
INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 33: 2068–2081 (2013)
Published online 15 August 2012 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/joc.3577

Monitoring and forecasting drought impact on dryland
farming areas

Saleh Arshad,a Saeed Morid,a* Mohammad Reza Mobasheri,b Majid Agha Alikhania

and Sajjad Arshadc

a College of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Teheran, Iran
b International Water Management Institute, P.O. Box 2075, Colombo, Sri Lanka

c College of Computer, Shahid Beheshti University, Teheran, Iran

ABSTRACT: Frequent drought amplifies the need for a warning system and forecasting models for damage to crop
yields. This study developed an operational model to assess agricultural drought impact. The dryland areas of Kermanshah
Province (Iran) were selected to test the proposed modelling system. The model predicted the consequences of drought
damage on wheat crop during critical stages of growth (emergence, vegetative growth, initiation of flowering, grain filling,
and maturity) as a drought loss indicator. Two types of input were evaluated to correlate climate conditions versus drought
losses. The first group comprises the Palmer Drought Severity Index, Z-index, Crop Moisture Index, Crop-Specific Drought
Index (CSDI), Standardized Precipitation Index, and Effective Drought Index with one- to three-month timescales used as
meteorological indices. The second group, which is consistent of the vegetation condition index and temperature condition
index, is based on satellite data. Also a new satellite-based version of CSDI, so-called standardized CSDI (S-CDSI), where
evapotranspiration was estimated using surface energy balance algorithm for land, is used. Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) technique was used for forecasting with genetic algorithms applied to select appropriate inputs from
among the large number of indices. It was concluded that the combination of meteorological and satellite indices performed
best in forecasting crop yield. As expected, accuracy improved over the growth stages as the crop developed. Enhancement
of the model with a GIS platform made it possible to present the results more suitably, hence helping users to make more
realistic decisions. Copyright  2012 Royal Meteorological Society
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1. Introduction

Drought is a temporary and recurring meteorological
event and the agricultural sector is the main victim of this
natural disaster. Agricultural drought is mainly the result
of precipitation shortages, differences between actual and
potential evapotranspiration (ET), and soil water deficits.
Thus, drought impact also varies according to prevailing
weather conditions, biological characteristics of the crops,
and their growth stages.

To cope with drought and reduce consequent losses,
it is crucial to develop a warning system to forecast
potential drought impact on final agriculture production
at the preplanting and early crop-growth stages using
a number of indicators. Such a system allows decision
makers sufficient time to implement strategies to reduce
risk potential. The main indicators for drought monitoring
are drought indices, which can be used to quantify the
moisture condition of a region and detect the onset
and severity of a drought and the spatial extent of a

∗ Correspondence to: S. Morid, Tarbiat Modares University, College
of Agriculture, P.O. Box 14115-336, Teheran, Iran.
E-mail: morid sa@modares.ac.ir

drought event that allows comparison of moisture supply
conditions between regions (Alley, 1984).

Many drought indices have been developed to date.
These include the Palmer Drought Severity Index (PDSI;
Palmer, 1965), which is widely used in the USA,
the Deciles Index (Gibbs and Maher, 1967), which is
operational in Australia, Crop Moisture Index (CMI),
which uses a meteorological approach to monitor week-
to-week crop conditions (Palmer, 1968), Standardized
Precipitation Index (SPI; McKee et al., 1993), which has
gained the world popularity, Effective Drought Index
(EDI) attempt to more accurately determine the exact
start and end of a drought period with a daily time
step (Byun and Wilhite, 1999), and so on. A review of
drought indices can be found in several sources, including
Smakhtin and Hughes (2007) and Morid et al. (2006).

Correlating drought indices and crop performance to
assess the impact of drought has been the focus of a
number of studies. Quiring and Papakryiakou (2003)
evaluated the PDSI, Z-index, SPI, and NOAA drought
index (NDI) to measure agricultural drought. Wu and
Wilhite (2004) developed an agricultural drought risk
assessment model based on variables derived from SPI
and CDSI using multivariate regression techniques. In
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another study, Mkhabela et al. (2010) identified drought
indices that strongly correlated with spring wheat yield
and quality. Their results showed that SPI is suitable
to be applied as a water supply index. Manatsa et al.
(2010) also analysed the vulnerability of crops from fre-
quency and spatiotemporal characteristics of agricultural
droughts in Zimbabwe using SPI. All these studies took
place only in dryland farming areas to prevent the impact
of irrigation on soil moisture and crop growth. It should
be emphasized that in these studies, a dominant crop was
used to evaluate the indices for agricultural drought mon-
itoring (e.g. wheat in Wu and Wilhite, 2004 and Manatsa
et al., 2010 or barley in Quiring and Papakryiakou, 2003).

