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3 Pest Monitoring and Forecasting

Yenumula G. Prasad and Mathyam Prabhakar
Division of Crop Sciences, Central Research Institute for Dryland Agriculure, 

Hyderabad, India

3.1 Introduction

Monitoring for pests is a fundamental fi rst 
step in creating a proper integrated pest 
management (IPM) programme. Pests are 
monitored through a variety of monitor ing 
tools such as pheromone traps, light traps, 
coloured sticky traps, pitfall traps and 
suction traps. The trap capture data serves 
several purposes: (i) ecological studies 
(Pathak, 1968; Crummay  and Atkinson, 
1997; Hirao et al., 2008); (ii)  tracking insect 
migration (Drake et al., 2002); (iii) timing of 
pest arrivals into agroecosystems (Klueken 
et al., 2009); (iv)  initiating fi eld scouting 
and sampling procedures; (v) timing of 
pesticide applications (Lewis, 1981; Merril 
et al., 2010); (vi) starting date or biofi x for 
phenology models (Knutson and Muegge, 
2010); and (vii) prediction of later gener-
ations based on size of earlier generations 
(Zalucki and Furlong, 2005). Forecast for 
pests is an important component of the IPM 
strategy. Early warnings and forecasts based 
on biophysical methods provide lead time 
for managing impending pest attacks and 
can thus minimize crop loss, optimize pest 
control and reduce the cost of cultivation. 
Prevailing and anticipated weather 
information can help in crop planning and 
scheduling spray and farm operations to 
maximize crop yields and returns. Computer 

models have been developed to support 
various aspects of crop management in 
general and plant protection in particular 
and are widely in use in developed 
countries. A decision support system inte-
grates a user-friendly front end to often 
complex models, know ledge bases, expert 
systems and database technologies. Decision 
support systems have emerged as essential 
tools to bridge the gap between science-
based technology and end-users who make 
day-to-day management decisions. Web-
based models and decision support systems 
are becoming popular and in future may 
become an abosolute requirement for local, 
regional/area-wide and international imple-
ment ation of IPM systems (Waheed et al., 
2003). This chapter undertakes a selective 
review of published work on insect pest 
monitoring and forecasting and therefore is 
neither comprehensive nor exhaustive in its 
cover age.

3.2 Pest Monitoring through Traps

Among the various methods and devices 
used in pest monitoring, the most popular 
and widely used are sex pheromone traps 
for selective monitoring of individual fl ying 
species and light traps for fl ying species 
that are attracted to light. While adult males 
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are mostly caught in sex pheromone traps, 
adults of both sexes are trapped in light 
traps.

3.2.1 Sex pheromone traps

Pheromones are chemicals for species-
specifi c communication. Most often, these 
sex pheromones are produced by females to 
attract a mate and are most well known 
for adult Lepidoptera. Commercially pro-
duced by synthesizing and blending the 
appropriate chemicals, the sex pheromones 
are loaded into dispensers, which can be 
placed in traps of various designs for 
deployment in agriculture, horticulture, 
forestry and storage. Pheromone traps are 
the most popular and widely used tools for 
pest detection and population monitoring. 
Pheromone traps have been exploited for 
three useful applications: (i) monitoring; (ii)  
mass trapping; and (iii) mating disruption. 
The most important and widespread 
practical appli cations of sex pheromones in 
pest manage ment have been reviewed 
recently (Witzgall et al., 2010). Population 
monitor ing relates trap captures to the 
abundance of, or to the damage caused by, 
an insect species. The numbers caught over 
time have been used for initiating fi eld 
scouting for egg laying, and assessing the 
need for timing of control measures based 
on action thresholds (Wall et al., 1987; 
Gurrero and Reddy, 2001). However, traps 
do not always accurately indicate the 
overall pest pressure for use as thresholds 
for action, as trap catches are infl uenced by 
the effi cacy of the lure, the dispenser (Arn 
et al., 1997), the trap design (Fadamiro, 
2004; Spear-O’Mara and Allen, 2007) and 
the trap location (Reardon et al., 2006; 
Gallardo et al., 2009). Pheromone traps are 
the most effective and sensitive enough to 
detect low-density populations. They are 
therefore handy tools for tracking invasive 
species in the establishment phase (El-
Sayed et al., 2006; Liebhold and Tobin, 
2008) or for population monitoring to 
determine the extent of an outbreak area 
and the effectiveness of eradication cam-
paigns (Cannon et al., 2004).

The timing of adult male catches in the 
trap indicates the start of the pest fl ight 
activity in the area. This information is 
important for some pests, as it is used as the 
biofi x date for accumulation of heat units 
above a base temperature in phenology 
models or sustained fi rst fl ight for others 
(Knutson and Muegge, 2010).

