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Abstract: The image spectral data, particularly hyperspectral data, has been proven as an efficient
data source for mapping of the spatial variability of soil organic carbon (SOC). Multispectral satellite
data are readily available and cost-effective sources of spectral data compared to costly and technically
demanding processing of hyperspectral data. Moreover, their continuous acquisition allows to
develop a composite from time-series, increasing the spatial coverage of SOC maps. In this study, an
evaluation of the prediction ability of models assessing SOC using real multispectral remote sensing
data from different platforms was performed. The study was conducted on a study plot (1.45 km2) in
the Chernozem region of South Moravia (Czechia). The adopted methods included field sampling
and predictive modeling using satellite multispectral Sentinel-2, Landsat-8, and PlanetScope data, and
multispectral UAS Parrot Sequoia data. Furthermore, the performance of a soil reflectance composite
image from Sentinel-2 data was analyzed. Aerial hyperspectral CASI 1500 and SASI 600 data was
used as a reference. Random forest, support vector machine, and the cubist regression technique
were applied in the predictive modeling. The prediction accuracy of models using multispectral data,
including Sentinel-2 composite, was lower (RPD range from 1.16 to 1.65; RPIQ range from 1.53 to 2.17)
compared to the reference model using hyperspectral data (RPD = 2.26; RPIQ = 3.34). The obtained
results show very similar prediction accuracy for all spaceborne sensors (Sentinel-2, Landsat-8, and
PlanetScope). However, the spatial correlation between the reference mapping results obtained from
the hyperspectral data and other maps using multispectral data was moderately strong. UAS sensors
and freely available satellite multispectral data can represent an alternative cost-effective data source
for remote SOC mapping on the local scale.
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1. Introduction

The decreasing soil organic carbon (SOC) content in agriculture soils is generally considered
a major threat to the sustainability of soil cultivation. Its role is essential in many production and
non-production soil functions as it controls the dynamics of various agrochemical processes in the
soil. The natural equilibrium of the soil environment is endangered due to external, primarily
anthropogenic effects, which lead to the development of several degradation processes. These can
also affect the soil carbon stocks, especially in the topsoil layer. Soil is a vast carbon pool (the largest
terrestrial) [1–4], making it an essential component of the entire carbon cycle on Earth, especially in
the context of expected climate and land-use changes [5–8]. Therefore, recent research on SOC has
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received considerable attention. Monitoring, mapping, and describing the spatial variability of SOC
(in landscape and also within-field scale) are the key prerequisites for understanding the effects of
agricultural practices on SOC changes. Digital soil mapping methods are used to obtain this mapped
variability using field sampling and additional environmental covariates [9]. Remote sensing (RS) data
represents one of the available data sources for such purposes within large areas. The data are also
provided in a sufficient spatial resolution suitable even for local monitoring and applications [10].

A number of studies [11–22] have proven that aerial image hyperspectral data with many narrow
spectral bands in VNIR-SWIR offer efficient input data to map the spatial variability of important soil
properties. Compared to the costly and technically demanding processing of aerial hyperspectral
data, multispectral and superspectral satellite data [23–28], or multispectral and hyperspectral UAS
data [29–31] could be a readily available source of spectral data for regular application. Despite
the increasing number of respective studies, the potential of this type of data has not been fully
exploited. An important point to be addressed is the effect of different spectral and spatial resolutions
on prediction ability. It is assumed that reduced spectral resolution, as in the case of multispectral data,
results in a reduction in the model’s predictive capability. Despite this, a number of studies dealing
with multispectral data [32–34] have shown that results can be satisfactorily applied to the needs of
precision farming, especially with regard to acquisition costs.

Nevertheless, potential inaccuracies in the outputs resulting from the use of remote RS data with
lower spectral resolution and, in the case of satellite sensors, often with coarser spatial resolution,
need to be considered. For example, sensors on Sentinel-2 and Landsat-8 satellites covering important
organic matter absorption bands in both the visible and SWIR regions of the spectrum may have
considerable potential for detailed mapping of SOC. However, only a few studies have confirmed this
potential [35–37]. Sensors with very high spatial resolution but only covering the VNIR spectrum
(e.g., WorldView, Cartosat, Pléiades, and Deimos) are considered less applicable. However, as shown
by Crucil et al. [30] in a study comparing UAS-compatible multispectral and hyperspectral sensors
operating only in the VNIR spectrum, similar results can be achieved with these sensors compared
to reference hyperspectral data also using the SWIR spectrum. Unlike spectral resolution, spatial
resolution is considered to have less of an effect on predictions relative to continuously changing soil
properties. For example, Castaldi et al. [36] showed that the spatial resolution of Sentinel-2 is adequate
for SOC variability mapping both within the field and at a regional scale.

The signal-to-noise ratio (SNR) of sensors is another important issue that affects the prediction
ability. Large noise interference in the acquired data associated with the short acquisition time at
the investigated location is a disadvantage mainly for satellite data [38–40], especially when data are
scanned in narrow spectral bands and with high spatial resolution. For example, SOC prediction
using the Hyperion hyperspectral satellite sensor [41–47] may be affected by this phenomenon. A
comparison of data from Hyperion and Advanced Land Imager (ALI) sensors [37] showed that sensors
with lower spectral resolution but higher SNR can provide better results for SOC prediction.

It follows from the above mentioned that there are still a number of uncertainties and unanswered
questions about using the mentioned approaches in management practices. One reason is the difficulty
of comparability and hence the possibility of evaluating results from individual studies using different
sensors, preprocessing of spectral data, or statistical and numerical data processing techniques.
Moreover, accuracy and prediction ability are often affected by other factors, such as different soil
conditions, variability of the analyzed characteristics, the condition of the studied surface (moisture
and surface roughness affecting vegetation and crop residues), various atmospheric conditions and
light incidence geometry during image acquisition [48,49]. This leads to reduced predictive ability
compared to that obtained with soil laboratory spectroscopy [33,50] and makes it difficult to map
SOC at a large scale, especially in temperate regions, due to crop cover and various types of land
parcel management.

