Variability and character association studies in dolichos bean (Lablab purpureus L.) genotypes

Ajay Kumar Verma*, K. Uma Jyothi and A.V.D. Dorajee Rao
Department of Horticulture, Horticultural College and Research Institute, Dr. Y.S.R. Horticultural University, Venkataramannagudem-534101, (A.P.) India
Received: 02-04-2014
Accepted: 19-12-2014

doi:10.5958/0976-058X.2015.00006.2

Abstract

The present investigation was carried out at Horticultural College and Research Institute, Venkataramannagudem, West Godavari Dist. (Andhra Pradesh). The experimental material comprised of 12 genotypes of Lablab purpureus collected from IIPR Kanpur and AICRP on pigeon pea Bangalore. A wide range of variability was reported in most of the characters. The highest genotypic coefficient of variation was recorded for number of pods per plant followed by pod yield per hectare and lowest in days to first pod harvest. Higher heritability estimates coupled with high genetic advance as per cent of mean were observed for all the characters except days to first harvest and pod width. Correlation coefficient analysis revealed that number of secondary branches per plant, number of inflorescences per plant, number of pods per inflorescence, number of pods per plant, number of seeds per pod, pod width, days to last harvest and 100 seed weight had the significant positive correlation with marketable green pod yield per plant. Path analysis revealed true relationship between yield and number of secondary branches per plant, number of pods per inflorescence and number of pods per plant and direct selection for these traits will be rewarding for yield improvement as correlation was due to direct effect of the characters. Hence, selection based on these characters could be effective in developing high yielding varieties of dolichos bean for coastal Andhra Pradesh.

Key words: Biometrical studies, Correlation, Path analysis

INTRODUCTION

Dolichos bean or Hyacinth bean or Sem (Dolichos lablab L.) is an important leguminous vegetable grown throughout the country and is distributed in Madhya Pradesh, Maharashtra, Andhra Pradesh, Tamil Nadu and North eastern states. Great range of variation exists in the plant and pod characters among the cultivars grown all over the country (Peter and Kumar 2008). Genetic variability, character association and path coefficient are pre-requisite for improvement of any crop for the selection of superior genotypes and improvement of any traits. It is very difficult to judge whether observed variability is heritable or due to environment alone. Knowledge of heritability is essential for selection based improvement as it indicates the extent of transmissibility of a character in future generations. Knowledge of correlation between yield and its contributing characters are basic and for most endeavor to find out guide lines for plant selection. Partitioning of total correlation into direct and indirect effect by path coefficient analysis helps in making the selection more effective (Biju et al. 2001).

Among the quantitative characters, yield is a complex character, which is dependent on a number of yield contributing characters. The knowledge of the association of yield components and their relative contribution shown by path analysis has practical significance in selection. The study of the association between pairs of characters and yield provides basis for further breeding programme. Therefore, the present studies were aimed at to study the correlation and path analysis among twelve genotypes of dolichos bean.

MATERIALS AND METHODS

A field experiment was conducted at Horticultural College and Research Institute, Venkataramannagudem, West Godavari Dist. (Andhra Pradesh) during Kharif season of 2012. Twelve genotypes of dolichos bean viz. Culture 4, Culture 7, Culture 47, Culture 62, GL-243, GL-388, GL-411, GL-671, GL-416, HA-4, Arka Jay (C) and Arka Vijay (C) were grown in a randomized block design with three replications. These were planted in a two row plot. The plot size and spacing were $3.6 \times 3.0 \mathrm{~m}$ and $60 \times 30 \mathrm{~cm}$, respectively. Five plants were taken for recording

[^0]observations on eighteen characters viz. plant height (cm), number of primary branches per plant, number of secondary branches per plant, days to first flowering, days to 50 per cent flowering, number of pods per inflorescence, number of inflorescences per plant, days to first pod harvest, days to last pod harvest, pod length (cm), pod width (cm), number of seeds per pod, number of pods per plant, mean pod weight, 100 seed weight (g), protein content (\%), pod yield per plant (g) and pod yield per hectare (q).

The data were statistically analyzed for computation of genetic coefficients of variation and broad sense heritability was estimated as per the formula suggested by Burton (1952). The expected genetic advance was calculated by using formula as suggested by Johnson et al. (1955). Correlation coefficients were carried out according to the method suggested by Al-Jibouri et al. (1958) and path coefficient analysis was adopted as given by Dewey and Lu (1959).