Sex pheromone traps are useful for 
monitoring diffi cult pests that evade early 
detection of economic damage when a trap 
catch is used to calculate: (i) growing 
degree-days (GDD) for onset and completion 
of moth emergence (Spear-O’Mara and 
Allen, 2007; Knutson and Muegge, 2010); 
(ii) starting dates of egg hatch (Isaacs and 
van Timmeren, 2009); and (iii) onset of fi rst 
larval damage (Knutson and Muegge, 2010). 
A linear relationship between male catches 
in sex pheromone traps and GDD is possible 
after appropriate transformation of variables 
(Gallardo et al., 2009), and in some cases 
variability is better explained by including 
other variables related to density of host 
plants or suitable plant parts (Spear-O’Mara 
and Allen, 2007). Validation of the degree-
day model is done by comparing the timing 
of predicted and observed phenological 
events through fi eld scouting and damage 
assessments, and estimating the prediction 
accuracy and error (Knutson and Muegge, 
2010).

Monitoring through a network of sites 
is most useful for studying spatial 
distributions of pests, early detection of 
infestations and identifi cation of hot-spot 
locations to initiate appropriate manage-
ment interventions on a spatial scale. 
Monitoring at the regional level improves 
the reliability of population monitoring for 
implementation of appropriate area-wide 
IPM systems (Ayalew et al., 2008). Moth 
captures in a network of pheromone trap 
sites established across the Canadian 
prairies, when used in conjunction with 
back ward trajectories provided by meteor-
ological services, were helpful in providing 
early detection of diamondback moth 
infestations (Hopkinson and Soroka, 2010). 
Peak trap captures are often correlated with 
associated weather to identify positive or 
negative infl uences of weather parameters 
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on moth activity and pest build-up (Gwadi 
et al., 2006; Reardon et al., 2006; 
Monobrullah et al., 2007, Prasad et al., 
2008). However, trap catches and weather 
may not necessarily serve as predictors of 
the future abundance of certain species in 
cropping regions (Baker et al., 2010).

3.2.2 Light traps

Insect attraction to light has been exploited 
for monitoring insect populations with a 
view to providing early warning of the 
presence of pests, as well as for many other 
uses. Light traps have been widely used for 
monitoring the population dynamics of 
Lepidoptera and Coleoptera (Wolda, 1992; 
Watt and Woiwod, 1999; Kato et al., 2000). 
When compared with other sampling 
methods, light-trap sampling was found to 
be more effi cient for lepidopteran popu-
lation dynamics (Raimondo et al., 2004). 
However, many factors affect catches of 
insects in light traps (Bowden, 1982). Trap 
design, the light source and its energy, and 
the attraction effi ciency under certain 
conditions all contribute to sampling errors. 
The effects of weather conditions and 
moonlight on light-trap catches are well 
documented. For example, trap effi ciency 
for Lepidoptera is positively correlated 
with temperature and the thickness of cloud 
cover, and negatively correlated with wind 
speed, precipitation and the fullness of the 
moon on the trap night (Bowden, 1982; 
Dent and Pawar, 1988; Yela and Holyoak, 
1997; Butler et al., 1999). The effect of 
weather factors on the abundance or species 
richness of Coleoptera captured by light 
traps has been reported (Rodriguez-Del-
Bosque, 1998).

Networks of light traps have been used 
for year-round monitoring of moth species 
and the data used to assess the magnitude 
and reasons for seasonal, annual and long-
term faunal changes and their population 
dynamics in Britain (Lewis, 1980) and India 
(Anon., 2009), and for weekly larval 
forecasts on cereal crops in Africa (Odiyo, 
1979). Light-trap captures have been used 
to predict the emergence date of adult 

beetles from overwintering using a degree-
day model (Zou et al., 2004) and for 
prediction of population sizes based on 
moth catches (Raimondo et al., 2004). Long-
term light-trap data is highly useful in 
studying the seasonal dynamics of pests. 
For example, regression analyses have 
indicated that the spring generation of two 
species of Helicoverpa in eastern cropping 
zones in Australia could be related to 
rainfall in putative inland source areas 
(Zalucki and Furlong, 2005). Light-trap 
catch data is also useful for validation of 
simulation model outputs (Reji and 
Chander, 2008).

