By
Q.P.Rathuria

Dissertation submitted in partial fulfillment of the requirements for the award of Diploma
in Agricultural \& Animal Husbandry
Stetistics of the Institute of
Agricultural Research
Statistics
New Delhi.
1959.

ACKNOWLEDGEMENT

I have pleasure in expressing my deepest sense of gratitude to Shr D. Singh, Senior Research Statistician, Institute of Agricultural Research Statistics (I.C.A.H,), New Delhi for his valuable guidance, constant encouragement and constructive. criticism during the course of investigation and writing this thesis.

By thanks are also due to the Institute of Agricultural Research Statistics for the facilities provided to me during the course of - Investigation.

$$
\frac{\text { Qpilenthur }}{\text { (0.P. Kathuria) }}
$$

Page

1. Introduction 1
2. Review of Literature 8
3. Scheme for the stady of milk-yields, breeds and feeding and management practices of cattie and bupfaloes in Punjab (1956-57) 14

-

4. Sampling on two occasions, a fraction p of the first-stage units being retained 17
5. Sempling on h occasions 33
6. Sampling on two occasions with replacement among ssu's only 41
7. A cost function for the scheme for the study of the milk-yield of bovines in the Punjab state (1956-57)... 44
8. Sammary 6上,
-9. References 62

I_N PRODU_CTIOON

Usually the resulta of a sample survey are useful for the occasion when the suryey is conducted. A population which does not change with time presents no serious pioblemi. But for a dynemic population, that is, the one, which is subject to change from time to time, such as the extent of area under improved seedsy the extent of fertiliser use, or the number of unemployed persons in a country, any such sufvey is of limited use unless it has been repeated frequently at regular intervals of time. The duration of such a survey if it is undertaken, and the interval to be taken between two enquiries In such a survey will, of course, depend upon the type of the surveyed material, the information that is to be collected from it and the expenditure that has been sanctioned in condueting such a survey this last aspect in a reotrictive one as such the already dwindling resources of a country may not warrent a costlier survey to be undertaken. The importance of repeated surveys; of the same population may be emphesized on other considerations also. Since dynamic changes are being brought about in the economy of our country, it woula be instructive to take stock of the changes brought obout at the end of each plan period, before se step into the next one.

Thus for a dynemic population, a sampler may be asked to present statistical estimates for the changes toking place in it fron time to time, in respect of its various characters. He may be asked to give estimates for the average value of a character for the particular period under consideration. If,
for instance, the population is subject to monthly variation, he may be required to give estinates for the popalation character for the current month and to compare it with the corresponding value in the preceeding monthe similarly if the population is subject to seasonal variations-estimates may be required of the changes brought about by the seasonal effects.

Having made sure the objective of a survey the sampler would embark upon to edopt a suitable prame or design for the survey:- Naturally his choice would be one among the various designs avallable. After the first round of enquiry is over, he may not like to choose the seme sampling units for the second round es well, unless the units are extremely variable with time. If the sampling units are not so variable, a resurvey of the same units may fail to give any additionel information of particular interest, rather much of time and resources may be lost in an endeavour to have such a survey. Horeover as —.Yates (1949) puts it a repeated resurvey of the same units may result in modipication of these units relative to the rest of the population. Re asserts the point by giving an example that In a survey of agricultural practice, visits to farms may result in the farmers concerned, improving their practice through the adifice from the investigators; an advice which when asked for can scarcely be refused.

To select a fresh semple independently on each occesion, one will be confronted with a number of difficulties related to field operation. One is that if the enumerator is new to the place of enquiry, he will not get full cowoperetion of the local
population in executing his work efficiently and secondly the uhole procedure of preparing the besic frame, tabulating and listing of sampling units shall have to be repeested again which will mean consumption of more time and more travel to be underteken and hence more cost per unft included in the sample.

Retaining some of the units from the previous enquiry and supplementing them th a sample selected a fresh from the population at each time seems to be an effective policy to be adopted for the field operation. There are some administrative advantages elso in introducing the nev units occasionally in fraotions. Thus, for instance, in a survey involving tehsils and villages within tehsils as our sampling units, if we want to take a fresh sample of tehsils in the second enguiry, it may take at least a day more for overy new tehsil inciuded in the somple, for-preparing the basic frame for selection of the sample from It and about three or four days more for enumerating the householda within each selected villase from this new tehsil. Therefore, it'is desirable to have only some of the new units come into the sample at any time so as to spread the overmork over a number of enquiries.

In a survey involving a single stage random sample design partial replacement of sampling units presents no serious problem. But for a multi-stage sampling design the things are not so simple. Thus-for a two-stage design, what fraction of primary sampling units should be selected afresh and what fraction to be reteined on the second occasion, and if we have decided to
retain all the psu's, whether all the second stage units within thom should be replaced or they should be partielly replaced and partially retained - these are the various problems with which a sampler is confronted.

[^0]Thile a good amount of work involving singlemstage sampling design has been done by a number of workers, such as by Jessen, Yates, Patterson and Tikkiwal, prackically no study has been made of the problem requiring more complex designs and to carrelate the results with some actual survey. Secondly they have left off a more important aspect viz. the cost involved in a survey. Only Jessen's Investigations axe complete in this respect.

It would be opportune to outline some of the flelds where the study made in the following pages can have a possible application. Schemes have been conducted by the Indian Council of Agricultural Research to assess and put forth rellable estimates for the milk-yield of cows and buffaloes, their breeduise distribution, feeding and other menogement practices In the Punjab, U. Pe, Bombay and Andhra Pradesh Statese The survey conduoted in Punjab has been dealt with in greater detail later on; the object here is to study in what form can tho device of partial replacement of units be applied to the subsequent surveys. Since the successive sampling units are tehsils and villages, it may be possible to retain only some of tehsils for the second round of enquiry and complete the sample by taking some of the tehails afresh. In that way a

Larger number of tehsils can be included in the survey. Since In the Punjab survey all the tehsils have been retalned and villages within each tehsil taken afresh on each season it would be worthwhle to study uhether we can replece a suitable fraction of tehsils and vetain only some of the villages within each tehsil that has been retained and select some of them afresh so that the objective can be best achieved without any undue increase in the cost. If such a scheme is feasible, the objective is to find the number of tehsils and the number of villages within each tehsil that should be included in the sample on each occasion so that the estimate for the character under study can be built up with a precision that the given resources would permit.

A similar sampling plen may be adopted for the surveys which are repeated annually for estimating the yield of agricultural erops in the country. Wention may be made of a pilot sample survey for estimating the production and area under the cultivation of coconut and arecanut crops in Assam, Madras, Uysore, Andhre Predesh, Bombay and Kerela Statese Another scheme to assess the production of orenge is being conducted in the Bombay State. The point of interest in the Coconut and Arecanut crop surveys is that for the second year of enquiry only a fraction of 20 to 25 percent of the villages sampled in the first year is to be retained this being aupplemented by a fresh sample of villages. Thus as large as 75 to 80 percent replacement has been envisaged for the second and subsequent. years of enquiry. As for the villages which have been retained

It has been dacided that the same set of palms should be taken for harvesting which were taken in the previous enquiry. The fresh sample of villages is to be taken from the entire population of villages including those also which have been retained; and if any of these retained villages happens to selected again, it is not to be rejected but a double semple of gardens or trees is to be drawn from it for collacting information. Sinilar sampling plan for the second year has been adopted for the survey of oranges also: By adopting the scheme as given above, for the second year, improved estimates of production for these crops cen be obtained.

To extend the field further mention may be made of the survey conducted in 1953 by the National Sample Surver to assess the employment and unemployment situation in the corntry. The best vay to make a study of the improvements brought about by the introduction of ifvemyear plans is to have an appraisal of the employment situation in the country at the end of each planm period. Any design adopted for such a survey would essentially consist of town end villages etc. to be taken as the sampling units. Ā suftable fraction of these may be replaced for subsequent surveys.

Perhaps the most realistic application of the replacement policy to a suxvey has been illustratad by Jessen in his aStatistical Investigations of a Sample Survey for Obtaining Farm Facts" in the Iowa State, U.S.tA. In this study he shows that 'matched' samples ware 25 to over 20 times as efficient as independent samples on each of the two occasions depending
upon the type of the 1 tem for which information was raquired. His investigations also included a cost function appropriate for the survey and he has obtained optimum saze of the sampling units for the given cost gituations.

In passing mention may also be made of a sample survey being conducted in the U.S.A for the last ten years to estimate the annual dollar volume of sales of retall stores in that country. Estimates are also given for the percentage change In the volume of sales from month to month in the same year as also for the same month a year later. Heplacement policy may effectively be adopted in such a survey.

Sampling on successive occasions with partial replacement of units was first studied by Jessen (1942) for unistage units only. Jessen's work was confined to two occasions only wherein the information obtained from the first occasion was utilised to build an estimate for the average on the second occasion. He considered two independent estimates for the current occasion; one sample consisted of units which were common to both the occasions, the information collected from these unfts on the preceeding occasion served as supplementary information for the estimate on the current occasion. Another estimate was the sample mean based on the units selected afresh on the current occasion. Both served as independent estimates of the population mean on the current occasion. The two were combined together with welghts which minimised the variance of this new estimate and these weights were proportional to the reciprocals of their variances. An optimum value for the proportion of units which were common to the two occasions was also_determined.

Yates (1949), hovever, has taken a liberal view of the situation. He contends that for estimating the value of the population mean on two successive occasions, it is more suitable to treat each occasion separately, following whatever method of estimation is appropriate to the sample obtained on that occasion, regardless of the values obtained on the other occasion. For two occasions, he has considered a subsample of the original sample as also a sample with some of the units retained from the previous occasion and some taken afresh on

$$
-9 \quad 9 \quad 3=
$$

the second occesion. When a subsample of the original semple is taken, an estimate of change will be obtained from units included in the subsample only. An estimate of the population mean on the second occesion may be obtained either by adding this estimated change to the overall estimate on the first occasion, or a regression estimate may be built, with these units by using the sample values on the first occesion as supplementary information. Yates has also extended his results to h occasions ($h>2$) and has built an estimate for the population mean on the hth occasion by taking into account the results upto and including the ($h-1$)th occasion. Subject to certain limitations, the estimates Y_{h} and Y_{h-1} for h and (h-1)th occasions are related by
$\bar{Y}_{h}=\left(1-\phi_{h}\right)\left\{\bar{y}_{h}^{\prime}+\rho\left(\bar{Y}_{h-1}-\bar{Y}_{h-1}^{\prime}\right)\right\}+\phi_{h} \bar{Y}_{h}^{\prime \prime}$
where single dashes denote unita common to occasions h and $(\mathrm{h}-1)$, the mean on the earlier occasion is indicated by the squre brackets and double dashes units occuring on occasion h only.

The limitations that have been imposed are that a given fraction of units is replaced on each occasion; the variability on different occasions is constant i.e. $\sigma_{h}^{2}=\sigma_{h-1}^{2}=6^{\# 2}$ for all h; the correlation ρ between the units on the successive occasions is constant; and that correlation between the units occasions two apart is ρ^{2} that between the units occasions three apart-is P^{3} etc. The value of ϕ_{h} varies from occasion to occasion and it depenas upon the values of P and the fraction
Γ replaced on each occasion. It acts as a weight combining a regression estimate and an another unbiased estimate. Expression has also been obtained for the change $\bar{X}_{h}-\bar{X}_{h-1}$ between the estimates on the hth and ($h-1$)th otceasions. For different values of ρ and for $\mu=2 / 2$ and $\Gamma=1 / 3$ tables have been prepared for the efficiency of the estimates of mean and change relative to the overall mean and the difference of the overall means for (a) tro and (b) h occasions. Relative efficiency of a subsample has also been discussed.