From another point of view, in data-sparse regions of
the world, monitoring systems are faced with two main
limitations: low density of climate observation points
and, most importantly, difficulty to provide near-real-
time data (Smakhtin et al., 2006). Remote sensing (RS)
technology is a possible solution to these limitations.
Satellite-derived data have the advantages of consistent
spatial coverage and near-real-time availability. For these
reasons, they are widely used in various aspects of nat-
ural resources management, including drought monitor-
ing (Boken et al., 2005). Perhaps the most well-known
satellite-sensor-derived vegetation index is the normal-
ized difference vegetation index (NDVI) (Rouse et al.,
1973; Tuker, 1979). Other such indices are the vegeta-
tion condition index (VCI) and the NDVI deviation from
its long-term mean (DEV) that originated with the NDVI
and has been applied for drought monitoring (Thenkabail
et al., 2004).

Although monitoring can identify the early signs of
drought, complimentary analysis is required to forecast

its future impact. Such a tool provides information in a
timely manner about potential agricultural drought risks
to allow decision makers and farmers to adopt rele-
vant measures. An intelligent computing tool, the adap-
tive neuro-fuzzy inference system (ANFIS), is a hybrid
approach that is proven to be efficient for forecasting.
The main advantages of the method are that it does not
require the model structure to be known a priori and
it has the ability to handle large amounts of noisy data
from dynamic and nonlinear systems, especially when the
underlying physical relationships are not fully understood
(Nayak et al., 2004).

The current study aims to develop an operational
modelling system for monitoring and forecasting drought
impact on the agriculture sector. The dryland farming
area of Kermanshah Province in Iran, where wheat
is the major crop, was selected to test the proposed
methodology.

2. Materials and methods

2.1. Study area and data

The Kermanshah Province with an area of 24 980 km2

is located in the western part of Iran (Figure 1). The
Province includes 11 provincial cities (PCs) – admini-
strative subdivisions, which are used in this study as
the basic geographical unit (Figure 1). The Province is
mainly mountainous and is a part of Zagross Ranges. The
region’s precipitation varies from 375 mm to 575 mm.
Figure 2 shows the trend of precipitation time series at
Kermanshah Province. The agricultural area covers a total
area of about 820 000 ha of the Province (32.81%) and

Figure 1. Locations of Kermanshah Province meteorological stations.
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Figure 2. The trend of precipitation time series at Kermanshah
Province.

dryland farming reaches more than 620 000 ha (75.61%).
For studies of areal drought extent, the precipitation
records from 20 stations in the Province were utilized
(Figure 1). The record length at these stations is from
January 1974 to December 2004. The missing data is less
than 10% and the gaps were patched using regression
equations with the nearest suitable station.

The soil data and records of wheat production in
the dryland areas within each PC are collected from
the Ministry of Agriculture. The available record for
the crop yields is from 1984 to 2004. There is also
an agrometeorological station in the region (Sara Rud
station) that records phonological too. Its data is used to
indicate phonological stages of wheat in the study area.

The AVHRR satellite covers the globe twice a day with
a spatial resolution of 1.1 × 1.1 km2. The sensor collects
the radiance data in five spectral bands (band 1: 0.63 µm;
band 2: 0.85 µm; band 3: 1.607 µm; band 4: 10.82 µm;
band 5: 12.0 µm). The AVHRR images were collected
and preprocessed for this study, for an 18 year period,
from 1989 to 2007. This period includes one of the
recent catastrophic drought spell of 1998–2001, which
has been identified as the most severe drought event of
the last 35 years (Morid et al., 2007) and ensures that the
minimum NDVI is present in the time series of images.