3.2.3 Monitoring of migration

Pedgley (1993) discussed and illustrated 
the role of forecasting and preventive 
management strategies from a variety of 
taxa and geographical areas, emphasizing 
the need to understand the effects of 
weather on migration. Modelling migration 
patterns of pests is useful to know their 
arrival time, identify periods with migration 
potential in order to time fi eld evaluations, 
and to provide information on the size of 
migrating populations. Modelling studies 
using multi-location long-term suction trap 
data have indicated that temperature, global 
radiation and wind speed have a major 
impact on the fl ight activity of cereal aphids 
immigrating on to winter cereal crops 
during the early autumn and spring seasons 
(Klueken et al., 2009). A network of light 
traps along with radars was used for 
studying the seasonal migration of cotton 
bollworm (Helicoverpa armigera Hübner) 
(Feng et al., 2009). Furthermore, with 
automatic systems for monitoring, retrieving 
and analysing data from remote insect 
monitoring radars and meteorological 
equipment, it has been possible to generate 
daily statistical summaries and graphical 
representations of the migration activity 
observed by the radar during the previous 
night in terms of intensity, altitude, speed 
and displacement direction of the 
migrations, as well as the orientation, size 
and wing-beat frequencies of the migrants, 
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together with the surface weather con-
ditions, at each site. This data was then 
available over the Internet to users the next 
day. Such a network has been used in inland 
eastern Australia since 1999 in studies of 
the spatial ecology of mobile insect 
populations and of the utility of migration-
monitoring information for operational pest 
forecasting (Drake et al., 2002). Similarly, 
analysis of the migration waves of rice 
brown planthopper (Nilaparvata lugens 
Stål) during June to July into South Korea 
using the boundary layer atmospheric 
(BLAYER) model and geographical infor-
mation system (GIS) explained the spurt in 
light-trap catch data during late July (Zhu et 
al., 2000).

3.3 Pest Forecasting

In pest forecasting, several intrinsic attri-
butes of the insects and the determining 
environmental and host factors need to be 
considered. Most pest forecast models take 
into account the phenology of the herbivore 
and its host. Near real-time pest incidence 
data coupled with remote sensing and GIS 
tools facilitate early warning of impending 
pest build-up in a temporal and spatial 
perspective. In addition, collection and 
analysis of weather data from pest-affected 
areas is an essential input for models. The 
practical application of model outputs is 
aided by decision support systems, which 
are discussed in the following sections.

3.3.1 Considerations in pest forecast 
research

Accurate forecasting of pest attacks before 
they actually take place is desired in pest 
control programmes, so that control 
measures can be planned with maximum 
effi ciency. Pest dynamics display fl uctu-
ations in timing and intensity depending on 
location and season. Mostly, they tend to 
fl uctuate over a mean level. This average 
population over time, when computed 
across several years, results from the sum of 
action of all positive and negative factors 

infl uencing pest populations. Pests of host 
plants in undisturbed habitats such as 
forestry have their natural cycles in 
response to their ecosystem interactions 
and are most likely to attain equilibrium 
points in their population levels. Pests 
of agroecosystems, however, experience 
rapidly changing environments due to 
changes in cropping systems and a host of 
management interventions. As a result, 
crop pests show a greater degree of 
instability in population levels. Pests vary 
in their biology and in their response to 
their environment. Pests in colder climates 
in general have discrete generations and 
resting phases in their life cycles, while in 
the warmer climates, most species exhibit 
polymodal patterns of occurrences, with 
several generations in a year, resulting from 
continuous breeding opportunities and 
food availability. On a global scale, seasonal 
temperatures and rainfall patterns constitute 
major factors that determine the distri-
butions of organisms (Birch, 1957). Tropical 
insects generally have the same annual 
variability as insects from temperate zones, 
but insect populations from dry areas, such 
as temperate or tropical regions, tend to 
fl uctuate more than those from wet areas 
(Wolda, 1978). The effect of environmental 
stresses such as weather on insect dynamics 
cannot be explained easily. While environ-
mental stresses such as drought and tem-
perature fl uctuations have been recorded 
preceding insect outbreaks, the precise 
mode of action of these stresses is unknown 
(Wallner, 1987).

In nature, pests are regulated by their 
natural enemies: parasitoids, predators and 
pathogens, which are in turn infl uenced by 
biophysical factors (Hence et al., 2007; 
Thomson et al., 2010). Therefore, a precise 
understanding of population dynamics can 
result from comprehensive ecological 
studies. However, despite our best efforts, 
gaps in pest ecological databases remain as 
a result of the complexity of interactions 
among the ecosystem components.

