Trust based Recommender System for the Semantic Web

Punam Bedi, Harmeet Kaur, Sudeep Marwaha
Department of Computer Science, University of Delhi, Delhi -110007, India
pbedi@cs.du.ac.in, hkaur@cs.du.ac.in, sudeep@iasri.res.in

Abstract

This paper proposes the design of a recommender
system that uses knowledge stored in the form of
ontologies. The interactions amongst the peer
agents for generating recommendations are based
on the trust network that exists between them. Rec-
ommendations about a product given by peer
agents are in the form of Intuitionistic Fuzzy Sets
specified using degree of membership, non mem-
bership and uncertainty. In literature, the recom-
mender systems use databases to generate recom-
mendations. The presented design uses ontologies,
a knowledge representation technique for creating
annotated content for Semantic Web. Seeing the
potential and popularity of ontologies among re-
searchers, we believe that ontologies will be build
and maintained in numerous knowledge domains
for the Semantic Web and future applications. The
presented recommender system uses temporal on-
tologies that absorb the effect of changes in the on-
tologies due to the dynamic nature of domains, in
addition to the benefits of ontologies. A case study
of tourism recommender system is chosen to gen-
erate the recommendations for the selection of des-
tination, travel agents and the flight schedule. A
comparison of the generated recommendations
with the manual recommendations by peers estab-
lishes the validity of the presented recommender
system.

1 Introduction

In our daily life, even to decide upon simple things like
which place to visit, which movie to watch, which book to
read, which restaurant to eat at, we depend upon our ac-
quaintances, reviews in the newspapers, magazines, and
general surveys, etc to help find interesting products or serv-
ices. This support from the society provides a shortcut to
select a good alternative as otherwise the cost and effort
required is usually not deemed to be worth the trouble.

In this age of technology, the Recommender Systems
(RS) have come to the rescue of the users and create a tech-
nological proxy for this. Recommender Systems use the
opinion of members of a community to help individuals
identify the information most likely to be interesting to them
or relevant to their needs. This is done by drawing on user

preferences and filtering the set of possible options to a
more manageable subset. Collaborative filtering is the most
common technique used by the recommender systems, in
which the products are suggested to the user on the basis of
users or items similarity [Herlocker et al., 2000; Karypis,
2001]. However, such recommender systems ignore the
social elements of decision-making and advice seeking, and
hence the system model does not match the mental model of
the user [Bonhard et al., 2006]. The user does not know
about the taste of the people that form the basis to suggest
products. This acts as a hindrance to trust the recommenda-
tions of the system.

[Sinha et al., 2001] have shown that given a choice be-
tween recommendations from friends and recommender
systems, in terms of quality and usefulness, friends’ recom-
mendations are preferred even though the recommendations
given by the recommender systems have high novelty fac-
tor. Friends are seen as more qualified to make good and
useful recommendations as compared to recommender sys-
tems. Also, the empirical studies by [Ziegler et al., 2004]
have shown that the correlation exists between trust and user
similarity when the community’s trust network is bound to
some specific application. In light of these studies, it can be
said that the computational trust models can act as appropri-
ate means to supplement [Donovan et al., 2005] or replace
[Ziegler et al., 2004] current collaborative filtering ap-
proaches used by the recommender systems.

To overcome the limitations of existing recommender
systems, we have proposed a trust based recommender sys-
tem for the Semantic Web. The proposed recommender sys-
tem runs on the server with the knowledge distributed over
the network in the form of ontologies. An individual inter-
acts with the recommender system through an agent. The
agents of the application domain form a “web of trust”
[Guha et al., 2004] and use this web of trust to generate the
recommendations. In the proposed model, the recommenda-
tions are taken from the trustworthy agents only and the data
as well as the methods used to generate the recommenda-
tions are with agents, making the recommendation process
transparent to the user.

[Massa et al., 2004; Ziegler et al., 2004] have proposed
recommender systems that use trust to recommend products.
In their work, trust values are computed in addition to simi-
larity measures between the agents. In our work, similarity
between the agents gets absorbed into trust through the
process of trust update.

I[JCAI-07
2677

The presented design uses ontologies, a knowledge repre-
sentation technique for creating annotated content for Se-
mantic Web. Seeing the potential and popularity of ontolo-
gies among researchers, we believe that ontologies will be
built and maintained in numerous knowledge domains for
Semantic Web and future applications. The proposed archi-
tecture also enables the same agent to give recommenda-
tions on more than one subject domain. The knowledge be-
ing put as ontology on a separate tier, allows the flexibility
of using more than one ontology to give recommendations
on different domains or to use more than one domain to
generate recommendations on a single complex problem.
The presented recommender system uses temporal ontolo-
gies that absorb the effect of changes in the ontologies due
to the dynamic nature of the domains.

In the literature not much work has been done regarding
the utilization of fuzziness and uncertainty in the recom-
mendation process, even though these are inherent in it. In
the proposed model we have used Intuitionistic Fuzzy Sets
(IFS) [Atanassov, 1999] that have degree of membership,
non-membership and uncertainty to capture the fuzziness
and uncertainty.

The organization of the paper is as follows. In section 2,
knowledge representation using temporal ontologies is dis-
cussed. Section 3 presents our trust based recommender
system for the Semantic Web. In section 4, formation of
“web of trust” is described. A case study of tourism recom-
mender system is presented in section 5 and finally section 6
concludes the paper.