The growing season in the Province is from March
to July; hence, the images were selected only from
these months. Overall, excluding the cloudy days, 271
images were prepared for this study. Preprocessing of
the NDVI images included derivation of maximum value
composite (MVC) and extraction of NDVI–MVC values
for the PCs within the study time period. The MVC
technique retains the highest NDVI value for each pixel
during the growing stage periods producing images that
are spatially continuous and relatively cloud-free, with
temporal resolution sufficient for evaluating vegetation
dynamics.

2.2. Meteorological drought indices

For this study, the meteorological drought indices
selected are PDSI, Z-Index, CMI, Crop-Specific Drought
Index (CSDI), SPI, and EDI, which are among the most
frequently recommended for this type of analysis (Quir-
ing and Papakryiakou, 2003; Morid et al., 2007).

2.2.1. PDSI and moisture anomaly index

The PDSI and the Z-index were both developed by
Palmer (1965). The Z-index is a measure of the monthly
moisture anomaly and it reflects the departure of moisture
conditions in a particular month from normal (or cli-
matically appropriate) moisture conditions (Heim, 2002).
PDSI aims to measure moisture conditions that are stan-
dardized so that comparisons using the index could be
made between locations and between months. The index
is based on the supply-and-demand concept of the water
balance equation including ET, soil recharge, runoff, and
moisture loss from the surface layer.

2.2.2. Crop moisture condition

The CMI, also developed by Palmer (1968), is a com-
plement to the PDSI. It measures the degree to which
crop moisture requirements are met. It is more respon-
sive to short-term changes in moisture conditions and is
not intended to assess long-term droughts.

2.2.3. Crop-Specific Drought Index

The CSDI (Meyer et al., 1993) is one of the rare indices
that incorporate directly ET in drought monitoring. It is
based on the ratio of actual ET to potential ET:

CSDI =
n∏

i=1




∑
ETact∑
ETpc




λi

i

(1)

where ETact and ETpc are the actual and the potential ET
(mm), respectively, for the crop at each growth period; n

is the number of periods chosen to represent the crop’s
growth cycle; and λi is the relative sensitivity of the
crop to moisture stress during the ith period of growth.
However, in this reach work, similar to Wu and Wilhite
(2004), it is assumed to be 1.

2.3. Satellite drought indices

RS-based vegetation indices are radiometric measures
of the dynamics of vegetation conditions employing the
spectral signatures of canopy elements, particularly in the
red and near-infra red portions of the spectrum (Huete
et al., 2002). By utilizing reflectance data in two or
more spectral bands, these indices can enhance vegetation
signals and cancel out the effects of topography, sun
angle, and atmosphere.

2.3.1. Normalized difference vegetation index

Perhaps the most well-known satellite-sensor-derived
vegetation index at present is NDVI, suggested by Tucker
(1979):

NDVI = (λNIR − λRED)

(λNIR + λRED)
(2)

where λNIR and λRED are the reflectance in the NIR and
RED bands, respectively. Because of its close relation
with vegetation vigour and accessible soil moisture,
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NDVI is commonly used in drought studies (Lim and
Kafatos, 2002; Olsson et al., 2005).

2.3.2. Vegetation condition index

Another vegetation-related index, which is a derivation
of the NDVI, is VCI. Kogan (1995) suggested this index
as a measure of difference between present vegetation
condition and the worst vegetation condition observed
for a long term in the same location:

VCI = (NDVI − NDVImin)

(NDVImax − NDVImin)
× 100 (3)

where NDVImax and NDVImin are the maximum and
minimum values in NDVI time series, respectively. The
above indices are assigned threshold values, which reflect
vegetation conditions and through it various levels of
drought severity (e.g. Thenkabail et al., 2004; Smakhtin
et al., 2006).

2.3.3. Temperature crop index (TCI)

TCI (Kogan, 1995) is also applied in this study. The
index reflects vegetation’s response to temperature (the
higher the temperature, the more extreme the drought).
The TCI uses brightness temperature and represents the
deviation of the current month’s (week’s) value from the
recorded maximum (Thenkabail et al., 2004):

TCI = (BTmax − BT)

(BTmax − BTmin)
(4)

where BT is the weekly (or monthly) smoothed brightness
temperature (e.g. AVHRR band 4), BTmin and BTmax are
the minimum and maximum values of BT in a long-term
record of RS images for each calendar month or week.

