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Abstract : An experiment in which there are two or more than two factors, each factor is a mixture of its components is called

multifactor mixture experiment. Two methods of construction of multifactor mixture experiments have been developed. First

method uses the algorithmic construction of efficient designs in less number of design points in comparison to existing

designs obtained as a Kronecker product of single factor mixture designs. In the second method, Kronecker sum of matrices

has been utilized for construction of multifactor designs where all the factors have same number of components. It has been

illustrated with data that the designs developed allow the fitting of second order model.
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1. Introduction

An experiment in which the response is a function

only of the proportions of the components (constituents)

present in the mixture and is not a function of the total

amount of the mixture is called mixture experiment.

Scheffé (1958, 1963) did a pioneering work in the

mixture experiments by introducing simplex lattice and

simplex centroid designs. For a q-component mixture

experiment if x
i
 denotes the proportions of ith

component, then

0 ≤ x
i
 ≤ 1 and xi

i=

q

=∑ 1
1

,  for i = 1, 2, ..., q. (1)

Thus, the design factor space is a q-1dimensional

simplex.

The methods of analysis of experiments with

mixtures seem to be relevant and useful in many areas

of agricultural research such as nutrient management

of crops, cropping system, disease and pest management

of crops. Many experiments has been undertaken for

studying the optimum time of split application of fixed

quantity of nutrients to crop during its crop growth

stages. Batra et al.  (1999) have viewed these

experiments as mixture experiments and have given

the procedure of its analysis.

Designs for mixture experiments introduced by

Scheffe (1958, 1963) investigates only one factor with

its components at a time, as the components of any

mixture have to be some or other kind of a single factor.

For instance, in fertilizer experiments involving

applications of fixed quantity of nitrogen, where the

nutrients are supplied from different sources of

nitrogenous fertilizers, sources of fertilizer are the

components of mixture experiments. But situations arise

when proportions of components of two or more factors

are to be studied. These types of mixture of experiments

are called multifactor mixture experiments. This has

been illustrated with an experiment available in

Agricultural Field Experiments Information System.

Example 1.1 (Agricultural Field Experiments

Information System) : An experiment was undertaken

to study the effect of nitrogen and phosphorus on hybrid

cotton plant in an attempt to maximize the yield. In this

experiment fixed doses of the two fertilizers viz. nitrogen

(150 kg/ha) and phosphorus (75 kg/ha) were applied at

different proportions in three crop growth stages of the

crop. The details of the doses applied at different crop

growth stages are given in Table 1.

This experiment is an example of two factor mixture

experiment where the two factors are nitrogen and
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phosphorus and the three growth stages viz. Basal, 45

DAS and 90 DAS as three components of each of the

factors.

In an n-factor mixture experiment if the ith factor

is having p
i
 components and x

i j
 represents the

proportion of jth component of the ith factor, j = 1,

2,...,p
i
 and i = 1, 2, …, n, then multifactor mixture

experiment can be defined as:

0 ≤ x
ij
 ≤ 1 and xij =∑ 1,

j

pi

 ∀i = 1, 2,..., n; j=1, 2, ..., p
i
.

Now the problem is to obtain efficient designs for

multifactor mixture experiments.

Nigam (1973) observed that the designs for

multifactor mixture experiment can be constructed such

that for  each combination of components of one factor,

all the combinations of components of the other factor

must occur. Kumari and Mittal (1986) gave a method

of construction of designs for two factor mixture

experiments for fitting linear model. Murthy and Murty

(1989) gave the method of construction of two factor

mixture experiments by transforming symmetric

factorial designs.

The designs for multifactor mixture experiments

available in literature are obtained by Kronecker product

and require a large number of runs for the experiment.

Further, the analysis of data generated in multifactor

experiment has been discussed for fitting of models of

first degree only. Some new methods of construction

of designs for multi-factor mixture experiments in

smaller number of runs that allow fitting of second order

model needs to be developed.

2. Design Evaluation Criteria

Design efficiency criteria are often used to evaluate

a proposed experimental design. The design efficiency

measures that have often been used in response surface

studies to compare different designs are G- efficiency

and relative A –efficiency and are given by

G-efficiency = 
p

n d×
(2)

Relative A-efficiency = 
trace

trace

*
'

*

'

X X

X X

d i
d i

−

−

F

H
GG

I

K
JJ

1

1
(3)

Per-point Relative A-efficiency

= 
n

n*

×

×

F

H
GG

I

K
JJ

−

−

trace

trace

'

'

X X

X X

* *d i
d i

1

1 (4)

Where, n = number of design points in the design;

p = number of parameters in the model and

d ' '= =
−

max v x X X xb g{ }1
 over a specified set of design

points (the row vector) x in X, where X is the extended

design matrix depending on model to be fitted, X
*
 is the

sub-matrix of X having same number of columns as X

and n
*
 is the number of runs for the design matrix X

*
.

