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 19.1 Introduction 

Plant diseases have been associated with crop 
plants since agriculture began and, until 
recently, were routinely managed through appli-
cation of  synthetic fungicides. Among the plant 
diseases, soil-borne diseases are the important 
factor limiting the yield of  crops resulting in seri-
ous economic losses in many countries. The 
major soil-borne pathogens include fungi 
(Rhizoctonia solani, Sclerotium rolfsii, Fusarium 
spp., Pythium spp. and Phytophthora spp.), bacte-
ria (Erwinia spp., Raltsonia spp., Rhizomonas spp., 
Agrobacterium spp. and Streptomyces spp.) and 
nematodes belonging to the genera Meloidogyne, 
Heterodera, Longidorus and Paratrichodorus. In 
general, soil-borne diseases are diffi cult to con-
trol because the causal agents can survive in the 
soil for long periods in the absence of  host. Effec-
tive management of  soil-borne diseases is possi-
ble only through detailed study of  their ways of  
survival and dissemination, effect of  environ-
mental conditions, role of  cultural practices 
and host plant resistance. Fumigation and 

drenching of  soil with synthetic chemicals has 
been practised in agriculture for many years to 
manage soil-borne diseases and pests of  eco-
nomically important crops. Some commonly 
used fumigants are methyl bromide, mefen-
oxam and 1,3-dichloropropene-chloropicrin. 
Dichloro-diphenyltrichloroethane (DDT), which 
was used as a chemical fumigant for the control 
of  soil-borne pathogens, was later withdrawn 
from the market due to its adverse effect on the 
environment (Gamliel et al., 2000). Apart from 
DDT, methyl bromide and chloropicrin are also 
used to control fungal pathogens (Lazzeri et al., 
2004), whereas metham sodium is specifi c 
against the fungi, Verticillium (Larkin and Grif-
fi n, 2007). Methyl bromide has been banned in 
developed countries since 2005 and will be 
banned in developing countries by 2015 because 
of  its ozone depleting nature. These fumigants 
are highly volatile and non-specifi c, and their 
use leads to environmental pollution, ecological 
 problems and destruction of  benefi cial microbial 
 communities in the soil. Similarly, nematicides are 
highly toxic to humans, contaminate groundwater 
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and can be absorbed by plants (Oka, 2010). Syn-
thetic pesticides and fumigation chemicals like 
methyl bromide are able to cause damage to the 
ozone layer, are harmful to our environment 
and to humans as well, hence many developed 
and developing countries have banned the usage 
of  these chemicals to reduce the risk. 

Therefore, an alternative method is needed 
that can still control crop diseases without 
affecting human health and the environment. 
Attempts have been made to use non-chemical 
alternatives such as biofumigation, biocontrol 
and soil solarization in the place of  pesticides. 
Brassicaceae plants contain glucosinolates and 
the products of  these glucosinolates upon enzy-
matic hydrolysis exhibit fungicidal activity. 
Hence these plants may be used as an alternative 
approach for the management of  soil-borne dis-
eases (Walker et al., 1937). Utilizing crop resi-
dues to reduce soil-borne pathogen populations 
has been examined many times over the years as 
a method to control these pathogens (Patrick 
et al., 1964; Lewis and Papavizas, 1975). The 
value of  this process is being re-examined 
mainly because of  the deleterious environmen-
tal effects and costs of  fumigants. Further, the 
rotation of  crops with green manure crops as 
potential biofumigants has been widely explored 
in recent decades by many researchers.

19.2 Biofumigation

Biofumigation is a process, whereby volatile chem-
icals released from decomposing plant material 
are utilized for suppressing the growth of  soil 
pathogens, nematodes, insects and germinating 
weed seeds. The term biofumigation was fi rst 
coined by Kirkegaard et al. (1993), who specifi -
cally described using glucosinolate hydrolysis 
products, notably isothiocyanates. During decom-
position, in addition to isothiocyanates, plant 
 tissues release nitriles and oxazoldnethiones. 
Incorporation of  glucosinolate-containing plants 
reduced the initial inoculum of  certain soil-borne 
diseases according to Kirkegaard et al. (1993, 
1998). Scientifi c studies have proved that volatiles 
released during the degradation of  organic matter 
are responsible for the suppression of  plant patho-
gens (Piedra Buena et al., 2007; Clarke, 2010; 
Lord et al., 2011).