Worldwide, one important outcome 
of understanding population dynamics is 
to aim for a forecasting capability for 
appropriate management decisions. Succes-
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sful forecasting techniques are those that 
are as simple as possible and that are based 
on knowledge of the biology and ecology of 
the pests concerned. In temperate regions, 
these are basically emergence warnings as 
the fi rst of the overwintering eggs hatch or 
the fi rst adults emerge from the over-
wintering pupae (Collier et al., 1991; Trnka 
et al., 2007). Because of the climatic 
regulation, most emergence takes place over 
a relatively short period of time and is not 
too diffi cult to monitor. In the tropical parts 
of the world, where weather conditions 
permit continuous breeding of pests most of 
the time, the warning is generally for the 
fi rst occurrence of the pest in the crop 
(Krishnaiah et al., 1997), or sometimes the 
recording of immigrants from an adjoining 
area for serious pests with a recorded 
history of economic damage (Otuka et al., 
2005). GIS technology is useful for 
interpolation of the spatial distribution and 
spread of crop pests and diseases based on 
multiple factors including weather con-
ditions (Wu et al., 2008). Quantitative 
seasonal studies are required over several 
years to determine seasonal range, vari-
ability in numbers and geographical distri-
bution (Hill, 2008). Such studies must use 
sampling methods appropriate to the pest 
and its abundance (Cullen et al., 2000), and 
the seasonal counts should be related to 
climate and topographical data (Ferguson et 
al., 2002). By sampling immature stages of 
insect pests, it is possible to monitor these 
pests and arrive at approximate estimations 
of the numbers expected in later stages 
(Finch, 1989). 

Pests that survive on alternative hosts 
may be sampled so that an estimate of their 
probable pest density on the main crop can 
be made. This method has been applied to 
the peach-potato aphid and the black bean 
aphid, which are often sampled as over-
wintering eggs on spindle trees (Leather, 
1993). The best spraying date for many 
Lepidoptera is determined by sampling 
eggs on the crop. For example, in many 
parts of Africa, the major cotton bollworms 
are examined in the fi eld for immature 
stages (Javaid, 1990).

3.3.2 Insect phenology models

Insects are incapable of internal temperature 
regulation and hence their development 
depends on the temperature to which they 
are exposed. Studies of insect population 
dynamics often involve modelling growth 
as a function of ambient temperature. The 
rate summation methodology has perhaps 
proved to be the most viable approach to 
such modelling (Stinner et al., 1974).

The most common development rate 
model, often called degree-day summation, 
assumes a linear relationship between 
development rate and temperature between 
lower and upper development thresholds 
(Allen, 1976). This method works well for 
optimum temperatures (Ikemoto, 2005). 
The linear model assumes that rates are 
proportional to temperature, and as 
amounts are integrals of rates, the amount 
of development is the integral of the 
temperature (or a linear function of it) along 
a time axis and has units of temperature 
and time (e.g. degree-days). Temperature-
depend ent development in insects can also 
be approached using developmental time. 
The rate of development is traditionally 
utilized because rate models were created 
from biochemical and biophysical prop-
erties (Sharpe and DeMichele, 1977), 
although some complications can arise 
when using rate instead of time (Kramer et 
al., 1991). Most of the earlier models failed 
to take into consideration variation between 
individual insects in their rate of develop-
ment, which is responsible for the spread of 
activity of a pest (Regniere, 1984; Phelps et 
al., 1993). Signifi cant models for modelling 
the effects of variable tem peratures on the 
development of individual insects within a 
given population deal with mean rate 
versus temperature relationships (Wagner 
et al., 1984a) and distribution of develop-
ment times (Wagner et al., 1984b, 1985). 
Instead of treating rate summation as a 
deterministic quantity, efforts have been 
made to consider rates as random variables 
(Stinner et al., 1975). Stochastic approaches 
to modelling insect development vary in 
the choice of random variable to be 
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modelled and in the form of the frequency 
distribution applied to the random variable 
(Sharpe et al., 1977; Curry et al., 1978). 
The coeffi cient of variation of the rate 
distributions is relatively independent of 
temperature (Sharpe et al., 1977), indicating 
that a single temperature-independent 
distri bution of the normalized rate of 
development adequately describes the 
distribution at all temperature, which has 
been validated for 80% of 194 sets of 
published data on 113 species of insects 
and mites (Shaffer, 1983). Insect species 
that exhibit seasonality generally have 
resting phases – diapause or aestivation – in 
their life cycles, which can be accommodated 
in Monte Carlo simulation modelling 
(Phelps et al., 1993).

As some temperatures are lethal to 
organisms, it is obvious that development 
must be a non-linear temperature function 
at the temperature extremes. Non-linear 
development rate functions based on 
enzyme kinetics were developed to describe 
high-temperature (Johnson and Lewin, 
1946) and low-temperature (Hultin, 1955) 
inhibition, as well as both extremes (Sharpe 
and DeMichele, 1977). Another non-linear 
model of temperature-dependent develop-
ment (Stinner et al., 1974) utilized a 
function that is a simple sigmoid curve with 
an inverted relationship when the 
temperature is above the optimum. This 
model, as originally given, assumed sym-
metry about the optimum temperature but 
can be easily modifi ed for asymmetry. The 
non-linear model by Logan et al. (1976) 
uses an equation that is asymmetric about 
the optimum but becomes negative for very 
high temperatures. Schoolfi eld et al. (1981) 
modifi ed the model of Sharpe and 
DeMichele to enhance its overall utility and 
to simplify parameter estimation. As 
pointed out by Worner (1992), the 
interaction of cyclical temperatures with 
non-linear development can introduce 
signifi cant deviations from the linear 
development rate model, especially in the 
low- and high-temperature regions of the 
development rate function. Stinner’s model 
gave the best fi t for Russian wheat aphid 
developmental rate data as judged by mean 