2.3.4. Standardized CSDI (S-CSDI)

As shown before, the CDSI is not satellite based (Equa-
tion (1)). However, in this study, the index was modified
to be calculated using RS data. For this, the nominator
for an equation (ETact) was estimated using the sur-
face energy balance algorithm for land (SEBAL) (Basti-
aanssen et al., 1998) that uses satellite images to estimate
actual ET and other energy exchanges at the Earth’s sur-
face. A further modification relates to the standardization
estimation:

S-CSDI = (CSDI − CSDImin)

(CSDImax − CSDImin)
× 100 (5)

where CSDImax and CDSImin are the maximum and
minimum values in the CDSI time series, respectively.
This equation makes it possible to compare the present
status of water stress with its worth and the best water
stress conditions over the long term in the same location
(i.e. each pixel of an image). This makes it useful for
agricultural drought monitoring in irrigated land, so that
case studies would not be limited to rain fed areas, as in
the work of Quiring and Papakryiakou (2003), Wu and

Wilhite (2004), and Manatsa et al. (2010). Details of this
emerging method are available from Arshad (2008).

2.4. SEBAL algorithm

The SEBAL is a parameterization of the energy balance
and surface fluxes based on spectral satellite measure-
ments (Bastiaanssen et al., 1998).

λET = Rn − G − H (6)

It requires visible, near-infrared, and thermal-infrared
input data (e.g. AVHRR band 1, 2, 4 and 5). Instantaneous
net radiation values are computed from incoming solar
radiation measured via surface albedo, surface emissivity,
and surface temperature.

Rn = RS↓ − αRS↓ + RL↓ − RL↑ − (1 − ε0)RL↓ (7)

where RS↓ is the incoming short-wave radiation (W m−2),
α is the surface albedo (dimensionless), RL↓ is the incom-
ing long-wave radiation (W m−2), RL↑ is the outgoing
long-wave radiation (W m−2), and ε0 is the surface ther-
mal emissivity (dimensionless).

This method computes surface albedo from the top of
the atmosphere broadband albedo using an atmospheric
correction procedure. Soil heat flux is computed from
surface temperature, surface albedo, NDVI, and rough-
ness length derived from the soil adjusted vegetation
index (SAVI). The sensible heat flux is determined by
an iterative solution of standard heat and momentum
transport equations using a pixel-based Monin–Obukhov
stability correction. A spatial interpolation technique is
applied consecutively to incorporate spatial thermal radi-
ation variations and the effects arising from buoyancy
on momentum and sensible heat fluxes. Using thermal
band, a wet and a dry pixel are needed for each of satel-
lite images. The sensible heat flux (H ) is set to 0 for
the wet pixel and to the difference between net radiation
and soil heat flux, for the dry pixel. For the dry pixel,
it is assumed that dTa (the vertical difference in air tem-
perature) is a function of the sensible heat flux, whereas
for the wet pixel, dTa is assumed to be 0. From the dTa
and the surface temperature for these two pixels, a linear
relationship is assumed and used to compute dTa for the
remaining pixels of the image. Sensible heat flux at each
pixel is computed from the dTa pixel values and the latent
heat flux is found as a residual term. The instantaneous
latent heat fluxes are then converted to the required daily
ET values by assuming that the instantaneous evaporative
fraction is similar over 24 h.

To run the SEBAL model, it was necessary to adjust
the accuracy of applied assumptions such as soil heat
flux, atmospheric available moisture, and their impact
on surface temperature throughout Kermanshah Province.
To do this, the soil temperature profile was evaluated to
determine the soil heat flux direction. Figure 3 shows
soil temperature profiles between 8 a.m. and 1 p.m. at
depths of up to 100 cm on 13 June 2007. As shown, the
direction of heat flux was upward during the initial hours
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Figure 3. Soil temperature profiles between 8 a.m. and 1 p.m. at depths
up to 100 cm on 13 June 2007.

(8 a.m. curve). However, the negative direction of this
flux becomes positive at about 9 a.m. as the sun rose. It
is a general pattern, which is also shown in Mobasheri
(2007). Thus, heat flux in the energy budget equation is
represented by the passage time of the satellite in the
SEBAL model.

