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The term pheromone was introduced by Karlson and
Lüscher (1959) as substances secreted to the outside by an
individual and received by a second individual of the same
species, in which they release a specific reaction, for instance
a definite behaviour or developmental process. Afterwards
this term was extended to any form of innate intraspecific
chemical communication i.e. to define chemicals emitted by
living organisms to send messages to individuals of the same
species. Most pheromones consist of blends of two or more
chemicals, which need to be emitted at exactly the right
proportions to be biologically active and to prevent
mismating between species. These pheromones are associated
to binding proteins and very specific receptors responsible
for olfactory perception in the target animal (Ha and Smith
2006). This perception induces stereotyped behaviour
(releaser pheromone) and/or physiological changes (primer

pheromone). The pheromones are different from the recently
coined term “signature mixtures” which are defined as a
variable chemical mixture (a subset of the molecules in an
animal’s chemical profile) learned by other conspecifics and
used to recognize an animal as an individual (e.g. Lobsters,
mammals) or as a member of a particular social group such
as a family, clan or colony (e.g. ants, bees, mongoose). A
key difference between pheromones and signature mixtures
is that in all taxa so far investigated it seems that signature
mixtures need to be learnt (Wyatt 2009 and 2010). Both
pheromones and signature mixtures are detected by main
olfactory system or accessory olfactory system or both
depending on pheromone and species. The accessory
olfactory system consists of a sensory organ, the vomero-
nasal organ, and its central projection areas– the accessory
olfactory bulb, which is connected to the amygdale and
hypothalamus, and also to the cortex (Mucignat-Caretta
2010). Most of our knowledge on pheromones relies on
insects, due to the clear-cut and readily identifiable response
that insects have to these molecules, which has allowed the
identification of pheromones from over three thousand
species (www-pherolist.slu.se/pherolist.php) and has led to
new concepts of pest control. Contrary to the large number
of known insect pheromones, very few were characterised
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ABSTRACT

Pheromones are defined as chemical signals that are released from one individual and induce specific endocrine or
behavioural reactions in another individual of the same species. Odours play a significant role in signalling the stage of
reproduction of the cow, and the bull can use a combination of factors displayed by the female to determine its receptivity.
During oestrus, females release olfactory molecules, thus signalling the stage of their cycle and stimulating sexual
behaviour and functions of males. Attempts were made to review the chemical nature of olfactory signals of oestrus in
milk, urine, blood, saliva, skin gland secretion during the proestrous and oestrous cycle. Several behavioural studies
indicated that bovine milk from different stages of the oestrous cycle had different odours. Bulls have also been found
to detect pheromone odours and differentiate between oestrus and non-oestrus urine. Bioassay involving rats revealed
the presence of maximal pheromone activity during proestrus. Vaginal fluid is also reported to act as a chemical signal.
Saliva, serum, skin gland secretions and faeces have also been studied for their pheromonal properties. Systemic evaluation
of either urine or vaginal secretions over the whole cycle has yet to be investigated. The use of artificial olfaction could
enable more accurate detection of oestrus and potentially increase fertility in cows. The current status of chemical
signals (pheromones) of oestrus and their identification in farm animals is reviewed in this article with emphasis on
cows.
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in mammals, despite the importance of these chemical cues
in regulating social and reproductive behaviours. Chemical
communication plays an important role in mammalian sexual
behaviour and reproductive processes (Brennan and Zufall
2006). Animals communicate information concerning
reproduction to conspecifics in order to co-ordinate
reproductive activities (Rekwot et al. 2001).

In farm animals, the generalised use of artificial
insemination (AI) has made reproduction more effective.
Efficiency of AI partly depends on the precise detection of
female receptivity, which is made by breeders on visual cues
or with the help of detector males. Novel ‘pheromonal cues’
based methods are required, which could not only help in
detection of oestrus in the farm animals but also satisfy the
social requirements of sustainable environment and animal
welfare. Thus, it is necessary to understand fundamental
biology of the target livestock species, in particular the
identification of chemical signals and their precise
involvement in oestrus detection by the males. The present
article attempts to review the literature available on the
pheromones of oestrus and their identification in farm
animals, especially cows.