Patterson's (1950) approach to the problem is slightly more general. He first builds an estimate as a suitable linear function of a set of variates and then develops a set of conditions for this estimate to be the most efficient. He then makes use of these conditions to get an effieient estimate of the mean on the hth occasion, which comes out to be the same as given by Yates. With this set of conditions he also eatablishes a recurrence relation between the weights ϕ_{h} and ϕ_{h-1} and a IImiting value to $\phi_{h}=\Phi$ when h is very large is given by

$$
\phi=\frac{-\left(1-\rho^{2}\right)+\sqrt{\left(1-p^{2}\right)\left[1-p^{2}(1-4 \lambda \mu)\right]}}{2 \lambda p^{2}}
$$

where ${ }^{\cdots} \dot{\lambda}+\bar{\Gamma}=1$.
When this limiting veight is used there is a slight increase in the variance of $Y_{h^{*}}$ A solution suggested by him is that the exact weights should be used for the first two occasions and thereafter, the limiting weights may be used in place of $\phi_{3}, \phi_{4} \ldots \ldots$. etc. When the sample on the hth
occasion has been taken, the information provided by it may be utilised to improve the estimate for the ($\mathrm{h}-\mathrm{k}$)th occasion for $k>$ 1. If $\quad h_{h-1}$ be this refined estimate for the ($h=1$) th occesion then its expression is given by

$$
h_{h-1}^{Y_{h-1}}=Y_{h-1}-P 中_{h-1}\left(Y_{h}-\dot{Y}_{h}^{W}\right)
$$

Patterson shows that the change $Y_{h}-X_{h o l}$ is more efficient than the one given by Yates. However, for $h=2$ this new estimave of change has been considered by Yates also,

Tikkival's (1953) work follows the same lines, as set by Yates and Patterson; only difference is that the pattern of correlation set by him is slightly more general than the one followed by his predecessors. While the corvelation between units taken on different ocoasions has been allowed to vary, thet botween units two or more then two occastons apart has been taken to be equal to the product of correlations between unfts on all pairs of consecutive occasions formed by these. In case the sample size and the correletions are constent on all the occisions, he shows that uith the limiting $\dot{\phi}$, the replacement to be affected on different occesions is 50 percent. This limiting value is attained from above, meaning thereby that under the conditions imposed the replacement fraction is always
$\geqslant 1 / 2$. an r.
When the correlation and regression coefficients are not known in advance but are estimated from the sample values the weights ϕ_{h} will again be changed and the variability of the correlation and regression coofficients as computed from
the samples shall have to be taken into account. This is particularly important when the number of units comon to the both occasions is very small and the correlation coefficient $1 s$ calculated from these units. The case has been discussed for two occasions by Jessen and for h occasions by Narain (1953).

In another paper (1956) Tikkiwal has shown that when the correlation and regression coefficients are estimated from the common units between two consecutive occasions, Y_{h} is still a consistent estimator of the population mean $\left(F_{b}\right)$ on the hth occasion and its bias tends to zero with increasing aample sizes on h occasions. Its variance will in general be greater than the variance of the estimator where the correlations are known in advence and the weights (ϕ_{h}) themselves become functions of parsmeters to be estimated from the sample.