There is only a portion of bare soil with a dry and non-rough surface in each RS image. Time
series of individual images [51–54] or multitemporal composites of spectral data can be used to
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reduce the influence of different surface conditions and eliminate vegetation. Exposed Soil Composite
Mapping Processor (SCMaP) [55], Geospatial Soil Sensing System (GEOS3) [56], Bare Soil Composite
Image [57], and Barest Pixel Composite for Agricultural Areas [58], all developed from Landsat time
series, multitemporal bare soil image [59] developed from RapidEye time series, or bare soil mosaic [60]
derived from Sentinel-2 data can serve as examples of such composites. However, only some of the
composite products have been used to predict SOC [57–59]. Promising results were achieved; however,
the potential of these spectral composites has not yet been tested in a relevant number of studies, and
further research is needed for its evaluation.

The objective of this study is to critically evaluate the capability of easily accessible data
(and one commercially available source with very high spatial resolution) from different types
of multispectral sensors to predict within-field variability of topsoil SOC concentration at a local scale.
Real spectral image data, identical sampling and processing design, and similar surface conditions
(dry conditions and minimal surface roughness) were ensured to achieve this goal. The data from
currently operating sensors, including satellite data from Sentinel-2 and Landsat-8 with VNIR and
SWIR bands, very-high-resolution data from CubeSat miniature Dove satellites from PlanetScope
(VNIR), and data from the UAS-mounted Parrot Sequoia sensor (VNIR) were compared. Multitemporal
bare soil composite of Sentinel-2 spectral data was also tested to evaluate the usability of this regional
product for regular usage in local mapping. Mapping results from airborne hyperspectral data also
used in preliminary studies [14,61] were used as reference data for evaluating the spatial concordance
among resulting maps and to analyze the importance of different spectral bands for SOC mapping.
Although more datasets with wider variety of spectral and spatial parameters would be needed for a
robust analysis and statistical testing, the study attempts to compare the SOC prediction models using
real-world data from different sensors to evaluate the influence of spectral and spatial resolution and
SNR on prediction accuracy. The hypothesis is that lower spectral and spatial resolution and SNR of
image spectral data will lead to lower prediction accuracy.

2. Materials and Methods

2.1. Study Site

The study site is in Šardice, with an area of 1.45 km2 (48◦ 56′ N, 17◦ 1′ E), located in South
Moravia, Czech Republic (Figure 1). It is an agricultural area consisting of three plots with relatively
steep slopes and no conservation tillage practices. The mean slope of the study site is 4.2◦, with a
maximum of around 20◦. The region is characterized by mean annual precipitation of 549 mm and
mean annual temperature of 9.3 ◦C. Bedrock was formed by upper Eocene molasse facies (sandstones,
conglomerates, and marls) covered by Pleistocene loess forming soil parent material. The thickness of
the loess layer varies from several meters to several tens of meters. Calcic Chernozems on loess are the
main original soil type in the study site. However, due to steep slopes and agricultural management
practices, soil cover has been transformed by intensive erosion (especially water and tillage) and
deposition processes. Haplic Calcisols have developed on the steep slopes, and deep colluvial soils
have formed in concave parts of the slopes [62–64].

2.2. Materials

Data from several multispectral sensors were used to assess the influence of spatial and
spectral resolution on prediction accuracy. We focused on commonly available data at different
scales and compared high-resolution multispectral images from Landsat-8 and Sentinel-2, and
very-high-resolution data from PlanetScope satellites and the UAS multispectral sensor Parrot Sequoia.
The individual missions’ characteristics are summarized in Table 1, which also presents acquisition
times for the datasets. Acquisition times of satellite sensors were chosen to meet two criteria: Firstly,
bare soil without crop residues occurred in the images and the soil surface was in a condition minimizing
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the effects of wetness and surface roughness (dry condition, ploughed, and harrowed). Secondly, the
images should be acquired at approximately the same time.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 23 
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Figure 1. Study site location.

Table 1. Main radiometric characteristics of multispectral and referenced hyperspectral sensors used in
this study.

Sensor
Characteristics

Sentinel-2 MSI
[65,66]

Landsat-8 OLI
[67]

PlanetScope
[68,69] Parrot Sequoia CASI 1500 and SASI 600

[70]

Mission Spaceborne Spaceborne Spaceborne UAS Airborne

Sensor type Pushbroom Pushbroom Frame with
split-frame NIR filter

4 × 1.2 Mpix Global
shutter frame sensors Both pushbroom

Spectral bands 13 9 4 4 CASI: 72 *
SASI: 100 *

Used spectral bands 10 8 4 4 102

Spectral range (nm) 9 VNIR
3 SWIR

5 VNIR
3 SWIR
1 PAN

4 VNIR 4VNIR CASI: 365–1050
SASI: 950–2450

FWHM (nm) 20–200 18–238 40–90 10–40 CASI: 10 *
SASI: 15 *

SNR
(typical)

129@444 nm
154@497 nm
168@560 nm
142@664 nm
117@704 nm
89@740 nm

105@783 nm
174@843 nm
72@865 nm

114@943 nm
50@1377 nm

100@1613 nm
100@2200 nm

130@443 nm
130@482 nm
100@561 nm
90@655 nm
90@865 nm

100@1609 nm
100@2201 nm

80@590 nm
50@1373 nm

151@475
184@545
157@655
157@835

Dark target:
27@550 nm *
28@660 nm *
35@735 nm *
30@790 nm *
Light target:
39@550 nm *
43@660 nm *
46@735 nm *
41@790 nm *

CASI: 800–900
Peak avelength

SASI: 350–450@1000–1350 nm
250–350@1450–1800 nm

100@1900–2350 nm
Peak wavelength

GSD
(spatial resolution) 10/20/60m 30 m

(15 m PAN) 3.5–4m Variable
(cm)

CASI: 1.2 m*
SASI: 3.1 m*

Positional accuracy 12 m 12 m 10 m 2 m 1.8 m*
Acquisition date 18-08-2018 19-08-2018 29-08-2018 20-08-2018 21-09-2015

MSI: Multispectral instrument; OLI: Operational land imager; UAS: Unmanned aircraft system; NIR: Near-infrared;
FWHM: Full width at half maximum; SNR: Signal-to-noise ratio (@: at specified wavelength); GSD: Ground sampling
distance; PAN: Panchromatic. * Values for data used in this study.