Types of pheromones
If the original definition of pheromones relies on insects,

it can easily be applied to mammals– it refers to chemical
cues that are exchanged between congeners and either elicits
a stereotyped and innate behaviour or induce a physiological
change in the recipient endocrine or reproductive system
(Doty 1976, Izard 1983). The major divergence with the
original definition is the chemical nature of pheromone
components, which were originally supposed to be air-borne
volatiles, suggesting a long-range attraction. But increasing
knowledge on the chemical nature of pheromones in both
insects (cockroach, Korchi et al. 1999) and vertebrates (mice,
Morè 2006) has demonstrated that proteins or peptides could
act in the transfer of intraspecific information. Pheromones
can be classified into following types:

Releaser pheromones: These pheromones elicit an
immediate behavioural response. Rabbit milk contains a
pheromone 2-methyl, but–2-enal which elicits stereotyped
nipple-search behaviour in rabbit pups, and is vital for them
to locate the nipples during brief daily period of suckling
(Schaal et al. 2003). In the pig, the male stimulates the
immobilization reflex of the sow by using sex pheromones
contained in its saliva (Signoret and du Mesnil du Buisson
1961, Signoret and Mauleon 1962). These pheromones were
identified as the steroids 5α-androst-16-en-3-one and 5α-
androst-16-en-3α-ol (Patterson 1966, Patterson 1968), which
are synthesized in the testes and released in boar saliva (Claus
1979).

Primer pheromones: These pheromones mediate slow
developing and longer-lasting changes to the endocrine state
or development. A testosterone dependent constituent of male

mouse urine, a-farnesene, is a primer pheromone. It
accelerates puberty of pre-pubertal female mice
(Novotny et al. 1999, Novotny 2003). In domestic
mammals, especially small ruminants, priming pheromones
from the male seems to have an influence on the
induction of puberty, the termination of seasonal anoestrus
and shortening of postpartum anoestrus (Gelez and Fabre-
Nys 2004).

Signaller pheromones: These pheromones convey the
information about the sender, such as individual or group
identity, which are important for parent-offspring recognition
and mate choice (Potts et al. 1991, Yamazaki et al. 2000).

Modulator pheromones: These pheromones affect mood
and thought processes in humans. This category has not
gained wide acceptance (Wysocki and Preti 2004).

Major urinary proteins (MUPs) and Odorant binding
protein (OBPs): Major urinary proteins (MUPs) and α2u
proteins are lipocalins that were first described in mouse and
rat, which are synthesized in the liver and excreted in the
urine (Finlayson et al. 1965, Shaw et al. 1983). Their roles
are 1) to transport the pheromone in biological fluids, 2) to
extend the period of bioavailability of the pheromone by
delaying its liberation, and 3) to modulate the pheromone
activity (Hurst and Beynon 2004). Odorant binding protein
(OBPs) discovered in the nasal tissues of several vertebrates
have strong similarity with MUPs (Pelosi et al. 1982,
Cavaggioni et al. 1987). They are believed to shuttle odorants
from the environment to the underlying odorant receptors,
for which they could potentially serve as odorant presenter
(Pugalenthi et al. 2007). In some cases, the same genes have
been found to be expressed in both the nose and in the liver
(Utsumi et al. 1999). Presence of endogenous ligands only
in MUPs, make them different from OBPs. These endogenous
ligands have been recognised as specific pheromones
(D’Innocenzo et al. 2006).

The boar’s salivary gland (submaxillary gland) also
secretes lipocalins which contain two components of the boar
sex pheromonal system as endogenous ligands, namely, 5α-
androst-16-en-3-one and 5α-androst-16-en-3α-ol (Marchese
et al. 1998). These proteins are also expressed in the nasal
tissues of both sexes in pig but in this case these are devoid
of ligands (Scaloni et al. 2001).

A general scheme of olfactory coding has hypothesised
that pheromones are detected by sensory neurons of the
vomeronasal organ (VNO), while general odours are detected
by the main olfactory epithelium (MOE) sensory neurons
(Dulac and Torello 2003, Brennan and Keverne 2004). But
there is growing evidence that the coding of olfactory signals
is more complex. Some pheromone-mediated behaviours are
still effective after VNO lesions (Hudson and Distel 1986,
Dorries et al. 1997, Lévy et al. 2004). Conversely, mouse
VNO neurons can be stimulated by odorants not emitted by
the same species, such as floral and woody smelling
compounds (Sam et al. 2001).
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Role and importance of olfactory compounds and
pheromones in reproductive processes
The odoriferous compounds, potentially pheromones, may