A study of partial replacement with multistage units has been made by D. Singh (1959). Only two stage units on two occasions have been taken. A fraction of psu's has been taken to be common on both the occasions. Expression has been obtained for the estimate of the mean and its variance. when a survey has been repeated on different intervals of time over a given period, on estimate has been obtained for the mean for the entire period or for eny particular interval. It has been observed that for a survey repeated at three equal intervals over a given period, the procedure with independent samples at each interval will be more efilcient than the one when same of the units sampled on the first interval are repeated again on the subsequent intervals. Partial replacement of units can only

```
-2
be effective if the correlation coefficients between tha Values of units on the different occasions is negative.

SCHEME FOR THE STUDY OF MILK TIELDS, bBEEDS AND FEEDING AND HANAGEMENT PBACTICES of Cattle and buffaloes in punjab (1956-57)

\section*{}

A pilot scheme to obtain reliable estimates of the milk yield and collect information on feeds and other management practices of cattle and buffaloes was conducted in the Punjab State in 1956-57. The entire area excluding some hilly tracts was brought under the survey. The fleld sork of the survey was spread over all the three seasons of the year, Harch to June, July to September and October to February constituting the summer, rainy and uinter seasons respectively.

The sampling plan adopted for the survey was one of stratified multistage rendom sampling. The entire area was divided into three composite geographicel zones, the Northern, Central and the Southern and these constituted the three strata. Tehsils and villages within tensils constituted the psu's and ssu's respectively. The sample consisted of 15 tehsils, 5 from each stratum. In the summer season a random sample of 4 villages was selected from each of the first two selected tehsils in a zone. From each of the remaining three tehsils, a sample of two villages and one tom with two wards from each town were selected, the quantum of work in a ward being equal to that in a village. An enumerator was appointed for each tehsil who made one complete round of all the seleated villages and towns in a month spending about a weei in each village or town. Since the sumer season consists of four months, the field work consisted of 4 rounds of each selected
village or ward. The plan of woris adopted in the rainy and winter seasons was slightiy different from that adopted in the summer season. Two random alustars of three villages each or one cluster and two toms with ono ward from each town was the plan adopted for these two seasons corresponding to 4 villages or 2 villages and one town with two wards from it as in the summer season. The time to be spent in villages in each cluster or in the town was determined beforehand.

The sallent features of this survey vere the collection of detailed data on milk yleld and different feeds given to the animela, their breed-uise distribution, age, sex and order end stage of lactation of animals in milik. Information was also collected on the veterinary facilities available in the town and villages to set them on proper footing.

The staff for the field work consisted of, besides the iffteen enumerators, three supervisorywnmorelieving enumerators, three inspectors and one.field officer. The statistical staff consisted of one Assistant Statiatician; one Statistical Asstta, and four senior computors.

The total cost of the scheme was of the order of 8.2 .03 lakhs, of which the expenditure estimated on the fleld staff was \(\mathrm{ts}, 63,000 / \mathrm{m}\) and that on the statistical staff was \(\mathrm{ms}, 40,000 /-\)

Estimates for the components of varlance for the various stages of sampling unfts have been obtained and these are used in the present investigation. The objective is to determine the various components of cost involved in the field vork of
the survey and to build a suitable cost function for the scheme. Only two stages of units vize the tehsils and vilioges within tehsils have been taken and therefore the cost funation involvea components of cost for these tro stages only, Although in the actual survey same tehsils have been taken in all the three seasons and only the villages within each tehsil are token afresh in each season, the object of the present investigation is to obtain the optimum number of psu's and ssu's within each psu which should constitute the sample for a given cost function. Thus assuming that a fixed proportion of tehsils is replaced in each season, optimum values for the number of tehsils and villases within each tehsil have been obtained which would beat estimate the average nifir yield of animals in the second season of enquiry subject to the cost funotion built up for the survey. Any change in the values of the components of cost which are involved in the cost function or any change in the estimates for the variance components (which will necessarily be different for different surveys) would alter the optimum value for the sige of the sample. Tables have thus been prepared for obtalning the optimum values for the number of psu's and the ssu's to be taken in the sample for different values of the variance components and under afferent cost patterns.

Sampling on two occasions, a fraction p of the firstmstage
units being ratainedie Let us first consider the case when sampling is done on two occasions only with a twomstage sampling design. For simplicity we shall assume sampling fith replace ment both for the psu'a and ssu's. Let \(N\) and \(M\) be the number of psu's and ssu's in the population and suppose that a simple random sample of \(n\) psu's is dram for the first accasion and thet out of the ith psu selected, we select \(m_{1}\) ssu"s, so that the sample on the first occasion consists of \(\sum_{i}^{n} m_{1}=m_{0}\) sampling units. Suppose further that we retain a simple random sample of \(n p\) psu's for the sample on the second occasion, and supplement it by qn independently seleated psu*s, where \(p+q=1\), so that \(\sum_{i s}^{r s} m_{i}=m_{01}\) units are common to the two occasions and \(\sum_{i}^{n} m_{i}=m_{O_{2}}\) unfts are selected afresh on the second occasion, the total sample size for the second occasion peing maintained the same as that for the first oncrsion. Practical considerations in an actual field survey necessitate the size of the sampling units to be tho game on all oncosions. For, any change in the sample size on a subsem quent occasion may require a change in the field staff also, and the field worl may also be disturbed.

Now let:
\(\bar{X} \mathcal{I}=\) mean on the first occasion, based on the \(\sum_{c}^{n p} m_{1}\) units which are also com on to the second oceasion.
\(\overline{\bar{y}}_{2}^{\prime}=\) mean on the second occasion associated with such units.
\[
\bar{x}_{1}^{n}=\text { mean on the first occesion based on } \sum_{i}^{n q} m_{1}
\] units thith are not common with the second occasion, and \(\quad \bar{y}_{2}^{\prime \prime}=\) mean on the second occasion basod on \(\sum_{i}^{n g} m_{1}\) units which are selected afresh.
- : 18 :

The above estimates are defined as
\[
\begin{aligned}
\bar{y}_{2}^{\prime} & =1 / m_{01} \sum_{i=1}^{n_{p}} \sum_{j=1}^{m_{i}} y_{i j} \\
& =1 / m_{01} \sum_{i}^{n p} m_{1} \bar{y}_{1\left(m_{1}\right)} \\
\bar{y}_{2}^{\prime \prime} & =1 / m_{02} \sum_{i q}^{n q} \sum_{j=1}^{m_{i}} y_{i j} \\
& =1 / m_{02} \sum_{i=1}^{n_{i}} m_{1} \bar{y}_{1}\left(m_{1}\right)
\end{aligned}
\]

Similarly for the estimates \(\bar{x}_{1}^{\prime}, \overline{\mathrm{x}}_{1}{ }^{\prime \prime}\) on the first occasion also.
\(\overline{\mathbf{y}}_{2}^{\prime}, \overline{\mathrm{y}}_{2}{ }^{n}\) provide unbiased estimates for the mean \(\overline{\mathrm{Y}}_{2}\) on the second occasion and so also \(\bar{x}_{1}^{\prime}\), \(\bar{x}_{1}^{n}\) for the population mean \(\bar{\Psi}_{1}\) on the first occasion.

Estimate of mean:- We wish to estimate \(\overline{\mathrm{Y}}_{2}\) by a linear function of the form
\[
\bar{y}_{2}=a \bar{x}_{1}^{\prime}+b \bar{x}_{1}^{n}+c \overline{y_{2}^{\prime}}+a \bar{y}_{2}^{n}
\]

Obviously it is given by
\[
\begin{equation*}
\bar{y}_{2}=a\left(\bar{x}_{1}^{\prime}-\bar{x}_{1}^{\prime}\right)+c \bar{y}_{2}^{\prime}+(1-c) \bar{y}_{2}^{a} \tag{1}
\end{equation*}
\]
where a and 0 are obtained by minimising \(\nabla\left(\bar{Y}_{2}\right)\) with respect to these quantities.
How \(v\left(\bar{y}_{2}\right)=a^{2}\left[v\left(\bar{x}_{1}\right)^{3}+V\left(\bar{x}_{1}^{n}\right)\right\}+a^{2} \nabla\left(\bar{y}_{2}^{\prime}\right)+(1-0)^{2} v\left(\bar{y}_{2}^{n}\right)\) +2 ae \(\operatorname{Cov}\left(\overrightarrow{y_{2}}, \bar{x}_{1}\right)\)
the remaining product terms do not come into picture under the type of replacement adopted.
Following sukhatme (1953) we write
\[
\nabla\left(\bar{x}_{1}^{\prime}\right)=I / m_{01} \cdot s_{w}^{2}+\frac{\sum_{i_{i}}^{n p} m_{i}^{2}}{m_{01}^{2}} s_{b}^{2}
\]
\[
\begin{align*}
& \text { - } \quad 19 \quad \text { i- } \\
& V\left(\bar{X}_{1}^{n}\right)=\frac{S_{w}^{2}}{m_{02}}+\frac{\sum_{i=1}^{n} m_{1}^{2}}{m_{02}^{2}} \quad S_{b}^{2}  \tag{2}\\
& =\nabla\left(\bar{y}_{2}^{R}\right)=\quad-\quad \mathbf{B} \text { (say) }
\end{align*}
\]

Assumptions made for this are that the variability within each psi is constant whether on the first or the second occasion.
\[
\text { 1.0. } S_{1 x}^{2} \cong S_{w}^{2} \text { and } S_{1 y}^{2} \tilde{m} S_{w}^{2} \text { for all } 1 \text { and for all } x
\]
and \(y\) and
\[
s_{b x}^{2}=s_{b y}^{2} \cong s_{b}^{2}
\]

Similarly we shall have
\[
\operatorname{Cov}\left(\bar{x}_{1}^{\prime}, \bar{y}_{2}^{\prime}\right)=\frac{p_{2} s_{w}^{2}}{m_{01}}+\frac{p_{1} \sum_{i=1}^{n p} m_{1}^{2}}{m_{01}^{2}} s_{b}^{2}=c(s a y) .(4)
\]
where again it is assumed that
\[
\rho_{1 x y}=\rho_{w x y}=\rho_{2}
\]

AND \(P_{\text {buy }} \equiv P_{1}\)
\(P_{1}\) and \(P_{2}\) are defined as
\[
\begin{align*}
& \rho=\rho=\underline{\sum_{i=1}^{N}\left(\bar{y}_{1 \cdot}-\overline{\bar{z}}\right)\left(\bar{x}_{i_{*}}-\bar{X}\right)}  \tag{5}\\
& \sqrt{\sum_{i=1}^{N}\left(\bar{y} x_{i}-\bar{y}\right)^{2} \sum_{i=1}^{N}\left(\bar{x}_{i}-\bar{X}\right)^{2}}
\end{align*}
\]

Again it is assumed that sampling is done with replacement, both among psi's and ssu's. We wish to choose the values for a and \(c\) which minimise \(V\left(\bar{y}_{2}\right)_{*}\)

This gives
\(c=\frac{\left\{\nabla\left(\bar{x}_{1}^{\prime}\right)+\nabla\left(\bar{x}_{1}^{p}\right)\right] \nabla\left(\bar{y}_{2}^{n \cdot}\right)}{\left(\nabla\left(\bar{y}_{2}^{\prime}\right)+\nabla\left(\bar{y}_{2}^{n}\right)\right)\left[\nabla\left(\bar{x}_{1}^{\prime}\right)+\nabla\left(\bar{x}_{1}^{\prime}\right)\right]-\left(\operatorname{Cov}\left(\bar{y}_{2}^{\prime}, \bar{x}_{1}^{\prime}\right)^{2}\right.}\)
and
\(\nabla\left(\bar{y}_{2}^{n}\right) \operatorname{cov}\left(\bar{y}_{2}^{\prime}, \bar{x}_{1}^{n}\right)\)
a \(=\)
\(\left[v\left(\bar{y}_{2}^{i}\right)+V\left(\bar{y}_{2}^{p}\right)\right]\left[\nabla\left(\bar{x}_{1}^{\prime}\right)+V\left(\overline{x_{1}}\right)\right]-\left[\operatorname{Cov}\left(\overline{y_{2}}, \bar{x}_{1}^{n}\right)\right]^{2}\)

Substituting the values of the variances in terms of \(A, B\) and O we have

and
\[
a=\frac{B C}{\left((A+B)^{2}-C^{2}\right)}
\]

This, therefore, gives the required estimate as
\[
\begin{align*}