RESULTS AND DISCUSSION

 Variability, heritability and genetic advance analysis: The analysis of variance revealed significant differences among the genotypes indicating presence of sufficient amount of variability in all the characters studied. Wide range of variability was observed for plant height, number of secondary branches per plant, number of inflorescences per plant, number of pods per inflorescence, number of pods per plant, pod yield per plant, 100 seed weight and pod yield per hectare indicating the scope for selection of suitable initial breeding material for further improvement. A wide range of variations existing for various quantitative traits has also been reported in dolichos bean by Nahar and Newaz (2005) and Upadhyay and Mehta (2010).A wide range of variation was found for mean performances of the 18 quantitative characters in twelve genotypes of dolichos bean (Table 1). On the basis of the mean performance of the genotypes among traits studied, the following were identified as promising lines for further crop improvement in dolichos bean viz, GL-243, Culture-47 and GL-671. Among all the genotypes studied, genotypes GL243 recorded the highest pod yield per plant and found suitable to the local agro-climatic conditions. Genotype GL243, GL-671 recorded significantly better performance than the checks for marketable pod yield per plant along with more number of inflorescences per plant, number of pods per inflorescence, number of pods per plant, days to last harvest and 100 seed weight. Hence, the genotypes GL-243, Culture47 and GL-671 can be used for further improvement.

Estimates of variability, heritability and genetic advance as per cent of mean for eighteen characters in twelve
TABLE 1: Mean performances of the 18 quantitative characters in twelve genotypes of dolichos bean

S. No.	PH	NPB	NSB	DFF	DF50\%	NIP	NPI	NPP	NSP	MPW	PL	PW	DFH	DLH	PYPP	HSW	PC	PYPH
Culture-4	97.20	4.26	8.05	66.88	68.90	5.87	3.85	20.50	3.90	4.30	6.65	1.64	90.16	115.39	86.30	29.84	27.65	47
Culture -7	110.13	4.30	9.05	57.49	60.42	11.29	2.91	30.16	4.08	3.82	7.66	1.57	83.39	148.85	116.65	23.62	26.04	64
Culture -47	109.26	2.60	14.56	46.84	48.85	12.81	7.34	78.34	4.65	3.57	6.52	1.80	73.75	170.26	265.84	54.42	19.60	147
Culture -62	121.53	3.30	12.73	63.23	67.16	12.25	6.18	70.27	3.54	2.86	4.92	1.98	89.34	131.75	203.27	19.68	27.66	112
GL-243	85.43	2.50	15.28	44.76	46.76	13.53	7.93	93.12	3.77	3.41	5.57	2.06	70.35	175.51	300.83	61.63	17.74	167
GL-388	79.23	3.25	13.50	49.40	52.40	11.39	6.45	71.14	3.40	2.98	5.31	1.84	76.48	157.42	212.50	43.24	24.65	118
GL-411	75.63	2.92	12.26	55.39	58.42	10.46	6.86	68.38	3.63	2.42	4.73	1.52	83.13	146.29	166.11	33.83	25.64	92
GL-671	74.70	2.89	13.85	48.65	50.65	12.57	7.15	75.64	3.67	3.43	5.73	1.71	75.49	167.31	252.61	53.85	20.57	140
GL-416	73.67	3.28	9.93	60.71	63.72	8.48	6.38	53.13	3.58	2.13	5.00	2.02	86.58	141.42	113.69	33.80	26.82	63
HA-4	68.33	3.46	6.36	48.48	51.44	4.07	5.73	20.53	3.35	4.44	5.49	1.83	72.82	137.67	91.38	30.36	19.25	50
Arka Jay(C)	68.40	3.50	10.18	42.69	44.68	10.88	5.32	57.79	4.10	4.04	8.55	1.76	71.49	139.84	234.37	32.50	22.80	130
ArkaVijay(C)	63.91	3.47	10.26	40.26	42.38	11.50	5.39	62.20	4.64	3.90	6.79	2.08	68.46	151.92	242.40	41.47	20.19	134
Grand mean	85.62	3.31	11.33	52.06	54.65	10.42	5.95	58.43	3.86	3.44	6.07	1.82	78.45	148.63	190.49	38.19	23.21	105
SEm \pm	0.63	0.05	0.34	0.44	0.50	0.32	0.20	0.38	0.04	0.03	0.19	0.05	0.61	0.76	2.81	0.66	0.17	0.19
CV (\%)	1.27	2.86	5.30	1.46	1.61	5.43	5.88	1.15	1.94	1.98	5.65	5.02	1.34	0.89	2.56	3.02	1.26	0.32
CD (P=0.05)	1.85	0.16	1.01	1.29	1.49	0.95	0.59	1.14	0.12	0.11	0.58	0.15	1.79	2.24	8.26	1.95	0.49	0.58