square error and successful convergence 
when 14 insect developmental models, 
both deterministic and distributed, were 
tested (Ma and Bechinski, 2008) using 
population model design system software 
developed by Logan and Weber (1989). Ma 
(2010) applied a survival analysis approach 
to model development of Russian wheat 
aphid in relation to temperature and plant 
growth stages.

Phenology models help predict the 
time of events in an insect’s development 
and are important analytical tools for 
predicting, evaluating and understanding 
the dynamics of pest populations in agro-
ecosystems under a variety of environmental 
conditions. Accurate predictions, however, 
require accurate recording of the tem-
peratures experienced by the organisms 
(Morgan, 1991) as well as the duration of 
development (Danks, 2000).

Degree-day models (Higley et al., 1986) 
have long been used as part of decision 
support systems to help growers predict 
spray timing or when to begin pest scouting 
(Welch et al., 1978). Phenology models are 
also used as one component of risk analysis 
for predicting exotic pest establishment 
(Baker, 1991; Jarvis and Baker, 2001). 
A well-known example is the DYMEX 
modelling package (Su and Fa, 2002; 
Yonow et al., 2004; Stephens and Dentener, 
2005). CLIMEX, although not strictly a 
phenology model, uses some developmental 
requirements for risk assessment (Sutherst 
et al., 1991, 1999, 2000). Another example 
is the web-based North Carolina State 
University APHIS Plant Pest Forecast 
(NAPPFAST) modelling system, which links 
daily climate and historical weather data 
with biological models to produce 
customized risk maps for phytosanitary 
risk assessments (Borchert and Magarey, 
2005). Resources like the Crop Protection 
Compendium (CAB Inter national, 2004) 
offer insect development summaries, while 
the University of California Statewide IPM 
programme lists development data for 
insects on their website (http://www.ipm.
ucdavis.edu/MODELS) for use in degree-
day models. An Insect Development 
Database containing the developmental 

http://www.ipm.ucdavis.edu/MODELS
http://www.ipm.ucdavis.edu/MODELS
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requirements for over 500 insect species 
has been created (Nietschke et al., 2007). 
Insect Life Cycle Modeling (ILCYM) software, 
a generic open-source computer-aided tool, 
facilitates the development of phenology 
models and prediction of pest activity in 
specifi c agroecologies (Sporleder et al., 
2009).

3.3.3 Life tables and population models

Ecological life tables are one of the tools 
most useful in the study of population 
dynamics of insects having discrete 
generations. Such tables record a series of 
sequential measurements that reveal 
population changes throughout the life 
cycle of a species in its natural environment. 
Conventionally, a life table is a systematic 
tabular presentation of survival and 
mortality in a population for a known 
cohort of individuals (Morris and Miller, 
1954). Long-term data from carefully 
planned population studies in which all the 
relevant factors have been measured 
accurately are important for constructing 
population models that adequately relate to 
biological reality. The goal of life-table 
analysis is to develop a population model 
that mimics reality. Apart from generating 
population estimates, this analysis is best 
done by careful identifi cation and measure-
ment of the independent factors causing 
mortality such as parasitoids, predators, 
pathogens and weather factors.

From the life-table studies, it is 
possible to identify the key factor 
responsible for increases and decreases in 
numbers from generation to generation 
(Morris, 1963; Varley and Gradwell, 1970). 
A multiple-regression approach involving 
all the survival components gives greater 
emphasis to the interaction between 
different age intervals (Mott, 1967). The 
equations for different mortalities are 
combined into a model to predict either the 
generation-to-generation changes in an 
insect population density or the average 
level around which these changes take 
place. The same analytical approaches 
used for insects having discrete generations 

are not applic able to insects with over-
lapping generations (Varley and Gradwell, 
1970). Life table analysis was also utilized 
to model both the development and 
survival of the Russian wheat aphid (Ma 
and Bechinski, 2008). Ecological studies do 
not often lead to reliable forecasts of the 
time and size of population peaks because 
of gaps in the ecological databases such as 
short-range dispersal, overwintering be-
haviour, coloniz ation pat terns and age-
specifi c mortality including inter- and 
intraspecifi c com petition (Kogan and 
Turnipseed, 1987).