\bar{y}_{2}= & \frac{(A+B) B}{\left[(A+B)^{2}-C^{2}\right]}\left\{\begin{array}{r}
\bar{y}_{2}^{\prime}
\end{array}+\frac{C}{q(A+B)}\left(\bar{x}_{1}-\bar{x}_{1}\right)\right\} \\
& +\frac{\left(A(A+B)-C^{2}\right)}{\left[(A+B)^{2}-c^{2}\right]} \tag{9}
\end{align*}
\]
which may be seen to be the weighted average of the two estimates
\[
\left\{\overline{\bar{y}}_{2}^{\prime}+\frac{c}{q(A+B)}\left(\bar{x}_{1}-\bar{x}_{1}\right)\right\} \text { and } \overline{\bar{y}}_{2}
\]
the woights being given by
\[
\frac{(A+B) B}{\left((A+B)^{2}-C^{2}\right]}=1-\psi_{2}
\]
and
\[
\frac{\left(A(A+B)-C^{2}\right)}{\left\{(A+B)^{2}-C^{2}\right\}}=Y_{2} \quad(\text { say }) \ldots(10)
\]

Variance of the estimate is given by
\[
V\left(\bar{y}_{2}\right)=\frac{B\left(A(A+B)-C^{2}\right)}{\left((A+B)^{2}-C^{2}\right]}
\]

Since \(A, B\) and \(C\) are functions of \(m_{1}{ }^{\prime s}\), it would be of interest to 1 ind the size of each \(p s u\), for which \(\nabla\left(\overline{7}_{2}\right)\) will be minimum. But it will not give any Idea about the optimum number of psi's which should be replaced on the second occasion. For this, we shall assume that \(m_{1}=m\) for all i. This then gives
\[
A=\frac{1}{n p}\left(s_{b}^{2}+\frac{S_{V}^{2}}{n}\right)=\frac{\alpha}{n p}(\operatorname{say})
\]

Similarly \(B=\frac{\alpha}{n g}\)
and
\[
c=\frac{1}{n p}\left(P_{1} S_{b}^{2}+P_{2} \frac{S_{w}{ }^{2}}{m}\right)=\frac{\gamma}{n p} \text { (say) }
\]

Therefore
\[
\bar{y}_{2}=\frac{p}{\left(1-\frac{r^{2}}{\alpha^{2}} q^{2}\right.},\left\{\bar{y}_{2}^{\prime}+\frac{r}{\alpha}\left(\bar{x}_{1}-\bar{x}_{1}^{\prime}\right)\right\}+\frac{q\left(1-\frac{r^{2}}{\alpha^{2}} q\right)}{\left(1-\frac{r^{2}}{\alpha^{2}} q^{2}\right)} \overline{\bar{y}}_{2}^{\prime \prime} \ldots(11)
\]
and
\[
\begin{equation*}
\nabla\left(\bar{v}_{a}\right)=\frac{\alpha\left[\alpha^{2}-r^{2} q\right]}{n\left[\alpha^{2}-r^{2} q^{2}\right]} \tag{12}
\end{equation*}
\]
and
\[
\begin{equation*}
\psi_{2}=q \cdot \frac{\left[\alpha^{2}-\gamma^{2} q\right]}{\left[\alpha^{2}-\gamma^{2} q^{2}\right]} \tag{13}
\end{equation*}
\]

It is now possible to get the optimum value of the replacement
praction \(q\), for which \(V\left(\bar{Y}_{2}\right)\) is minimum. This is given by \(\frac{d}{d q} V\left(\bar{y}_{2}\right)=0\)
Therefore \(q_{\text {opt }}=\frac{\alpha^{2}-\alpha \sqrt{\alpha^{2}-\gamma^{2}}}{\gamma^{2}}\)
and \(\nabla_{o p t}\left(\bar{y}_{2}\right)=\frac{1}{2 n}\left(\alpha+\sqrt{\alpha^{2}-r^{2}}\right)\)
(12) shove that for \(q=0\) and for \(q=1 i, e\). for no replacem ment or for complete replacement of the units, the variance of the estimate has the ssme value \(\frac{\alpha}{n}\).

Further, since \(\gamma \leqslant \alpha\), it follows from (14) that the replace ment fraction \(q\) should at least be as large as \(1 / 2\), i.e. not nore than \(50 \%\) of the units should be retained from the first occasion to the second and their percentage decreases staadily as \(\gamma\) increases.

We assume that \(P\) and \(P_{2}\) are both positive, for, if a steady improvement is toking place in the character under consideration, this will be reflected by the positive correla tions between the psu's taken on the two occasions as well as between the-ssu's within them \({ }^{2}\)

We write \(\phi=\)
Therefore
\[
\begin{equation*}
Y / \alpha=\frac{P_{1}+P_{2} \phi / m}{1+\phi / m} \tag{16}
\end{equation*}
\]

Table 1. gives for a series of values of \(P_{1}, P_{2}, \phi\) and \(m_{2}\) the optimum percentage of psu's which should be replaced and the relative goin in procision as compered to complete replace ment, Values of \(P_{1}\) have been taken from 50 to 1.0. For
\(P_{1}<.50\) tho gains are vary modest. \(P_{2}\) varies from . 10 to .90. \(\phi\) ranges from . 10 to 10,0 as different surveys may yield different values for this ratio; in has been given three values 3, 5 and 7 in order to see hov far an increase in the size of the subsample brings about a change in the replacement of the pau's. Upper values in each bracket in the table denote the percent replacement of pu's between two occasions, while the lower values denote the percent gain in precision as compared to complete replacement.

From the table it can be seen that r-
i) as the correlations \(P_{1}\) and \(f_{2}\) between the psi's and the ssu's increase, the replacement percentage also increases; 1.c. a larger proportion of new units should be added to the sample on the second occasion. Consequently the gain in precision of the estimate on the second occasion also increases. Of course it may be prohibitive from cost considerations to add larger number of new units to the sample.
ii) the replacement percentage and the gain in precision of the estimate, increase more rapidly when \(P_{1}\) increases than when \(P_{2}\) increases. This means that the correlation between the pau's is more important in bringing about a larger gain in precision than that between the corresponding second stage units within them. This is evident otherwise also - when the pau's in tho sample tend to be alike in respect of any particular character under consideration, only a pow of then need be retained for the subsequent occasion and more of now pau's should be brought into the sample.
iii) for a fixed \(P_{1}\) so long as \(P_{2}\) is less than \(P_{1}\);

Table 2 Values for the Optimm replecement percentage and the percentage of gain in precision of tho estimate relative to complete replacoment for a series of values of \(p_{1}, P_{2}, \phi\) and \(m\) opt. \(q\) and Opt. \(V\left(\mathrm{~F}_{2}\right)\) being given by (14) and (15).







- 26 :-.
the replacement percentage, and the gain in procision decrease as \(\phi\) increases and they start increasing as soon as \(\rho_{2}\) assumes value greater than that of \(P_{1}\). This means that when the correlation between the asu's is smaller than that between the corresponaing psu's in the sample, then it is only when the variation between the ssu's is snallew than that between the psu's, shall we expect the precision of the estimate to increase rolative to complete replacement; and if the corre1ation between the ssu's is Larger than that between the psu's then we should expect the variation between the psu's to be larger than that between the corresponding ssu's within them.

1v) when \(P_{2}\) is Iaxge as compared to \(P_{1}\) the gain in precision is more when \(m=3\) than when \(m=5\) or 7. Thus for larger correlation between the ssu's in the sample, only a few of thera need be taken in the sample on the subsequent - casiton.

Thus when the psuts in a sample tend to be alike each other with respect to the character under study,only a few of them should be retained on the second occasion and a larger subsamplo may be taken from each selected psu. Similarly when the ssu's within each psu are illise each other, then a smaller subsample from each psu should be taken and a lerger number of psu's may bo included in the sample. The optimum stze of the sample has been dealt with later on when the cost of the survey is also taken into consideration.

Estimate of change: The estimate of change may be of particular interest in order to apprise oneself of the effectiveness of any development scheme.

A simple estimate of change is
\(D=\bar{y}_{2}-\bar{x}_{1}=p\left(\bar{y}_{2}^{\prime}-\bar{x}_{1}^{\prime}\right)+q\left(\bar{y}_{2}^{*}-\bar{x}_{1}\right) \quad y_{\in \in \infty}(17)\)
and \(\sigma_{b}^{2}=\frac{2(\alpha-r p)}{n}\)
A second estimate of change may be obtained by utilising the information provided by the units selected on both occasions. This nev estimate would be similar to (17) but with different weights.

This may easily be obtained as
\(D_{w}=\frac{p}{(\alpha-r q)}\left(\bar{y}_{2}^{\prime}-\bar{x}_{1}^{i}\right)+\frac{q(\alpha-\gamma)}{(\alpha-r q)}\left(\bar{y}_{2}^{\prime}-\bar{x}_{1}\right)\)
and its variance is given by
\[
\begin{equation*}
\bar{\sigma}_{w}^{2}=\frac{2 \alpha(\alpha-\gamma)}{n(\alpha-\gamma q)} \tag{20}
\end{equation*}
\]

Therefore
\[
\begin{equation*}
\frac{\sigma_{D}^{2}}{\sigma_{D_{v}}^{2}}=\frac{\left(1-\gamma / \alpha+\frac{\gamma^{2}}{2} p q\right)}{\left(1-\frac{\gamma}{\alpha}\right)} \tag{21}
\end{equation*}
\]

This indicates that \(\sigma_{\mathcal{D}_{v}}^{2}\) may be made considerably small as compared to \(\sigma_{0}^{2}\) depending upon the value which the quantity \(\frac{p q \cdot \gamma^{2} / \alpha^{2}}{(1-\gamma / \alpha)}\) takes, and this quantity will bo large when \(P_{1}\) and \(P_{2}\) are large, in which ease the second estimate
mas be made more efficient than the previous one.
Table 2. gives for a series of values of \(P_{1}, f_{2}, \phi * m\) and \(q\), the percentage efficiency of the estimate \(D_{v}\) as compared to \(D\). This efficiency is given by the quantity

A sinilar set of deductions can be made from this table also as were drawn from the previous one. For particular values of \(P_{1}, P_{2}\) and \(\phi\) which a survey would yield, a larger subsample is required to estimate the change when \(P_{1}>P_{2}\) than when \(f_{1}<P_{2}\) whatever the proportion of replacenent we might have decided to have. Secondy, the efficiency of the waighted estimate \(D_{0}\) of chenge relative to the estimate \(D\) inoreases more rapidiy. whon \(P_{1}\) incresses then when \(P_{2}\) increases, so that a higher value of correlation between the psu*a than that betveen the corresm ponding ssu's within them is needed for the efficiency of the estimate \(D_{w}\) of change, similarly when \(f_{1}>f_{2}\) the efficiency of the estimate would be large for smallar value of \(s\) as compared to \(s_{b}^{2}\) and when \(P_{1}<P_{2}\) a larger value of \(S_{v}^{2}\) is needed as compared to \(\mathrm{S}_{\mathrm{b}}^{2}\).

It fould be interesting to compare the figures obtained In tables 1 and 2. At \(q=2 / 2\) for any values of \(P_{1}, P_{2}\) and \(\phi\), the change is botter estimated then the mean on the second occasion. This reveals two things firstiy the optimum velue of \(q\) to estimate the change between two occestions is different from the optimm \(q\) to estimate the mean on the second occesion, and secondiy the optimum value of \(q\) to estimate the change
- 29 :
would be smaller then the corresponding value to estimate the mean. As a matter of fact \(\sigma_{\mathrm{D}_{\mathrm{w}}}^{2}\) attains its minimum value when \(q=0\) whence 1 ts value is then equal to \(\frac{2 \alpha}{h}(i-\gamma / \alpha)\). It would be scen from (20) that for any positive vaine of \(\gamma\), \(\sigma_{v_{w}}^{2}\) decreoses as \(\gamma\) increases and also \(q\) decreanes.

Eable \& Dalues for the percent efficiency of the estimate \(D_{w}\) of change relative to the estimate \(D\) given by (21).


Hodification when there are unegual psu's or ssu's.
A situation is very likely to arise when the sample size on the second occasion is different from that adopted on the preceding one. This may arise due to a number of causes es,fop instance, the enquiry conducted on the first occasion may suggest a better estimate for the second occasion if a larger sample be taden on that occasion or extremely unusal weather conditions may necessitate some of the areas to be exaluded from the second round of enquiryy such a change in \(h\) the number of sampling unfts may bring about some disturbance in the scheme of the survey. It may, therefore, be of interesti. study the changes brought about by any such change.