2.2.1. Landsat-8

Landsat-8 was launched in 2013. There are two sensors on board: Operational Land Imager (OLI)
collects the data for nine shortwave bands, and Thermal Infrared Sensor (TIRS) for two longwave
thermal bands. We used the Landsat-8 OLI surface reflectance data (Level 2 scientific products).
Landsat-8 OLI surface reflectance data are generated using the Landsat Surface Reflectance Code,
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which uses climate data from MODIS as input to a radiative transfer model [71]. The data were
requested and downloaded from the EarthExplorer data portal.

2.2.2. Sentinel-2

One individual cloud-free Sentinel-2B image resampled to 10 (downscaling of 20 m bands to 10 m
resolution while maintaining original values), 20 and 30 m and soil reflectance composite were used
for the analysis. An individual image with the acquisition date 19 August 2018 was downloaded from
the ESA Sentinels Scientific Data Hub. We used the Level 2A data product processed by the Sen2Cor
processor, which is ready to analyze because geometric, radiometric, and atmospheric corrections are
made in preprocessing by the data producer. The whole protocol is described in the Sentinel-2 user
handbook [65].

2.2.3. Sentinel-2 Bare Soil Composite

A soil reflectance composite image was processed based on the methodology of exposed Soil
Composite Mapping Processor (SCMaP) [55]. Instead of using Landsat data originally used to create
SCMaP, Sentinel-2 Level 2A images from March 2017 to May 2019 were used to make the composite. The
eo-learn Earth observation processing framework in Python using Copernicus Sentinel data acquired
through Sentinel Hub (Sinergise Ltd.) was applied for time series processing. A cloud mask was
created by combining data from a scene classification (SCL) map as a product of the Sen2Cor algorithm
and data obtained by cloud classification using the Sentinel Hub Cloud Detector for Sentinel-2 images
in Python (s2cloudless [72]). The threshold for bare soils was identified based on the PV index, a
modification of the normalized difference vegetation index (NDVI) (for details, see [55]). The threshold
of the PV index was set to 0.8 based on the investigation of images from data with known soil cover.
The resulting soil reflectance composite value was calculated as mean reflectance in individual bands
of cloud-free pixels matching the criteria of PV threshold.

2.2.4. PlanetScope

Each PlanetScope Dove satellite is a CubeSat 3U operating in low orbit (400, 475 km) collecting
high-resolution optical data in the visible and near-infrared spectra [73]. We used one PlanetScope
Ortho Scene product at Level 3B (Planet Labs, Inc. San Francisco, CA, USA). Product Level 3B data are
ready to use. The data are geometrically corrected by sensor telemetry and modeled, orthorectified,
projected, and scaled to surface reflectance in preprocessing by the producer [68]. Atmospheric
corrections are processed using 6SV2.1 radiative transfer code, and AOD, water vapor, and ozone
inputs are retrieved from MODIS near-real-time data. Data in original spatial resolution and data
resampled to 10 and 30 m were used for the analysis.

2.2.5. Hyperspectral Airborne Imaging

Hyperspectral data from the VIS-NIR (370–1040 nm) CASI 1500 sensor and SWIR (960–2440 nm)
SASI 600 sensor (Itres Ltd., Calgary, Canada), according to the high spectral and spatial resolution, were
used as a reference dataset for a comparison of the capability of other sensors. The data were acquired
in September 2015. CASI collected 72 spectral bands with full width at half maximum (FWHM) of 15
nm and spatial resolution of 1.2 m. SASI collected 100 spectral bands with FWHM of 10 nm and spatial
resolution of 3.1 m. The Global Change Research Institute of the Czech Academy of Sciences located in
Brno conducted the acquisition and preprocessing. The preprocessing phase involved radiometric,
geometric, and atmospheric corrections (ATCOR-4). A detailed description of the image acquisition
and preprocessing is given in [14]. Results from previous studies [14,61] using spectra transformed
by Savitzky–Golay filter (third-order polynomial smoothing and 5-band window widths) with first
derivative were used as reference data. Raw reflectance data at original resolution were used for
comparative analysis, as well as raw data resampled to 10 and 30 m spatial resolution.
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2.2.6. UAS Multispectral Imaging

A Parrot Disco Pro AG set combining the Parrot Disco Pro fixed-wing with multispectral Parrot
Sequoia camera (Table 1) mounted on the board was used in the study. Parrot Sequoia captures images
in the four independent spectral bands and with a red-green-blue (RGB) sensor. Each channel is
acquired by an independent camera with a fixed lens, 1.2 megapixels (1280 × 960 pixels) global shutter
monochrome sensor capturing data in four narrow bands: Green (550 nm, FWHM 40 nm), red (660
nm, FWHM 40 nm), red edge (735 nm, FWHM 10 nm), and near-infrared (790 nm, FWHM 40 nm).
Unfortunately, the RGB sensor of the camera has a slow rolling shutter sensor, resulting in very difficult
or even impossible RGB data processing. The position from on board the global navigation satellite
system (GNSS) and inertial navigation unit is stored in exchangeable image file format (EXIF) metadata
files. The camera is also connected to a sunshine sensor and the irradiance data are stored in the
EXIF files.

Multispectral image acquisition was conducted by the authors on 20 September 2018 at around
12:00. The sky was clear. The flight plan was prepared by the Pix4Dcapture mobile app for iOS.
The flight proceeded automatically at an altitude of 70 m covering an area of 35 ha in a single flight
(100 ha in three flights), resulting in 1600 multispectral images with a spatial resolution of 6.5 cm.
Unfortunately, the whole area was not covered by UAS imaging, because we did not have enough
batteries for the UAS to fly over the whole study area; only three accumulators from the set were
available. Images were captured at specified automatically calculated positions consistent with 80%
frontal and 70% side overlap. Reference ground calibration images of five calibration targets with
known reflectance measured in the laboratory were captured directly before the flight. The main
purpose was to compensate for ambient atmospheric conditions and the influence of sun angle.

The SNR of the Parrot Sequoia camera was calculated from the lightest and darkest calibration
targets according to Ben-Dor and Levin [74]. The DN values of the targets were extracted from the
calibration images for all bands. The SNR estimation was then calculated according to Equation (1):

SNR = AV/SD (1)

where AV is the average DN value of pixels (signals) over a homogeneous target and SD represents
noise estimated from the standard deviation of DNs.