genotypes of dolichos bean（Table 2）revealed that PCV estimates of all characters were slightly higher than that of GCV indicating the less influence of environment．Among the characters studied，high PCV and GCV were observed for characters like plant height，number of secondary branches per plant，number of inflorescences per plant，number of pods per inflorescence，number of pods per plant，pod yield per plant， 100 seed weight and pod yield per hectare indicating high variability available in the germplasm for these characters for further improvement．Present results were similar with the findings of Mishra et al．（2008），Savitha （2008），Rai et al．（2009）and Upadhyay and Mehta（2010）．

High heritability coupled with high genetic advance as per cent of mean was recorded for all the characters except days to first harvest and pod width indicated that these characters were least influenced by the environmental effects and these characters were governed by additive genes and selection will be rewarding for improvement of such traits． n High heritability and moderate GA as per cent mean values ก⿳亠丷⿵冂⿱八乂，were observed for the characters viz．，days to first pod harvest $\stackrel{c}{\circ}_{\infty}^{\infty}$ and pod width．This indicates the influence of non additive $\bar{\square}$ gene action and considerable influence of environment on ${ }_{5}^{\text {T}}$ the expression of these traits．These traits could be exploited $\stackrel{\text { ¢ }}{\text { ¢ }}$ through manifestation of dominance and epistatic components ก్ల్ల Nhrough heterosis breeding．Hence，the breeder should adopt $\bar{\mp}$ suitable breeding methodology to utilize both additive and á non additive gene effects simultaneously，since varietal and Ehybrid development will go a long way in the breeding $\stackrel{\rightharpoonup}{0}$ programmes，especially in case of dolichos bean．
${ }_{3}^{\circ}$ Correlation analysis：Phenotypic（P）and genotypic（G） $\circ_{\text {correlation coefficients among eighteen yield and yield }}$ attributes in twelve genotypes of dolichos bean（Table 3） revealed that genotypic correlations were higher than respective phenotypic correlations indicating strong inherent relationship among the characters studied．From correlation studies，it was observed that marketable pod yield per plant exhibited highly significant positive association with number of secondary branches per plant， number of inflorescences per plant，number of pods per inflorescence，number of pods per plant，number of seeds per pod，pod width，days to last harvest and 100 seed weight．These results are in consonance with the findings of Sirohi（2005），Chauhan et al．（2007），Bangar et al． （2008），Konda et al．（2008），Mishra et al．（2008），Nahar and Newaz（2005）and Rai et al．（2009）．Present results indicated the importance of these traits in selection for marketable pod yield per plant．Hence，direct selection based on these traits would result in simultaneous improvement of aforesaid traits and yield in dolichos bean．

Characters	Range		M ean	Variance		PCV（\％）	GCV（\％）	h^{2}（\％）	Genetic Advance	GA as of mean per cent
	Minimum	Maximum		Phenotypic	Genotypic					
Plant height（cm）	63.91	121.53	85.62	369.24	368.05	22.44	22.40	99.67	39.45	46.08
No．of $1^{?}$ branches per plant	2.50	4.30	3.31	0.32	0.31	17.10	16.85	97.19	1.13	34.23
No．of $2^{\text {？}}$ branches per plant	6.36	15.28	11.33	7.96	7.60	24.90	24.33	95.47	5.55	48.98
Days to first flowering	40.26	66.88	52.06	73.01	72.42	16.41	16.34	99.20	17.46	33.53
Days to 50 per cent flowering	42.38	68.90	54.65	79.30	78.53	16.29	16.21	99.02	18.16	33.24
No．of inflorescences per plant	4.07	13.53	10.42	8.50	8.18	27.96	27.43	96.22	5.77	55.43
No．of pods per inflorescences	2.91	7.93	5.95	2.16	2.04	24.70	23.99	94.33	2.86	48.01
Number of pods per plant	20.50	93.12	58.43	547.05	546.60	40.02	40.00	99.92	48.14	82.38
No．of seeds per pod	3.35	4.65	3.86	0.19	0.18	11.40	11.24	97.09	0.88	22.81
Mean pod weight（g）	2.13	4.44	3.44	0.52	0.53	21.09	20.99	99.12	1.48	43.06
Pod length（cm）	4.73	8.55	6.07	1.46	1.34	19.92	19.10	91.94	2.29	37.74
Pod width（cm）	1.52	2.08	1.82	0.041	0.03	11.19	10.00	79.86	0.33	18.41
Days to first pod harvest	68.46	90.16	78.45	59.69	58.57	9.84	9.75	98.12	15.61	19.90
Days to last pod harvest	115.39	175.51	148.63	298.63	296.88	11.62	11.59	99.41	35.39	23.80
Pod yield per plant（g）	86.30	300.83	190.49	5434.25	5410.42	38.69	38.61	99.56	151.19	79.36
100 seed weight（g）	19.68	61.63	38.19	169.15	167.82	34.05	33.92	99.21	26.58	69.60
Protein content（\％）	17.74	27.66	23.21	13.09	13.00	15.58	15.53	99.34	7.40	31.89
Pod yield per ha（q）	47.82	167.48	105.80	1676.80	1676.69	38.70	38.69	99.99	84.34	79.71

