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A B S T R A C T

Deterioration of aquatic ecosystem by accumulation of nutrients has increased due to anthropogenic activities,
and adsorption is one of the efficient methods for removal of phosphate from discharge water. The present study
investigated the efficiency of aluminum pillared bentonite in removing phosphate from aquaculture discharge
water with high salinity. Adsorption capacity of pillared bentonite increased with increasing temperature from
11.85 (25 °C) to 13.81 (35 °C) and 15.85 (45 °C) mg/g. At 30 ppt salinity, there was 57.7% reduction in phos-
phate sorption capacity of the pillared bentonite from 0 ppt. The kinetic studies revealed that adsorption fol-
lowed the pseudo second-order model. The free energy change of the phosphorous sorption by pillared bentonite
was −4.19, −5.87 and −6.24 kJmol−1 at 25 °C, 35 °C and 45 °C, respectively. The pillared bentonite reduced
the phosphate level by 85.3–99.6% from eutrophic waters of shrimp farm, fish larval rearing tanks, algal culture
system, discharge water treatment system, etc. The study revealed that aluminum pillared bentonite is efficient
in reducing the phosphate level of aquaculture discharge water, and it could be used for the treatment of
aquaculture discharge water before releasing into the environment.

1. Introduction

Eutrophication by nutrient enrichment is one of the most important
water quality problems in marine ecosystems (Smith, 2003; Ansah
et al., 2013). Even though phosphate is an essential nutrient for phy-
toplankton growth, its excess amount may result in plankton crash and
water quality deterioration. Intensified aquaculture practices resulted
in phosphate content in excess of prescribed limit and led to environ-
mental degradation by eutrophication of water bodies (Cai et al., 2013;
Luring et al., 2016). Aquaculture discharge water from Indian sub-
continent are characterised by low nutrient load due to extensive
farming practices (Muralidhar and Gupta, 2007; Vass et al., 2015;
Priyadarsani and Abraham, 2016; Saraswathy et al., 2019). Existing
aquaculture Discharge Water Treatment System (DWTS) in shrimp
farms is effective in reducing the suspended solids only, but not the
nutrients. Similar trend of eutrophication by excess release of phos-
phate may happen in India if the aquaculture becomes more intensive.
Eutrophication may be manifested by the drivers of climate change
such as temperature and rainfall, etc. To avoid the environmental de-
gradation by excess phosphate, effective methods are needed to reduce
the phosphate level of discharge water from aquaculture ponds (Boyd,
2003; Carpenter, 2008; Copetti et al., 2016).

Even low level of inorganic contaminants from the aqueous system

could be removed by the adsorption mechanism (Kumararaja and
Manjaiah, 2014; Liu et al., 2017; Kumararaja et al., 2018). Phosphate
has been successively removed from aqueous system with a number of
adsorbents such as polymeric hydrogels, limestone, iron oxide, chit-
osan, (Kioussis et al., 1999; Chuang et al., 2006; Mortula et al., 2007).
Clay minerals are the most commonly tested adsorbents for environ-
mental remediation because of their higher adsorption capacity by
virtue of its large specific surface area (Kumararaja et al., 2014). To
enhance the anion adsorption capacity, clay minerals have been sub-
jected to array of treatments (Tian et al., 2009; Zamparas et al., 2012;
Moharami and Jalali, 2015; Ma et al., 2016). Pillaring with poly-
hydroxy aluminium is more effective due to the affinity of phosphate
anion to the aluminium, improved surface area and porosity (Yan et al.,
2010; Shanableh and Elsrgany, 2013; Pawar et al., 2016; Kumararaja
et al., 2017). Application of zeolite enhanced the production of On-
corhynchus Mykiss by improving the water quality (Obradovic et al.,
2006; Danabas and Altun, 2011). So far, the studies of phosphate
sorption by pillared bentonite have been reported with discharge water
of negligible salinity. Brackish water aquaculture discharge water is
enriched with competing anions such as chlorides, carbonates and bi-
carbonates with. With the objective of reducing phosphate from high
saline aquaculture discharge water, polyhydroxy aluminium pillared
bentonite was evaluated as an adsorbent.
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2. Materials and reagents