Photogrammetric processing was performed using AgiSoft Metashape Professional 1.5.0 (AgiSoft
LLC, St. Petersburg, Russia). Metashape allows 3D reconstruction of the scene to be performed from
the imagery, employing the structure from motion and semi-global matching algorithms. The reliable
performance of the software in photogrammetric processing has been proven in previous studies
(e.g., [75]). Moreover, Metashape contains the Sequoia camera model and it can automatically extract
the information about cameras and sun sensors directly from EXIF files.

All 1600 multispectral images acquired in the imaging campaign over the study area were included
in the orientation processing. The near-infrared band was set as a master channel for computing
image orientations in the WGS 84 coordinate system. Only GNSS onboard data were used for photo
alignment. Then, radiometric calibration was conducted using an empirical line method implemented
in the software. The five calibration targets were masked on the picture (one for each target) in all
bands. The masks were paired with appropriate reflectance values. The radiometric calibration was
then computed automatically. The following steps in the workflow consisted of dense cloud generation
and automatic ground point classification. Based on these datasets, the digital terrain model (DTM)
and orthomosaic with surface reflectance values were generated. Reflectance data resampled to 1 and
10 m spatial resolution were used for the purpose of SOC prediction.
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2.3. Methods

2.3.1. Collection of Soil Sampling Data

Study plot investigation and soil sampling were carried out during the field campaign following
the aerial hyperspectral flight campaign on 6 April 2016. Soil conditions of the plot were investigated
with 1 m deep auger boreholes. An optimized network of borings fashioned using a conditioned
Latin hypercube sampling (cLHS) [76] stratified random strategy was used for observation and soil
sampling. Image-based spectral data and terrain attributes derived from the digital elevation model
(5 × 5 m2 resolution digital terrain model of Czech Republic of the fourth-generation DMR 4G® with
total standard error of 0.3 m for height in bare terrain) were used as feature space variables. A total
of 50 borings were recorded (descriptions of soil unit, soil depth, and soil profile stratigraphy) and
50 composite samples (3–5 samples covering area of 1 m2) were taken from these sites at 0–10 cm
depth. Geographic positions of borings were measured by a Trimble GeoXM GPS receiver, with a
postprocessing accuracy of approximately 1 m. The soil samples were analyzed for SOC and texture
class based on a standard laboratory procedure (air-drying, grinding, and sieving with a 2 mm sieve;
ISO11464: 2006). SOC was analyzed as total oxidized carbon and measured using wet oxidation
(ISO14235: 1998).

2.4. Prediction of SOC

Digital soil mapping methods were used for predictive modeling of SOC using image spectral
data in the spatial domain. Different multivariate regression techniques were applied because of the
inability to define the best model for specific conditions. Random forest (RF) [77], support vector
machine (with linear, polynomic, and radial kernels) (SVM) [78–80], cubist (CB) [81], and partial least
squares (PLS) [82] were used as techniques previously applied successfully in DSM and soil imaging
spectroscopy. Only spectral data characterized by surface reflectance in individual bands were used as
covariates (independent variables) in models in order to analyze the influence of different spectral data
characteristics on the ability to predict soil properties. The process of fitting the models, calibrating
and validating the results, and making final predictions was the same for all input spectral data. Caret
packages [83] in R software (R Development Core Team, Vienna, Austria) were employed for all
processing steps in the prediction modeling procedure.

The processing steps (see flowchart in Figure 2) were as follows:

1. Spectrally affected pixels in individual data sources were filtered based on NDVI value. The
threshold was set to 0.25 according to a preliminary analysis of bare soils within the study
area. Only 0 to 2 samples from the whole dataset (50 samples) were filtered, depending on the
data source.

2. The filtered dataset was partitioned into a training set (for calibration purposes) and a test set (for
validation purposes) as independent validation data were not available [84]. Partitioning at a 4:1
ratio was carried out by random stratified sampling based on predicting variable (SOC) values
(grouped based on 10th percentile) ensuring the same distribution of both datasets and enabling
a balanced comparison of results.

3. The training process included fitting separate models. Five-fold cross-validation of the training
set was used to assess the model performance and find model parameters. The best parameters
were optimized and selected by a grid search. These parameters included a number of latent
variables for PLS and hyperparameters for machine learning methods (RF—number of randomly
selected predictors and number of trees to grow, CB—number of committees and number of
instances, SVM—cost for linear kernel; cost and sigma for radial kernel; polynomial degree
scale and cost for polynomial kernel). Model specific metrics was used in each model for the
calculation of the importance of variables (spectral bands) (CB—usage as a linear combination
of the rule conditions and terminal model; RF—increase in mean squared error by permuting a
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variable; PLS—weighted sums of the absolute regression coefficients) with the exception of SVM,
where the squared weights [85] were used. Importance values were standardized to range 0–100.
The final model was selected based on the smallest root mean square error of cross-validation
(RMSECV) value. This model was used in the next step for validation of the validation set.

4. The prediction ability of models and accuracy of prediction were evaluated by determining the
measure of accuracy computed based on a comparison of observed and predicted values of
the validation set. Root mean square error of prediction (RMSEP), coefficient of determination
(R2), and Lin’s concordance correlation coefficient (CCC) were computed. Even though some
measures may have duplicate meanings [86], they are often used together by many authors, and
we also calculated the ratio of performance to deviation (RPD) and the ratio of performance to
interquartile range (RPIQ), which are more suitable for datasets with skewed distribution [87].

5. Finally, the spatial prediction of soil attributes was performed using a selected model with the
best predictive ability (lowest RMSEP value). This model was applied to the entire dataset of
image spectral data.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 23 
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content ranges from 0.84% to 2.62% (mean 1.44%) and is classified as low to high. The highest values
have been found in places with autochthonous Calcic Chernozems only weakly affected by erosion
(range 1.24%–2.62%, mean 1.86%). On the other hand, significantly lower content has been found in
eroded soils (Haplic Calcisols) on the most exposed terrain positions in terms of tillage and water
erosion (range 0.84%–1.84%, mean 1.27%). Compared to the assumptions, there was low to moderate
carbon content in the topsoil of the colluvial soils (range 1.04%–1.57%, mean 1.33%).
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Table 2. Descriptive statistics of content (%) of main soil properties. SD: Standard deviation; CV:
Coefficient of variation; IQ: Interquartile range.