19.3 Plant Species with 
Glucosinolates (GSLs)

Different plant species that contain glucosi-
nolates and sulfur compounds have been 
reported to have biocidal activity. Glucosinolate-
containing plants belong to the Brassicaceae, 
Capparidaceae, Tropaeolaceae, Moringaceae and 
Amaryllidaceae families. The family Brassicaceae 
(brassicas) contains more than 350 genera with 
3000 species, of  which many are known to con-
tain GSLs. Other than brassica plants, about 500 
species of  non-brassica dicotyledonous plants 
also contain GSLs (Fahey et al., 2001; Larkin and 
Griffi n, 2007; Wang et al., 2009) and these glu-
cosinolates can be grouped into different classes, 
namely, aliphatic, aromatic and indolyl forms 
(Zasada and Ferris, 2004; Padilla et al., 2007). 
Kruger et al. (2013) studied the biofumigation 
properties of  Eruca sativa cv. Nemat, Sinapis alba 
cv. Braco, Brassica juncea cv. Caliente 199, and 
Brassica napus cv. AV Jade (canola) and suggested 
these species for suppression of  soil-borne plant 
pathogens in South Africa.

In Brassicas, the most extensively pro-
duced GSLs are aliphatic (e.g. glucoraphenin, 
 glu coerucin, glucocheirolin, glucosinigrin), 
ω-methylthioalkyl (e.g. glucobenzosisymbrin, 
glucomalcomiin), aromatic (e.g. glucotropaeolin, 
glucobarbarin, glucosinalbin) and heterocyclic or 
indole (e.g. glucobrassicin, neoglucobrassicin, 
4-methoxyglucobrassicin) containing either 
straight or branched chain carbons (Fahey et al., 
2001). Allium species contain sulfur compounds 
known as disulfi des (DS) and thiosulfi nates (Ti), 
which have shown antimicrobial activity against 
plant pathogens (Auger and Thibout, 2004).

Plants contain GSLs that are hydrolysed by 
an enzyme, myrosinase, in the presence of  water 
into various products upon tissue degradation. 
Generally GSLs are polar and highly water solu-
ble (Gimsing et al., 2005). The plant species used 
for soil fumigation are listed in Table 19.1. 

19.4 Glucosinolates

Glucosinolates are stored in cell vacuoles 
(Rausch and Wachter, 2005), whereas myrosi-
nase is accumulated in myrosin cells (Hoagland 
et al., 1991). Glucosinolates consist of  sulfur 
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and nitrogen compounds and their quantity var-
ies with plant species; for example, species such 
as Indian/brown mustard (Brassica juncea), 
black mustard (Brassica nigra) and white mus-
tard (Sinapis alba) contain higher amounts of  
glucosinolates. The aliphatic group of  glucosi-
nolates is found in foliage of  rapeseed (Brassica 
napus), and consists of  3-butenyl (gluconapin), 
R-2-hydroxy-3-bunenyl (progoitrin/glucorapif-
erin) and 4-pentenyl (glucobrassicanapin). Sim-
ilarly, an aromatic glucosinolate found in the 
roots of  rapeseed (Brassica napus) (Fig. 19.1) 
consists of  2-phenylethyl (gluconasturtiin). Ear-
lier studies inferred that aliphatic GSLs degrade 
much more easily than aromatic GSLs. 

19.4.1 Mode of action

Glucosinolates and the enzyme myrosinase are 
separated in living cells, and tissue degradation 
due to insect feeding, mechanical damage or 
infection helps to bring them together. At this 
point, glucosinolates are degraded by the myrosi-
nase enzyme through the process of  hydrolysis, 
thereby volatile products including isothiocy-
anates (ITCs), organic cyanides, ionic thiocy-
nates and oxazolidinethiones are released. These 
volatile products are likely to have biological 
activity against plant pathogens. The enzymatic 
mechanism of  myrosinase involves two steps: the 
glycosylation step, in which the glycosyl enzyme 

Table 19.1. Plant species used for soil fumigation, as an alternative to chemical fumigation. (From: 
Lazzeri and Manici, 2001; Keusgen et al., 2002; Karavina and Mandumbu, 2012.)