TABLE 3: Phenotypic (P) and genotypic (G) correlation coefficients among eighteen yield and yield attributes in twelve genotypes of dolichos bean

Character		PH	NPB	NSB	DFF	DF50\%	NIP	NPI	NPP	SP	MPW	PL	PW	DFH	DLH	HSW	PC
$\mathbf{P H}$	G	1.000															
	P	1.000															
NPB	G	0.153	1.000														
	P	0.154	1.000														
NSB	G	0.217	$-0.798^{* *}$	1.000													
	P	0.213	$-0.768^{* *}$	1.000													
DFF	G	$0.545^{* *}$	$0.473^{* *}$	-0.285	1.000												
	P	$0.544^{* *}$	$0.468^{* *}$	-0.273	1.000												
DF50\%	G	$0.548^{* *}$	$0.467^{* *}$	-0.281	$1.000^{* *}$	1.000											
	P	$0.545^{* *}$	$0.454^{* *}$	-0.276	$0.989^{* *}$	1.000											
NIP	G	0.268	-0.528**	$0.869^{* *}$	-0.368*	-0.362*	1.000										
	P	0.261	$-0.515^{* *}$	$0.838 * *$	-0.357*	-0.355*	1.000										
NPI	G	-0.205	-0.993**	$0.760^{* *}$	-0.388*	-0.378*	$0.439^{* *}$	1.000									
	P	-0.194	-0.953**	$0.732^{* *}$	-0.374*	-0.367*	$0.403{ }^{*}$	1.000									
NPP	G	0.007	-0.858**	$0.958 * *$	-0.433**	-0.425**	$0.855^{* *}$	$0.827^{* *}$	1.000								
	P	0.007	$-0.846^{* *}$	$0.935^{* *}$	-0.431**	-0.424**	$0.839^{* *}$	$0.804^{* *}$	1.000								
NSP	G	0.126	0.025	0.093	-0.399*	-0.423*	0.358^{*}	-0.171	0.119	1.000							
	P	0.124	0.029	0.092	-0.388*	-0.418*	0.351^{*}	-0.166	0.118	1.000							
MPW	G	-0.045	-0.438**	-0.479**	-0.298	-0.322	-0.349*	-0.488**	-0.584**	0.352^{*}	1.000						
	P	-0.044	-0.426**	-0.463**	-0.295	-0.320	-0.341*	-0.473**	-0.505**	0.349^{*}	1.000						
PL	G	0.006	$0.487^{* *}$	-0.302	-0.317	-0.343*	0.054	$0.596^{* *}$	-0.297	$0.655^{* *}$	$0.670^{* *}$	1.000					
	P	0.006	$0.453^{* *}$	-0.281	-0.306	-0.332*	0.079	$0.566^{* *}$	-0.285	$0.614^{* *}$	$0.645^{* *}$	1.000					