be released by males to influence female ovarian functions
and oestrus behaviour as shown for sheep (Knight et al. 1983,
Signoret 1991), goats (Chemineau et al. 1986, Claus et al.
1990), cattle (Izard and Vandenbergh 1982) and pigs
(Signoret and Mauleon 1962, Claus and Schams 1990, Claus
1994). However in cattle, the role of pheromones, especially
the “oestrus pheromones” in cattle reproduction is not as
clearly defined as it is in other species such as sheep, goat
and pig, possibly due to nutritional and other environmental
stresses (Rekwot et al. 2001). Mating within a narrow (12 to
22 h) period on the day of oestrus is a prerequisite for optimal
fertilization in cow (Schams et al. 1977). These time
requirements are mainly regulated by female lordosis
behaviour, which allows copulation. In unrestrained cows,
mating is preceded by a complex sequence of bull-cow
interactions that starts fewdays before oestrus (day 0). In
pro-oestrus, bulls separate cows from the rest of the herd
(Schloeth 1961, Reinhardt 1983). To determine female’s
receptivity, a bull uses a combination of factors displayed
by the female, including visual, tactile, auditory and olfactory
stimuli (Izard 1983, Zalesky et al. 1984). Visual and acoustic
stimuli from cow were found important for optimal detection
of oestrus by a bull (De Vuyst et al. 1964, Blaschke et al.
1984). In contrast, there are several reports that clearly show
that there is an olfactory component, independent of vision,
in the stimulation of male reproductive behaviour (Sambraus
and Waring 1975, Paleologou 1977, Jacobs et al. 1980, Izard
and Vandenbergh 1982, Klemm et al. 1987). Indeed, females
seem to release olfactory molecules during oestrus, thus
signalling the stage of their cycle, and stimulating sexual
behaviour and endocrine functions of males. Such effects
were shown for horse (Stahlbaum and Houpt 1989), sheep
(Lindsay 1965, Schanbacher et al.1987, Gonzales et al. 1991,
Walkden-Brown et al. 1993), goat (Ladewig and Hart 1980,
Blissitt et al. 1994) and bovine species (Hradekcky et al.
1983, French et al. 1989). Presence of pheromones was
indicated in equine urine which may act as markers for
detection of oestrus (Ma and Klemm 1997). For cows it was
demonstrated by use of a bioassay (involving rats and not
bulls) that maximal pheromone activity is present in urine
prior to the onset of behavioural oestrus (Dehnhard et al.
1991).

The behavioural pattern of bulls and a possible
involvement of the olfactory cues or pheromonal substances,
in a group of oestrus-synchronised cows have been
established (Masaki and Ohta 1990). Bulls routinely
investigate the anogenital region or urine of females (Hafez
and Bouissou 1975). Sniffing, licking and nuzzling of the
anogenital region usually elicits urination from females under
investigation. The male then puts its nose and mouth directly
in the stream of urine or sniffs and licks the urine-soaked

substrate. The sniffing and licking behaviours follow with
the male showing a typical posture of raised head with open
mouth and curled upper lips, called “flehmen”. This
behaviour is seen in many ungulate species in both males
and females in response to several odours (Estes 1972).
Oestrus-signalling compounds from urine and vaginal
secretions were suggestive to lead bulls to flehmen reaction
and later to a more intensive mounting behaviour (Hradecky
et al. 1983, Garcia et al. 1986). The vaginal mucus and urine
of oestrus cows, when rubbed on the vaginal membranes of
non-oestrus cows was reported to attract and stimulate bulls
through olfaction and a volatile odour in the cervico-vaginal
mucus of oestrus cows was believed to be a source of sexual
attraction for bulls (Hart et al. 1946).

The presence of maximal pheromone activity during pro-
oestrus suggests that it is more important to signal the
imminence of oestrus to the bull, than for stimulating
precopulatory male sexual behaviour test in male rats and
not in bulls (Dehnhard et al. 1991). Similarly, investigation
of olfactory stimuli in a dairy herd revealed that it reaches a
maximum in pro-oestrus (French et al. 1989). In contrast,
Hradecky et al. (1983) observed that the bull flehmen reaction
is most frequent on theday of oestrus. Similarly, the odour
intensity was maximal on day 0, as detected by trained dogs
(Kiddy and Mitchell 1981). This discrepancy was explained
by a field study (Blazquez et al. 1988a) on a grazing dairy
herd, which showed that cows attracted bulls the day before
oestrus and that this attraction is maintained throughout
oestrus. Dehnhard et al. (1991) observed that pheromone
activity still remained, though there was a decline in the
activity on the day of oestrus. If all sensory stimuli contribute
to the finding of a partner and to sexual behaviour, the
olfactory stimuli, however, seem to be more important for
attracting partners rather than for stimulating the mating.

Assays for the oestrus pheromones
Analytical assays: The identification of the oestrous

pheromones is attempted by analytical techniques comprising
first, extraction of compounds using organic solvents
(Ramesh Kumar et al. 2000) or without organic solvents i.e.
Solid Phase Micro Extraction (SPME) (Guiraudie-Capraz et
al. 2005), followed by Gas Chromatography-Mass
Spectrometry (GC-MS) (Ramesh Kumar et al. 2000,
Guiraudie-Capraz et al. 2005).