Plant species Common name Family

Alliaria petiolata Garlic mustard Brassicaceae

Allium ursinum Bear’s garlic Amaryllidaceae

Allium vineale Wild onion Amaryllidaceae

Arabidopsis thaliana Thale cress Brassicaceae

Azima tetracantha Needle bush Salvadoraceae

Brassica campestris rapa Turnip Brassicaceae

Brassica carinata Ethiopian mustard Brassicaceae

Brassica fruticulosa Mediterranean cabbage Brassicaceae

Brassica juncea Indian mustard Brassicaceae

Brassica napus Rape/canola Brassicaceae

Brassica nigra Black mustard Brassicaceae

Brassica oleraceae acephala Kale Brassicaceae

Brassica oleraceae Cabbage Brassicaceae

Cardamine cordifolia Heartleaf bittercress Brassicaceae

Cardamine diphylla Pepper root Brassicaceae

Carica papaya Pawpaw Caricaceae

Cleome hassleriana Spider fl ower Capparidaceae

Diplotaxis tenuifolia Perennial wall-rocket Brassicaceae

Eruca sativa Salad rocket Brassicaceae

Iberis amara Rocket candytuft Brassicaceae

Lepidium sativa Garden cress Brassicaceae

Moringa oleifera Moringa Moringaceae

Moringa stenopetala Cabbage tree Moringaceae

Rapistrum rugosum All. Common giant mustard Brassicaceae

Rhaphanus sativus Radish Brassicaceae

Sinapis alba White mustard Brassicaceae

Thlaspi arvense Field pennycress Brassicaceae

Tropaeolum maju Indian cress Tropaeolaceae
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is formed and subsequently the aglycone is 
released; followed by the deglycolyation step in 
which the glycosyl enzyme is hydrolysed by a 
water molecule (Burmeister et al., 1997).

These hydrolysis products, in particular the 
ITCs, are known to have broad biocidal activity 
including insecticidal, nematicidal, fungicidal, 
antibiotic and phytotoxic effects (Fenwick and 
Heaney, 1983; Chew, 1988; Brown and Morra, 
1997; Rosa, 1997).

19.5 Allium Sp. for Biofumigation

Like Brassica spp., Allium spp. also have biofumi-
gation properties because of  their sulfur compo-
nents, mainly three disulfi des: dimethyl disulfi de 
(DMDS), dipropyl disulfi de (DPDS) and diallyl 
disulfi de (DADS), with an effi cacy superior to 
that of  DMDS. Similar to enzyme myrosinase, 
alliinase is also stored in the vacuoles. Upon 
mechanical disruption or insect feeding, allii-
nase is released, which reacts with S-alk(en)yl-L-
cysteine sulfoxides (RCSOs) (Lancaster et al., 
1988) and releases sulfenic acids (Ferary and 
Auger, 1996). Many RCSOs (R= methyl, propyl, 
1-propenyl) are present in onions, giving rise to 
DPDS (Arnault et al., 2004) as the end product 
of  biosynthesis. In bear’s garlic (A. ursinum), the 
major RCSO is methoinin (S-methyl-L-cysteine 

sulfoxide); it gives rise to dimethyl thiosulfi nate 
(DMTi), which gets rearranged into DMDS. The 
biocidal activity of  Allium has been proved and 
therefore it was suggested for soil fumigation 
(Auger and Thibout, 2004). GSLs are present in 
16 families of  dicotyledonous angiosperms 
including a large number of  edible species, and 
at least 120 types of  ITCs have been identifi ed in 
these plants (Fahey et al., 2001).

19.6 Management of Soil-borne 
Diseases 

Brassica napus contains several types of  GSLs 
including but-3-enyl, benzyl, phenethyl and 
2-hydroxy-but-3-enyl (Bjerg and Sorensen, 
1987; Gardiner et al., 1999). Different stages of  
plant growth contain various glucosinolates, 
namely, glucoerucin, glucotropaeolin, glucora-
phenin, glucobrassicin, and gluconasturtin. The 
roots contain mostly the GSL gluconasturtin, 
whereas the shoots have more aliphatic GSLs 
(Sarwar et al., 1998). It was confi rmed that the 
root tissue of  the Brassicas, canola and Indian 
mustard released volatile compounds, namely, 
methyl ITC and phenyl ethyl ITC, which inhibited 
the growth of  pure cultures of  the fungal patho-
gen that causes take-all of  wheat, Gaeumannomy-
ces graminis var. tritici, at low concentration 
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Fig. 19.1. Aliphatic and aromatic glucosinolates. (Courtesy of Matthew Back and Melvyn, Harper 
Adams University, Newport.)
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(Angus et al., 1994). Higher fungitoxic activity of  
plants, namely, Iberis amara L. (selection ISCI14), 
Rapistrum rugosum All. (selection ISCI4) and 
Cleome hassleriana L. (selection ISCI2) was obs-
erved against Pythium sp. under in vitro condi-
tions, and the activity was mainly due to the 
degradation products of  glucosinolates (Lazzeri 
and Manici, 2001).