2.1. Materials

By sedimentation procedure clay sized particles were obtained from
bentonite supplied by Minerals Ltd, New Delhi. Analytical grade re-
agents were supplied by Sisco Research Laboratories Ltd (SRL), India.
AlCl3.6H2O and KH2PO4 were used without any further purification for
the preparation of pillaring solution and phosphate stock solution, re-
spectively. The eutrophic water samples were collected from Algal
culture unit, larval rearing tanks of finfish hatchery, Discharge Water
Treatment System (DWTS), Muttukkadu Experimental Station of
Central Institute of Brackishwater Aquaculture (CIBA), Chennai, India,
Muttukkadu estuary and low saline water from Shrimp farm in
Nagapattinam, India. For field scale evaluation, pillared bentonite was
applied to DWTS of Muttukkadu experimental station and phosphate
concentration was measured at different time interval. The water
samples were analysed for its chemical parameters by APHA, 2012.

2.2. Synthesis of pillared bentonite

Sodium hydroxide solution (0.2M) was added to the 0.2M alumi-
nium chloride solution and kept in a magnetic stirrer to prepare poly-
hydroxy aluminium pillaring solution with an OH/Al ratio of 2. Sodium
saturated bentonite suspension (10% w/v) was equilibrated with the
pillaring solution by delivering at a rate of 3–4mLmin−1 under con-
tinuous stirring. Excess precipitate of the mixture was removed by
washing with distilled water, dried at 80°C for 24 h and calcined at
300°C for 4 h. The dried product was grounded and kept in a desiccator
(Kumararaja et al., 2017).

2.3. Characterisation of pillared bentonite

Calcium magnesium exchange method and ethylene glycol mono-
ethyl ether (EGME) saturation method was employed to obtain cation
exchange capacity and surface area of the pillared bentonite, respec-
tively. Point of zero charge was determined by potentiometric titration
method. To 1 g clay sample, 50ml of sodium chloride differing ionic
strength of (1, 0.1, 0.01M) was added separately and the pH of the
suspension was measured. After each increment of 0.5 ml 0.1N HCl
addition, pH was measured and continued till the three curves meet at a
point which is the point of zero charge.

2.4. Phosphate adsorption

The adsorption study was conducted by batch method and the
variables were pH (4–10), adsorbent dose (0.05, 0.1, 0.25, 0.5, 1 and
2 g), contact time (5, 10, 15, 30, 45min, 1, 2, 3, 4, 5, 6, 12, 18 and
24 h), initial concentration (5, 10, 20, 30, 40, 50 and 100 ppm), tem-
perature (25, 35, 45 °C) and salinity (0, 10, 20 and 30 ppt). In batch
experiments, phosphate solution (100ml) was equilibrated with the
pillared bentonite (0.25 g) for 24 h. The clear filtrate was obtained by
centrifugation at 8000 rpm for 15min and phosphate was estimated by
molybdenum blue color method of APHA, 2012 using UV/Vis spec-
trophotometer (SHIMADZU) at 880 nm.

The amount of phosphate adsorbed (mg/g) was calculated using
mass balance equation: Eq. (1):

=
− VQe (C C )
m

0 e
(1)

where C0− Ce are the initial and equilibrium concentrations (mg/L) of
phosphate, respectively; V is the volume of the solution (L) and m is the
mass (g) of pillared bentonite, Qe is the amount of phosphate adsorbed
per g of pillared bentonite (mg/g).

The removal efficiency of the pillared bentonite (%) was calculated
by following equation:

=
−
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C

(%) 100e0
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2.5. Adsorption isotherms

To elucidate the mechanism of adsorption, the experimental data
were fitted with common isotherm models (Langmuir, Freundlich and
Dubinin-Radushkevich isotherms). The linear form of Langmuir equa-
tion given as Eq. 3

= +
C
q K q

C
q

1
.

e

e L m

e

m (3)

The Freundlich isotherm describes the multilayer adsorption on the
heterogeneous surface and linearized form is expressed as

= +logq logK 1
n

logCe F e (4)

Dubinin-Radushkevich isotherm was applied to distinguish the
physical and chemical adsorption process. The index of adsorption
energy E is obtained from the parameters of linearized Dubinin-
Radushkevich isotherm (Eqn (4) and Eqn 5

= − εlnq lnq Be D D
2 (5)

where qe is the amounts of phosphate adsorbed (mg g-1) at equilibrium,
BD is isotherm constant.