Although several sequence based search methods were
exploited for protein family prediction, less effort was
devoted to the prediction of OBPs from sequence data and
this area is more challenging due to poor sequence identity
between these proteins. Recently Pugalenthi et al. (2007)
have proposed a new algorithm that uses Regularized Least
Square Classifier (RLSC) in conjunction with multiple
physicochemical properties of amino acids to predict OBPs
from sequence derived properties irrespective of sequence
similarity. It was reported that this method predicts 92.8%
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of 56 OBPs non-homologous to any protein in the Swissprot
database and 97.1% of the 414 independent database proteins.

Bioassays: The availability of a highly practicable
bioassay is essential for assessing the biological activity of
the oestrus-related pheromones characterized by
physicochemical techniques. Several attempts were
undertaken to characterize the biological and chemical
properties of an oestrus-specific odour in cow using bulls
(Hradecky 1986), dogs (Kiddy et al. 1978) or rats (Ladewig
and Hart 1981, Dehnhard and Claus 1988) for bioassays.
The species of the detecting animal has tremendous
importance for the validation of biological activity. Thus,
the use of conspecific males is relevant to characterize the
pheromonal nature of a chemical signal emitted by females
of the same species. In this case the behavioural response is
expected to be stereotyped (courtship sequence) and non-
learned, even if it is well known that adult males mate more
successfully than young naïve males (Reinhard 1983).
Besides, the use of trained detector animals such as dogs or
rats strongly suggests that one or several odours could be
common to the oestrus specific secretions of these species.
In that case, the perception of one or several odours being
part of the pheromone of their female can evoke one or several
reactions associated with the sexual behaviour (e.g. penile
erection). As a matter of fact, none of these studies reported
the observation of a full stereotyped courtship behaviour,
which could be obtained in response to conspecific females
in oestrus or their body fluids (Dehnhard and Claus 1988,
Rampin et al. 2006).

Nevertheless, the increase of Flehmen frequency is only
one of the behavioural reactions that are expected in response
to the perception of a pheromone. The oestrus specific odours
can be ultimately qualified of “pheromone” at the condition
they evoke stereotyped, non-learned behavioural sequence
in conspecific males (Rivard and Klemm 1989).

In a bioassay, using rats trained to detect olfactory
differences between estrous and diestrous cow urine. The
oestradiol administration resulted into estrus symptoms
observed by trained herdsman but urine from such cows were

not identified by rats as estrous urine. This suggests that the
presence of the ovary seems to be necessary for oestrus-
specific odour detected by trained rats used in the study
(Dehnhard et al. 1991). It is not clear, if the odour identified
by rats in the oestrus urine from cyclic cows is caused by
molecule other than the “pheromone specific to estrus”
because the same was not identified by rats in urine from
oestradiol treated ovariectomised cows expressing signs of
estrus.

The identification of a pheromone specific of a
physiological stage in one species therefore must satisfy two
conditions: (i) the molecule can be identified in that stage
and (ii) molecule induces a physiological effect in this
species. Tests in other species do not indicate that the
molecule is a pheromone.

Physiological sources of pheromones
The chemical nature of pheromones is not precisely

known, but several body fluids have been reported as
potential sources of oestrus signalling compounds. The
volatile compounds termed or suggestive of pheromonal
properties in different bodily fluids of animals are being
summarised in Table 1.

Oestrus pheromones in milk: Milk volatiles can be
transferred directly from forage via the rumen (Honkanen et
al. 1964) and the respiratory tract (Shipe et al. 1962) or
produced by metabolism (Virtatnen and Lampila 1967,
Dumont and Adda 1978). The volatile constituents of bovine
milk are of great interest to food scientists because those
constituents contribute to flavour (Gordon and Morgan 1972,
Dumont and Adda 1978, Badings 1991, Shiratsuchi et al.
1994). The volatile compound γ-12:2 lactone, identified in
cow’s milk was shown to be an active odorant (Bendaall
2001) and the lower rumen pH of cows fed on a concentrate
diet might facilitate the production of such lactones (Urbach
and Stark 1978). Since many flavour qualities are due to
odour detection (Gordon and Morgan 1972), some volatile
flavour compounds may possibly function as pheromones
for olfactory communication. Indeed, the components of the

Table 1. Volatile compounds termed or suggestive of pheromonal properties in different bodily fluids of animals

