tomato TMV resistance Tm-2 locus, nematode resistance, Mi gene, Fusarium 

oxysporum resistance gene, and powdery mildew resistance gene, etc. Huang et al. also make possible to tag powdery 

mildew resistance gene ol-1 on chromosome 6 of tomato using RAPD and SCAR markers [19]. A large number of 

molecular markers have been used today for DNA fingerprinting of cultivars and breeding lines in a number of 

vegetable crops viz., tomato [56], beans [57], pepper [58], and potato [59]. The fortuitous genetic linkage in tomato 

between the Aps-1 isozyme locus and the Mi locus that controls resistance to rootknot nematode has been beneficial 

for developing nematode resistant tomato hybrids [60, 61]. Storage protein polymorphism in French bean (Phaseolus 

vulgaris L.) has been used to select for resistance to bean seed weevils which is very common in tropical and 

subtropical regions of the world.  

Somatic Hybridization 

Sexual hybridization is limited in most of the crop. Species barriers thereby limit the usefulness of sexual 

hybridization for crop improvement. Somatic cell fusion leading to the formation of viable cell hybrids has been 

suggested as a method to overcome the species barriers to sexual hybridization. Plant protoplasts offer exciting 

possibilities in the fields of somatic cell genetics and crop improvement. The technique of hybrid production through 

the fusion of isolated somaticprotoplasts under in vitro conditions and subsequent development of their product which 

is known as heterokaryon to a hybrid plant is known as somatic hybridization. It provides us with an opportunity to 

constructions hybrids between taxonomically distinct plant species beyond the limits of sexual crossability. 

Creation of Aneuploids & Polyploids 

The breeder could create a novel new variability through changing the number of chromosomes in a species, either by 

altering thebasic chromosome set or addition or deletion of specific chromosome(s). Individuals with altered 

chromosome set(euploids) are developed by doubling the number of genome of a species or by crossing unrelated 

species followed bychromosome doubling of the inter-specific hybrid. Polyploids can be artificially induced by 

various means such as exposingplant materials to environmental shock (e.g. low or high temperature treatment, x-ray 

irradiation) or with chemicals (e.g. colchicine) that disrupt normal chromosome division [28, 37, 62]. Chromosome 

doubling of anther culture derived haploid plants from F1generates double haploids (DHs). The suitability of doubled 

haploid progenies for mapping project has been reviewed in by Lefebvre and co worker in pepper [63]. In vitro 

production of haploid plants followed by doubling of somatic chromosomes is the quickest means to produce pure 

breeding doubled haploids (DHs) [64, 65]. Haploids are produced through the method of anther culture [66] or 

genome elimination following distant hybridization [67]. Selection is more efficient for oligogenic or polygenic traits 

in DHs because itsability to fix genes in a homozygous background, limiting dominance genetic variation and 

segregation [64]. Therefore, double haploid derivatives could be selected for improved traits such as yield, earliness, 

plant height, nutritional quality and pest and disease resistance, in a fully homozygous state. Selected genotypes can 

be used as homogenous varieties or as breeding parents in the ensuing crosses and selection cycles in future. 

Genome-wide selection 

In addition to MARS, the genome-wide selection is another approach which can be utilized to pyramid favourable 

alleles for minor effect QTLs at whole genome level. GWS calculates the marker effects across the entire genome that 

explains entire phenotypic variation. The genome wide marker data available on the progeny lines, therefore, are used 

to calculate genomic estimated breeding values (GEBV). It is important to note that the GEBVs are calculated for 

individuals based on genotyping data using a model that was ‘trained’ from individuals having both phenotyping and 

genotyping data. These genomic estimated breeding values are then used to select the progeny lines for advancement 

in the breeding cycle. In summary, the GWS provides a strategy for selection of an individual without phenotypic data 

by using a model to predict the individual’s breeding value [68]. 
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Conclusions 

This paper summarizes the importance of wild relatives or untapped germplasm for future use in vegetable crop 

breeding. Pre-breeding is an essential part of germplasm diversification strategies. It is the most promising alternative 

to link genetic resources and breeding programmes. By exercising the pre-breeding procedure in crop improvement 

programme, the genetic vulnerability due to uniformity can be avoided in the population. Breeders need to develop 

novel cultivars of each crop to be specifically adapted to each and every agro-ecological systems. Marker-assisted 

selection (MAS) should be integrated with traditional breeding methods to enhance the efficiency of cultivar 

development in vegetable crops. The application of MAS is currently limited to Mendelian traits, whereas it is less 

efficient for complex quantitative traits. The scale of pre-breeding that is needed, and the timescales of the pre-

breeding operations that have to be followed, before the actual breeding or cultivar development can take place. 

Several new advancements has been made in the area of application of molecular tools in genotyping and precision 

phenotyping but the cost of  application of these novel techniques is very high and country like India can not afford. 

Infuture breeder will give emphasis on reduced cost of genotyping and phenotyping so that plant breeding can be 

accelerated at a greater pace and crop diversification may be achieved at last. 
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