=E 1
2BD

0.5 (6)

Value of E less than 1 to 8 kJmol−1 corresponds to the Physical
while 8 to 16 kJmol−1 corresponds to chemisorption.

2.6. Adsorption kinetics

The most commonly kinetic models (pseudo-first order and second
order models) were applied to the data to understand the phosphate
adsorption process to the pillared bentonite. The linear forms of are
given in Eqs (6) and (7), respectively.
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Slope of straight-line plot of ln (qe–qt) versus t gives pseudo-first
order constant and intercept of the plot between t/qt and time t gives
the second-order rate constant (k2).

2.7. Adsorption thermodynamics

Adsorption thermodynamic parameters such as changes in free en-
ergy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were calculated from the
following equations

= −ΔG RTlnKc
0 (9)

= −ΔG ΔH TΔS0 0 0 (10)

= −
Δ ΔlnK S
R

H
RTc

0 0

(11)

where R is universal gas constant (8.3144 Jmol−1K−1), T is absolute
temperature in Kelvin (K) and Kc is the thermodynamic equilibrium
constant.

3. Results and discussion

3.1. Characterisation of pillared bentonite

The point of zero charge of pillared bentonite was 6.81 (Fig. 1).
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Pillaring of bentonite with polyhydroxy aluminium shifted the point of
zero charge towards acidic pH and the value is in good agreement with
the previous reports (Avena et al., 1990; Mrad et al., 1997; Arfaoui
et al., 2012; El Miz et al., 2014). Occupation of sorption sites by pil-
laring ions resulted in reduction of cation exchange capacity of the
bentonite from 83.3 to 45.4 cmol (p+) kg−1. The specific surface area
of the bentonite increased from 399 to 678m2 g−1 upon pillaring due to
increased interlayer spacing (Kloprogge et al., 2002; Zeng et al., 2013;
Kumararaja and Manjaiah, 2015; Kumararaja et al., 2017).

3.2. Effect of pH

Solution pH is one of the important factor influences the phosphate
adsorption process by affecting the speciation and surface charge of the
clay. Phosphate adsorption capacity of pillared bentonite decreased
with increasing pH (Fig. 2). The reduction in sorption at higher pH
could be due to domination of highly negative species PO4

3-, develop-
ment of negative charges on the clay surface by deprotonation resulting
in electrostatic repulsion between phosphate anion and negatively
charged clay surface ( Ma and Zhu, 2006; Tian et al., 2009; He et al.,
2017). Enhanced competition between the hydroxyl (OH−) and phos-
phate ions at higher pH also reduces the adsorption (Karimaian et al.,
2013). At acidic pH protonation and release of Al from clay surface
enhances sorption (Kasama et al., 2004; Guaya et al., 2015; Shanableh
et al., 2016; Xie et al., 2015).

3.3. Effect of adsorbent dose

The effect of pillared bentonite dose on percentage removal and
amount of phosphate adsorbed was studied. The phosphate removal
percentage increased from 39.6 to 99.4 with the increasing dose from
0.5 to 20 g L−1(Fig. 3). Amount of phosphate adsorbed (mg g−1) de-
creased with increasing dose from 9.9 to 0.61. Increased total available

surface area of pillared bentonite at higher dose resulted in enhanced
removal percentage. The decrease in sorption capacity with increasing
dose is attributed to limited availability of phosphate anion and with
the increasing amount of unoccupied adsorption sites (Rahni et al.,
2014; Ma et al., 2016).