3.3.4 Pest simulation models and 
decision support systems

Simulation models based on mathematical 
descriptions of biological data as infl uenced 
by the environment are more easily applied 
across locations and environments. Com-
puter programs or software to run these 
models facilitate the practical application 
of these models in understanding popu-
lation dynamics and dissemination of pest 
forecasts for timely pest management 
decisions (Coulson and Saunders, 1987). 
Simulation approaches offer fl exibility for 
testing, refi nement, sensitivity analysis as 
well as fi eld validation of developed models 
over a wide range of environmental 
conditions. Thorough descriptions of 
cropping systems being managed or studied 
are needed to explain the interactions 
among pests, plants and the environment 
(Colbach, 2010). Systems models or other 
prediction schemes can be used with 
appropriate biological, environmental, eco-
nomic or other inputs to analyse the most 
effective management actions, based on 
acceptable control, sustainability and as-
ses s ment of economic or other risks (Strand, 
2000).

In an effort to improve Helicoverpa 
management in Australia, a comprehensive 
population dynamics model (HEAPS: 
HElicoverpa Armigera and Punctigera 
Simulation) has been developed, which 
incorporates the spatial structure of the 
habitat and pest population and explicitly 
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simulates the adult movement within a 
regional cropping system (Fitt et al., 1995). 
This model incorporates modules based on 
adult movement, oviposition, develop-
ment, survival and host phenology, and 
estimates the population in each unit of a 
grid (Dillon and Fitt, 1990). The 
EntomoLOGIC decision tool was derived 
from the SIRATAC decision support system 
deployed by the Australian cotton industry 
from 1976 to 1993 to reduce the risk 
associated with pest management using 
chemical pesticides. This was developed 
by the Commonwealth Scientifi c and 
Industrial Research Organisation (CSIRO) 
in col laboration with the University of 
Western Sydney, Australia (Hearn and 
Bange, 2002). Advances in hand-held 
computing have resulted in expanding the 
development of CottonLOGIC for use with 
Palm OS handhelds for widespread 
adoption by cotton growers in Australia 
(Bange et al., 2004).

A suite of predictive computer models 
called MORPH has been developed at the 
Horticulture Research International, UK 
(Phelps et al., 1999), for use in fruit and 
vegetable crops. Using a multi-generation 
phenology model, ECAMON, Trnka et al. 
(2007) could explain 70% of the variation in 
the timing of key developmental stages based 
on daily weather data. ECAMON simulations 
correctly predicted the presence/absence of 
the European corn borer over a study region 
in the Czech Republic during the 1961–
1990 reference period. It helped to explain 
the sudden increase in maize infestation 
during the unusually warm periods of 
1991–2000 and it also estimates that this 
potential niche will expand within the next 
20–30 years. RICEPEST, a model simulating 
yield loss due to several rice pests under a 
range of specifi c production situations in 
tropical Asia was developed by the 
International Rice Research Institute (IRRI) 
in the Philippines.Validation of the model 
under fi eld experiments yielded promising 
results (Willocquet et al., 2002).

Web-based models and decision 
support systems are becoming popular and 
in future may become an absolute 
requirement for local, regional/area-wide 

and international implementation of IPM 
systems (Waheed et al., 2003). In the USA 
and the Netherlands, commercial fi rms are 
applying mesoscale modelling techniques 
to forecast insect development and produce 
gridded products for regional and on-farm 
planning and pest management (Strand, 
2000).

A decision support system has been 
developed for forecasting black bean aphid 
(Aphis fabae) outbreaks in fi elds of spring-
sown beans. The system takes into account 
the regional forecast and additionally 
information provided by the user on 
individual characteristics of the fi eld 
and crop such as fi eld shape, size, plant 
density and sowing date, which are used 
to downscale the area forecast to the 
specifi c fi eld. The system also contains a 
module for the aphicides that are cleared 
for use on spring beans and calculates the 
economics of application (Knight and 
Cammell, 1994).

SOPRA is applied as a decision support 
system for eight major insect pests of fruit 
orchards on a local and regional scale in 
Switzerland and southern Germany and has 
a wide range of possible applications in the 
alpine valleys and north of the Alps 
(Samietz et al., 2008). Applying time-
varying distributed delay approaches, 
phenology models were developed driven 
by solar radiation, air temperature and soil 
temperature on an hourly basis. On the 
basis of local weather data, the age structure 
of the pest populations is simulated and 
crucial events for management activities are 
predicted by the SOPRA system. Phenology is 
directly linked to a detailed decision 
support system and to extended information 
about the pest insects, as well as to the 
registered plant protection products. 
Through a web interface, the simulation 
results are made available to consultants 
and growers (www.sopra.info). SIMLEP is a 
regional forecasting model used in practice 
for Colorado potato beetle (Leptinotarsa 
decemlineata) in Germany and Austria on a 
large scale and in the western part of 
Poland. The SIMLEP decision support system 
contributed signifi cantly to the improve-
ment of farmers’ control measures for 

www.sopra.info
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L. decemlineata (Jorg et al., 2007) and later 
its use expanded to Slovenia (Kos et al., 
2009).