The effect of  biofumigation on soil-borne 
fungal pathogens has been studied by many 
researchers, e.g. Rhizoctonia sp., Verticillium sp., 
Sclerotinia sp., Colletotrichum sp., Fusarium sp., 
Pythium sp., Phytophthora spp. (Steffek et al., 2006; 
Zurera et al., 2007; Mattner et al., 2008; Friberg 
et al., 2009; Omirou et al., 2011). 2-propenyl ITC 
has been proved to be toxic to Verticillium dahliae, 
Helminthosporium solani, Sclerotium rolfsii, Scleroti-
nia sclerotiorum and Phytophthora capsici (Chung 
et al., 2002). A higher percentage of  fungal sup-
pression was observed when both mustard roots 
and shoots were used for biofumigation (Snapp 
et al., 2007). A reduced number of  microsclerotia 
of  V. dahliae in strawberry fi elds were observed 
as a result of  biofumigation with different 
glucosinolate- containing Brassica spp. (Steffek 
et al., 2006). The number of  microsclerotia varied 
between 0% and 30% depending on the fi eld char-
acteristics and the biofumigant plant species used. 

Incorporation of  mustard (Brassica juncea) 
as a green manure decreased the inoculum den-
sity of  Rhizoctonia solani (Friberg et al., 2009). 
However, thick-walled hyphae (pseudosclerotia) 
of  R. solani were less susceptible to GSL hydroly-
sis products than young hyphae (Yulianti et al., 
2006). Canola green manures are effective bio-
fumigants against black scurf  caused by R. solani 
(Larkin and Honeycutt, 2006; Larkin and 
 Griffi n, 2007). Wang et al. (2009) reported that 
production of  methyl sulfi de and dimethyl disul-
fi de gases from white mustard (Sinapis alba) 
under natural fi eld environments reduced soil-
borne pathogens, namely, V. dahliae, F. oxyspo-
rum and T. semipenetrans. Taylor (2013) reported 
that benzyl ITC inhibited the growth of  R. solani 
and Helminthosporium solani under in vitro condi-
tions. Gas chromatography–mass spectrometry 
(GC-MS) studies confi rmed that concentrations 
of  specifi c ITCs produced during glucosinolate 
hydrolysis altered throughout the growth period. 
Hence, the effi cacy of  the method may depend on 
the specifi c biofumigant cultivar being grown 

and the time of  incorporation of  the plant mate-
rial into the soil. Kirkegaard and Sarwar (1998) 
reported that aliphatic glucosinolates content 
was greater in shoots, while aromatic glucosino-
lates, particularly 2-phenylethyl glucosinolates, 
were dominant in the roots. The concentration 
of  individual and total GSLs in both root and 
shoot tissues varied within the species. These 
fi ndings help us to select or develop brassicas 
with enhanced biofumigation potential. The 
most signifi cant pathogen suppression was 
observed with R. solani when it was exposed to 
benzyl or methyl ITC, and H. solani was sensitive 
to 2-phenylethyl ITC (Taylor, 2013).

Larkin and Griffi n (2007) tested various 
Brassica crops, namely, canola, rapeseed, radish, 
turnip, yellow mustard and Indian mustard for 
the management of  soil-borne potato pathogens. 
Volatiles released from leaf  of  Brassica  species and 
barley were harmful to R. solani, Phytophthora 
erythroseptica, Pythium ultimum, Sclerotinia sclero-
tiorum and Fusarium sambucinam under in vitro 
conditions, whereas Indian mustard inhibited the 
growth completely up to 80–100%. These Bras-
sica crops and barley under greenhouse condi-
tions reduced the inoculum levels of  R. solani 
(20–56% reduction); radish, rapeseed and Indian 
mustard reduced potato seedling disease by 
40–83%. Canola and rapeseed grown as green 
manure rotation crops reduced black scurf  by 
70–80% in potato. Satisfactory results were 
obtained with Indian mustard against powdery 
scab and common scab diseases of  potato, 
whereas Rhizoctonia diseases were reduced with 
rapeseed and canola treatment. The combination 
of  mustard blend (mustards and rapeseed) grown 
as green manure was found to be the most effec-
tive in reducing potato scurf  disease by up to 54% 
and increasing the yield by 25% compared with 
soybean cover crop (Larkin and Halloran, 2014).