3.4. Effect of salinity

The influence of salinity on phosphate adsorption by pillared clay
was studied at 0, 10, 20 and 30 ppt salinities. As the results indicate
(Fig. 4), the phosphate sorption capacity of the pillared bentonite de-
creased with increasing salinity. The qe (mg g−1) decreased from
11.85 at 0 ppt to 8.21, 6.26 and 5.01 at 10, 20 and 30 ppt, respectively
(Table 1). The reduction in adsorption with salinity may arise from
competition for the adsorption sites from the competing anions (CO3

2−

and HCO3-) (Huang et al., 2014; Guaya et al., 2015; Liu et al., 2016; He
et al., 2017; Mitrogiannis et al., 2017). Neutralization of zeta potential
by divalent cations (Ca2+ and Mg2+) in high alkalinity might have
resulted in less dispersion of pillared bentonite in water and less
phosphate sorption (Zhu et al., 2009; Zamparas et al., 2013; Reitzel
et al., 2013; Wang and Li, 2016).

3.5. Adsorption isotherm

Amount of phosphate adsorbed per unit amount of pillared bento-
nite increased with increasing initial phosphate concentration (Fig. 5).
The amount adsorbed increased from 1.72 to 11.1mg g−1 with in-
creasing initial concentration of 5–100mg/L and this is attributed due
to the increment in driving force to overcome the mass transfer re-
sistance between the phosphate and clay surface at higher concentra-
tion (Ma et al., 2012; Zamparas et al., 2013; Pawar et al., 2016; Wang

Fig. 1. Potentiometric titration curve showing the point of zero charge (PZC) of
bentonite (a) and aluminium pillared bentonite (b).

Fig. 2. Effect of pH on percentage removal and amount of phosphate adsorbed
(mg/g) by aluminium pillared bentonite.

Fig. 3. Effect of adosrbent dose on percentage removal and amount of phos-
phate adsorbed (mg/g) by aluminium pillared bentonite.
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and Li, 2016). The Langmuir isotherm (R2=0.99) fitted the phosphate
sorption data better than Freundlich (R2=0.925) and D-R
(R2=0.895) isotherms indicating the monolayer sorption of phosphate
onto pillared bentonite (Table 1). The Langmuir dimensionless factor
(RL) value is less than unity which indicates favourable sorption of
phosphate. Similar results of Langmuir isotherm fitted the phosphate
sorption data better than other isotherms (Huang et al., 2014;
Kumararaja et al., 2016; Mitrogiannis et al., 2017). The Freundlich
constant 1/n value lies between 0 and 1 (0.28) indicating the favour-
able adsorption of phosphate by pillared bentonite under the studied
condition. The D-R isotherm determines the nature of adsorption pro-
cess (chemical or physical) based on the sorption energy, E. The sorp-
tion energy (9.72 kJmol−1) indicates the mechanism of phosphate
sorption onto pillared bentonite is chemisorption and ligand exchange
are the major mechanism. The ligand exchange mechanism of phos-
phate sorption is depicted below (Altunlu and Yapar, 2007; Shanableh
et al., 2016; Cui et al., 2016). Phosphate replaces the present in the
pillared bentonite. First phosphate is transferred to the site and ion
exchange –OH at the active site. After the adsorption process the

Fig. 4. The adsorption of P onto aluminium pillared bentonite at different
salinity; the fitting of isotherm data of P sorption onto pillared bentonite using
(a) Langmuir and (b) Freundlich isotherm models.

Table 1
Effect of salinity and temperature on parameters of Langmuir and Freundlich isotherm for phosphate adsorption onto pillared bentonite.

Model Parameter Salinity (ppt) Temperature (oC)

0 10 20 30 25 35 45

Langmuir
qm (mg g−1) 11.85 8.21 6.26 5.01 11.85 13.81 15.85
KL (L mg−1) 0.11 0.03 0.09 0.13 0.11 0.47 0.18
R2 0.990 0.907 0.885 0.967 0.99 0.998 0.973

Freundlich
KL (L g−1) 2.77 2.6 2.19 1.24 2.77 2.19 4.93
1/n 0.28 0.64 0.67 0.7 0.28 0.33 0.54
R2 0.925 0.887 0.873 0.824 0.925 0.955 0.960

Fig. 5. Effect of initial concentration on percentage removal and amount of
phosphate adsorbed (mg g−1) by aluminium pillared bentonite.