As a practical rule of thumb, Wheeler (1972)

suggested that any design with a G-efficiency ≥ 50%

could be called a “good” design for practical purposes

and showed that pursuit of higher efficiencies is not

generally justified in practice.

3. Model for Multifactor Mixture Experiment

It has been observed that in agricultural

experiments, the behavior of components of different

factors may be quadratic in nature, therefore,

multifactor designs for experiments with mixtures need

to be obtained so as to fit the second order polynomial

model.

Let x
1i

 denotes the proportion of the ith component

of the first factor and x
2j
 denote the proportion of the

jth component of the second factor, i = 1, 2, ..., p
1
 and

j = 1, 2, …, p
2
. The uth point in the two factor mixture

Table 1 : Treatment structure of two factor mixture experiment.

Factor I (Nitrogen) Factor II (Phosphorus)

Basal 45 DAS 90 DAS Basal 45 DAS 90 DAS

150.00 0.00 0.00 75.00 0.00 0.00

150.00 0.00 0.00 37.50 37.50 0.00

150.00 0.00 0.00 37.50 0.00 37.50

150.00 0.00 0.00 18.75 18.75 37.50

75.00 75.00 0.00 75.00 0.00 0.00

75.00 75.00 0.00 37.50 37.50 0.00

75.00 75.00 0.00 37.50 0.00 37.50

75.00 75.00 0.00 18.75 18.75 37.50

75.00 37.50 37.50 75.00 0.00 0.00

75.00 37.50 37.50 37.50 37.50 0.00

75.00 37.50 37.50 37.50 0.00 37.50

75.00 37.50 37.50 18.75 18.75 37.50

37.50 75.00 37.50 75.00 0.00 0.00

37.50 75.00 37.50 37.50 37.50 0.00

37.50 75.00 37.50 37.50 0.00 37.50

37.50 75.00 37.50 18.75 18.75 37.50

DAS : Days after sowing.
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experiment is denoted by (x
11u

, x
12u

, …, x
1p

1u
; x

21u
, x

22u
,

…, x
2p

2u
). For two factor mixture experiment, Nigam

(1973) has given the following model

Y x x x x

x x x x

i i

i

p

ii' i i'

i<i'

p

j j

j

p

jj' j j'

j< j'

p

ij i

i, j

p p

= + +

+ + +

∑ ∑ ∑

∑ ∑

α α α

α α ε

1 1 1 2

2 2 1 2

1 1 2

2 1 2

j (5)

But as the sum of the components in different runs

for each factor is constant, it has been seen that the

design matrix is not of full column rank, i.e. the design

matrix is singular and consequently, it is not possible to

estimate the parameters uniquely. For this reason, we

will transform the mixture model (5) so that the

transformed design matrix is of full column rank.

The dimensionality of the model (5) is reduced by

making substitution

x xp i
i=

p

1 1
1

1

1

1

1= −
F
HG

I
KJ

−

∑  and x xp j
j=

p

2 2
1

1

2

2

1= −
F
HG

I
KJ

−

∑ (6)

Where, x p1 1
 is the p

1
th component of the first factor

(X
1
) and x p2 2

 is the p
2
th component of the second factor

(X
2
).

After substitution and algebraic simplification, the

resulting model takes the form

Y x x x x

x x x x x x

i i
i

p

j j
j

p

ii i
i

p

jj j
j

p

ii' i i'
i i'

p

jj' j j'
j j'

p

ij i j
j

p

i

p

= + + + +

+ + + +

=

−

=

−

=

−

=

−

<

−

<

−

=

−

=

−

∑ ∑ ∑ ∑

∑ ∑ ∑∑

β β γ β γ

β γ δ ε

0 1
1

1

2
1

1

1
2

1

1

2
2

1

1

1 1

1

2 2

1

1 2
1

1

1

1

1 2 1 2

1 2 21 (7)

Which is similar to model used for fitting in context

of response surface designs with pi
i

n

−
=

∑ 1
1

b g factors.

4.  Construction of Designs for Multifactor

Mixture Experiments

The method of construction of multifactor mixture

experiments given by Nigam (1973) requires a large

number of runs in comparison to the number of

parameters to be fitted. It is desirable to obtain efficient

designs that economize on experimental resources. In

this paper an algorithm has been developed for obtaining

efficient designs multifactor mixture experiments with

lesser number of runs.