Animal Pheromonal compunds Biological fluid Reference

Boar 5α-androst-16-en-3-one Saliva Patterson (1966, 1968)
5α -androst-16-en-3 α -ol,

Rabbit 2-methylbut-2-enal. milk Schaal et al. (2003)
Male mouse α-farnesene urine Novotny et al. (1999)
Cow  Acetaldehyde Oestrus blood Klemm et al. (1994)

 γ-12:2 lactone milk Bendall (2001)
 n-propylphthalate Oestrus urine Ramesh Kumar et al. (2000)
 1–iodoundecane Oestrus urine Ramesh Kumar et al. (2000)

Oestrus faeces Sankar and Archunan (2006)
 Acetic acid Oestrus faeces Sankar and Archunan (2006)
 Propionic acid Oestrus faeces Sankar and Archunan (2006)

Elephant (Z)-7-dodecen-1-yl-acetate Oestrus urine Rasmussen et al. (1996)
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pig appeasing mixture (Pageat 2001) were characterized in
milk by Solid Phase Micro Extraction (SPME)-GC-MS
(Guiraudie-Capraz et al. 2005). Using a combination of
PAGE and mass spectrometry for protein identification
evidence of a putative odorant binding protein was obtained
in bovine colostrum. Its biological function is unclear, but
pheromone transport could be considered (Fukuda et al.
2009).

The headspace sampling technique (GC-MS) and
consequent reduction of sample pre-treatment allowed the
identification of low-molecular weight volatile compounds
in milk samples (Toso et al. 2002). Acetaldehyde, which had
previously been found to be a marker of oestrus from
headspace GC of bovine blood (Klemm et al. 1994) and
vaginal secretions (Ma et al. 1995), was not detected in the
milk samples because this compound has a shorter retention
time than the solvent (diethyl ether). However, the results
suggested that the property of three types of milk (pro-oestrus,
oestrus and di-oestrus) samples were distinctly different from
one to another (Weidong et al. 1997). Only one behavioural
study was conducted and has failed to support a pheromone
role for acetaldehyde in bovine (Prescicce et al. 1993).

Oestrus pheromones in urine: The role and importance
of urine chemical signals in reproductive behaviour was
clearly established in several species of mammals, especially
rodents (Xia et al. 2006). In cattle, the bulls can detect
pheromone odours and differentiate between oestrus and non-
oestrus urine (Sambraus and Waring 1975). Urine is known
to contain a large array of compounds that may confound
the isolation of pheromones (Albone et al. 1986) and it is
also believed to be an important source of oestrous signals
(Crowell-Davis and Houpt 1985).

Several attempts were made to isolate and characterize
the oestrus-signalling pheromones from cow’s urine. Ramesh
Kumar et al. (2000) analysed the GC-MS profiles of the
volatile compounds of cow’s urine extracted at three different
stages: preovulatory (3–5days before oestrus), ovulatory and
postovulatory (2–4days after oestrus). In a preliminary study,
nine organic solvents were used to extract the compounds
from pooled urine (n-hexane, acetone, methanol, ethanol,
petroleum ether, diethyl ether, chloroform, dichloromethane
and benzene). The maximum response was obtained when
dichloromethane (DCM) was used for extraction, and the
chemical profile of oestrus urine was distinguished by the
presence of two specific compounds, di-n-propylphthalate
and 1-iodo undecane, that were not found in other samples.
As oestrous urine was found to elicit sexual behaviour in
cattle, these two compounds may represent important
chemical compounds that elicit signals that allow the bull to
detect ‘oestrous odours’. However the role of such
compounds identified in the oestrus phase needs to be
confirmed by their effects on the behaviour of bulls.

Oestrus pheromones in vaginal mucus: Though urine is
considered to be primary source for chemical communication,

vaginal fluid is also reported to act as a chemical signal.
Moreover, it is possible that urine and vaginal fluid may act
together for completion of the pre-copulatory behaviour and
successful mating (Klemm et al. 1987). Evidence for a
pheromone was indicated by studies where dogs or rats were
trained to detect oestrus by smelling cervico-vaginal
secretions or urine (Kiddy et al. 1978, Ladewig and Hart
1981). Klemm et al. (1987) identified over 20 compounds:
alcohols, diols, alkenes, ethers, diethers, ketones, primary
amines, and aromatic alkanes. Nine compounds were found
in samples that had been validated as being sexually
stimulating; six of these compounds were validated as
positive with another bull when randomly tested after 1 year
of storage.