PW	G	-0.165	-0.364*	0.221	-0.320	-0.306	0.201	$0.407{ }^{*}$	$0.40{ }^{*}$	0.071	-0.154	-0.242	1.000				
	P	-0.146	-0.331*	0.193	-0.285	-0.271	0.191	$0.383 *$	$0.361 *$	0.057	-0.146	-0.211	1.000				
DFH	G	$0.541^{* *}$	$0.454^{* *}$	-0.233	$0.990^{* *}$	$0.993{ }^{* *}$	-0.279	-0.377^{*}	-0.366*	-0.367^{*}	-0.386 ${ }^{*}$	-0.304	-0.341*	1.000			
	P	$0.534^{* *}$	$0.442^{* *}$	-0.220	$0.978{ }^{* *}$	$0.976^{* *}$	-0.275	-0.354*	-0.362*	-0.354*	-0.382*	-0.287	-0.304	1.000			
DLH	G	-0.099	$-0.741^{* *}$	$0.756^{* *}$	$-0.658^{* *}$	$-0.658^{* *}$	$0.715^{* *}$	$0.649^{* *}$	$0.744^{* *}$	0.239	-0.173	-0.083	0.233	$-0.649^{* *}$	1.000		
	P	-0.098	$-0.725^{* *}$	$0.741^{* *}$	-0.655**	-0.654**	$0.698 * *$	$0.625^{* *}$	$0.741^{* *}$	0.235	-0.172	-0.079	0.205	-0.644**	1.000		
HSW	G	-0.250	$-0.749^{* *}$	$0.697 * *$	-0.612**	-0.635**	$0.494 * *$	$0.709^{* *}$	$0.682^{* *}$	0.243	-0.023	-0.096	0.284	-.642**	$0.852^{* *}$	1.000	
	P	-0.248	$-0.731^{* *}$	$0.679^{* *}$	$-0.605^{* *}$	-0.630**	$0.477^{* *}$	$0.694^{* *}$	$0.67{ }^{* *}$	0.240	-0.027	-0.108	0.260	-0.629**	$0.846^{* *}$	1.000	
PC	G	0.380^{*}	$0.580^{* *}$	-0.283	$0.852^{* *}$	$0.859^{* *}$	-0.218	-0.503**	-0.366*	-0.297	-0.398*	-0.112	-0.350**	$0.910^{* *}$	-0.699**	$-0.748^{* *}$	1.000
	P	0.378*	$0.561{ }^{* *}$	-0.274	$0.846^{* *}$	$0.854^{* *}$	-0.213	-0.487**	-0.366*	-0.294	-0.392*	-0.108	-0.309	$0.901^{* *}$	-0.696**	-0.742**	1.000
PYPP	G	-0.039	-0.728**	0.844**	-0.680**	-0.683 ${ }^{* *}$	0.848**	$0.658{ }^{* *}$	0.896 ${ }^{* *}$	0.376 ${ }^{*}$	-0.090	0.072	0.405*	-0.634**	0.764**	0.738 ${ }^{* *}$	-0.596 ${ }^{* *}$
	P	-0.040	-0.715**	$0.820{ }^{* *}$	-0.676**	-0.678**	0.832**	0.640 **	0.893 ${ }^{* *}$	0.370*	-0.092	0.067	$0.367{ }^{*}$	-0.625 ${ }^{* *}$	$0.760{ }^{* *}$	0.735**	-0.594**