The biofumigation process has been modi-
fi ed a little to increase the effi ciency of  the proc-
ess. Blok et al. (2000) reported that Brassica 
juncea was decomposed anaerobically in fi eld soil 
with temporary irrigation and covered with poly-
thene sheets, and the technique, developed in the 
Netherlands and Japan, was named biological 
soil disinfestation (BSD). Model experiments of  
BSD with wheat bran or Brassica juncea and Avena 
strigosa plants as biomass sources successfully 
controlled the wilt pathogen populations of  
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tomato (Fusarium oxysporum f. sp. lycopersici and 
spinach (F. oxysporum f. sp. spinacea) when incor-
porated into soil (Mowlick et al., 2013).

19.7 Seed Meal as a Source of 
Biofumigation

Seed meal, a by-product derivative of  oil extrac-
tion of  the seeds from the glusosinolate- 
containing plant species can also be used for 
soil-borne pathogen suppression, wherein it 
forms a source of  nitrogen and other nutrients. 
Several reports have shown that amending the 
soil with Brassica sp. as seed meal suppressed 
many plant fungal pathogens (Lodha and 
Sharma, 2002; Kirkegaard and Matthiessen, 
2004; Matthiessen and Kirkegaard, 2006). 
Mustard seed meal application signifi cantly 
reduced the stem infection in lily caused by Rhi-
zoctonia solani (Van Os et al., 2004; Van Os and 
Lazzeri, 2006). Apple replant disease is com-
monly characterized as a pathogen complex 
involving the genera Rhizoctonia, Cylindrocarpon, 
Pythium and Phytophthora (P. cactorum) and 
lesion nematode Pratylenchus penetrans (Mazzola 
and Mullinix, 2005). The pathogen complex 
varies from site to site, even among orchards 
within close proximity (Traquair, 1984). The 
effi cacy of  brassicaceous seed meals (Brassica 
juncea, Brassica napus and Sinapis alba) for the 
management of  apple replant disease was stud-
ied by Mazzola and Brown (2010). The study 
inferred that B. juncea and S. alba seed meal soil 
amendments were effective when it was com-
bined with mefenoxam – a post plant fumigant 
– in terms of  disease control, tree growth and 
overall fruit yields of  Gala/M26 apple under a 
conventional production system. Similarly, a 
seed meal blend of  B. juncea:B. napus (1:1 ratio) 
performed well in terms of  disease control and 
vegetative growth of  Gala/M26 under organic 
systems. Hence, the study results concluded that 
these amendments act as an alternative to soil 
fumigation for the control of  apple replant dis-
ease in both conventional and organic systems. 

Apple root infection by R. solani AG-5 was 
suppressed by allyl isothiocyanate (AITC), 
which was released from B. juncea seed meal 
amendments (Mazzola and Zhao, 2010). Seed 
meals of  B. juncea and B. napus at a concentra-
tion of  0.5% signifi cantly reduced the infection 

of  R. solani AG 8 in wheat (Triticum aestivum L.) 
compared to the unamended control (Handis-
eni et al., 2013). Radish (Raphanus sativus L.), 
mustard (B. juncea (L.) Czern) and winter rape-
seed (B. napus L.) were evaluated for their biofu-
migant activity against R. solani in bell pepper. 
The crops were disked into the soil and immedi-
ately covered with virtually impermeable fi lm 
(VIF) to reduce the escape of  volatile pesticidal 
compounds. It was revealed that mustard fol-
lowed by rapeseed and radish reduced popula-
tions of  R. solani, and the concentration of  ITCs 
was high in mustard followed by the other crops 
(Hansen and Keinath, 2013). Fusarium oxyspo-
rium, R. solani, Macrophomina phaseolina and S. 
rolfsii are the common fungal pathogens infect-
ing soybean causing damping-off, root rot and 
wilt diseases resulting in serious economic 
losses. Management of  these pathogens is diffi -
cult due to their broader host range and nature 
of  survival mechanisms in the soil. Fayzalla 
et al. (2009) evaluated the effect of  mustard 
seed meal as a biofumigant in lab, greenhouse 
and fi eld conditions against the root rot and wilt 
pathogens infecting soybean. Mustard seed 
meal resulted in decreased linear growth of  R. 
solani as compared with the control. In pot cul-
ture experiments, suppression of  disease as well 
as increased plant growth were observed in 
mustard seed meal-treated pots compared to the 
untreated control. The sensitivity of  the patho-
gen to seed meal differed at all levels and, among 
the pathogens, R. solani was the most sensitive. 
Under fi eld conditions also, mustard seed meal 
was compared with Rhizolex® fungicide and 
both mustard seed meal and Rhizolex® reduced 
the disease incidence by 69.5% and 74.4%, 
respectively, 4 months after planting. Studies 
conducted by Handiseni et al. (2013) revealed 
that soils amended with Sinapis alba seed meal 
had the lowest severity of  root rot caused by R. 
solani Kuhn anastomosis group (AG) 8 in wheat. 