Suppose that out of the \(n_{1}\) psu's selected on the first occasion, \(n_{1}^{\prime}\) of them are also retained for the second occasion, while the remaining \(n_{1}^{n}=n_{1}-n_{1}^{\prime}\) units are not common with the units on the second occasion. Suppose that we select afresh \(n_{2}^{\prime \prime} p s u^{\prime} s \quad\left(n_{2}^{*}=n_{2}-n_{2}^{*} n_{2}^{\prime}=n_{2}^{\prime}\right)\) on the second occasion. \(=n^{*}\)
If the sample estimates on the two occasions be denoted by \(\bar{x}_{1}^{\prime}, \bar{x}_{1}^{\prime}\) and \(\overline{y_{2}^{\prime}}, \bar{y}_{2}^{m}\), keeping under view the unfts on which these estinates are based, then
\[
\begin{align*}
& V\left(\bar{x}_{1}^{\prime}\right)=V\left(\bar{y}_{2}^{+}\right)=\frac{\alpha}{n^{n}} \\
& V\left(\bar{x}_{1}^{n}\right)=\frac{\alpha}{n_{1}^{n}} ; \quad v\left(\bar{y}_{2}^{n}\right)=\frac{\alpha}{n_{2}^{n}}
\end{align*}
\]

The estimate of the population mean on the second occasion is then given by
\[
\begin{aligned}
& \text { - } 3 \text { 3 }
\end{aligned}
\]
and
\[
\left.\nabla\left(E_{2}\right)=\frac{n_{2}^{n}\left(1-\gamma_{\alpha^{2}}^{2} n_{1}^{n} / n_{1}\right)}{n_{2}\left(1-\frac{\gamma^{2}}{\alpha^{2}} \frac{n_{2}^{n} n_{2}^{n}}{n_{1}} n_{2}\right.}\right) \quad V\left(\bar{Y}_{2}^{n}\right) \ldots \ldots(2 A)
\]

In this case
\[
\left.Y_{2}=\frac{n_{2}^{\prime \prime}\left(1-\frac{\gamma^{2}}{\alpha^{2}} n_{1}^{n} / n_{1}\right)}{n_{2}\left(1-\frac{\gamma^{2}}{\alpha^{2}} \frac{n_{1}^{\prime}}{n_{1}} n_{2}^{n} n_{2}\right.}\right) \quad \ldots \ldots \ldots\left(2 A^{\prime}\right)
\]

Sampling on h occosions:- The results developed in the preceeding pages may be extended to any number of occasions. Some assumptions ape, however, necessary which we shall mention first. The correlations \(P_{1}\) between the psu's and \(P_{2}\) between the ssu's within each psu are assumed to be constanta for the units on any two consecutive oceastions. The varlance components between psu's and those between ssu's within each psu are assumed to be the same from one occaston to the other* The sampling units are assumed to be drawn uith replecement on each occestion. A fized proportion of units, is replaced on each consecutive occesion so that the size of the simple renalns unaltered on each occesion.

Let \(\overline{\mathrm{y}}_{\mathrm{h}}^{\prime}, \overline{\mathrm{y}}_{\mathrm{h}}{ }^{\prime \prime}\) be the estimates per ssu for the hth occasion based on npar and ngm units respectively and \(\bar{x}_{h-1}^{*}\), \(\bar{x}_{h=1}^{n}\) being those for the ( \(h-1\) ) th occasion based on the same number of units, the npm units are common to both \(h\) and ( \(h-1\) )th occasions. an efficient estimate for the population mean on the hth occasion is given by
\[
E_{h}=a_{h} \bar{y}_{h-1}+b_{h} \bar{x}_{h-1}^{\prime}+c_{h} \bar{y}_{h}^{\prime}+d_{h} \bar{y}_{h}^{n}
\]
where \(a_{h}, b_{h}, c_{h}\) and \(d_{h}\) are subject to certain restrictions to be determined and \(\overline{\text { Br }}_{\mathrm{h}-1}\) provides an efficient estimate for the mean on the ( \(\mathrm{h}-1\) ) th occasion.

The condition of unbiasedness gives
\[
a_{h}+b_{h}=0 ; \quad c_{h}+d_{h}=1
\]

Therefore
\[
E_{h}=a_{h}\left(\bar{y}_{h-1}-\bar{x}_{h-1}^{\prime}\right)+\left(1-a_{h}\right) \bar{y}_{h}^{\prime}+d_{h} \overline{\bar{y}}_{h}^{\prime} \ldots \ldots \text { (25) }
\]

The restrictions imposed on \(a_{h}\) and \(d_{h}\) are similar to those imposed by Patterson (2950) Pox single stage units. These may be written as
\(\operatorname{Cov}\left(\bar{X}_{h-1}, E_{h}\right)=\operatorname{Cov}\left(\bar{Y}_{h-1}, E_{h, n}\right) \ldots(26)\)
\(\operatorname{Cov}\left(\bar{Y}_{h}^{\prime}, E_{h}\right)=\operatorname{cov}\left(\bar{Z}_{h}, E_{h}\right)\)
and \(\operatorname{cov}\left(\bar{y}_{h}^{\prime}, \bar{Y}_{n-1}\right)=\frac{Y}{\alpha} \operatorname{cov}\left(\bar{x}_{h-1}^{\prime} \cdot \bar{Y}_{h-1}\right)=(28)\)
conditions (26) and (27) follow from the efficiency conditions established by Patterson. Conditions (28) follows from the correlation system. This holds for single stage units. That this holds for twowtage units also may be verified by taking a case of two or three occasions.

For \(h=2\) we have
\(\operatorname{cov}\left(\bar{y}_{2}^{*}, \overline{\bar{x}}_{1}\right)=\operatorname{cov}\left(\bar{y}_{2}^{\prime}, p \bar{x}_{1}^{\prime}+q \bar{x}_{1}^{\prime \prime}\right)\)
\[
=\frac{\gamma}{\alpha} \frac{\alpha}{n}=\frac{r}{\alpha} \cdot \operatorname{cov}\left(\bar{x}_{1}, \bar{Y}_{1}\right)
\]

For \(h=3\)
\(\operatorname{cov}\left(\bar{y}_{3}^{\prime}, \overline{\bar{y}}_{2}\right)=\operatorname{cov} \bar{X} \bar{y}_{3}^{\prime} \cdot a_{2}\left(\bar{x}_{1}^{\prime \prime}-\bar{x}_{1}^{\prime}\right)+c_{2} \bar{z}_{2}^{\prime}\left(2-c_{2}\right) \bar{y}_{2}^{\prime \prime}\)
\[
\begin{aligned}
& =r / \alpha \frac{q\left(1-\frac{r^{2}}{\left.\alpha^{2} q\right) \alpha}\right.}{\left(1-\frac{r^{2}}{\alpha^{2}} q^{2}\right) n q} \\
& =r / \alpha\left(1-c_{q}\right) \frac{\alpha}{n q}
\end{aligned}
\]

Now \(\operatorname{Cov}\left(\bar{y}_{2}^{\prime}, \overline{\bar{y}}_{2}\right)=\operatorname{Cov} \frac{1}{1} \bar{y}_{2}^{\prime} \cdot a_{2}\left(\bar{x}_{1}^{\prime \prime}-\bar{x}_{1}^{*}\right)+c_{2} \bar{y}_{2}^{\prime}+\left(1-c_{2}\right) \bar{y}_{2}^{n}\)
\[
=\frac{\alpha}{n q}\left(1-c_{2}\right)
\]

This proves the relation in (28).
\[
\text { Also we know that } \begin{aligned}
V\left(\bar{Y}_{h-1}\right) & =\operatorname{cov}\left(\bar{x}_{h-1}^{0 \prime}: \bar{Y}_{h-1}\right) \\
& =\operatorname{cov}\left(\bar{x}_{h-1}^{\prime}: \bar{X}_{h-1}\right)
\end{aligned}
\]

Therefore (26) gives
\[
\begin{align*}
& \operatorname{cov}\left(\bar{x}_{h-1}^{*} ; a_{h}\left(\bar{y}_{h-1} \bar{x}_{h-1}^{*}\right)+\left(1-a_{h}\right) \overline{\bar{y}}_{h}^{\prime}+d_{h} \bar{y}_{h}^{n}\right) \\
& =\operatorname{Cov}\left[\bar{Y}_{h-1} ; a_{h}\left(\bar{X}_{h-1}-\bar{X}_{h-1}^{\prime}\right)+\left(1-d_{h}\right) \bar{Y}_{h}^{\prime}+d_{h} \bar{Y}_{h}^{\prime \prime}\right] \\
& \text { 1.e. } a_{h}=r / \alpha\left(1-d_{h}\right) \tag{30}
\end{align*}
\]

Therefore (25) gives
\[
\begin{equation*}
\overline{\bar{y}}_{\mathrm{h}}=\left(1-\bar{a}_{\mathrm{h}}\right)\left[{\overline{y_{h}}}_{\mathrm{h}}+\frac{\gamma}{\alpha}\left(\overline{\mathrm{y}}_{\mathrm{h}-1}-\bar{x}_{\mathrm{h}=1}\right)\right]+\mathrm{a}_{\mathrm{h}}{\overline{y_{h}}}_{\mathrm{z}}^{n} \tag{3I}
\end{equation*}
\]
as the required estimate for the population mean on the hth occasion.
(27) gives on simplification
\[
\left(1 m a_{h}\right)\left[\frac{\alpha}{n p}\left(1-\frac{r^{2}}{\alpha^{2}}\right)+\frac{r^{2}}{\alpha^{2}} V\left(\bar{Y}_{h-1}\right)\right]=d_{h} \frac{\alpha}{n q} \ldots(32)
\]

Also \(V\left(\overline{\bar{Y}}_{h}\right)=\operatorname{cov}\left(\overline{\bar{Y}}_{h} \cdot \overline{\bar{Y}}_{h}\right)=a_{h} \frac{\alpha}{n q}\) and \(V\left(\bar{X}_{h-1}=\operatorname{Cov}\left(\overline{\bar{Y}}_{h-1}^{n} \bar{X}_{h-1}\right)=d_{h-1} \frac{d}{n q}\right.\)

Therefore (32) gives
\[
\left(1-a_{h}\right)=\frac{p}{\left(1-\frac{r^{2}}{\alpha^{2}} q+\frac{r^{2}}{\alpha^{2}} p a_{h-1}\right)}
\]
as the required recurrence relationship between \(a_{h}\) and \(d_{h-1}\); a relation similar to one obtained by Patterson.

The results obtalned earlier for two occasions can be obtained from this by putting \(h=2\) and noting that \(d_{1}=q_{\text {. }}\)

Suppose now that sampling and consequently replacement also, has been carried over a sufficient number of occasions, then writing \(d_{h}=d_{h-1} \equiv d\) when \(h\) is sufficiently large, (35) may be written as
\[
\begin{equation*}
d^{2} r^{2} p+a\left(\alpha^{2}-r^{2}\right)-q\left(\alpha^{2}-r^{2}\right)=0 \tag{36}
\end{equation*}
\]

Solving this for d we have
\[
d=-\left(1-r^{2} / \alpha^{2}\right)+\sqrt{\left(1-r^{2} / \alpha^{2}\right)\left\{1-\gamma_{\alpha^{2}}^{2}(1-4 p q)\right\}} \ldots(37)
\]
as the possible solution for \(d_{k}\)
In order to obtain the optimum number of psi's which should be replaced on each occasion we have simply to solve the equation \(\frac{d}{d q} \nabla\left(\bar{Y}_{h}\right)=0 \quad\) where \(a_{h}=d\) in \(Y_{h}\) is given by (37) above. This gives us on simplification
\[
(1-2 q)\left[2 q \frac{r^{2}}{\alpha^{2}}\left(1-y^{2} / \alpha^{2}\right)-4 a \frac{r^{4}}{\alpha^{4}}\left(1+d-r^{2} / \alpha^{2}\right)\right]=0
\]
which gives \(q=1 / 2\). This shows that after sampling has been carried over sufficiently large number of occasions, then on any occasion \(50 \%\) of the psi's may be retained from the proceeding occasion and 508 selected afresh. At what stage of sampling this replacement. is to be adopted, depends upon practical consideration. Possibly after 3 or 4 occasions, \(q=1 / 2\) may serve as a good approximation to decide about the replacement poll icy.

Difference of two estimates:- The estimate \(Y_{h}\) can usually be obtained at each stage and the estimate of change between
two successive occasions can be obtained by the difference \(\overline{\bar{Y}}_{h}-\overline{\bar{Y}}_{h-1}\). The variance of this difference is, therefore, of interest. For this we need to get \(\operatorname{Cov}\left(\bar{X}_{h}, \overline{\mathrm{Y}}_{\mathrm{h}} 1\right)\). Therefore
\[
\begin{aligned}
\operatorname{cov}\left(\bar{Y}_{h}, \bar{Y}_{h-1}\right)= & \operatorname{cov}\left[\bar{Y}_{h-1} ;\left(1-d_{h}\right)\left\{\overline{\bar{y}}_{h} \hat{f}^{\rightarrow}\right.\right. \\
& \left.\left.\frac{\gamma}{\alpha}\left(\bar{Y}_{h-1}-\bar{x}_{h-1}^{\prime}\right)\right\}: d_{h} \bar{y}_{h}^{\prime}\right] \\
= & \left(1-d_{h}\right) d_{h-1} \quad \gamma / n q .
\end{aligned}
\]

Therefore \(V\left(\bar{Y}_{h}-\bar{X}_{h-1}\right)=V\left(\bar{Y}_{h}\right)+V\left(\bar{Y}_{h-1}\right)=2 \operatorname{cov}\left(\bar{X}_{h} \cdot \bar{Y}_{h-1}\right)\)
\[
\begin{align*}
& =d_{h} \frac{\alpha}{n q}+d_{n-1} \frac{\alpha}{n q}-2\left(1-d_{h}\right) d_{h-1} \frac{\gamma}{n q} \\
& \cong 2 d[1-(1-d) / \alpha] \frac{\alpha}{n q} \tag{38}
\end{align*}
\]

Table 3. gives the efficiency of the estimate \(\bar{X}_{h}-\bar{X}_{h-1}\) of change relative to the difference of the overall means on the two occasions. This is given by the quantity
\[
\left(\frac{\sigma_{0}^{2}}{\forall\left(Y_{h}-\bar{Y}_{h-1}\right)}-1\right) \times 100 .
\]

Only one value of \(q=1 / 2\) has been considered. The efficiency when \(q=1 / 3\) will definitely be less than when \(q=1 / 2\) this difference increases as \(P_{1}\) or \(P_{2}\) increase. This result which is evident from table 2 . is also true for table 3. A comparison with values in table 2 will show that the efficiency of the estimate \(Q f\) change \(\bar{X}_{h}-\bar{Y}_{h-1}\) relative to the difference
of the overall means is less than the corresponding value when only two occasions are taken. This reduction may possibly be due to the use of limiting value of the weight \(d_{h}=d_{\text {. }}\) It is needless to say that if this efficiency had been computed relative to difference of the means; had independent samples been taken on the \(h\) and ( \(h-1\) )th occasions, then its value would have been larger than the values obtained above.

In obtaining the estimate of change and its variance we could, as well, have utilised the information provided by the sample on the hah occasion and obtained a modified estimate of the mean on the (h-1)th occasion. Naturally the efficiency of an estimate of change so obtained would be increased. The case has already been dealt with for two occasions only and it can be extended to h occasions also. We denote this modified estimate for the mean on the ( \(h-1\) ) th occasion by \(h^{T} h_{-1}\). An Following Patterson, an efficient estimate for the mean on the ( \(h m\) I) th occasion is given by