[^1]INDIAN JOURNAL OF AGRICULTURAL RESEARCH
TABLE 4: Direct and indirect effects of various yield and yield attributes on pod yield in twelve genotypes of dolichos bean

Character		NPB	NSB	DFF	DF50\%	NIP	NPI	NPP	DFH	DLH	HSW	PC
NPB	G	-0.225	0.179	-0.106	-0.105	0.119	0.223	0.193	-0.102	0.167	0.168	-0.130
	P	$\underline{0.196}$	-0.150	0.091	0.089	-0.101	-0.187	-0.166	0.086	-0.142	-0.143	0.110
NSB	G	-0.576	0.721	-0.205	-0.202	0.627	0.548	0.691	-0.168	0.545	0.502	-0.204
	P	-0.213	0.277	-0.075	-0.076	0.232	0.203	0.259	-0.061	0.205	0.188	-0.076
DFF	G	-0.317	0.191	$\underline{-0.670}$	-0.672	0.247	0.260	0.290	-0.664	0.441	0.410	-0.571
	P	-0.252	0.146	$\underline{-0.538}$	-0.533	0.192	0.201	0.232	-0.527	0.353	0.326	-0.456
DF50\%	G	0.021	-0.013	0.046	0.046	-0.017	-0.017	-0.019	0.046	-0.030	-0.029	0.040
	P	0.105	-0.064	0.229	$\underline{0.232}$	-0.082	-0.085	-0.098	0.226	-0.151	-0.146	0.198
NIP	G	-0.087	0.143	-0.060	-0.059	0.165	0.072	0.141	-0.046	0.118	0.081	-0.036
	P	-0.229	0.373	-0.159	-0.158	0.445	0.179	0.373	-0.122	0.310	0.212	-0.095
NPI	G	0.538	-0.412	0.210	0.205	-0.238	0.542	-0.448	0.204	-0.352	-0.384	0.272
	P	-0.003	0.002	-0.001	-0.001	0.001	0.003	0.002	-0.001	0.002	0.002	-0.001
NPP	G	-0.335	0.373	-0.169	-0.166	0.333	0.322	0.390	-0.143	0.290	0.266	-0.143
	P	-0.371	0.410	-0.189	-0.186	0.368	0.352	$\underline{0.438}$	-0.159	0.325	0.297	-0.160
DFH	G	0.175	-0.090	0.382	0.383	-0.108	-0.145	-0.141	0.386	-0.250	-0.248	0.351
	P	0.038	-0.019	0.085	0.085	-0.024	-0.031	-0.031	$\underline{0.087}$	-0.056	-0.055	0.078
DLH	G	0.467	-0.476	0.415	0.416	-0.451	-0.409	-0.469	0.409	$\underline{-0.630}$	-0.537	0.441
	P	0.405	-0.414	0.366	0.365	-0.390	-0.349	-0.414	0.360	$\underline{-0.558}$	-0.473	0.389
HSW	G	-0.079	0.074	-0.065	-0.067	0.052	0.075	0.072	-0.068	0.091	0.106	-0.079
	P	-0.153	0.142	-0.127	-0.132	0.100	0.145	0.142	-0.132	0.177	0.210	-0.156
PC	G	-0.311	0.152	-0.457	-0.461	0.117	0.270	0.196	-0.488	0.375	0.401	$\underline{-0.536}$
	P	-0.238	0.116	-0.359	-0.362	0.090	0.207	0.155	-0.382	0.295	0.315	-0.424
PYPP	G	-0.728	0.844	-0.680	-0.683	0.848	0.658	0.896	-0.634	0.764	0.738	-0.596
	P	-0.715	0.820	-0.676	-0.678	0.832	0.640	0.893	-0.625	0.760	0.735	-0.594

[^2]The earliness attributes like number of primary branches, days to first pod harvest, days to first flowering, days to 50% flowering and protein content had negative significant association with the marketable pod yield per plant. These results are in agreement with the earlier findings of Bangar et al. (2008), Mishra et al. (2008) and Katiyar and Dixit (2009).

Path coefficient analysis: Path coefficient splits the interrelationship between two characters into direct and indirect effects (Table 4). Among all the pod traits under study, number of secondary branches per plant, number of pods per plant exhibited high positive direct effect on marketable pod yield per plant followed by number of pods per inflorescence, days to first harvest and 100 seed weight at both levels of significance. This suggested that direct selection based on these traits will be rewarding for yield improvement in dolichos bean. Similar results have been reported by Bangar et al. (2008), Konda et al. (2008), Mishra et al. (2008), Rai

Days to last pod harvest recorded high negative direct effect on marketable pod yield per plant but positive correlation suggesting that direct selection for such trait should be practised to reduce the undesirable indirect effect. These results are in agreement with the findings of Golani et al. (2007), Rai et al. (2009) and Chattopadhyay and Dutta (2010).

REFERENCES

 upland cotton cross of interspecific origin. Agronomy J. 50: 633-636.Days to first flowering showed very high negative direct effect on pod yield per plant which is in agreement with the results of Konda et al. (2008), Rai et al. (2009) and Chattopadhyay and Dutta (2010) which means that the genotypes having earlier flowering will give more yield compared to late flowering types. So this character could be considered as selection criteria for high yield.

From the foregoing discussion, it can be concluded that number of pods per plant, pod width, number of secondary branches per plant, number inflorescences per plant, number of pods per inflorescence and hundred seed weight had the positive correlation as well as direct positive effect on marketable pod yield per plant suggested that the direct selection for these traits would be effective for the improvement in yield of dolichos bean. These were identified as superior yield components. Hence, the genotypes which exhibited better performance for these characters can be used in further improvement of dolichos bean. Three genotypes viz., GL-243, Culture-47 and GL-671 showed significantly higher yield over the checks. There is a need to evaluate these high yielding genotypes in large plots and over locations in coastal Andhra Pradesh for their commercial utilization. A large number of pests and diseases affect the crop. There is a need to systematically test the genotypes for pest and disease reaction. They can be directly selected for general cultivation after confirming their performance in large plots across environments.