White lupine (Lupinus albus) mainly used as 
green manure, is infected by a wilt pathogen 
F. oxysporum f. sp. lupine. Shaban et al. (2011) 
studied the effect of  mustard and canola seed meal 
against F. oxysporum f. sp. lupine as a biofumigant 
and compared it with Topsin M-70® fungicide 
under lab, greenhouse and fi eld conditions. Under 
lab conditions, mustard seed meal decreased the 
growth of  wilt pathogen of  lupine and the growth 
decreased further with increasing concentrations 
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of  seed meal, whereas canola seed meal reduced 
the growth of  the pathogen only at high concen-
trations. In the pot culture studies, mustard seed 
meal treatment reduced the percentage of  disease 
reduction up to 85.7%, followed by canola seed 
meal treatment (71.4%) and the fungicide Topsin 
M-70® treatment (64.3%), and the reduction in 
disease was refl ected in increased growth param-
eters of  lupine such as plant height, number of  
pods, weight of  seeds and root length of  plants 
grown. Field experiments with mustard seed meal 
treatment reduced the disease incidence by 83.6% 
at 30 and 90 days after planting for the fi rst sea-
son (2008/2009) and 87.5% and 87.8% for the 
second season (2009/2010).

Fan et al. (2008) evaluated powdered tis-
sues of  Brassica oleracea var. caulorapa against 28 
fungal isolates from 16 hosts under in vitro con-
ditions. One gramme of  powder of  B. oleracea 
var. caulorapa could suppress the growth of  Cer-
atobasidium fi mbriata up to 68.6% and V. dahliae 
up to 68.7%. The fi ndings also suggested that 
the amount of  plant tissue should be standard-
ized depending on target pathogen species for 
better results. 

Other than Brassica plants, the alliaceous 
crops, namely, onion (Allium cepa L.) and garlic 
(A. sativum L.) also exhibited multiple bioactive 
properties against variety of  soil microorg-
anisms including fungi, bacteria and nematodes 
(Timonin and Thexton, 1950; Bianchi et al., 
1997). In Allium spp., suppression was due to the 
production of  volatile sulfur compounds released 
via cleavage of  certain S-alk(en)yl cysteine sul-
foxides. The quality and quantity of  volatile sul-
fur compounds varied among members of  the 
Alliaceae (Jones et al., 2004). In addition these 
bioactive compounds inhibited the germination 
of  weed species like Echinochloa crusgalli, Sisym-
brium irio and Solanum oleraceus in soil at ambi-
ent temperature (23°C) (Mallek et al., 2007).

19.8 Management of 
Nematode Infection

Biofumigation has also been reported to reduce 
 nematode populations (Henderson et al., 2009; 
Zasada et al., 2009). Green manures like Brassica 
sp. were more effective in suppressing nema-
todes under controlled conditions (Mojtahedi 