\[
\bar{E}_{h-1}=\bar{Y}_{h-1}-v \bar{Y}_{h}+v \bar{y}_{h}^{h}
\]
w being the weight to be determined.
\(\frac{d}{d v} V\left(E_{h-1}\right)=0\) gives \(v=d_{h-1} r / \alpha\)
Therefore \(\quad \bar{X}_{h-1}=\bar{X}_{h-1} d_{h-1} \frac{y}{\alpha} \bar{X}_{h}+d_{h-1} y_{\alpha} \bar{y}_{h}^{m} \ldots(40)\)
Therefore
\[
\bar{X}_{h}-_{h} \bar{Y}_{h-1}=\bar{X}_{h}\left(1+\frac{r_{\alpha}}{\alpha} a_{h-1}\right)-\bar{x}_{h-1}-a_{h-1} \frac{r}{\alpha} \bar{y}_{h}^{\prime \prime} \ldots(41)
\]
\(\operatorname{Cov}\left(\overline{\bar{Y}}_{h}, h \bar{Y}_{h-1}\right)=\operatorname{Cov}\left(\overline{\bar{Y}}_{h}, \overline{\bar{Y}}_{h-1}-a_{h-1} \gamma_{\alpha} \overline{\bar{Y}}_{h}+\bar{a}_{h-1} Y_{\alpha} \overline{\bar{y}}_{h}^{n}\right)\)
\[
=\operatorname{Cov}\left(\bar{X}_{h} \quad, \bar{X}_{h-1}\right) \quad \frac{10}{39}
\]

Now
\[
\begin{aligned}
V\left(\bar{Y}_{h-1}\right) & =\operatorname{cov}\left(\bar{Y}_{h-1}, \bar{Y}_{h-1}-a_{h-1} \frac{v}{\alpha} \overline{\bar{Y}}_{h}+a_{h-1} r_{\alpha} \bar{Y}_{h}\right) \\
& =a_{h-1} \frac{\alpha}{n q}=\frac{r^{2}}{\alpha} a_{h-1} \frac{\left(1-a_{h}\right)}{n q}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Therefore } \\
& \left.\qquad \begin{array}{rl}
V\left(\bar{Y}_{h} \bar{Y}_{h-1}\right)=a_{h} \frac{\alpha}{n q}+\left\{a_{h-1} \frac{\alpha}{n q}\right. & =\frac{r^{2} d_{h-1}^{2}\left(1-a_{h}\right)^{2}}{n q} \\
& -2\left(I_{n} a_{h}\right) a_{h-1} \frac{r}{n q}
\end{array}\right\}
\end{aligned}
\]
\(\cong 2 \mathrm{~d} \frac{d}{n q}\left[1-(1-d) \frac{r}{\alpha}\right]-\frac{r^{2}}{\alpha^{2}} d^{2}\) (1-d) \(\frac{\alpha}{n q} \ldots\) (44)
Comparing (44) with (38), \(V\left(\bar{X}_{h}-\bar{Y}_{h^{-1}}\right)\) is greater then \(V\left(\bar{Y}_{h}-\bar{h}_{h-1}\right)\) the difference in them being equal to \(\frac{r^{2}}{\alpha^{2}}{ }^{2}(3=d) \frac{\alpha}{n q}\) s showing that the estimate \(\left(\bar{Y}_{h}-\bar{X}_{h-1}\right)\) is more efficient than \(\left(\bar{Y}_{h} * \bar{Y}_{h-1}\right) *\)

Table: 3


Suppose that all the psi's are retained on the second occasion but in each pau only some of the secondstage units are retained ion the second occasion while the rest axe token afresh from each selected pau. Let \(p\) be the proportion of tiu's retained and \(q=1-p\), the proportion replaced, a uniform replacement being adopted for each psu. Then denoting the sample means based on mp and noma units on the first and the second occasions by \(\bar{x}^{\prime}, \bar{x}^{\prime \prime}\) and \(\bar{y}^{\prime}, \bar{y}^{\prime \prime}\) respectively. we shall have, following the assumptions male earlier,
\[
\begin{aligned}
\nabla\left(\bar{x}^{\prime}\right) & =\frac{s_{b}^{2}}{n}+\frac{s_{w}^{2}}{\operatorname{map}} \\
& =\nabla\left(\bar{y}^{\prime}\right)
\end{aligned}
\]
\[
\operatorname{Cov}\left(\bar{x}^{\prime} \bar{y}^{\prime}\right)=\frac{\rho_{1} s_{b}^{2}}{n}+\frac{\rho_{2} s_{w}^{2}}{n \operatorname{map}}
\]

Since the same pau's are taken on both the occasions, we shall have

\[
=\operatorname{cov}\left(\overline{\mathrm{x}}^{\prime \prime}, \overline{\mathrm{y}}^{\prime \prime}\right)
\]
\(\operatorname{cov}\left(\bar{x}^{\prime}, \vec{x}^{n}\right)=\frac{s_{b}^{2}}{n}\)
\[
=\operatorname{Cov}\left(\bar{y}^{\prime}, \overline{\mathrm{y}}^{\prime \prime}\right)
\]
and \(\operatorname{Cov}\left(\bar{x}^{n}, \bar{y}^{\prime}\right)=\)

\[
=\operatorname{Cov}\left(\bar{x}^{n}, \overline{\bar{y}}^{n}\right)
\]

The estimate of the population mean on the second occasion \(1 s\) given by
\(-8 \quad 42 \quad 3=\)
\[
\mathrm{E}_{2}=a\left(\bar{x}^{0 \prime}-\bar{x}^{y}\right)+c \overline{\bar{y}}^{t}+\left(1-c^{\prime}\right) \bar{y}^{v}
\]
where a and \(c\) are obtained by minimising the variance of \(\mathrm{E}_{2}\); this gives us
\[
a=\frac{p p_{2}}{\left(1-p_{2}^{2} q^{2}\right)} \text { and } c=\frac{p}{\left(1-p_{2}^{2} q^{8}\right)}
\]

Therefore
\[
\mathrm{E}_{2}=\underset{(1-\mathrm{p}}{\left.\mathrm{q}^{2}\right)}\left[\bar{y}^{\prime}+\rho_{2}\left(\bar{x}-\bar{x}^{4}\right)\right]+\frac{q\left(1-\rho_{2}^{2} q\right)}{\left(1-p_{2}^{2} q^{2}\right)} \bar{y}^{u}
\]
and
\[
V\left(E_{2}\right)=\frac{s^{2}}{n}+\frac{q\left(1-f_{2}^{2} q\right) s_{u}^{2}}{\left(1-p_{2}^{2} q^{2}\right) n m q}
\]

The estimate and its variance are thus seen to be independent of the correlation \(P_{1}\) between the psi's.

Since the total number of units is the same in this as well as the previous case, it is possible to make a comparative study of the two cases. Thus the estimate \(E_{2}\) will be more, or equal or less efficient then the estimate \(\overline{\bar{Y}}_{2}\) according as
\[
\nabla\left(E_{2}\right) \leqslant \nabla\left(\bar{X}_{2}\right)
\]

Le. according ts
\[
\frac{S_{b}^{2}}{n}+\frac{q\left(1-p_{2}^{2} q\right)^{s_{w}^{2}}}{\left(1-p_{2}^{2} q^{2}\right) n m q} \leqslant \frac{(m+\emptyset) s_{b}^{2}}{m n} \cdot \frac{(m+\phi)^{2}-q\left(p_{1} m+p_{2} \phi\right)^{2}}{(m+\phi)^{2}-q^{2}\left(p_{1} m p_{2} \phi\right)^{2}}
\]
1.e. according as
\[
m\left(\frac{\left(P_{1} m+p_{2} \phi\right)^{2}}{(m+\phi)^{2}}\left(1 * \rho_{2}^{2} q\right) \leqslant\left\{p_{2}^{2}-\frac{\left(\rho_{1} m+\rho_{2} \phi\right)^{2}}{(m+\phi)^{2}}\right)\right.
\]

Since the loft hand side is always positive, \(\mathbf{E}_{2}\) will be more
efficient than \(\overline{\mathbf{Y}}_{2}\) if \(\quad P_{2}>P_{1}\)
A study of this case is of particular interest when the costs involved in a survey are also taken into consideration; and especielly when a heavy vori is expected at the psu level; say; the introdaction of a new tehsil in the somple may require at least a weak to be spent in preparing the basic frame. In that case by repeating the enguiry on the same set of psu*s ve salue a lot in terms of money and time which would not have been possible had different psu'a been taken on each occasion.

Estimate of changer- An estimate of chenge may be seen to be the weighted estimate of the quantities ( \(\overline{\mathbf{y}^{*}}-\bar{x}^{\mathbf{y}}\) ) and ( \(\left.\bar{y}^{\prime \prime}-\bar{x}^{\prime}\right)\), the weights being \(\frac{p}{\left(1-p_{2} q\right)}\) and \(\frac{q\left(1-p_{2}\right)}{\left(1-p_{2} q\right)}\) 1. E. change \(=\frac{p}{\left(I-P_{2} q\right)}\left(\bar{F}^{\prime}-\bar{x}^{i}\right)+\frac{q\left(1-P_{2}\right)}{\left(I-\rho_{2} q\right)}\left(\bar{y}^{n}-\bar{x}^{n}\right)\)
end its variance is given by
\[
\nabla(\text { change })=2\left(1-\rho_{1}\right) \frac{s_{b}^{a}}{n}+\frac{2\left(1-p_{2}\right) s_{b}^{a}}{\left(1-p_{2} q\right) n m}
\]

Thus for this estimate of change to be efficient \(P_{1}\) should be lerge and q should be very small.

Slmiler results for estimating the mean and the change between any two occasions can easily be obtained, when any number of oacssions are taken into consideratione.

A COST FUNCTION FOR THE SCHEUE FOR THE SIUDY OF THE MILX YELLD OF BOVINES IN THE PUNJAB STATE (1956-57)

\section*{}

The fleld work and the layout of the scheme has been given earlier. Although a three-stage mampling plan was adopted for the scheme, with tehsils, villages and households uithin villages constituting the three-stages; hovever; to set up a cost function for the scheme, only two stages have been considered viz, the tehsils and the villages Actually these axe the two stages involving bulk of the expenditure.

The cost function for the sumner season of the survey may then be written as

there \(c^{\prime}, c_{0}^{\prime}, c_{2}, c_{2}^{\prime}\) and \(e_{3}^{\prime}\) are defined as follows:-
\(C^{\prime}=\) total cost of the survay in the particular season minus the overhead expenditure in that season on stationery, contingencies and maintenance of statistical staff not directiy related to the field work.
\(n_{0}^{\prime}=\) cost of travelling from one tehsil to the other for enumeration or supervision purposes.
\(c_{1}^{2}\) cost of stay at the tehsil for preparing the basic frame for the selection of the sample etc.
\(c_{2}^{\prime}=\) cost of travelling from one village to the other ulthin the same tehsil or from the tohsil to the selected village and back assuming that the same amount of travelling would be involved in traveling
between two villages within the same tehsil ox from tonsil to the selected village. \({ }_{3}\) \#cost of preparing the list of households and selecting a sample thereof for collecting the requisite information.

As mentioned earlier let us assume that only a fraction \(p\) of the tehsils selected in the sumer season has been retained for remenumeration in the rainy season and a fraction \(q=\) Imp of them hes been selected afresh in the rainy season. In that case there is no need to stay in tho tehsil which has been retained, because the frame and list of villages has already been prepared; only thing is that a fresh sample of villages or towns shall have to be drawn. But for the tahsils which have been selected afresh the same process of preparing the requisite frame shall have to be repeated and thus in (45) above \(c_{1}^{\prime} n\) will be changed to \(c_{1}^{2} n\) qi other components of cost will remain unaltered. The cost function for the rainy season would then be
\[
\begin{equation*}
c^{n}=o_{0}^{n} \frac{\frac{1}{2}}{n}+c_{1}^{n} n q+c_{2}^{n} n \frac{\frac{1}{m}}{m}+c_{3}^{n} n m \tag{46}
\end{equation*}
\]

Where ci, \(c_{0}^{n}\) etc. may or may not be different from the corresponding values in (45).

Assuming that total cost incurred on the survey is equally spread out in tho three seasons, we shall wite \(\mathrm{C}=\mathrm{C}^{\circ}=\mathrm{CH}^{\prime}\), \(c_{0}=c_{0}^{\prime}=q_{0}^{i n}\) eta and the cost function for the two seasons combined together is given by
\[
c=c_{0}^{\frac{1}{n}}+\frac{1}{2} c_{1}(1+q) n+c_{2} n \frac{b_{m}}{m}+c_{3} n m
\]

We shall now compute the velues for the cost coefflatents for the particular scheme under study. For this ve must take into consideration the travelling and the dally allowances, which the fleld wonkers are entitled to drav when on faty, which are needed to compute the expenditure pex mile of travel of per unit of time.

The total expenditure on the schame was about Bje 1.03 1akhs, out of which the overhead expenditure was about \(8.40000 /\). Therefore the total expenditare minus the overhead expenditure for the entire scheme comes to about is. \(63,000 / \mathrm{m}\) or roughly B. 21, 000/= per season. To compute the other components of cost we must chalk out the probable tour itinerary of the field persomel. Traval from one tehsil to another la expected to take about half a day and an equal time will be taken in going from one villase to another vithin tho seme tehsil, for the reason that while metalled roads are generally available for going from one tehsil to another, one con, at best, get a horse or a bullock cart for travel from one village to another. A fisla offfeer has to go to ell the selected tohsils. In the Pirst round of the tehsils ho will spend about a day in each tehsil to give instructions to the junior field stafi and to inspect the frame for the detailed field work in each tehsil. He may also visit at least a village in each tehsil to see for himself whother his instructions are belng fully carried out. Thus one day's stay in each selected tehsil and a day's stay in each village he chooses to visit, will take him about ak monthe, since his month consists of about 20 days of field work. end he has to travel from tohsil to tehsil and from tehsil to