Soil Properties Min Max Mean Range SD CV (%) IQ

SOC (%) 0.84 2.62 1.44 1.78 0.39 27 0.51

Sand (%) 15.2 58.3 38.91 43.1 8.34 21.4 10.0

Silt (%) 27.5 49.1 38.49 21.6 4.67 12.1 4.45

Clay (%) 14.2 48.3 22.6 34.1 6.8 30.1 5.93

CaCO3 (%) 0 10.0 4.07 10.0 3.34 82.1 6.56

3.2. Comparison of Measured Spectra

Even though spectral data were collected at similar times under the same surface conditions
(in dry periods with no change of roughness), reflectance data showed significant differences. The
reflectance values measured by the sensors used are depicted in Figure 3 as mean reflectance from
all samples. The lowest differences were found predominantly in NIR bands of all multispectral
sensors, where the range of values is about 0.025. More pronounced differences were observed in
the visible parts of spectra, where the lowest value of reflectance is related to UAS-based reflectance
measurements with Parrot Sequoia, followed by Landsat-8 and PlanetScope. The differences in these
parts of the spectra reach 0.05 of reflectance. The PlanetScope data show the highest match with aerial
hyperspectral data in visible spectra. The closest match in the SWIR region, where only Sentinel-2 and
Landsat-8 have spectral bands, was found for data from Landsat-8 and Sentinel-2 composite, while
individual Sentinel-2 data exceed reflectance by about 0.05.
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3.3. Prediction of Soil Properties by Spectral Data

The statistical accuracy obtained using the multispectral data was lower compared to the
hyperspectral data (see results in Figures 4 and 5 and Table 3). The most accurate prediction of SOC
content, achieved with reference aerial hyperspectral data preprocessed by spectral transformation
(RMSE = 0.16%; RPD = 2.26; RPIQ = 3.34; R2 = 0.8), can be considered an achievable limitation of
prediction accuracy. The hyperspectral data had the highest spectral resolution (112 bands) and SNR in
combination with high spatial resolution (3 m). Prediction using only raw hyperspectral data without
any spectral transformation showed lower performance (RMSE = 0.20%; RPD = 1.81; RPIQ = 2.68; R2

= 0.76). A greater reduction in prediction performance was found using hyperspectral data resampled
to 10 and 30 m resolution (RMSE = 0.24%; RPD = 1.51; RPIQ = 2.23).
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The prediction accuracy of the individual Sentinel-2 image with a ground sampling distance of
20 m was slightly higher (RMSE = 0.26%; RPD = 1.52; RPIQ = 2) compared to Landsat-8 with 30 m
spatial resolution (RMSE = 0.28%; RPD = 1.42; RPIQ = 1.85). The prediction accuracy of the model
using Sentinel-2 data resampled to Landsat-8 30 m resolution was slightly lower (RMSE = 0.28%; RPD
= 1.40; RPIQ = 1.81) compared to the original Sentinel-2 data. However, results show great agreement
with the results using Landsat-8 itself.

Despite having the finest spatial resolution, the lowest accuracy was achieved by using UAS
mutispectral data (RMSE = 0.31%; RPD = 1.37; RPIQ = 1.77). Only 29 samples could be used for UAS
modeling, due to limited coverage of image data. These data, and PlanetScope data, cover only VNIR
spectral regions. Nevertheless, the prediction accuracy of the model using PlanetScope data with
very high resolution (3 m) was comparable (RMSE = 0.26%; RPD = 1.52; RPIQ = 2.00) to the original
Sentinel-2 individual image and slightly higher than Landsat-8. The prediction slightly improved when
using PlanetScope data resampled to 10 m (RMSE = 0.24%; RPD = 1.46; RPIQ = 1.93). Resampling
to 30 m led to a further decrease in prediction accuracy (RMSE = 0.27%; RPD = 1.46; RPIQ = 1.93).
The least Sentinel-2 composite data showed the lowest prediction ability (RMSE = 0.34%; RPD = 1.16;
RPIQ = 1.53).
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Table 3. Prediction accuracy obtained by modeling with different sensors.
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Sentinel-2
individual 10 10 50 PLS 40 0.29 0.72 10 0.27 0.66 0.75 1.45 1.88

Sentinel-2
individual 20 10 50 CB 40 0.24 0.7 10 0.26 0.68 0.69 1.52 2.00

Sentinel-2
individual 30* 10 50 CB 40 0.25 0.64 10 0.28 0.56 0.64 1.4 1.80

Sentinel-2
composite 10 10 49 CB 39 0.28 0.52 10 0.34 0.81 0.62 1.16 1.53

Landsat-8 30 8 49 SVM 39 0.29 0.45 10 0.28 0.65 0.65 1.41 1.86
PlanetScope 3 4 49 CB 39 0.20 0.75 10 0.26 0.66 0.74 1.52 2.00
PlanetScope 10 4 49 RF 39 0.22 0.64 10 0.24 0.74 0.80 1.65 2.17
PlanetScope 30 4 49 RF 39 0.21 0.70 10 0.27 0.59 0.72 1.46 1.93

Parrot Sequoia 1 4 29 CB 23 0.27 0.72 6 0.31 0.72 0.7 1.38 1.77
Parrot Sequoia 10 4 29 CB 23 0.28 0.52 6 0.34 0.57 0.68 1.26 1.62
CASI + SASI 3 102 48 SVM 39 0.16 0.82 9 0.20 0.76 0.86 1.81 2.68

CASI + SASI *
+ SG trans. 3 102 48 SVM 39 0.17 0.87 9 0.16 0.8 – 2.26 3.34

CASI + SASI 10 102 48 SVM 39 0.17 0.80 9 0.24 0.73 0.76 1.51 2.23
CASI + SASI 30 102 48 SVM 39 0.16 0.82 9 0.24 0.63 0.73 1.51 2.23

* Reference data [14]. Bold font indicates data in original spatial resolution, others are resampled from original
resolution. SR: Spatial resolution; RMSECV: Root mean square error of cross-validation; RMSEP: Root mean square
error of prediction; CCC: Lin’s concordance correlation coefficient; RPD: Ratio of performance to deviation; RPIQ:
Ratio of performance to interquartile range; PLS: Partial least squares; CB: Cubist; SVM: Support vector machine;
RF: Random forest; SG: Savitzky–Golay spectral transformation.