Table I. Dates for phonological stages.

Stage Period Date

First Germination 10th week
Second Vegetative growth 19th week
Third Initiation of flowering 20th week
Fourth Grain filling 22nd week
Fifth Maturity 25th week

2.5. Critical phonological stages and yield departure

2.5.1. Critical phonological stages

These stages are defined to enable the model to be
updated during the growing season. Such an approach
is also applied by Wu and Wilhite (2004). For this,
five periods are defined for wheat, including vegetative,
blooming, pod formation, pod fill, and ripening (Table I
and Figure 4). Using the simultaneous weather and
phonological data from the Sararud stations, the dates
of these periods are calculated based on the growing
degree days (GDD). Furthermore, the daily GDD maps
are created for the study area and the growth stages are

Figure 4. A schematic plot of the growing stages and timing of the forecasting models.
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Table II. Categories of agricultural losses (Zhang, 2004).

Yield category Yield residual

Extreme loss >1.17σ

Moderate loss 1.17σ > Y > 0.33σ

Normal 0.33σ > Y > −0.33σ

Moderate increase −0.33σ > Y > −1.17σ

Extreme increase < −1.17σ

estimated for each PC, using geographical information
system (GIS) capabilities.

2.5.2. Yield departure

As it is expected, there is a positive trend in the
21 years yield data, due to farming innovations. The
data are detrended by regressing the average annual
yield against the year-of-harvest for each PC (Quiring
and Papakyiakou, 2003). The resulting unstandardized
residuals (hereafter, referred to as yield departures) are
calculated for each PC and used in development and
evaluation of the yield models. To apply a standard
criterion to indicate risk, five stages are defined based on
standard deviation (σ ) of the yield departures suggested
by Zhang (2004), which is shown in Table II.

2.6. Forecasting model

The multiple regression method and ANFIS model were
applied in this study to forecast final crop yield. ANFIS
modelling refers to the method of applying various
learning techniques developed for training of the artificial
neural network (ANN) (Morid et al., 2007) to fuzzy
modelling or a fuzzy inference system (FIS) (Brown
and Harris, 1994). ANFIS creates an FIS for which
membership function parameters are adjusted using either
a backpropagation algorithm alone or a combination of
this algorithm and a least squares method. In another
word, this allows the fuzzy system to learn from the
data being modelled. Several types of fuzzy reasoning
have been proposed in the literature. This study uses the
Sugeno fuzzy model (Takagi and Sugeno, 1983; Sugeno
and Kang, 1988) as the consequent part of this FIS is a
linear equation and the parameters can be estimated by
a simple least squares error method. More details about
this technique can be found in (Farokhnia et al., 2010).

3. Results and discussion

A modelling framework was developed as shown in
Figure 4, which considered the following characteristics
for monitoring and forecasting systems:

• The drought risk assessment was based on the
Province’s dryland areas and forecasting wheat yield
was an indicator of agricultural drought risk. However,
it had the capability of being extended to irrigated areas
by using S-CSDI.

Figure 5. Drought risk assessment model formulation methodology.

• The system evaluated and integrated the aforemen-
tioned meteorological and satellite data indices as
moisture supply indicators.

• Intelligent techniques were applied to select the most
suitable indices and forecast the final yield.

• The forecasts were done at critical crop times during
the growing season and the moisture indicators were
updated as the crop grew. Five models were developed
to forecast crop production at each growing stage.
Figure 5 shows this approach schematically for more
clarification.

3.1. Calculating drought indices

The meteorological drought indices were also calculated
using the drought index package (DIP) (Morid et al.,
2005). These indices were calculated for selected stations
and then their respective GIS layers were prepared using
inverse distance method that is reported to be suitable to
create drought maps (Akhtari et al., 2009). More than 14
000 GIS layers were created and their average values
were extracted for each PC. Figure 6 shows a set of
drought maps created using the DIP for May 1999.