village and back. In a subsequent romd he can visit a second village in each tehsil (without stoying in the stehsil this time) and stay in the village for a day or sos, the remaining if months will be taken in this process.

There being three inspeotors, an inspector has oniy 5 tehsils under his supervision. Ho is expected to tour more extensively and wiait each selected village in a tehsil at least tuice in a season. In the pivst round he will also stay in each tehsil for a day to get instructions from the field officer. In the subseguent round there is no need to stay there Thus he may travel eight to ten times to aach tehsil to visit every selected villace therein and at each visit to stay there for a day or so.

A supervisor's job is to help and render assistance to the enumerator in his vork. Eince he has to assist all the five enumerators in his field of enquiry, he will spond about 3 veeks in each tehsil either visiting all the villages therein and spending a day or two in each villege or visit only some of the villages and spend a longer time there.

An onumerator has one tehsil assigned to him for his wark. In each round consisting of a month be will visit all the four villages sponding about a weck there. In each month of the season he will visit each village once.

The contributions to \(c_{0}\) and \(c_{2}\) by each member of the field staff would be obtained by calculating their respective rates of expenditure per mile of travel separately for travel
between the tehsils and for travel within each tehsil. Similarly their contributions to \(c_{1}\) and \(a_{3}\) would be obtained by keeping In view the haltage of each member of the field staff in a tehsil of in a village and the daily allowance to which he is entitled. In any case whether a field worker is traveling or working in tho Field he would be getting his usual pay when he is travelling, he is still serving to some end. Combining their respective contributions the values of \(c_{0}, c_{1}, c_{2}\) and
 respectively, Contributions to \(c_{1}\) would be small since the stay in any tehsil would be of one day only in the first round, there being no stay in the subsequent pounds.

Expression (46) may then be written as
\[
\begin{align*}
& 21,000=700 \frac{\frac{1}{2}}{n}+1 / 2 \cdot 35.25(1+\dot{q}) n+243,25 n n^{\frac{1}{2}} \\
& +169 \% 20 \mathrm{n} \text { m } \\
& 595=20 n^{\frac{1}{2}}+1 / 2(1+q) n+6.9 n m^{\frac{1}{4}}+4.8 n m \tag{47}
\end{align*}
\]

Hencerorth we shall take (47) as the cost function to correspond to the general expression given by (46), where now \(c_{2}=1\). This is roughly the cost function for the survey The actual field work might have been different from the one delineated above but still it will give a good approximation to the actual cost function.

The variance expression for the estimate on the second occasion is given by (12) viz.
\[
\nabla\left(\bar{Y}_{2}\right)=\frac{\alpha\left(\alpha^{2}-r^{2} q\right)}{n\left(\alpha^{2}-r^{2} q^{2}\right)}
\]
- : 49 :
\[
=s_{b}^{2} \frac{(m+\phi)}{m n} \frac{\left[(m+\phi)^{2}-\left(\rho_{1} m+p_{2} \emptyset\right)^{2} q\right]}{\left.\left[(m+\not)^{2}-\left(\rho_{1} m+p_{2} \not\right)_{2}\right)^{2} q^{2}\right]} \cdots \cdots(48)
\]

The objective is to find the optimum values for \(n\), \(q\) and \(m\) which, satisfying the cost function (47) would minimise the variance given by (43).
Consider now a function \(F\) of the variance and the cost function, given by
\[
F=\nabla\left(\bar{Y}_{2}\right)=\lambda\left[c_{0} n^{\frac{1}{2}}+1 / 2 c_{1}(1+q) n+c_{2^{n}} m^{\frac{1}{3}}+c_{3} n m-c\right]
\]
where now \(C_{2} c_{0}, c_{1}, c_{2}\) and \(c_{3}\) are given by (47), \(c_{2}\) being equal to 1.
Derivatives of \(F\) w.r.t. \(n, m\) and \(q\) when equated to zero give
\[
\begin{aligned}
& -\frac{(m+\phi)\left[(m+\phi)^{2}-\left(\rho_{1} m+\rho_{2} \phi\right)^{2} q\right]}{m n^{2}}\left[(m+\phi)^{2}-\left(\rho_{1} m+\rho_{2} \phi\right)^{2} q\right]^{2} s_{b}^{2}=\lambda\left[\frac{1}{3} c_{0}^{-\frac{1}{2}}+\right. \\
& \left.\frac{1}{2} c_{1}(1+q)+c_{2} m^{\frac{1}{4}}+c_{3} m\right)^{\frac{1}{9}} \\
& \frac{s_{b}^{2}\left\{\left\{(m+\eta)^{2}-\left(\rho_{1} m+\rho_{2} \eta\right)^{2} q\right\}\right.}{2}\left\{\left[(m+\phi)^{2}-\left(\rho_{1} m+p_{2} \phi\right)^{2} q\right) \frac{(-g}{m^{2}}\right\}+ \\
& \left.n\left\{(m+\phi)^{2}-\left(p_{1} m+p_{2} \phi\right)^{2} q^{2}\right\}^{2}\left(1+\frac{\phi}{m}\right) \times\left[2(m+\phi)-2 f_{1}\left(p_{1} m+p_{2} \phi\right) q\right]\right\}
\end{aligned}
\]
\[
\begin{aligned}
& =\lambda n\left(\frac{1}{3} c_{2}^{-\frac{1}{3}}+c_{3}\right) \quad \cdots * *(50) \\
& \text { and } \\
& -\frac{S_{b}^{2}(m+\phi)\left(\rho_{1} m+\rho_{2} \phi\right)^{2}\left[(1-2 q)(n+\phi)^{2}+\left(\rho_{1} m+\rho_{2} \phi\right)^{2} q^{2}\right]}{\min \left[(m+\phi)^{2}-\left(\rho_{1} m+\rho_{2} \phi\right)^{2} q^{2}\right]^{2}}=c_{1} n \ldots(51) \\
& c_{0} n^{\frac{1}{2}}+c_{1}(1+q) n+c_{2} n m^{\frac{1}{2}}+c_{3} n m=C \quad a * a(52)
\end{aligned}
\]

To solve these equations for the unknown quantities is not very
easy job, the final equation in \(m\) after eliminating \(n\) and \(q\) becomes of vary high order.

A possible solution, then is to fix the value of \(q\) and solve equations (49). (50) and (52) for \(m\) and \(n\) that is to obtain the sample size for a fluxed value of the replacement fraction. 2
The effect of replacement on the sample size to be telson in the rainy season may be seen by taking a set of values for ge The value for \(n\) will be obtained by solving (52) as a quadratic in n.

Equations (49) and (50) then give

\(\left.\left\{\left\{(m+\phi)^{2}-q\left(P_{1} m+P_{2} \phi\right)^{2}\right\}\left\{\left(-\frac{\phi}{m}\right)\right\} * 2(m+\phi)\left\{(m+\phi)-P_{1} q\left(P_{1}\right)+P_{2} \phi\right)\right\}\right)=\)
\(2(m+\phi)\left\{(m+\phi)^{2}-\left(\rho_{1} m+P_{2} \phi\right)^{2} q\right\}\left\{(m+\phi)-\rho_{1} q^{2}\left(P_{1} m+P_{2} \phi\right)\right\}+\)
\(\left(\frac{1}{2} c_{2} w^{\frac{1}{2}}+c_{3} m\right)\left(\frac{m+\eta}{m}\right)\left[(m+\phi)^{2}-\left(\rho_{1} m+\rho_{2} \phi\right)^{2} q^{i}\right]\left[(m+\phi)^{2}-\left(\rho_{1} m+\rho_{2} \phi\right)^{2} q^{2}\right]\) \(=0 . .(53)\)

If we fix the value of \(q\) at \(\hat{f}\), then we shall have on simplification
\(\left(\frac{1}{2} c_{0}{ }^{-\frac{1}{2}}+n 75+c_{2} m^{\frac{1}{3}}+c_{3} m\right)\left(\left\{1-\frac{1}{4}\left(\frac{p_{1}+p_{2} \phi}{m+\emptyset}\right)^{2}\right\}\left\{1-\frac{1}{2}\left(\frac{p_{1} m+p_{2} \emptyset}{m+\phi}\right)^{2}\right\}\right.\)

\(\left(\frac{m+\varnothing}{m}\right)\left[\operatorname{In} \frac{1}{2}\left(\frac{\rho_{1} m+\rho_{2} \emptyset}{m+\varnothing}\right)^{2}\right]\left[\ln +\left(\frac{\rho_{1} m+\rho_{2} \varnothing}{m+\varnothing}\right)^{2}\right]=0\)
Similarly for \(q=\frac{8}{8}\) we shall have
\[
\begin{aligned}
& \text { - } 51 \text { - }
\end{aligned}
\]
\[
\begin{align*}
& \left(\frac{m+D}{m}\right)\left\{1-\frac{2}{2}\left(\frac{m+\phi}{m+\varnothing}\right)^{2}\right\}\left\{1-\frac{9}{16}\left(\frac{p_{1} m+p_{2} \not D}{m+\emptyset}\right)^{2}\right\}=0 \tag{55}
\end{align*}
\]
and a similar expression for \(q=1\) also.

While uith the algebrata method it may be difficult to get a solution in fif for the above equations for known velues of \(P_{1}\). \(P_{2}, \varnothing\) and cost constants, the method of trial and exror shall have to be resorted to. Thus only an approximate value for m is possible which may satisiy the given equations.

Similarly it is also posaible to find the optimum values for \(m\) and \(n\) which would best eatimate the chenge in milk yield of animals from one season to the othery for the seme replacement fractions viz. \(q=\frac{1}{2}\), \(\frac{3}{0}\) and and satisfying the above cost funotion. Again the method of trial and emor ghall bo used to arrive at a solution*

The equation to be solved for m after minimiaing (20) w.x.t. \(m\) and \(n\) is given by
\[
\begin{aligned}
& \left(\frac{1}{2} c_{2} \frac{\frac{1}{2}}{n} \theta_{3} m\right)\left[1-\left(\frac{\beta_{1} m+\rho_{2} \phi}{m+\phi}\right)\right]\left[\lambda\left(\frac{\rho_{1} m+\rho_{2} \phi}{m+\phi}\right) q\right](m+\beta) \\
& -\left[\frac{1}{3} c_{0}{ }^{-\frac{1}{n}}+\frac{1}{2}(1+q)+c_{2} m^{\frac{1}{n}}+c_{3} m\right] P_{m}(1-q)+q m\left(\frac{\rho_{1} m+p_{2} \phi}{m+\eta}\right)+ \\
& \phi\left(1-a\left(\frac{\rho_{1} m+P_{2} \emptyset}{m+\emptyset}\right)\right\}\left\{\left(1-\left(\frac{\rho_{1} m+P_{2} \emptyset}{m+\emptyset}\right)\right\}-n\left(\frac{P_{1} m+P_{2} \emptyset}{m+\emptyset}\right)\right]=0 \ldots(56)
\end{aligned}
\]
where \(n\) is again obtained by solving (47) as a quadratic in \(n\) for different values of 4.

Truee equations would be obtained for \(q=\frac{1}{6}\). \(\frac{5}{6}\) and \(\frac{1}{6}\) each of which is to be solved independently for \(\mathrm{m}_{\mathrm{c}}\)

For the soheme conducted in Punjab the anolysis of the data colleoted on the milk yield of cous yields the following estimetes for the population variences and correlation coefficientst-
\begin{tabular}{|c|c|c|c|c|}
\hline Estimates of true & tariance & Sumper & Rainy & Winter \\
\hline Between Tehsils & \[
\text { Esta } s_{b}^{2}
\] & 19.63 & 30.06 & 4.58 \\
\hline Between villages within Tehsils. &  & 68.85 & 58,37 & 66,17 \\
\hline
\end{tabular}
and correlation coefficients between the three seasons aret-
\begin{tabular}{|c|c|c|}
\hline Surnerwainy & Rainy-uinter & Winter-summer \\
\hline 0.607 & 0.429 & 0.0 \\
\hline
\end{tabular}

Considering the values for the summer arid rainy seasons oniy we shall have the pooled mean squave for the tuo seasons astm

Ests Fin \(^{2}=24,845\)
\[
\text { Est. } \xi_{0}^{2}=63.610
\]

Tharefore \(\Rightarrow 2.56 \%\) and \(P_{1}=0.6072 ; P_{2}\) will not occux in the variance formala since in each of the three seasons different villages have been taken for enumeration purpose from each tehsili. Thus to estimate the mill yield of cowa in the rainy season, we need to have for different values of the replecement iraction \(q\), the following optimum sizes for m and n which should be taken for the semple.
\begin{tabular}{lll} 
For \(q=0\) & \(m=1.5\) & \(n=20,80\) \\
For \(q=\frac{1}{6}\) & \(m=1.6\) & \(n=28.10\) \\
For \(q=\frac{1}{5}\) & \(m=1.7\) & \(n=27.30\) \\
For \(q=\frac{m}{4}\) & \(m=1.8\) & \(n=27.20\)
\end{tabular}

Similarly for estimating the change in the milk yteld of covs Prom one season to the other, the corresponaing values for m and \(n\) apes-
\begin{tabular}{lll} 
For \(q=0\) & \(m=2.0\) & \(n=24.80\) \\
For \(q=\frac{1}{d}\) & \(m=2.2\) & \(n=23.50\) \\
For \(q=\frac{1}{2}\) & \(m=2.3\) & \(n=23.30\) \\
For \(q=\frac{4}{3}\) & \(m=2.4\) & \(n=21.50\)
\end{tabular}

While the above are strictly the optimum values for \(n\) and \(n\) for estimating the mean and the change for the milk yield of cows alone, different sets of values for mend \(n\) would be obtained for estimating the average yield and the change from one season to the other in case of buffaloes or for estimating the values for some other statistic for the same datay as the enquiry conducted in Punjab was broad in its scope/as much as, bestides estimating the milk yield of bovines, information wes also collected on varions practices relating to rearing and feeding of animals. The optimu value for the semple size is therefore, likely to aiffer for estimating the values for different oharacters. To decide what sample size should be taren is really a question of ascertedining what the reliability of different sample estimates will be and seeing in which character of the survey a loss can be tolerated.