Fig. 6. Effect of contact time on phosphate uptake by aluminium pillared
bentonite (a). The fitting of kinetic data using (b) pseudo-second order model.
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Table 2
Pseudo-first and pseudo-second order kinetic parameters of phosphate ad-
sorption onto pillared bentonite.

Pseudo-first order Pseudo-second order

qe (mg g−1) 10.26 qe (mg g−1) 9.34
K1 (h−1) 0.41 K2(g mg−1 h−1) 0.14
R2 0.961 R2 0.982

Fig. 7. The adsorption amounts of P onto aluminium pillared bentonite at
different temperature; the fitting of isotherm data of P sorption onto pillared
bentonite using (a) Langmuir and (b) Freundlich isotherm models.

Table 3
Thermodynamic parameters of phosphate adsorption onto pillared bentonite.

Temperature (0C) KL (L
mg−1)

ΔG0 (KJ
mol−1)

ΔH0 (KJ
mol−1)

ΔS0 (KJ
mol−1K−1)

25 0.11 −4.19 24.71 0.97
35 0.28 −5.87
45 0.47 −6.24

Table 4
Water quality parameters of natural eutrophic water.

Sample ID Salinity
(ppt)

pH Phosphate
(ppm)

Carbonate
(ppm)

Bicarbonate
(ppm)

Total Alkalinity (ppm
as CaCO3)

Calcium
(ppm)

Magnesium
(ppm)

Total Hardness (ppm
as CaCO3)

1 29 8.23 0.165 42 100 153 243 1156 5445
2 30 7.48 0.2097 27 139 160 86 569 2554
3 25 7.51 0.1689 12 126 123 283 921 4545
4 30 7.34 0.386 27 116 141 119 1048 4606
5 20 7.85 1.122 14 134 133 357 1132 5544
6 31 7.92 0.295 35 143 176 619 6489 1202
7 1 8.05 1.231 8 170 153 71 434 363

1- Muttukkadu Estuary; 2- Rachycentroncanadum tank; 3- Lates calcarifer tank; 4- Chanos chanos tank; 5- Chlorella culture; 6- Liopenaeus vannamei pond; 7- Discharge
Water Treatment System.

Fig. 8. Percentgae removal of phosphate from aquaculture water of varying
salinity
1-Muttukkadu Estuary; 2- Rachycentron canadum tank; 3- Lates calcarifer tank; 4-
Chanos chanos tank; 5- Algal culture; 6- Liopenaeus vannamei pond; 7- Discharge
Water Treatment System.

Table 5
Phosphate adsorption capacity of the modified bentonites.

Adsorbent Adsorption capacity (mg/g) Reference

Al-bentonite 7.1
Al-CTMAB-Bent 7.63 Ma and Zhu, 2006
HyAl-Mt 10.06 Zhu and Zhu, 2007
Al-bentonite 8.98 Tian et al., 2009
Fe–Al-Bent 10.5 Yan et al., 2010
Fe–Al-Bent 8.33 Rahni et al., 2016
Al-bentonite 11.85 This study

Fig. 9. Phosphate reduction in DWTS after application of aluminium pillared
bentonite.
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solution pH raised due to release of –OH ion by exchange with the
phosphate ion.

− − + − − +
− −Bentonite Al ΟΗ Η PO Bentonite Al Η PO ΟΗ2 4 2 4

(12)

3.6. Adsorption kinetics

Most phosphate is adsorbed during the first 60min of adsorption
(Fig. 6). As the contact time proceeds, the rate of phosphate removal
decreased considerably due to decrease in number of free surfaces by
filling with phosphorus and blockage of free path in adsorbent pore
(Ho, 2006; Foo and Hameed, 2010). After 5 h of sorption, equilibrium
was established. The steep slope indicates the fast adsorption rate at the
beginning because the active sites are filled rapidly and the gradual
decrease with time due to intraparticle diffusion processes (Yan et al.,
2010; Ma et al., 2016). The mechanism of phosphate adsorption was
evaluated by fitting the sorption data kinetic models. The rate constants
are given in Table 2 and the kinetics of phosphate sorption indicated
that pseudo-second order model fitted the data well (R2= 0.982) which
implies the chemisorption or chemical bonding between pillared ben-
tonite site and phosphate is the dominant process (Liu et al., 2017).