Figure 5 shows a between-sensor comparison of RMSE of prediction according to the spatial
resolution and the number of spectral bands (numbers within points). There is no substantial trend in
RMSE values regardless of spatial and spectral resolution for all multispectral platforms.

The importance of spectral bands in models with native spatial resolution was investigated in
greater depth to determine the bands most appropriate for SOC modeling and the difference between
the sensors. Standardized variable importance coefficients are depicted in Figure 6. The importance
characteristics for hyperspectral data show similar trends in each of the used regression models.
The bands in the visible and NIR spectrum are of the utmost importance, with maxima in NIR. The
importance decreases continuously up to the SWIR spectrum. The red and NIR bands are the most
significant in the multispectral data. The only exception PlanetSCOPE data, where the NIR band did
not show a significant importance in the prediction model. SWIR bands for Sentinel-2 and Landsat-8
were also very important prediction bands, especially SWIR 1 band around 1600 nm.

Figure 7 depicts the predicted SOC spatial distribution compared with the observed values. The
maps are derived from predictive modeling based on different sensor data. All maps show similar
coherent patterns of SOC variability regardless of spatial resolution. The spatial correlation analysis
(Pearson correlation coefficient) was used to assess the concordance among the resulting maps. The
results are shown in the correlation matrix in Table 4. The best match between the reference map from
the hyperspectral data and the multispectral data was obtained for PlanetScope (0.82). The worst result
was achieved with Landsat-8 with the lowest spatial resolution (0.622); however, this relationship is
also moderately strong.
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hyperspectral data CASI + SASI, (b) Sentinel-2 individual image, (c) Sentinel-2 composite image, (d)
Landsat-8, (e) PlanetScope, (f) UAS Parrot Sequoia.

Table 4. Correlation matrix with overall correlation metrics between maps.

CASI + +SASI Sentinel-2 Sentinel-2 Composite Landsat-8 PlanetScope

Sentinel-2 0.756
Sentinel-2 Composite 0.761 0.883

Landsat-8 0.622 0.732 0.715
PlanetScope 0.817 0.797 0.773 0.648

Sequoia 0.748 1 0.833 1 0.803 1 0.823 1 0.874 1

1 Values calculated using limited area recorded from Unmanned Aerial Vehicle.

3.4. Spatial Distribution of SOC

Figure 8 shows prediction error values for individual points. The highest prediction errors
reach 0.6% SOC. Most errors are related to underestimating actual SOC values, mainly in the original
Chernozems with high SOC concentration (SW part of the plot). Another area with an increased
prediction error was detected in terrain depressions covered by Colluvial soils. The pattern of prediction
errors is similar for all platforms.
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4. Discussion

The results showed a potential of different types of multispectral data for mapping SOC on a
local scale and even for regional mapping using composite datasets. On the one hand, the predictive
capability of models achieved poor or average results based on RPD evaluation (RPD from 1.16 to 1.65).
This means that the error of these models is similar or only slightly lower than the standard deviation of
the SOC samples. On the other hand, despite these rather inconclusive results, other findings (especially
spatial correlation analysis) indicate a high correlation between the reference results obtained from the
hyperspectral data and other maps, especially those derived from Sentinel-2 and PlanetScope (0.75 and
0.82). This was shown in the comparison of map outcomes. Thus, the final maps produced on the basis
of multispectral data can, despite the low model accuracy metrics, precisely reflect the within-field
variability of SOCs. The results (RPIQ values, scatterplots of predictions and observations, and maps)
also show that the models predicted worse the values in the lower and upper tails of the distribution.
This affects the model accuracy metrics. In this respect, it would be appropriate to address the issue
of outliers in future research. It could help to increase the accuracy of the prediction in tailed values,
which is generally a problem with machine learning methods. The prediction accuracy of models can
also be improved by incorporating other environmental covariates (terrain, parent material maps, etc.)
or incorporating covariate contextual information into the prediction models [88–93].
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The achieved results illustrate that multispectral data provide significantly worse SOC estimations
than reference hyperspectral data regardless of the spatial resolution. This is due to the combination
of higher SNR and spectral resolution. However, the availability of the hyperspectral data is, due
to a lack of hyperspectral satellites in orbit, generally worse. Other drawbacks of the hyperspectral
data are a high acquisition cost of aerial data, high demands on hardware, and know-how in the data
processing. On the other side, the presented multispectral RS missions, especially Sentinel-2 and
Landsat-8, provide large amounts of freely available data that can be suitable for SOC digital mapping.
The results of our study show very similar prediction accuracy for all spaceborne sensors with only
minor prediction variance, which could not be explained without a full factorial experiment design
and consequent statistical testing of all variables. More data from different sensors would be needed
for a robust analysis. Despite the limited number of sensors, interesting conclusions have been drawn.

Satellite multispectral sensors provided data only from a few broad spectral bands. This is the
difference from the hyperspectral sensors which provide continuous reflectance curves in VNIR-SWIR
spectra with high SNR and include more absorption features related to SOC [94,95]. This allows for
better results and higher accuracy of SOC prediction. Similar results were reported by Castaldi et al. [42],
who compared SOC estimation by the PLSR model using image data from the Advanced Land Imager
(ALI) and Hyperion sensors on board the EO-1 satellite. Hyperion data provided better results than
multispectral ALI data for clay, sand, and especially for SOC estimation. Cascaldi et al. [37] estimated
SOC and other soil properties using simulated data from soil spectral libraries and data from seven
hyperspectral and multispectral sensors. Sentinel-2 MSI data showed prediction accuracy equal
to simulated Hyperion data, which had very low SNR in the SWIR spectrum, but the Sentinel-2
data had significantly better results in terms of prediction accuracy (RPD = 1.55; RPIQ = 2.68) than
Landsat-8 (RPD = 1.46; RPIQ = 2.51). The best results were achieved with EnMAP (RPD = 1.8; RPIQ
= 3.11). According to their results, this was due to more bands in the SWIR region combined with
narrower bands, which better reflect the spectral features of organic matter. Rosero-Vlasova et al. [96]
obtained similar results also using simulated satellite data. They achieved the best fit with models
using simulated EnMAP reflectance (R2 = 0.93). The least reliable estimates (R2 = 0.4) came from the
simulated Landsat model, while the Sentinel-2 model showed better performance (R2 = 0.63). In our
study, we obtained slightly better results using non-simulated real satellite data from Landsat-8 (R2 =

0.65, RMSE = 0.28%) and Sentinel-2 (R2 = 0.68, RMSE = 0.26%). Moreover, the prediction accuracy of
the Sentinel-2 model was slightly better than that of the Landsat-8 model, which is consistent with the
aforementioned studies [37,96].