Al-Jibouri, H.A.; Miller, P.A. and Robinson, H.F. (1958). Genotypic and environmental variances and covariances in an

Bangar, N.D.; Lakra, A. and Chavan, B.H. (2008). Correlation and path coefficient of analysis in moth bean. J of Maharashtra Agril Univ. 33 (2): 164-166.
Biju, M.G.; Prasanna, K.P. and Rajan, S. (2001). Genetic divergence in hyacinth bean. Vegetable Sci. 28: 163-164.
Burton, G.W. and Devane, E.H. (1953). Estimating heritability in tall fescue (Festuca arundinaceae) from replicated clonal material. Agronomy J. 45: 478-481.
Chattopadyay, A. and Dutta, S. (2010). Characterization and identification of selection indices of pole type dolichos bean. Veg Crops Res Bulletin. 73: 33-45.
Chauhan, M.P.; Mishra, A.C.; Singh, A.K. (2007). Correlation and path analysis in urd bean. Legume Res. 30(3):205-208.
Dewey, J.R. and Lu, K.H. (1959). Correlation and path coefficient analysis of components of crested wheat grass seed production. Agronomy J. 51: 515-518.
Golani, I.J.; Mehta, D.R.; Naliyadhra, M.V.; Patel, R.K. and Kanzariya. (2007). Genetic variability, correlation and path analysis for green pod yield and its characters in hyacinth bean. Orissa J of Horti. 35(1):71-75.
Johnson, H.W.; Robinson, H.F. and Comstock, R.E. (1955). Estimates of genetic and environmental variability of soybean. Agronomy J. 47: 314-318.
Katiyar, P.K. and Dixit, G.P. (2009). Multivariate analysis for genetic divergence in field pea (Pisum sativum) germplasm. Indian J. Agri Sci. 79 (3):181-183.

Konda, C.R.; Sailmath, P.M. and Mishra, M.N. (2008). Correlation and path analysis in black gram (Vigna mungo (L.) Hepper). Legume Res. 31 (3): 202-205.
Mishra, S.; Kumar, M. and Sahu, G.S. (2008). Relationships among yield contributing characters in pole type French bean (Phaseolus vulgaris L.). Orissa J Horti. 36 (2): 108-113.
Nahar, K. and Newaz, M.A. (2005). Genetic variability, character association and path analysis in lablab bean (Lablab purpureus L.). International J. Sustainable Agric Tech. 6(1): 35-40.
Peter K.V., Kumar, P.T. (2008). Genetics and Breeding of Vegetable Crops. Indian Council of Agricultural Research, New Delhi, pp-231-234
Rai, N.; Asati, B.S. and Singh, A.K. (2009). Genetic divergence in Indian bean. Legume Res. 32(2): 166-172.
Savitha, B.N. (2008). Characterization of Avare (Lablab purpureus L.Sweet) local collections for genetic variability. Orissa J. Horti. 36(2): 103-107.

Sirohi, A. (2005). Correlation and path analysis in urd bean under mid altitude conditions. Progressive Agri. 5(1): 98-100.
Upadhyay, D. and Mehta, N. (2010). Biometrical studies in Dolichos Bean (Dolichos lablab L.) for Chattisgarh Plains. Res J of Agril Sci. 1 (4): 441-447.

[^0]: *Corresponding author' e-mail: ajayhorti19@gmail.com

[^1]: $\begin{array}{lc}\text { *significant at } 0.05 \% \text { LOS } & \text { ** significant at } 0.01 \text { \% Level of significance } \\ \text { If correlation } \mathrm{r}=>0.32910 & 0.42379\end{array}$

[^2]: PH= Plant height (cm); PBPP= Primary branches per plant ; SBPP= Secondary branches per plant, DFF= Days to first flowering; D50\% F = Days to 50% flowering; NPI= Number of pods per inflorescence; NIP=Number of inflorescences per plant; DFH= Days to first pod harvest; DLH= Days to last pod harvest; PL= Pod length (cm); PW=Pod width (cm); NSP=Number of seeds per pod; NPP= Number of pods per plant; MPW=Mean pod weight, HSW=100 seed weight; PC= Protein content (\%); PYPP= Pod yield per plant (g)