3.7. Adsorption thermodynamics

Phosphate sorption capacity of the pillared bentonite improved with
the rising temperature from 11.85 at 25 °C to 13.81 and 15.85mg g−1

at 35 °C and 45 °C, respectively (Fig. 7; Table 3). The result demon-
strated that the phosphate removal process was endothermic. Higher
phosphate adsorption at high temperature indicates that the adsorption
reaction is of endothermic nature and the ion-exchange mechanism is
favoured at higher temperatures (Zamparas et al., 2013; Kumararaja
et al., 2016). Increased mobility of phosphate with the increasing ki-
netic energy at higher temperature may also result in higher adsorption
(Zhu and Zhu, 2007; Ma et al., 2012). The negative values of ΔG0

(−4.19 to −6.24 kJmol−1) indicate the feasibility of phosphate ad-
sorption and the process is spontaneous (Table 3). The increase in ΔG0

with rise in temperature confirms that the process is more favourable at
higher temperatures. The positive value of ΔH0 (24.71 kJmol−1) in-
dicates that phosphate removal is an endothermic process as confirmed
by increase in sorption capacity with the temperature. Endothermic
nature of phosphate sorption by different adsorbents reported by
number of researchers (Moharami and Jalali, 2015; Cui et al., 2016).

3.8. Phosphate removal from natural water

Water quality parameters of the natural water samples are highly
variable. The salinity varied from 1 to 31 ppt and the phosphate con-
centration ranged between 0.65 and 1.23 ppm (Table 4). To 100ml
natural water 0.25 g of pillared bentonite was added and treated for
15min. The percentage removal varied from 85.3 in Cobia tank estuary
water to 99.6 in Chanos chanos larval rearing tank water (Fig. 8). The
material developed in the present study is having higher phosphate
adsorption capacity than the modified bentonites (Table 5).The results
indicate that the pillared bentonite treatment resulted in more than
80% reduction in phosphate level of aquaculture water. Aluminium
pillared bentonite was applied (500 g) to discharge water treatment
system (1.5m3) of the Muttukkadu Finfish hatchery of ICAR-CIBA,
Chennai. The phosphate concentration was measured at different time
interval. The phosphate concentration reduced with the time interval
(Fig. 9). The phosphate level was reduced by 60% within 120min of
application. The phosphate concentration was reduced below critical
level of 0.2 ppm after 6 h of application. Phosphate concentration of
fish pond effluent was reduced by 79% within 30min of application of
Phoslock at a dose of 400mg/L (Kurzbaum et al., 2017). Application of
Phoslock to a eutrophic lake reduced the phosphate concentration

(Nurneberg and LaZerte, 2016). Iron oxide based media in Re-
circulatory Aquaculture System enhanced the phosphate removal by
50–55% (Sibrell and Kehler, 2016). Hence the DWTS could be im-
proved by the application of pillared bentonite for reducing phosphate
level prior to discharge into the environment.

4. Conclusions

The present investigation was carried out with the objective of re-
ducing the phosphorus level of aquaculture discharge water with the
low cost available bentonite with improved efficiency by pillaring with
polyhydroxy aluminium. The pillared bentonite was characterised for
its properties and evaluated for the phosphorus removal efficiency by
batch adsorption method. The Langmuir monolayer adsorption capacity
of phosphate onto pillared bentonite was 11.85mg g−1. Treatment of
aquaculture discharge water with the synthesised material showed a
significant reduction in phosphorus level. The novel pillared bentonite
could enhance the efficiency of the Discharge Water Treatment System
(DWTS) of the aquaculture facility by removing the phosphate and
thereby avoid eutrophication.
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