et al., 1991; Mojtahedi et al., 1993; Potter et al., 
1998). Rahman and Somers (2005) reported 
that when B. juncea cv. Nemfi x (Indian mustard) 
was incorporated into the soil as a green manure, 
a suppressed population of  M. javanica was 
observed. In addition to glucosinolate content of  
the brassica plants, secondary metabolites that 
are released during the biofumigation process 
might also play a role in the process of  suppress-
ing the nematode population (Piedra Buena 
et al., 2006). Piedra Buena et al. (2006) reported 
that other than glucosinolates, secondary 
metabolites that are released during the biofumi-
gation process also suppressed the nematode 
population. It was reported that root-knot nem-
atode species can complete their life cycle on 
 several Brassica spp., but their susceptibility 
 varies with species (McLeod and Steel, 1999). 
The effi cacy of  biofumigation depends upon the 
selection of  cover crop, because the selected crop 
should either be resistant or have a poor host sta-
tus for the target pest (Vianene and Abawi, 
1998). Melakeberhan et al. (2006) reported that 
Eruca sativa cv. Nemat was suitable trap crop for 
Meloidogyne hapla root-knot nematode wherein 
no eggs were produced in 80% of  the plants. In 
addition to the selection of  Brassica plants, soil 
temperature and duration of  exposure of  treat-
ments played an important role in the effi cacy of  
the biofumigation process. Ploeg and Stapleton 
(2001) tested the effect of  time and temperature 
in combination with brassica soil residues on the 
suppression of  M. incognita and M. javanica. It 
was found that in a temperature range of  
30–35°C for 10 days, the treatment almost elim-
inated the galls on the roots. Methanol extracts 
of Terminalia arjuna (Combretaceae) bark, par-
ticularly 3,4-dihydroxybenzoic acid (3,4-DHBA) 
exhibited nematicidal activity against juveniles 
of  Meloidogyne incognita collected from roots of  
infected cucumber plants (Nguyen et al., 2013). 
Biofumigation with broccoli (B. olerace L. var. 
italica L.) plant parts effi ciently controlled M. 
incognita and produced signifi cantly higher 
yields in the organic tomato fi elds in Turkey to 
those found with treatment consisting of  graft-
ing the susceptible cultivars with resistant root 
stock (Kaskavalci et al., 2009). Henderson et al. 
(2009) reported that in potato crop, both 
Brassica carinata seed meal and Steinernema spp. 
reduced root-knot nematode damage to potato 
tubers and increased marketable tuber yields. 
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19.9 Infl uence of 
Biofumigation on Soil

Application of  crops as biofumigants also 
improves soil structure and physical properties, 
soil infi ltration and nutrient values (Cherr et al., 
2006). Among the different crops tested, soil 
treated with canola had the highest dissolved 
carbon and cation concentration (K + sodium – 
Na). Solubility of  Fe/Al phosphate increased the 
soil pH from 4.8 to 5.3–6.2 in the rhizosphere 
region (Wang et al., 2007). In addition to 
improving soil structure, the added plant materi-
als can also change the native microbial com-
munity with respect to competition, parasitism, 
antagonism and predation against the soil-borne 
pathogens (Raaijmakers et al., 2009) due to the 
changes in plant root secretions (Xu et al., 
2009). Brassica sp. as plant material or its seed 
meal was found to infl uence microbial commu-
nity structures (Vera et al., 1987; Williams-
Woodward et al., 1997; Mazzola et al., 2001; 
Cohen and Mazzola, 2006; Hoagland et al., 
2008; Friberg et al., 2009; Omirou et al., 2011). 
Incorporation of  Brassica plant material for bio-
fumigation altered the microbial community in 
the soil. 

19.10 Compatability with 
Biocontrol Agents

The population of  the rhizosphere microorgan-
isms, namely, Trichoderma spp., Pythium spp., 
fl uorescent Pseudomonads, Streptomyces spp., 
actinomycetes and other antagonists of  soil-
borne pathogens was either increased or 
decreased due to the effect of  Brassica napus seed 
meal depending on the plant species and soil 
type (Mazzola et al., 2001; Cohen and Mazzola, 
2006; Mazzola and Zhao, 2010; Mazzola et al., 
2012). Wang et al. (2014) tested the compati-
bility of  antagonistic Bacillus amyloliquefaciens 
strain BS211 along with biofumigation to con-
trol the pepper disease caused by Phytophthora 
capsici under controlled conditions. Application 
of  the biofumigant along with the antagonistic 
bacteria reduced the disease incidence and 
increased soil bacterial diversity. Stefania Galletti 
et al. (2008) studied the compatibility of  benefi -
cial fungus Trichoderma with Brassica carinata 

seed meal (BCSM). Forty isolates of  Trichoderma 
spp. were tested against seed meal and volatiles 
released by BCSM. Trichoderma spp. were found to 
be generally less sensitive than the tested fungal 
pathogens (P. ultimum, R. solani and F. oxyspo-
rum). In addition, the author also pointed out 
that there was a reduction in allyl-isothiocyanate 
concentration in the soil. This may be due to the 
activity of  Trichoderma isolates which protected 
against the biocidal compounds. 