Figure 7 illustrates the software developed to deal
with the large number of images and the preprocess-
ing/processing required for the RS indices. The software
was designed to:

- preprocess RS images;
- calculate ETa using SEBAL, AVHRR (bands 1, 2, 4,

and 5), regional digital elevation model (DEM), land
use layer, and synoptic meteorological data of the study
area;

- produce drought index maps, including VCI, TCI,
ETact, CDSI, and S-CDSI. For example, Figure 8
shows the output of the software for 4 June 2004. The
resulting images were then processed to extract their
mean values within the boundaries of the PCs for
further analysis. These values were the inputs for the
forecasting models.

For the initial evaluation of the meteorological and RS
indices, their average values in the PCs were correlated
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Figure 6. Sample maps of meteorological drought indices for May 1999 (EDI, CMI, SPI, and PDSI).

Figure 7. Interface of model software-calculated ETa and images of drought satellite indices.
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Figure 8. Sample maps of satellite drought indices for 6 June 2004 (VCI, TCI, ETa, and S-CSDI).

against the final yield departure (e.g. 39 year mean values
of SPI or VCI vs yield departure). This is done for all
growing stages (Tables III and IV). It was seen that the
performance of S-CSDI was significantly better than the
other indices. For instance, at stage 5, when R2 for S-
CDSI was 0.47, it was 0.38 for SPI and 0.23 for VCI.
However, none of the indices were able to forecast yield
departure in the first stage (10 weeks after planting or
31 weeks before harvesting).

3.2. General variable selection

The impact of water stress on yield is related to precipita-
tion amount, intensity, timing, and distribution. Drought
index values on high-frequency time scales reflect mois-
ture supply more precisely than low-frequency time
scales (Wu and Wilhite, 2004). As already described
in this study, the meteorological indices were evalu-
ated for both weekly and monthly time scales. Drought
maps of the indices were first created and then their
mean values were calculated for each PC. These values
became inputs for the forecasting models. The number
of indices and time scales were excessive and had fewer
degrees of freedom. Thus, it was decided to apply prin-
cipal components analysis, a useful tool to reduce the
statistical interdependence of variables and retains most
of the variation of the original variables (Meyer et al.,
1991).

The values of the satellite drought indices were cal-
culated for each of the five growing stages. For VCI,
MVC was applied to get the highest NDVI for each pixel
during each growing season and the consequent mean
values for the PCs. For TCI, CSDI, and S-CDSI, the
average values of the available images for each period
were calculated and the average value of each PC was
determined.

A reciprocal approach was applied to evaluate and
select the selected variables for each of the five growing
stages (Table V). In the first step, the best combination
of the variables was screened using a genetic algorithm
(GA) and an ANN. GA is a search technique used to find
exact or approximate solutions to optimization and search
problems. In this study, in a two-way process, GA created
a population from the variables and the performance of
the population was checked by ANN.

In an iterative calculation, the best population (the one
that causes the best performance of ANN) evolved. To
increase the degrees of freedom of the forecasting model,
the population was again screened to reduce the number
of variables. This time the variables were selected by
stepwise elimination of the nonsignificant variables. The
coefficient of determination (R2) was used to measure the
goodness-of-fit of the model (closeness of the relationship
between the indices) and the relative yield departure in
each PC.
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Table III. Performance of CMI, EDI, PDSI, SPI, and Z-Index
(ZIND) in forecasting yield departure.

Index∗ R2 MAE RMSE d

CMI-1 0.12 25.53 32.67 0.45
CMI-2 0.31 22.73 28.97 0.65
CMI-3 0.47 19.44 25.37 0.79
CMI-4 0.46 19.34 25.76 0.78
CMI-5 0.43 19.42 26.25 0.77
EDI-1 0.06 26.18 33.79 0.33
EDI-2 0.15 25.14 32.20 0.47
EDI-3 0.27 23.38 29.83 0.64
EDI-4 0.30 22.93 29.21 0.67
EDI-5 0.31 22.65 29.11 0.67
PDSI-1 0.08 24.87 33.48 0.37
PDSI-2 0.14 24.51 32.39 0.48
PDSI-3 0.20 23.68 31.19 0.57
PDSI-4 0.20 23.65 31.13 0.57
PDSI-5 0.21 23.40 30.96 0.58
SPI-1 0.06 25.54 33.91 0.29
SPI-2 0.16 25.42 32.03 0.50
SPI-3 0.19 25.06 31.34 0.55
SPI-4 0.32 1.32 2.32 3.32
SPI-5 0.38 20.65 27.42 0.73
ZIND-1 0.12 24.93 32.76 0.40
ZIND-2 0.25 23.63 30.17 0.61
ZIND-3 0.38 21.04 27.53 0.73
ZIND-4 0.35 20.30 28.25 0.70
ZIND-5 0.32 20.74 28.85 0.68

∗ 1–5 refers to the five phenological stages.