In the mid-1990s, CIPRA (Computer 
Centre for Agricultural Pest Forecasting) 
software was con ceptualized, developed and 
implemented to access, in real-time, weather 
data from a network of automated stations. It 
allows the user to visualize forecasts for 13 
insects, two diseases, two storage disorders 
in addition to the apple crop phenology. 
These bioclimatic models, which have been 
developed, implemented and improved over 
the last 13 years, vary from a simple degree-
days approach based on air tem perature to 
more detailed epidemiological models based 
on air temperature, relative humidity and 
duration of leaf wetness. Many fi eld 
specialists are using these model forecasts 
along with fi eld pest scouting to provide 
valuable additional information for decision 
making in pest management and in apple 
storage strategies (Bourgeois et al., 2008).

3.3.5 Integration of pest and crop 
simulation models

Crop system models can be used to generate 
information on the status of the crop as 
infl uenced by the growing environment and 
pests, and including different management 
options. In practice, there are few examples 
of these models that include all the 
necessary components for practical decision 
making. However, a more practical approach 
has been the development of individual 
crop and pest components that can be 
analysed at the same time to give 
information that can improve decisions.

The development of decision support 
systems for agrotechnology transfer (DSSAT 
4 funded by the United States Agency for 
International Development (USAID)) has 
allowed the rapid assessment of several 
agricultural production systems around 
the world to facilitate decision making at 
farm and policy levels. The trend in 
development of crop system models is to 
go for the modular approach (http://www.
icasa.net). The development of stand-alone 
decision support systems for pest com-

ponents could lead to their practical use. 
In developed countries, dynamic websites 
that include interactive models, GIS-based 
decision systems, real-time weather and 
market information are rapidly being 
developed and made available on the 
Internet (http://www.effi ta.net) to give 
farmers real-time benefi t in crop manage-
ment.

The conventional approaches of using 
empirical models to quantify yield losses 
are limited in their scope and application, 
as these are data specifi c and insensitive to 
variable cropping and pest conditions. Crop 
growth models provide a physiologically 
based approach to simulate pest damage 
and crop interactions. There have been 
many efforts to use crop growth models to 
simulate the effect of pest damage on crop 
growth and yield by linking the damage 
effect of pest population levels to the 
physiological rates and state variables of 
these models. Insect pests and crop 
modelling has been discussed in detail by 
Boote et al. (1983) and Coulson and 
Saunders (1987). A distribution delay 
model including attrition was applied to 
simulate population changes in rice leaf-
folders. Based on a metabolic pool approach, 
leaf-folder feeding and hence leaf mass 
losses to the rice plant were described with 
a generalized functional response model, 
which is ‘source’ and ‘sink’ driven (Graf 
et al., 1992). Furthermore, this model 
stresses the infl uence of adult migration 
and natural enemies on leaf-folder popu-
lation dynamics, both of which are 
signifi cant and poorly investigated aspects 
of the leaf-folder life cycle. Later, a generic 
approach to simulate the damage effects of 
single or multiple pests was attempted 
using crop growth models such as CERES-
Rice (which is a part of the DSSAT) in the 
Philippines (Pinnschmidt et al., 1995) and 
InfoCrop in India (Chander et al., 2007; Reji 
et al., 2008; Yadav and Chander, 2010). Pest 
damage levels from fi eld scouting reports 
can be entered and damage is applied to 
appropriate physiological coupling points 
within the crop growth model including 
leaf area index, stand density, intercepted 
light, photosynthesis, assimilate amount 

http://www.effita.net
http://www.icasa.net
http://www.icasa.net
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and translocation rate, growth of different 
plant organs and leaf senescence. Equations 
and algorithms were developed to describe 
competition among multiple pests and to 
link the computed total damage to the 
corresponding variables in the crop models. 
These approaches provide a basis to explore 
dynamic pest and crop interactions in 
determining pest management strategies 
that minimize yield losses.