Table Noe 4 gives the velues for the sample size to

Table 4. Values of opt. \(m\) and opt: \(n\) for \(q=\frac{1}{1}\) for a set of values of \(P_{1}, P_{2}\) and \(\eta=S_{m}^{2} / s_{d}^{2}\), satiafying the cost function given by equation (47) and the expression for the variance is given by equation (48).

\(\begin{array}{llllllllll}2 & 2.4 & 30.90 & 1.3 & 32.6 & 1.3 & 32.6 & 1.2 & \cdots & 31.4\end{array}\)
\(\begin{array}{lllllllll}3 & 1.8 & 26.4 & 1.7 & 27.3 & 1.7 & 27.3 & 1.6 & 28.4\end{array}\)
\(\begin{array}{lllllllll}4 & 2.2 & 23.3 & 2.1 & 24.0 & 2.1 & 24.0 & 1.9 & 25.6\end{array}\)
\(\begin{array}{lllllllll}5 & 2.6 & 20.9 & 2.4 & 21.9 & 2.4 & 21.9 & 2.3 & 22.8\end{array}\)
\begin{tabular}{rllllllll}
.50 & 10 & 4.0 & 15.3 & 3.9 & 15.6 & 3.8 & 15.9 & 3.7 \\
16.3
\end{tabular}
\(\begin{array}{lllllllll}15 & 5.6 & 12.0 & 5.3 & 12.8 & 5.2 & 13.0 & 5.0 & 13.0\end{array}\)

\(\begin{array}{lllllllll}3 & 2.9 & 25.6 & 1.8 & 26.4 & 1.7 & 27.3 & 1.7 & 27.3\end{array}\)
\(4 \quad 2.3 \quad 22.8 \quad 2.2 \quad 23.3 \quad 2.1 \quad 24.0 \quad 2.0 \quad 24.7\)
\(\begin{array}{lllllllll}5 & 2.7 & 20.0 & 2.5 & 21.3 & 2.5 & 21.3 & 2.4 & 21.9\end{array}\)
\(\begin{array}{lllllllll}10 & 4.2 & 14.7 & 4.0 & 15.3 & 3.9 & 25.6 & 3.8 & 15.9\end{array}\)
\(\begin{array}{lllllllll}15 & 5.8 & 11.7 & 5.5 & 12.1 & 5.3 & 12.8 & 5.3 & 13.2\end{array}\)
\(\begin{array}{lllllllll}2 & 1.6 & 28.4 & 1.5 & 29.7 & 1.4 & 30.9 & 1.3 & 32.6\end{array}\)
\(\begin{array}{lllllllll}3 & 2.0 & 24.7 & 1.9 & 25.6 & 1.8 & 26.4 & 1.8 & 26.4\end{array}\)
\(\begin{array}{lllllllll}4 & 2.5 & 21.3 & 2.4 & 21.9 & 2.3 & 22.8 & 2.1 & 24.0\end{array}\)
.90
\(\begin{array}{lllllllll}5 & 2.8 & 19.2 & 2.7 & 20.0 & 2.6 & 20.9 & 2.5 & 21.3\end{array}\)
\(\begin{array}{lllllllll}10 & 4.4 & 14.5 & 4.2 & 14.7 & 4.0 & 15.3 & 3.9 & 15.6\end{array}\)
\(\begin{array}{lllllllll}15 & 6.0 & 11.4 & 5.7 & 11.8 & 5.4 & 12.3 & 5.2 & 13.0\end{array}\)

Sable-58- Values of Opt. \(m\) and Opt. \(n\) which would best estimate the change from one occasion to the other, subject to the cost function given by (47), the expression for the variance of change being given by (20).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(p\) & \(\mathrm{P}_{2}\) & & 0.00 & & . 30 & & 0.70 & & . 90 \\
\hline & 0 & m & \(n\) & 3 & \({ }^{n} \frac{1}{8}\) & m & n &  & \(n\) \\
\hline & 2 & 1.6 & 28.4 & 1.4 & 30.9 & 1.2 & 34.4 & . 9 & 38.5 \\
\hline & 3 & 2.2 & 23.3 & 1.8 & 26. 4 & 1.5 & 29.7 & 1.0 & 37.9 \\
\hline . 50 & 4 & 2.7 & 20.0 & 2.2 & 23.3 & 1.9 & 25.6 & 1.2 & 34.4 \\
\hline & 5 & 3.0 & 17.2 & 2.5 & 21.3 & 2.1 & 24.0 & 1.3 & 32.6 \\
\hline & 10 & 5.0 & 13.0 & 4.0 & 15.3 & 3.3 & 17.4 & 1.8 & 26.4 \\
\hline & 15 & 7.5 & 9.6 & 6.0 & 11.4 & 4.5 & 14.2 & 2.3 & 23.3 \\
\hline & 2 & 2.0 & 24.7 & 1.5 & 29.7 & 1.3 & 32.6 & 1.1 & 36.2 \\
\hline & 3 & 2. 6 & 20.9 & 2.0 & 24.7 & 1.8 & 26.4 & 1.5 & 29.7 \\
\hline & 4 & 3.3 & 17.4 & 2.6 & 20.9 & 2.4 & 21.9 & 1.8 & 26.4 \\
\hline . 70 & 5 & 3. 9 & 15.6 & 3.1 & 17.0 & 2.8 & 19.2 & 2.0 & 24.7 \\
\hline & 10 & 6.0 & 11.4 & 5.0 & 13.0 & 4.3 & 14.6 & 3.0 & 17.2 \\
\hline & 15 & 8.6 & 8.6 & 7.0 & 10.6 & 6.3 & 11.0 & 4.1 & 15.1 \\
\hline
\end{tabular}
\begin{tabular}{rllllllll}
2 & 2.4 & 21.9 & 2.4 & 21.9 & 2.2 & 23.3 & 1.2 & 34.4 \\
3 & 3.7 & 16.3 & 3.6 & 16.7 & 3.4 & 17.2 & 1.9 & 25.6 \\
4 & 4.8 & 13.4 & 4.6 & 13.9 & 4.2 & 14.7 & 3.0 & 17.2 \\
5 & 5.3 & 12.8 & 5.1 & 13.2 & 4.8 & 13.4 & 3.8 & 15.9 \\
10 & 8.2 & 9.0 & 7.9 & 9.2 & 7.4 & 9.7 & 5.4 & 12.3 \\
15 & 11.0 & 7.0 & 10.6 & 7.3 & 10.0 & 7.7 & 6.0 & 11.4
\end{tabular}
be taken on the second occasion for a set of values of \(P_{1}, P_{2}\), and \(\varnothing\) which would minimise the variance of the estimate for the second occasion; the cost function being given by (47). In a similar way a set of values for m and \(n\) majo obtained for different values of \(P_{1}, P_{2}\) and \(\varnothing\) which would best estimate the change from one occasion to another and satisfying the given eost function. Table No. 5 gives some such values.

A comparison of the figures in tables 4 and 5 would reveal that lesser number of psu's are needed to astimate the change from one occasion to the other then to estimate the mean on the second ocasion, if \(P_{1} \geqslant P_{2}\) and vice versa if \(P_{1}<P_{2}\). Consequently the size of the subsample would be larger, for estimating the change, than for estimating the mean if \(\rho_{1} \geqslant P_{2}\) and smaller, if \(P_{1}<\rho_{2}\). This justipies the observation made earlier that the optimum \(q\) to estimate the change is diferent from the corresponding optimum to estimate the meen on the second occesion. Thus \(P_{1}\) and \(P_{2}\) happen to play a more significant part in determining the sample size reguired to estimate the change. It may further be observed that \(\mathbb{F}\) the replacement fraction,is not so important in changing the sample size; that is, if we increase the velue of p,there is not going to be any signtificant change in the values of \(n\) and \(m\) unless \(P_{1}\) and \(\rho_{2}\) are sufficientiy large. This is a becanse the coeffiatent \(c_{1}=1\) of \(q\) is very small as compared to the coefficients of other terms This may be seen from other considerations also. Since the actual field work is done in the villages and the stay in the tehsils is of very ahort duration, there is not going to be any substential reduction

In the fleld work whether the same tehsils are teken on all occesions or some of them are replaced in the second season. A reduction in the field work can be expected only when some of the villages are also retained.

Remark 1e The optimum sample size by using a slightly simpler cost function than the one used above.

We have seen that the effect of travel between the ssu's uithin psu's is reflected premerily by the term \(c_{2} n\) m. Suppose now that the field work is so arrenged that the travel between the ssu's is reduced to a negligible guentity, so that this term is small in its effect and can be neglected. Then our cost function becomes
\[
\begin{equation*}
595=20 n^{\frac{1}{2}}+(1+q) n+4,8 n= \tag{57}
\end{equation*}
\]

The optimom values for \(m\) and \(n\) for \(q=\frac{1}{1}\) may then be obtained which would best estimate the mean gield of the character on the second occasion es elso the change from one occasion to the other. Table No. 6 gives the values for \(m\) and \(n\) separately obtained for estimating the mean and the change, for a set of values of \(P_{1}, P_{2}\) and \(D\) *

It may be seen that ormisaion of the term ce of cost has resulted in a considerable reduction of the size of the subsample both for estimating the mean on the second accasion as also for eatimating the change from first occasion to the second; consequentiy there has been an increase in the number of pan's to be selected.
\[
-1 \quad 58 \quad i=
\]
Remapk \&s Optimum sampla size when there is an

It is sometimes possible that the preparation of basic frame and listing and selection of ssu's from each tehsil may require a longer stay at the tehsil. Suich a possibility may occur when we have embaried upon an exploratory survey of a material for which no basic frame is avallable. Suppose that this component of cost takes five times the valne already taken for \(1 t_{*}\) The cost function is then given by
\[
595=20 n^{\frac{1}{3}}+5 / 2(1+q) n+6.9 n^{\frac{1}{3}}+4.8 n m \ldots(58)
\]

The values of optimum \(m\) and \(n\) for this cost function are given in table Non 7 ?

Table Gi Values of Optam and Opt,n which would beat estimate (a) the mean on the second occasion, and (b) the change in the gield of the character from fizst occasion to the second, subject to the cost function \(200^{\prime 2}+\frac{t}{8}(1 \pm q) n+4.8 \mathrm{~mm} /=595\), q being equal to t.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Man} & \multicolumn{4}{|r|}{Change} & 1 \\
\hline \[
P_{1} P^{2} 0_{0}^{0.00}
\] & \(m^{0.50} n\) & \(\mathrm{m}^{0.70} \mathrm{n}\) & 0.90
m & 0.00
\(\square \quad 0\) & \(\square_{\square}^{0.50}\) & \[
\begin{array}{r}
0.70 \\
\square \quad n
\end{array}
\] & \[
m^{0.80} \quad \mathrm{a}
\] & \\
\hline
\end{tabular}








Sable 7

Values of Optimum \(m\) and \(n\) which would best estimate (a) the mean on the second occasion and (b) the change in the pield of the character from inst occasion to the second subject to the cost function \(20 n+5 / 2(14 q) n+6,9 n m+4,8\) m \(m=595\), q belng equal to \({ }^{2}\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & 2.0 & 21.7 & 1.9 & 22.6 & 1.8 & 23.1 & 1.6 & \(20_{4} 6\) & 3. 4 & 15.7 & 8,8 & 16.4 & 3.0 & 17.0 & 2. 380.0 \\
\hline 8 & 2.3 & 28.0 & 2.4 & 19.5 & 2.3 & 20.0 & 2.2 & 20,6 & 4.4 & 13.3 & 4.2 & 18.7 & 4.0 & 14.1 & 2. 9 17,4 \\
\hline . 00 & 3.0 & 17,0 & 2.9 & 17.4 & 2.8 & 1\%.7 & 2.6 & 18.6 & 5.8 & 11.0 & 5.6 & 11.2 & 5.3 & 11.7 & 3.714 .9 \\
\hline 5 & 3.3 & 18.4 & 3.4 & 18.7 & 3.3 & 16.0 & 3.1 & 10.7 & 6.9 & 9.6 & 6.6 & 10.0 & 6.2 & 10.8 & 4, 313.5 \\
\hline 10 & 5.2 & 11.8 & 8.1 & 12.0 & 4.9 & 12,3 & 4.7 & 12.7 & 0.6 & 7.5 & 8.8 & 8.1 & 8,2 & 8.3 & 5.411 .5 \\
\hline 15 & 6.8 & 0,0 & 6.6 & 10.0 & 6.4 & 10.2 & 6.2 & 10.5 & 12,0 & \$. 0.4 & 10.0 & 7.4 & 8.8 & 8.2 & \(6,510.1\) \\
\hline
\end{tabular}

\section*{SUBMAABY}

Application of successive sampling with a two-stage sampling design to some of the problems where the survey is repeated at regular intervals has been indicated. Partial replacement of units is advantageous in pield operation. Estimate of the population mean and its variance has been obtsined (a) for two occasions and (b) for h occasions, tho sampling scheme being that a fixed proportion of the psu's teken on the preceding occasion has been replaced on the current occesion, the ssu's whin each selected psu's being completely retained. Also an estimate for the change between any two consecutive occasions and its variance has been obtained under the same sampling scheme. Similar expressions for the estimate and the change and their variances have been obtained under a different sampling pattern, vize that the seme psu's are taken on both occasions, but a fraction \(p\) of the ssu's within each selected psu is rotained on the second occasion, and a fraction \(q\) selected afresh. A comparative stady of the two sampling patterns has also been made. Data collected from the scheme conducted in Punjab (1956-57) to study the milk-yield of bovines there has been taken and a cost function for the scheme has been obtained. Optimum size of the sample to be taken in the second season to estimate the milk-yield of cous has been obtained. It has been observed that the size of the sample 15 not affected if some tehsils are replaced on the second season. Optimum values por \(n\) and \(m\) to be talken on the second occasion to estimate the mean and the change have been tabulated for a set of values of the correlations \(P_{1}\) and \(P_{2}\) and \(\phi=S_{d}^{2} / S_{b}^{2}\).
```

B_E_F_E_R_EN_CESS

```


A preliminary report on the scheme conducted for the study of milk. yields, on lo reeds and feeding and management practices of cattle and Gerffaloes in Punjab.
Sample Survey Methods and Theory. John Wiley Sons, New York.

Paper read at the 12th Annual meeting of the Indian Society of Agricultural Statistics held at Gwalior.```


[^0]:    3. 