Method 4.1 : In this method, an algorithm has

been developed for computer aided generation of

designs for multifactor experiments with mixtures. The

designs obtained are evaluated on G-efficiency (2),

relative A-efficiency criterion (3) and per-point relative

A-efficiency (4) keeping in view the requirements of

model under investigation.

Algorithm to construct a n-factor mixture

experiment, where the ith factor has p
i
 components,

i = 1, 2, …, n is described in the sequel.

Algorithm 4.1

Step 1 : Input n and p
i
 and required design D.

{D is a m pi
i=

n

×
F
HG

I
KJ∑

1

 matrix with blank

cells, m ≥ p, the number of parameters to

be estimated in the model through the

design; {n is the number of factors and

p
i
 is the number of components of the ith

factor, i = 1, 2, ..., n}.

Step 2 : Input standard mixture design D
i
 for each

of n-factors involving p
i
 components and each having

n
i
 runs.

{Standard mixture design may be simplex

lattice design, simplex centroid design or

central axial design as per user

requirements and model to be fitted}.

Step 3 : Obtain design matrix D* following the

method given by Nigam (1973) as Kronecker product

of D
i
 i.e.

D D D D1 2 n
* ...= ⊗ ⊗ ⊗ (8)

of order n pi
i=

n

i
i=

n

1 1

∏ ∏× .  The design is having Ν = ∏ni
i=

n

1

runs.

Step 4 : Select model for describing the relationship

between response and input variables of mixture and

evaluate the number of parameters say ‘p’ to be

estimated for the second order model described in

Section 3.

Step 5 : Evaluate norm of each of the run of the

design D' ,  obtained in Step 3 and arrange the runs in

different groups such that runs within a group have

same norm.

{The norm of an n-component vector [x
1
 x

2
.... x

n
]'
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is given by: norm = xi
i=

n
2

1

∑ } (9)

Let number of distinct group formed be 'g' with

kth group having m
k
 elements after arranging groups in

decreasing order of magnitude of norm. Let the groups

are [G
1
  G

2
  …G

k
…  G

g
].

Step 6 : Form a class of designs C consisting of

2g – 1 = M (say) designs by including a group or

excluding a group and retaining those designs where

number of runs > p. Obviously D ∈ C.

Step 7 : For each design in C obtain X matrix for

the model (5). If the matrix is non-singular then evaluate

its G-efficiency (2) and/ or relative A-efficiency (3),

otherwise reject the design.

Step 8 : If the design have the efficiency measure

more than the value desired by the experimenter, then

select the design, else reject the design.

Remark 4.1 : Algorithm (8) is used for obtaining

designs of two factor mixture experiments, where first

factor is having two component and the second factor

having three components.

Example 4.1 : At the first instance input the

number of factors (n) and number of components for

each factor (p
i
). In this present case, take n = 2 and

p
1
 = 2; p

2
 = 3.

Let us take the standard mixture design (D
i
),

i = 1, 2, as simplex centroid design [Cornell (2002)].

By following the method given by Nigam (1973), we

obtain the design for two factor mixture experiment as

Kronecker product of D
i
's i.e. D D D1 2

* = ⊗  of order

21×5 as in Table 2.

For the situation (Table 2) to fit the second order

model (7) one needs ≥ 10 runs.

The norm of each row of D has been calculated

and the runs in different groups are arranged such that

runs within a group have same norm. Five groups are

formed after arranging norms in decreasing order of

magnitude and are shown in Table 3.

After taking all possible combinations of different

groups, a class of designs C has been obtained so that

each member of C has number of runs more than 10.

Each member of class C is the candidate design for

the situations under consideration. The design matrix

for the model (7) and the G-efficiency (2), relative A-

efficiency (3) and per-point relative A-efficiency (4)

of the each element of C has been calculated. The G-

efficiency, relative A-efficiency, total number of runs

and also the % loss of runs for different designs have

been given in Table 4.

From Table 4, it is seen that algorithm generates

large number of designs with G-efficiency > 0.50 for

the situations under investigation. The designs have

been arranged in decreasing order of % reduction of

runs vis- $a -vis Kronecker product type designs. One

can choose the design as per available resources and

interest of the experimenter in testing various types of

mixture blends. However, there is a need to study the

geometric properties of the generated designs.