Table IV. Performance of VCI, TCI, and S-CDSI in forecasting
yield departure.

Index∗ R2 MAE RMSE d

VCI-1 −0.01 30.33 39.73 0.01
VCI-2 0.18 30.43 39.08 0.22
VCI-3 0.49 27.93 34.69 0.60
VCI-4 0.32 29.41 37.64 0.39
VCI-5 0.23 29.13 38.65 0.27
TCI-1 −0.08 42.88 51.78 0.42
TCI-2 0.48 27.65 34.83 0.58
TCI-3 0.08 30.27 39.61 0.08
TCI-4 0.26 30.36 38.41 0.30
TCI-5 −0.02 30.37 39.72 0.02
S-CSDI-1 0.09 29.98 39.55 0.12
S-CSDI-2 0.58 25.41 32.27 0.71
S-CSDI-3 0.67 24.20 29.49 0.78
S-CSDI-4 0.60 24.82 31.75 0.71
S-CSDI-5 0.47 27.49 34.99 0.58

∗ 1–5 refers to the five phenological stages.

This approach to variable selection was repeated for
all five stages and the results are shown in Table V.
The signs

√
, +√

, and + + √
in the table refer to the

initial, GA–ANN, and stepwise elimination selections,
respectively.

3.3. Development of the forecasting model

To train the purposed ANFIS models, the early stopped
training approach (STA) that is discussed by Coulibaly
et al. (2000) is applied. For this the available data are split
in to three parts: (1) a training set, used to determine the
network weights; (2) a validation set, used to estimate the
network performance and decide when we stop training;
and (3) an eradication (or test), used to verify the
effectiveness of the stopping criterion and estimate the
expected performance in the future. Parts (1) and (2) are
considered together as the calibration period and Part (3)
as the test period. To check ability of the ANFIS model,
its results are also compared with multiple regression
technique (MRT).

3.4. Evaluating forecasting models

The performances of the forecasting models were evalu-
ated usingR2, residual mean square error (RMSE), and an
agreement index (d) (Quiring and Papakryiakou, 2003).
The best performance yields R2 and d equal to 1 and
RMSE equal to 0.

The evaluation was done in two steps. First, the per-
formances were evaluated solely by the meteorological
drought indices (dataset 1) (Table VI). The objective
was mainly to compare the results of the ANFIS and
MRT models. Table VI shows that ANFIS performed
better. This was more pronounced for R2 and d. For
instance, R2 at the fifth stage reached 0.73 for ANFIS
and 0.54 for MRT. Poor performance in predicting crop
yield in the first growing stage was a common weak-
ness for both models. However, especially for ANFIS, the
results progress and were more reliable after the second
stage.

In the second step, the performance of ANFIS was
evaluated using satellite indices (dataset 2) and a com-
bination of satellite and meteorological indices (dataset
2) as inputs (Table VII). This evaluation made it pos-
sible to compare these results with previous results
(Table VI, ANFIS column). Comparison of the two tables
reveals that the ANFIS model had a similar impact on
datasets 1 and 2. For instance, at stage 5, R2, d, and
RMSE for dataset 1 were 0.73, 0.89, and 33.09, respec-
tively, and for dataset 2 were 0.74, 0.86, and 36.91,
respectively. A combination of the first two datasets
(dataset 3) improved results significantly (Table VII).
Notably, R2, d, and RMSE were 0.81, 0.94, and 38.57,
respectively. This improvement was observed in other
stages also. The first stage was less reliable than the
other datasets. It is worth mentioning that the val-
ues shown in Tables VI and VII are from the testing
period and results in the calibration period were much
better.