19.11 Compatability with Other 
Techniques of Disease Management

The biofumigation process may not kill the path-
ogen completely, but the target pathogen group 
may be weakened so that it cannot survive in 
those environmental conditions. Hence, biofu-
migation can be combined with other tech-
niques like soil solarization. Solarization, alone 
or combined with biofumigation or low doses 
of  fumigants, has gained wider adoption as a 
methyl bromide alternative in areas with sunny 
climates and where it suits the cropping season 
and the pest and disease complex, especially 
countries like Morocco, Israel, Jordan and Brazil. 
Biofumigation is widely used at a commercial 
level in many developing and developed coun-
tries to control soil-borne pathogens (Zurera 
et al., 2007; Fan et al., 2008; Mattner et al., 
2008; Njoroge et al., 2008; Bensen et al., 2009). 
There are several patents for commercial manu-
facturing of  biofumigants for pest control using 
Brassica seed products. Bello et al. (2003) 
reviewed the switching over of  Spain to biofumi-
gation and biosolarization as the main non-
chemical alternatives, followed by soil-less 
cultivation, crop rotation, resistant varieties and 
grafting. These alternatives are more effective 
when combined in integrated crop management 
(ICM) systems. 

The combination of  biofumigation and soil 
solarization has been found to be synergistic 
in improving the effi cacy of  both procedures 
and thereby reducing the time required for 
solarization and the rates of  amendment needed 
for biofumigation (Ndiaye et al., 2007; Medina 
et al., 2009; Porras et al., 2009). Adoption of  
non-chemical alternatives such as substrates, 
grafting, resistant varieties, steam, solarization, 
biofumigation and biodisinfection has been 
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increasing tremendously in recent years. In 
Europe, the non-chemical alternatives applied in 
commercial strawberry fruit production are 
crop rotation, which is widely used in Denmark, 
Germany, the Netherlands and Poland; steam, 
which is used to protect strawberry in Belgium, 
France and Germany; solarization, which is used 
in Cyprus; and mulches, which are used against 
weeds in countries like Estonia, Germany and 
Slovenia. These alternatives are used extensively 
as methyl bromide alternatives in Solanaceous 
crops in Mediterranean countries and other 
areas of  the world (Besri, 2002; Fennimore et al., 
2006). Solarization combined with biofumiga-
tion resulted in signifi cant increase in tomato 
yields and decreased densities of  certain patho-
gens and nematodes according to Iapichino et al. 
(2008). In Spain, biofumigation and biosolari-
zation (biodisinfestation) are the main non- 
chemical alternatives that are increasingly used 
in pepper and tomato production.

19.12 Conclusion

Farmers have been accustomed to using very 
high levels of  fungicide or fumigant for the 

management of  soil-borne diseases. In recent 
years,  public concern about the environment 
has increased the need to develop and imple-
ment effective non-chemical alternatives instead 
of  chemical fumigants. The results of  biofumiga-
tion studies have already shown its defi nite 
potential and good results for the management 
of  nematodes, soil-borne diseases and weeds 
whenever its methodologies are applied cor-
rectly. Plants containing glucosinolates, espe-
cially Brassica spp., exhibit biocidal activity 
against soil-borne pathogens of  various crops 
and can be exclusively used for the biofumiga-
tion process. Despite its limitations, biofumiga-
tion has many potential benefi ts that could be 
exploited in disease management very well in 
the future. Furthermore, it could act as a very 
good alternative technique to use of  the chemi-
cal fumigant methyl bromide. Though few 
reports are available on the combination of  cul-
tural practices along with biofumigation proc-
esses, research has shown that the effects of  
biofumigation could be further strengthened 
alongside solarization and in combination with 
ITC -resistant biocontrol agents to achieve maxi-
mum benefi t in management of  soil-borne 
pathogens. 

Table 19.2. Alternative soil technologies adopted in different countries instead of methyl bromide. 
(From: MBTOC 2010 Assessment Report.)

Country Soil technologies selected

Peru Steam, fl oating trays, solarization, biocontrol agents and biofumigation

Uruguay Solarization + chemicals (1,3-D/Pic, MI, MS, DMDS), biofumigation and steam

Egypt Substrates, steam, biofumigation, grafting

Lebanon 1,3-D, 1,3-D/Pic, metham sodium, solarization, solarization + reduced doses of 
chemicals, grafting, crop rotation, biofumigation and fl oating trays

Bosnia and 
Herzegovina

Floating trays, solarization and biofumigation 

Macedonia Floating trays and solarization + biofumigation
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