3.3.6 Remote sensing for pest monitoring 
and forecasting

Remote sensing techniques are useful in 
detecting crop stresses such as nutrient 
defi ciency, pest infestation, disease de-
velop ment and to monitor drought. Plants 
may respond to pest and disease stress in a 
number of ways, including leaf curling, 
wilting, chlorosis or necrosis of photo-
synthetic plant parts, stunted growth and, 
in some cases, a reduction in leaf area due 
to severe defoliation. While many of these 
responses are diffi cult to quantify visually 
with acceptable levels of accuracy, precision 
and speed, these same plant responses will 
also affect the amount and quality of 
electromagnetic radiation refl ected from 
plant canopies. The basic premise here is 
that healthy plants give a higher refl ectance 
in the near-infrared region and a lower one 
in the visible region, while the opposite is 
the situation in the case of diseased plants 
(Teng and Close, 1977). Thus, remote 
sensing instruments that measure and 
record changes in electromagnetic radiation 
may provide a better means of objectively 
quantifying biotic stresses than visual 
assessment methods. Additionally, remote 
sensing can be used repeatedly to collect 
sample measurements non-destructively 
and non-invasively (Nilsson, 1995; Yang et 
al., 2004).

Recent advancements in the fi eld of 
remote sensing provide ample scope to use 
this technology for pest monitoring and 
detection (Prabhakar et al., 2012). Riley 
(1989) provided an exhaustive review on 
the use of remote sensing in entomology. 
Pest damage was associated with spectral 

indices based on leaf pigments (Riedell and 
Blackmer, 1999; Yang and Cheng, 2001; 
Prabhakar et al., 2006, 2011). Optical and 
video imaging in near-infrared and 
microwave regions were used to quantify 
the nocturnal fl ight behaviour of H. 
armigera (Riley et al., 1992). Fitzgerald 
(2000) demonstrated that multi spectral 
remote sensing (MRS) would allow farmers 
to detect early infestation of mites in large-
scale cotton fi elds due to colour shifts and 
changes in canopy appearance over time. 
Areas identifi ed on the map could be 
located with the help of portable GPS 
equipment by fi eld scouts to verify the mite 
populations in these areas and recommend 
regions in the fi eld that require pesticide 
application.

Remote sensing improves spatial and 
tem poral resolution compared with trad-
itional methods for pest monitoring based 
on environmental changes (Bhat tacharya et 
al., 2007; Jiang et al., 2008; Dutta et al., 
2008). However, the major limitation in use 
of satellite-borne data in pest forewarning is 
the timely availability of cloud-free data 
with the desired spatial and spectral 
resolution. Better standardization of aerial 
imagery and accounting for perturbing 
environmental factors will be necessary to 
make remote sensing tech niques applicable 
to early pest detection (Luedeling et al., 
2009). In addition, the acquisition of airborne 
data is limited to few high-value crops 
because of the high costs involved.

3.3.7 Agromet networks for operational 
pest forecasting

Farmers are mainly interested in current 
disease and pest severity data, preferably 
for their localities to aid their decision 
making in crop protection. Pest monitoring 
data along with complementary weather 
data is crucial to run pest forecast models 
and provide forecasts for operational use. 
Weather measurements under fi eld 
conditions from several geo-referenced sites 
in the crop-cultivated regions additionally 
provides spatial information that can be 
used for generating pest forecast maps 
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(Huang et al., 2008). In Bayern (Germany), a 
measuring network of 116 fi eld weather 
stations is used to estimate the development 
of pests in relation to weather requirements 
based on forecast models and computer-
based decision sup port systems for near 
real-time dis semination to farmers 
(Tischner, 2000). The results of crop- and 
horticulture-specifi c models and decision 
support systems are supplemented by fi eld-
monitoring data, which then serve as the 
main input for the warning services and are 
disseminated cost-effectively through the 
Internet (Bugiani et al., 1996; Jorg, 2000). A 
computerized national forecasting network 
in apple orchards transmits data from the 
fi eld to system headquarters automatically. 
The national forecasting network in Turkey 
has been expanded and covered apple 
orchards in 34 provinces in 2006, using 115 
electronic forecasting and warning stations 
(Atlamaz et al., 2007).

3.4 Conclusions

Pest monitoring is the foundation for the 
issue of early warnings, development and 

validation of pest forecast models and 
decision support systems, which are crucial 
for the design and implementation of 
successful IPM programmes. Models are 
potential tools for synthesizing the available 
information and knowledge on population 
dynamics of pests in agroecosystems and 
natural habitats. The development of long-
term monitoring spatial data on crop–pest–
weather relationships will narrow the gaps 
in knowledge required for reliable 
forecasts. Computer-based systems have 
increased the speed and accuracy of fore-
casting, and decreasing its costs. Recent 
developments in information and com-
munication technology offer great scope for 
wide dissemination and use of pest 
forecasts. In the tropics, agroecosystems are 
characterized by greater crop diversity in 
small parcels of land with dynamically 
changing weather. Available generic 
simulation models need to be validated 
with location-specifi c inputs for greater 
accuracy. In developing countries, there is a 
strong need to establish agro-meteorological 
networks for specifi c crop sectors with the 
major objective of pest forecasting through 
models and decision support systems.
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