Spectral absorption regions, which can be used to quantify soil organic carbon (SOC), are located
mainly in broader bands in the visible region of the spectrum and in the narrower bands of the SWIR
spectrum (between 1600 and 1900 nm and around 2100 and 2300 nm) [36,37,97–100]. For this reason,
the spectral resolution of the sensors significantly influences the quality of SOC predictions [34,37]. It
is, therefore, necessary to use data with appropriate spectral resolution taken across the VNIR-SWIR
spectrum for accurate SOC estimates [101]. This is also shown by the results of our study, where the
importance of bands in individual prediction model was investigated. Red and NIR bands are the
most important in the multispectral data use (except of PlanetSCOPE data). This suggests that not
only the presence of spectral bands but also their constellation is very important. SWIR bands for
Sentinel-2 and Landsat-8 were also very important prediction bands, especially SWIR 1 band around
1600 nm. Presence of these bands can be a significant advantage over the data that uses only bands in
the visible and NIR spectrum. New-generation satellite hyperspectral sensors (e.g., EnMAP, PRISMA,
HyspIRI, SHALOM) with relatively high SNR and high spatial resolution can make progress in this
regard. Recent studies have demonstrated their potential for SOC prediction based on simulated data
from point hyperspectral measurements [12,37].

Unlike spectral resolution, the effect of spatial resolution is not so obvious. It can be assumed
that higher spatial resolution can lead to slightly higher prediction accuracy, if other parameters of the
sensors are identical. This was confirmed by the results of the study when upscaling of data led to a
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decrease in predictive ability—Sentinel-2 data from 20 m (RMSE = 0.26%) to 30 m (RMSE = 0.28%),
PlanetScope data from 3 m (RMSE = 0.26%) to 30 m (RMSE = 0.27%), and Parrot Sequoia data from 1
m (RMSE = 0.31%) to 10 m (RMSE = 0.34%). The same trend was achieved by the model using the
raw hyperspectral dataset with original spatial resolution of 3 m (RMSE = 0.20%). The hyperspectral
datasets rescaled to 10 and 30 m resolution showed a decrease in the prediction accuracy (RMSE =

0.24%). These minor decreases in prediction accuracy could be caused by decreasing spatial resolution
of the image, because the spectral resolution remains constant. However, we could not perform
statistical testing of the decreasing prediction accuracy trend due to the lack of multiple instances of
each rescaled model and its validation metrics. Steinberg et al. [12] similarly investigated the influence
of spatial resolution to SOC prediction by PLSR, comparing simulated spaceborne hyperspectral
EnMAP and Airborne hyperspectral system (AHS) images with higher spatial resolution. Their results
showed that EnMAP allowed prediction of iron oxide, clay, and SOC with an R2 between 0.53 and 0.67
compared to AHS imagery with an R2 between 0.64 and 0.74.

A great potential for local applications is linked to UAS spectral sensors, as shown by
Crucil et al. [30]. The main advantages of UAS data are low acquisition cost, high spatial resolution,
and flying on demand. However, the prediction accuracy of the models using images from the
Parrot Sequoia UAS camera (R2 = 0.72, RMSE = 0.31%) was lower compared to the spaceborne
sensors. It should be noted that these sensors are much cheaper and built with inexpensive electronics
parts, resulting in significantly lower SNR, which is not comparable with the SNR of agency-funded
satellites [102]. Although we do not have enough data to test this hypothesis, it can be assumed that
the lower accuracy of Sequoia data is partially influenced by lower SNR. SNR has a proven effect on
prediction accuracy [11,37,103]. Gomez et al. [39] concluded that the lower accuracy of SOC estimations
using Hyperion spectra is because of lower SNR (~50:1) and spatial resolution compared to Agrispec
field spectrometer data resampled to similar spectral resolution.

In this study, predictive ability was also evaluated using a time composite from Sentinel-2 data.
The prediction of soil properties using RS data requires the presence of bare soil in the images. Thus, it is
necessary to select images without the masking effect of vegetation. Mapping of larger areas accordingly
is rather complicated, especially in temperate regions with different crop rotations throughout the year.
The use of time composites is one of the few proven alternatives. The main challenges in composite
development are cloud masking (and cloud shadows), definition of bare soils (vegetation masking,
including non-photosynthetic vegetation, straw, and litter) on individual images and determination of
the resulting reflectance values. Different approaches were used to derive the reflectance values of the
final product in the previous studies. Thresholds of spectral indices are usually used for the vegetation
masking: Mainly NDVI for green vegetation [56,57,59,60], NBR2 [56,104], or MID-infrared [57] for
non-photosynthetic vegetation or combined indexes, such as Bare soil index (BSI) [58] or PV [55].
Statistics from time series of masked data were used to derive final reflectance data—mean [55,58],
median [56], or minimum [57,60]. Other methods used to improve and obtain more stable values
included, for example, exclusion of 5% quartile [58], application of PCA components [54], field-based
standard deviation values [59] or using low-pass filter [60]. In this study, we used Sentinel-2 time
series, PV index for masking vegetation and mean statistic for deriving reflectance data and Sentinel-2
composite. The prediction using this composite achieved only average results. However, these results
were better than those achieved in a study by Diek et al. [58], which was conducted at the national
level using Landsat data, and comparable with results of Blasch et al. [59] and Gallo et al. [57]. The
potential of these composite data is great; it can be used as an entry in DSM models. However, further
development is necessary. It can be assumed that the weak predictive ability of these data is due to
various factors. Above all, this product combines data that has been taken under different moisture
conditions and surface roughness. Despite a progress in this area, it is necessary to develop new
algorithms, not only for identifying bare soils, but also for removing the influence of moisture, surface
roughness, or vegetation residues. Clouding and shading effects on input data is another aspect.
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Clouds and shadows can be masked using already developed algorithms, but the results are still not
faultless. Therefore, further development is needed in this respect.