The dialyzable fraction of vaginal mucus and the neutral
fraction prepared by ion-exchange chromatography of the
dialyzable solution of vaginal mucus had a mounting
inducing activity on the herd mates, as did the application of
an animal’s own vaginal mucus, suggesting that mounting–
inducing pheromones are relatively low molecular weight,
neutral substances (Nishimura et al. 1991). Another
experiment suggested that vaginal mucus might act as an
additional/ secondary source along with urine in eliciting
copulatory behaviour and executing coitus in bulls during
oestrus (Sankar and Archunan 2004).

Oestrus pheromones from faeces: The faeces is also
suggested to act as pheromone cues in bovine bio-
communication. The chemical profiles of oestrus faeces
(bovine) were found to be distinguished significantly from
other phases by the presence of three specific substances,
viz. acetic acid, propionic acid and 1-iodo undecane. Bulls
were observed to exhibit significantly higher (P<0.001)
repeated flehmen and mounting behaviour when the mixture
of these compounds was applied to genital region of non-
estrus (dummy) cows (Sankar and Archunan 2008).

The levels of fatty acids, aldehydes, amines and alkenes
in the faeces of oestrus mares were found to be significantly
higher than their respective levels in the faeces of non-oestrus
mares (Kimura 2001). Faeces of oestrus mares, foxes and
rats were demonstrated to elicit more penile erection in rats
than faeces of di-oestrus females of the same species did not
(Rampin et al. 2006).

Oestrus pheromone from skin glands: The increased
proportion of bull olfactory behaviours during an experiment,
elicited by an increased perineal skin gland discharge, adds
support to hypothesis that the perineal skin glands are also
source of an oestrous pheromone in the cow (Blazquez et al.
1988b).

Oestrus pheromone from serum and other body fluids:
The serum may act as transport medium of pheromone in
body from its origin to place of excretion. The serum taken
at oestrus was observed to evoke sexual behaviours such as
flehmen and penis protrusion in bulls (Rivard and Klemm
1989). The saliva was observed to be an important oral cue
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used by females in the selection of socio-sexual partners in
cows (Sankar and Archunan 2004). Similarly adult female
Mongolian gerbils were found preferentially attracted to
saliva from adult non-sibling males when paired with saliva
from their male siblings (Smith and Block 1991).

Apparently, these sources, regardless to the site of the
production are distributed throughout the cow’s bodily fluids,
probably by the circulatory system. It is reported that the
hormones, such as, FSH, LH and steroids which used to be
measured in blood have now been quantified in human urine
(Shimizu et al. 2003) and saliva (Loewit et al. 1987). The
steroid androstenol, was identified in both human urine and
sweat and believed to act as pheromone (Gower and
Ruparelia 1993). These reports indicate that compounds
present in one source are likely to be present in other sources
as well. Therefore, the source of the oestrus pheromones may
originate in organs other than the genitals, such as skin or
mouth. However it is not known whether the olfactory signals
present in various bodily fluids, which help in oestrus
detection, are of the same nature.

Physiological regulation of pheromone secretion
In cow, both the inhibitive effect of progesterone and a

stimulating effect of oestrogen for the occurrence of oestrus
are well known (Dozier and Pritt 1987, Thomas et al. 1988).
A highly significant correlation exists between progesterone
concentrations and rat responses, which demonstrates that
the synthesis of pheromone is blocked by high progesterone
concentration and increases with the onset of luteolysis
(Dehnhard et al. 1991). The optimal response of rats in a
bioassay could only be obtained when the original pH of the
urine was not altered. A transient shift of either acid or basic
pH values had irreversible effects on the pheromone activity
and thus the reaction of the rats. The degree of loss of activity
depended on the pH, which was maintained for 3 h. Thus, a
transient change of pH below 7.0 or above 9.5 was sufficient
to abolish any specific reaction of the rats. Therefore, all
attempts to isolate the pheromones should be carried out at a
pH in the order of native urine as suggested by Dehnhard
and Claus (1996). An assumed function of a cow pheromone
which is to inform bulls of imminent oestrus one day prior
to mating (Dehnhard et al. 1991), explains the instability of
the pheromones as shown by a transient shift of pH in this
study. Thus, it appears that the intrinsic instability limits the
information to a short stage of the cycle and thus avoids
confusion. In contrast, male pheromones in various species
have to provide long-lasting information on dominance and
on territories (Johnston and Lee 1976) and are consequently
more stable substances (Claus 1979). The mechanism of this
phenomenon was explained by exhaustive studies conducted
by Rasmussen and collaborators on the Asian elephant oestrus
pheromones. The oestrus pheromone was identified as (Z)-
7-dodecen-1-yl-acetate (Rasmussen et al. 1997) and is
present at high concentrations in the pre-ovulatory urine. This