Visual Basic code and SAS code has been

Table 2 : Two factor mixture design obtained through Kronecker

product.

x
11

x
12

x
21

x
22

x
23

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 0 0.50 0.50 0

1 0 0.50 0 0.50

1 0 0 0.50 0.50

1 0 0.33 0.33 0.34

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 1 0.50 0.50 0

0 1 0.50 0 0.50

0 1 0 0.50 0.50

0 1 0.33 0.33 0.34

0.5 0.5 1 0 0

0.5 0.5 0 1 0

0.5 0.5 0 0 1

0.5 0.5 0.50 0.50 0

0.5 0.5 0.50 0 0.50

0.5 0.5 0 0.50 0.50

0.5 0.5 0.33 0.33 0.34

Table 3 : Groups formed by different treatment combinations.

x
11

x
12

x
21

x
22

x
23

Norm Group S ize

1 0 1 0 1 1.414 G1 6

1 0 1/2 1/2 0 1.225 G2 9

1/2 1/2 1 0 0

1 0 1/3 1/3 1/3 1.155 G3 2

1/2 1/2 1/2 1/2 0 1 G4 3

1/2 1/2 1/3 1/3 1/3 0.913 G5 1

Note : Group size is obtained by taking factor wise

permutation of various distinct combinations occurring in the group.

Combinations

of Type

$a



developed and the catalogue of designs has been

prepared using the above method and is available with

the first author.

4.2 Design for multifactor mixture experiments

obtained through Kronecker sum

The designs for multifactor mixture experiments

can also be constructed using Kronecker sum of

matrices. For the sake of completeness, we first define

Kronecker sum.

Kronecker Sum : Let A = (a
ij
)

mn
; B = (b

ij
)

pq
 be

two matrices with entries from a finite additive abelian

group G of order s with elements as (0, 1, 2, …, s – 1).

Table 4 : Two factor mixture experiment (p
1
 = 2; p

2
 = 3).

A-efficiency
Groups Constituting Design G-efficiency Run % of Runs Reduced

A
e1

A
e2

1, 2 0.998 0.713 0.980 15 28.57

2, 3 1.026 0.537 0.909 11 47.62

2, 4 1.023 0.585 0.833 12 42.86

2, 5 1.236 0.589 0.983 10 52.38

1, 2, 3 1.002 0.811 0.813 17 19.05

1, 2, 4 0.999 0.856 0.781 18 14.29

1, 2, 5 1.268 0.966 0.876 16 23.81

1, 3, 4 0.987 0.517 0.909 11 47.62

1, 4, 5 1.654 0.788 0.951 10 52.38

2, 3, 5 0.980 0.560 0.841 12 42.86

2, 4, 5 0.780 0.483 0.775 13 38.10

Table 5 : Design for two factor mixture experiments obtained through Kronecker sum.

Factor 1 Factor 2

x
11

x
12

x
13

x
21

x
22

x
23

0.00 0.33 0.67 0.00 0.33 0.67

0.00 0.67 0.33 0.00 0.67 0.33

0.33 0.67 0.00 0.33 0.67 0.00

0.33 0.00 0.67 0.33 0.00 0.67

0.67 0.00 0.33 0.67 0.00 0.33

0.67 0.33 0.00 0.67 0.33 0.00

0.00 0.33 0.67 0.33 0.67 0.00

0.00 0.67 0.33 0.33 0.00 0.67

0.33 0.67 0.00 0.67 0.00 0.33

0.33 0.00 0.67 0.67 0.33 0.00

0.67 0.00 0.33 0.00 0.33 0.67

0.67 0.33 0.00 0.00 0.67 0.33

0.33 0.67 0.00 0.00 0.33 0.67

0.33 0.00 0.67 0.00 0.67 0.33

0.67 0.00 0.33 0.33 0.67 0.00

0.67 0.33 0.00 0.33 0.00 0.67

0.00 0.33 0.67 0.67 0.00 0.33

0.00 0.67 0.33 0.67 0.33 0.00

0.67 0.00 0.33 0.00 0.33 0.67

0.67 0.33 0.00 0.00 0.67 0.33

0.00 0.33 0.67 0.33 0.67 0.00

0.00 0.67 0.33 0.33 0.00 0.67

0.33 0.67 0.00 0.67 0.00 0.33

0.33 0.00 0.67 0.67 0.33 0.00

G-efficiency of the above design is 0.625.

Catalogue of designs under different experimental situations has been prepared using the above method and is

available with the first author.
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Then Kronecker sum of A and B denoted by A ⊗ B is

defined as

A B A J J B⊗ ⊗ + ⊗=

    = +
≤ ≤ ≤ ≤

B Jaij
i m j n

d i
1 1,

 mod(s)

Designs for multifactor mixture in which the number

of components of each factor is same can be easily

obtained through the Kronecker sum of two matrices.

The method of construction is as described as in sub-

Section 4.3.