We must take into account that the results can be affected by the mismatch between the size
of the sampling spot (composite sample in the area of 1 m2) and the resolution of the sensor (1–30
m2). However, evaluating this effect would require a very challenging experiment going beyond the
scope of this research. Thus, further studies are needed to evaluate this effect. Another issue that
could negatively affect the results of multispectral models in this study is the sampling design. As
mentioned for example by Castaldi et al. [11], one sampling for each remote sensing acquisition is
required for a precise prediction. SOC concentration can have strong dynamics in both space and
time, and differences in sampling and acquisition time can negatively affect the results. Although
organic fertilizers were not applied and no significant erosion events occurred between the time of
sampling and data acquisition, it is necessary to take into account the possible influence on the results.
Unfortunately, this cannot be achieved without a time-differentiated and time-consuming and costly
sampling. According to our best knowledge, any study assessing the effect of sampling and acquisition
time on the SOC prediction has not been conducted yet, but is urgently needed.

5. Conclusions

This study aimed to evaluate the capability of multispectral RS data to predict the variability
of SOC concentration in the topsoil in the study plot to assess the influence of spectral and spatial
resolution on the prediction accuracy of models. The results of this study show that hyperspectral data
provide better SOC estimations than multispectral data. However, hyperspectral data are not always
freely available and involve high cost and technical demands. On the other side, multispectral RS
missions, especially Sentinel-2, provide large amounts of freely available data. The short revisit time,
10 m spatial resolution, and higher signal-to-noise ratio could be highlighted as major advantages
of Sentinel-2 compared to some mature hyperspectral sensors. Short revisit times also enable wide
time-series databases of Sentinel-2 images to be built and soil reflectance composite to be constructed
as an alternative to using individual images. Other research data sources, such as Landsat-8, as well
as data with the limited spectral resolution, such as PlanetScope CubeSat data with high spatial and
temporal resolution, have shown their potential. The study also shows that the application of UAS
sensors for SOC predictive modeling can be a suitable and cost-effective alternative for remote SOC
mapping. The main advantages of UAS data are low acquisition cost, high spatial resolution, and flying
on demand while maintaining comparable SOC prediction with spaceborne multispectral sensors.
Despite efforts in recent years, further progress in increasing the predictive power of these datasets is
needed. In conclusion, UAS sensors for SOC estimation at the plot scale and Sentinel-2 data at the
regional scale may represent an alternative to the cost-effective data sources for remote SOC mapping.
However, the results of the study are limited by the complexity of remote sensing data acquisition
and sampling date, the number of used soil samples, and spatial extent of the study. Therefore, more
comprehensive studies, especially on a regional scale, are needed.
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collecting soil sample field data. The authors would also like to thank Aleš Klement for laboratory spectroscopy
measurement of samples used as reference for this work.



Remote Sens. 2019, 11, 2947 18 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Batjes, N.H. World Soil Carbon Stocks and Global Change; ISRIC: Wageningen, The Netherlands, 1995.
2. Houghton, R.A. Changes in the storage of terrestrial carbon since 1850. In Soils and Global Change; Lal, R.,

Kimble, J.M., Levine, E.R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 45–65.
3. Todd-Brown, K.E.O.; Randerson, J.T.; Post, W.M.; Hoffman, F.M.; Tarnocai, C.; Schuur, E.A.G.; Allison, S.D.

Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with
observations. Biogeosciences 2013, 10, 1717–1736. [CrossRef]

4. Hiederer, R.; Köchy, M. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database; EUR
25225; Publications Office of the European Union: Luxembourg, 2011; ISBN 978-92-79-23108-7.

5. Banwart, S.A.; Black, H.; Cai, Z.; Gicheru, P.T.; Joosten, H.; Victoria, R.L.; Milne, E.; Noellemeyer, E.; Pascual, U.
The Global Challenge for Soil Carbon. In Soil Carbon: Science, Management and Policy for Multiple Benefits;
Banwart, S.A., Noellemeyer, E., Milne, E., Eds.; CAB International: Wallingford, UK, 2015; pp. 1–9. ISBN
9781780645322.

6. Milne, E.; Banwart, S.A.; Noellemeyer, E.; Abson, D.J.; Ballabio, C.; Bampa, F.; Bationo, A.; Batjes, N.H.;
Bernoux, M.; Bhattacharyya, T.; et al. Soil carbon, multiple benefits. Environ. Dev. 2015, 13, 33–38. [CrossRef]

7. Smith, P.; Gottschalk, P.; Smith, J. Climate Change and Soil Carbon Impacts. In Soil Carbon: Science,
Management and Policy for Multiple Benefits; Banwart, S.A., Noellemeyer, E., Milne, E., Eds.; CAB International:
Wallingford, UK, 2015; pp. 235–242.

8. Smith, J.; Smith, P.; Wattenbach, M.; Zaehle, S.; Hiederer, R.; Jones, R.J.A.; Montanarella, L.; Rounsevell, M.D.;
Reginster, I.; Ewert, F. Projected changes in mineral soil carbon of European croplands and grasslands,
1990–2080. Glob. Chang. Biol. 2005, 11, 2141–2152. [CrossRef]

9. McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52.
[CrossRef]

10. Ravi Shankar, D. Remote Sensing of Soils; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-53738-1.
11. Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; van Wesemael, B. Soil organic carbon Estimation

in croplands by hyperspectral remote APEX data using the LUCAS topsoil database. Remote Sens. 2018, 10,
153. [CrossRef]

12. Steinberg, A.; Chabrillat, S.; Stevens, A.; Segl, K.; Foerster, S. Prediction of common surface soil properties
based on Vis-NIR airborne and simulated EnMAP imaging spectroscopy Data: Prediction accuracy and
influence of spatial resolution. Remote Sens. 2016, 8, 613. [CrossRef]

13. Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their
spatial structures from hyperspectral Vis-NIR data. Geoderma 2012, 189–190, 176–185. [CrossRef]
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