compound is able to elicit in males the same range of
behavioural responses the pre-ovulatory urine (Rasmussen
et al. 1982 and 1996). This molecule is a part of hundred
pheromones in Lepidoptera species, which indicates a strong
evolutionary convergence between animal classes. Moreover,
this work shed light on the implication of carrier proteins in
pheromone liberation, which occurs via conformational
modifications of the protein during the hormone-controlled
pH decrease of urine (Rasmussen 2001, Lazar et al. 2002).
Most of mammal pheromones are secreted in association with
carrier proteins of the lipocalin family. The best-studied
system is the association in mouse urine of small volatile
pheromones and Major Urinary Proteins (Hurst and Beynon,
2004). Such information is not available in farm mammals,
and it is not known if oestrus pheromones are bound and
released by proteins in urine.

Molecular mechanism of olfactory perception
Buck and Axel (1991) cloned and characterized 18

different members of an extremely large multigene family
that encodes seven transmembrane domain proteins whose
expression is restricted to the olfactory epithelium. Members
of this novel gene family were supposed to encode a diverse
family of odorant receptors. A family of genes encoding
candidate pheromone receptors was expressed in rat
vomeronasal neurons. These receptors (V1R) consisted of
seven transmembrane receptors. Individual V1R genes are
composed of 1,000 nucleotides without introns and are
expressed in vomeronasal sensory neurons whose cell bodies
are located in the apical part of the VNO epithelium (Dulac
and Axel 1995). Another type of pheromone receptor, V2R
was reported simultaneously by three research groups
(Herrada and Dulac 1997, Matsunami and Buck 1997, Ryba
and Trinidelli 1997).

In rodents, two super families of seven transmembrane G
protein-coupled receptors, V1Rs and V2Rs, serve as
pheromone receptors (Dulac and Torello 2003). These cells
also express a G protein subunit named Gαi2. In contrast,
the multiexon V2R genes are characterized by a long, highly
variable N-terminal domain and are coexpressed with Gαo
in sensory neurons whose cell bodies are basally located.
V2Rs are related to the Ca2+ sensing receptor and
metabotropic glutamate receptors. V2Rs are expressed at high
levels in small subpopulations of VNO neurons. V2Rs are
primarily expressed in a different layer of VNO neurons from
V1Rs, thus both gene families are likely to encode
mammalian pheromone receptors (Ryba and Tirindelli 1997).

The V1R repertoires in cow and dog are substantially
smaller than those in mouse and rat, which contain 187 and
102 putatively functional genes, respectively (Shi et al. 2005).
Dog and cow have only 8 and 32 intact V1R genes
respectively (Grus et al. 2005). Similarly Young et al. (2005)
also found that dog, human and chimpanzee have very few
intact V1Rs (8, 2, and 0 respectively). These findings were
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unexpected because cows (Salazar et al. 2008) and dogs
(Dennis et al. 2003) like mouse and rat, possess a functional
VNO. Further, humans and chimpanzees appear to have
suffered even more extreme deterioration of their
vomeronasal organ and pheromone signalling components,
perhaps as a result of dominant visual system. It was proposed
that other gene families, such as V2Rs in the VNO or
olfactory receptors in the nose, might be much more
important than V1Rs in pheromone perception in dogs and
other mammals (Young et al. 2005). It is unlikely that the
small V1R repertoire could be compensated by a large V2R
repertoire because all V2Rs identified from dogs and cows
were pseudogenes (Grus et al. 2005). Furthermore, all V2R
genes identified from the goat genome are pseudogenes and
may not act as receptors (Wakabayashi et al. 2002). Since
V1Rs are expressed in Gαi2 –positive neurons and V2Rs
are expressed in Gαo –positive neurons (Mombaerts 2004)
it is possible that functional V2Rs exist only in rodents and
opossums among mammals. This suggests that mouse and
rat may be atypical mammals in terms of their pheromone
receptor genes and pheromone sensitivities.