4.3 Construction

Existence of matrices A
a×n

 and B
b×p

 with B
b×p

1
p×1

= c×1 (constant) with entries from a finite additive

abelian group of order p. Then 
1

c
A B⊗  gives us a

n-factor mixture design with each factor having p

components. The number of runs of the resulting design

is a × b, where ⊗ denotes the Kronecker sum of

matrices.

Note : (i) Choice of a and b is arbitrary and should

be chosen in such a manner as to get sufficient number

of runs to fit desired model.

(ii) Matrices A and B have been obtained by trial

and error.

(iii) This method is suitable in the situation where

all the factors in the experiment have equal number of

components.

Example 4.2 : For constructing a two factor

mixture experiment with each factor having three

components which allows fitting of second order model

(7) at least 15 runs are needed. So one should chose a

Table 6 : Two factor mixture experiments each factor having two

components viz. x
11

,
 
 x

12
,
  
x

21
 and 

 
x

22
 and response (y).

Factor 1 Factor 2 Response

x
11

x
12

x
21

x
22

y

0.146 0.854 0.146 0.854 856

0.146 0.854 0.854 0.146 689

0.854 0.146 0.146 0.854 726

0.854 0.146 0.854 0.146 789

0 1.000 0.500 0.500 799

1.000 0 0.500 0.500 750

0.500 0.500 0 1 798

0.500 0.500 1.000 0.000 812

0.500 0.500 0.500 0.500 345

0.500 0.500 0.500 0.500 395

L

N

MMMMMMMM

O

Q

PPPPPPPP

0 1 2

0 2 1

1 2 0

1 0 2

2 0 1

2 1 0

and b in such a manner that a × b ≥ 15. By taking A

and B as

A =

0

0

1

2

0

1

0

0

L

N

MMMM

O

Q

PPPP
    B =

In this case the row sum of B is 3.

Obtain D = A ⊗ B as given below

0 1 2 0 1 2

0 2 1 0 2 1

1 2 0 1 2 0

1 0 2 1 0 2

2 0 1 2 0 1

2 1 0 2 1 0

1 2 0 1 2 0

0 1 2 1 0 2

0 2 1 2 0 1

1 2 0 2 1 0

1 0 2 0 1 2

2 0 1 0 2 1

1 1 2 0 1 2

1 2 0 0 2 1

2 0 1 1 2 0

2 1 0 1 0 2

0 1 2 2 0 1

0 2 1 2 1 0

2 0 1 0 1 2

2 1 0 0 2 1

0 1 2 1 2 0

0 2 1 1 0 2

1 2 0 2 0 1

1 0 2 0 1 0

D =

L

N

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

O

Q

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

In each row, sum of first three columns and the

last three columns are equal to 3. To get the mixture

experiments of two factors, divide each element of D

by 3. The final design is given in Table 5.

5. Illustration

An analysis of the multifactor mixture experiment

using model (7) has been illustrated with a set of data.

Consider an experiment of two factor mixture

experiment; each factor is having two components. The

6 N. M. Alam et al.
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hypothetical data for two factor mixture experiment

with the response variable is shown in Table 6.

To fit model (7) using the above data PROC

RSREG of the SAS has been utilized and the results

are shown below:

Response Mean 695.90

Root MSE 34.23

R-Square 0.98

Coefficient of Variation 4.92

Regression D.F. Sum of R-Square F-Ratio Pr > F

Squares

Linear 2 2119.729 0.0074 0.90 0.4741

Quadratic 2 266353 0.9301 113.66 0.0003

Crossproduct 1 13225 0.0462 11.29 0.0283

Total Model 5 281698 0.9836 48.08 0.0012

Parameter DF Estimate Standard t Value Pr > |t|

Error

Intercept 1 1330.76 54.02 24.63 <.0001

x
11

1 -1830.61 149.02 -12.28 0.0003

x
21

1 -1947.32 149.02 -13.07 0.0002

x
11

*x
11

1 1566.12 127.96 12.24 0.0003

x
21

*x
11

1 458.84 136.58 3.36 0.0283

x
21

*x
21

1 1688.12 127.96 13.19 0.0002

Factor DF Sum of Mean F-value Pr > F

Squares Square

x
11

3 189969 63323 54.04 0.0011

x
21

3 218035 72678 62.03 0.0008

Factor Critical Value
                       

x
11

0.610
                       

x
21

0.507

Eigen vectors

Eigen Values x
11

x
21

1864.5090 0.6095 0.7928

1389.7268 0.7928 -0.6095

Stationary point is a minimum.

The optimum value of x
11

 = 0.610 and that of

x
21

 = 0.507, so the optimum value for x
12

 = 1 – 0.610

= 0.39 and the optimum value of x
22

=1 – 0.507 = 0.493.
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