The drought of 1999 was one of the worst in the past
30 years, with rainfall deficits consistently of more than
40% of the mean annual rainfall. The severity of this
drought placed extreme strain on the water resources
and agriculture of the study area. Figure 9(a)–(c) shows
forecasts from ANFIS using dataset 3 in a GIS platform.
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Table VI. Performance of multiple regression and ANFIS
models using meteorological indices (dataset 1) for dryland

wheat production forecasts.

Model Multiple regression ANFIS

R2 d RMSE R2 d RMSE

Growth stage 1 0.24 0.39 44.11 0.29 0.55 50.64
Growth stage 2 0.42 0.71 36.53 0.67 0.83 36.31
Growth stage 3 0.34 0.67 32.75 0.67 0.90 35.46
Growth stage 4 0.51 0.80 35.16 0.73 0.90 39.08
Growth stage 5 0.54 0.83 33.23 0.73 0.89 33.09

Similarly, the figure shows better performance of the
ANFIS model with dataset 3.

Another approach applied to evaluate yield forecasts
uses the following ranking:

Table VII. Performance of ANFIS models using satellite
indices (dataset 2) and combined indices (dataset 3) for dryland

wheat production forecasts.

Model Satellite indices Combined indices

R2 d RMSE R2 d RMSE

Growth stage 1 0.29 0.55 50.64 0.47 0.65 45.94
Growth stage 2 0.67 0.83 36.31 0.73 0.71 59.10
Growth stage 3 0.75 0.90 35.46 0.83 0.95 26.05
Growth stage 4 0.73 0.90 39.08 0.74 0.91 34.93
Growth stage 5 0.78 0.92 33.09 0.81 0.94 28.57

Rank 1 = model estimated class of yield loss/increase
equals real condition (perfect forecast).

Rank 2 = model correctly predicted the loss, but the
intensity was different.

Figure 9. Performance of forecasting models for agricultural loss from 1999 drought.
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Rank 3 = model predicted loss/increase in production
under normal condition.

Rank 4 = model predicted loss/increase in production
that was the reverse of the real condition (worst
forecast).

A comparison of the ranking system is shown in
Figure 10. An increase in frequency rank 1 (the most
favorable forecast) and a decrease in rank 4 (the worst
forecast) can be observed for dataset 3.

4. Conclusion

This study developed an agriculture drought risk assess-
ment model facilitated by a near-real-time monitoring

system with impact prediction capabilities. The model
forecasted possible losses due to agricultural drought
on dryland wheat within the study area by retaining
previous and adding current meteorological and satellite
information. The critical times were before and during
the growing season. Following conclusions were drawn
from this study:

• CMI meteorological index had the best performance in
forecasting the final crop yield, followed by EDI, SPI,
and PDSI.

• S-CDSI, introduced in this study, showed the best
results for monitoring of drought losses. An advantage
of this index is the capability to be used for irrigated
land. VCI and TCI were next best indices.

Figure 10. Performance of forecasting models using proposed ranking criteria.

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 2068–2081 (2013)



2080 S. ARSHAD et al.

• The combined GA–ANN algorithm and stepwise
regression was effective for selecting suitable input
variables for the forecasting model. The results showed
that the integration of the meteorological and satellite
drought indices for multiple time scales described fea-
tures of moisture supply and vegetation cover affecting
the final crop yield before and during the growing sea-
son.

• Multiple regression and ANFIS models were applied
and the results showed the superiority of the ANFIS
model in forecasting the drought impact on the final
yield.

• In general, forecast accuracy improved as the growth
stages progressed, which is due to getting more
updated and effective data. In early May, when the
wheat was in bloom, assessment accuracy improved
significantly.

• The model accomplished the goal of assessing drought
risk on dryland wheat well ahead of harvest, which
can be an indicator of the status of other crops.
This information can be applied by farmers, decision
makers, insurance companies, and the ministries of
agriculture and trade to implement necessary actions
to mitigate drought impact and food security.

• Applying images with higher resolutions (e.g. LAND-
SAT) can improve the model performance.

• The methodology of this study is suitable for many
areas. The main input is rainfall that is available in
many places or even can be prepared from global
databases such as PERSSIAN, CRU, or GCPC. The
satellite images are also freely available. The pheno-
logical information can be also prepared from agricul-
tural stations or even estimated by experts’ judgements.
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