Importance of detection of oestrus behaviour in cattle
The main problem in cattle reproductive management is

the high frequency of silent and weak oestrous symptoms
(Williamson et al. 1972, Bulman and Lamming 1978, Claus
et al. 1983). Failure to detect oestrus or erroneous diagnosis
of oestrus results in an enormous economic loss to the dairy
industry worldwide. It is generally agreed that detection
efficiency is <50% in most dairy herds (Bozworth et al. 1972,
Barr 1975). Furthermore, research using milk and blood
progesterone assays indicates that between 5 and 30% of all
inseminations occur in cows that are not in oestrus
(Appleyard and Cook 1976, Senger 1994). The single most
important problem limiting the high reproductive efficiency
in the national dairy herd (cows only) of America is reported
to be poor detection of oestrus (Senger 1994). This is also
true for Indian Dairy herd (cows and buffalo) because silent
oestrus or poor expression of oestrus is more common in
buffaloes (Awasthi et al. 2007, Perera 2011). As individual
dairy herd increased in size, the problem of poor detection
of oestrus has amplified due to a decrease in manpower input.
There is an urgent need to develop and to apply new
technologies that will provide highly effective automated
methods for identifying cows and buffaloes in oestrus, thus
eliminating the need for visual observation and marginally
effective facilitators for detection (Senger 1994, Singh et al.
2000). The success of any new technology for oestrus
detection depends on three factors: 1) the technology must
solve the problem at a very high rate of effectiveness 2) the
technology must be genuinely cost effective and contribute
to increased profitability of the dairy enterprises and 3) the
technology must make life easier for the management team.
Technology that satisfies these three requirements will make

a long-term positive impact worldwide.
One interesting way of oestrus marker detection is the

possibility to use trained detector animals such as dogs or
rats (Kiddy and Mitchell 1981, Ladewig and Hart 1981,
Dehnhard and Claus 1988, Rampin et al. 2006) to detect
cycle-dependent odour differences in vaginal secretions and
in urine of cows. For example, acetaldehyde is one compound
associated with oestrus that the dogs might be able to detect
by smelling. Published studies on blood (Klemm et al. 1994),
vaginal secretions (Ma et al. 1995), and milk (Weidong et
al. 1997) indicated that concentration of acetaldehyde
increased prior to oestrus. Contrary to these results, Dehnhard
and Claus (1988) observed that several classes of chemical
substances or even individual compounds from urine and
cervico-vaginal mucus, which were suggested as candidates
for the cow pheromone (Nishimura et al. 1984, Preti 1984,
Hradekcky 1986, Klemm et al. 1987) did not alter the sexual
behaviour of trained rats. These results demonstrate that
choice of the molecule as oestrus marker in such bioassays
is of crucial importance for the efficiency of oestrus detection.

The use of artificial olfaction could enable more accurate
detection of oestrus and has the potential to increase fertility
in cows. Changes in perineal odour as oestrus marker were
monitored through the use of an electronic nose (Lane and
Wathes 1998). Twelve conducting polymer sensors were used
to quantify odours in terms of a change in sensor resistance.
Oestrus was identified using ovarian ultrasound, behavioural
observations, and plasma assay for progesterone and
oestradiol. Samples were taken from the dorsal lateral
perineal (perivulval) area using cotton bud swabs and
presented to an electric nose. It was revealed that odour
signals between the luteal phase and oestrus could be
distinguished for a group of five cows. In another experiment,
samples were obtained daily from eight cows during the
midluteal phase and fromday 2 today 8 of the cycle (day 0
asday of oestrus, induced with cloprostenol). Of the 12
sensors, 7 showed a significant change in resistance that was
dependent on the day of the oestrous cycle. Basal values were
those taken in the luteal phase; values peaked on day 1, rose
transiently on day 3, and returned to baseline on days 5 to 6.
The pattern was strongly correlated with plasma oestradiol
concentration.

Involvement of pheromonal cues in oestrus detection by
the bull is well assessed by bioassays. Females release the
olfactory molecules during oestrus, thus signalling the stage
of the cycle, and stimulating sexual behaviour and endocrine
function of males. Efforts were made to characterize the
pheromone in milk, urine, vaginal mucus, serum and skin
gland secretion during the different phases of oestrous cycle
but the chemical nature of pheromone components is still
unknown. Failure to detect oestrus or erroneous diagnosis
of oestrus results in an enormous economic loss to the dairy
industry worldwide. New technologies for the solutions of
this problem must be more effective than visual observation
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and aids currently used to detect oestrus. Therefore, it is
conceivable to use artificial noses or other biotechnologies
to detect specific markers of oestrus, the pheromone
components and first to gain knowledge on the chemical
nature of oestrus-indicating pheromones. Moreover, oestrus-
related chemicals might also be useful as sexual stimulants
for increasing the libido of unmotivated males. These
techniques, based on a better and more natural utilisation of
animal behaviour within their environment may contribute
to lower and/or suppress the use of exogenous compounds
and may then be more acceptable by the consumer. Moreover,
as they will facilitate farmer’s work and reduce manpower
needs related to heat detection, these bio techniques should
greatly contribute to the development of sustainable
production systems integrating the new tools for multiple
character genetic selection.
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