2 Knowledge Representation in Temporal
Ontologies

Ontology is a conceptualization of a domain into a human
understandable, but machine readable format consisting of
entities, attributes, relationships and axioms [Middleton et
al., 2002]. The degree of specification of the conceptualiza-
tion, which underlies the language used by a particular
knowledge base, varies in dependence of the purposes. An
ontological commitment is thus a partial semantic account
of the intended conceptualization.

The OWL, Web Ontology Language is a language for de-
fining and instantiating Web Ontologies. In OWL ontology,
concepts are arranged in hierarchical format with each con-
cept represented by a node in the hierarchy. An OWL class
having various properties and relationships with the other
classes represents each node. The temporal ontologies are
implemented in OWL ontologies with the introduction of
new attributes to classes and properties for marking time-
stamp and their validity.

Relating it with the frames and slots, a class in ontology
is based on the frame and its properties are slots of the
frames. The relationships among different classes or frames
are established by referencing related classes or instances of
classes in slots or properties. The temporal ontologies are
obtained through frame and slot versioning [Bedi et al.,
1993; Noy et al., 2004]. When the value of a property of a
class has changed or name of the property has changed be-

tween two versions, we use the slot versioning to capture the
change. In slot versioning, only the version of changed
property is created and inserted above the existing latest
version in the same OWL file. When the class name or the
intrinsic attribute of the class has changed then we use the
frame versioning and the whole is inserted above the exist-
ing version in the same OWL file.

3 Trust based Recommender System for Se-
mantic Web

The framework of the recommender system shown in Fig. 1
uses temporal ontologies. It depicts the relationships be-
tween the agents and the ontologies. There can be m agents
in the application domain that interact with each other form-
ing a social network of agents based on trust, referred to as
“web of trust”. Every agent has its personal temporal ontol-
ogy which is populated using one or more of the n domain
temporal ontologies. It is not necessary that every agent

Agent,

Personal Tem-
poral Ontology, #
Try
Agent,
Personal Tem-

poral Ontology,

Domain Temporal
Ontology,

Domain Temporal
Ontology,

Web service
Domain Temporal
Ontology ,
Personal Tempo- Internet
ral Ontology

Fig.1. Trust based Recommender System for Semantic Web

interact with every agent or domain temporal ontology
available in the application domain.

The domain specific temporal ontology provides the part
of a specific version of the ontology or requisite version of
ontology or a full temporal ontology as per the need of the
requesting agent. Extraction of the sub or full ontology from
the temporal ontology is taken care by the web service that
is also used as an intermediate layer for handling the inter-
actions between the agent community over the web and do-
main temporal ontology. In this paper, we are limiting our
self to the OWL temporal ontology but the framework poses
no restriction for the use of temporal ontologies written in
other languages. The web service layer also provides an
abstraction layer that isolates the domain temporal ontolo-
gies from the agent community. This abstraction allows the
ontology engineers to create, develop, and update the ontol-
ogy separately and then seamlessly integrate them with the
agent applications [Bedi et al., 2005]. The use of temporal

I[JCAI-07
2678

ontologies in this respect is very useful as it allows the
agents in recommender system to extract knowledge from
different versions of the same ontology dynamically, taking
care of the changes occurring in them. The agents can con-
tinue to work intelligently by using older compatible version
and yet use new version for the concepts that are added af-
terwards but compatible with the existing ones. This archi-
tecture also provides a great scalability to scale up recom-
mender system developed for one domain to many domains.

Using the personal ontology, a recommender agent gen-
erates personalized recommendations for the user agent. In
the personal ontology, an agent maintains the profile of the
acquaintances, requisite part retrieved from the domain
temporal ontology and degree of trust on the acquaintances
which is computed and updated as shown in section 4.

Two types of interactions / encounters are possible be-
tween the agents: intentional and unintentional [Bedi et al.,
2006]. When an agent intends to find interesting products
for itself and explicitly seeks recommendations, the interac-
tions are termed as intentional encounters. The agents in the
application domain through “web of trust” exchange infor-
mation about the products known to them during their idle
time. Such interactions are referred to as the unintentional
encounters. The unintentional encounters help to spread
information similar to “word of mouth”.

An agent can act both as a recommender as well as user
agent. During the intentional encounters, one agent acts as a
user agent and those known to it act as recommenders. The
following sections describe how the recommendations are
generated as recommender and how the user agent aggre-
gates the recommendations to generate the list of interesting
products for itself.

3.1 Generating recommendations

The recommender agents accumulate the information during
the unintentional encounters that after personalization, is
passed as a recommendation to the user agent during the
intentional encounters. Every recommendation corresponds
to a product and is in the form of IFS. The IFS recommen-
dation of a product has a degree of membership (satisfac-
tion), degree of non-membership (dissatisfaction) and de-
gree of uncertainty (hesitation) signifying the relevance of
the product for the user. To personalize the recommenda-
tions according to the taste of the user agent A, the recom-
mender agent maintains the following lists in its profile:

oo Preference list: The preference list, P, consists of the
information in terms of the attributes of the products
liked by the human user connected to A. For example,
in case of movie recommender system, the attributes
can be directors, actors, actresses, etc. There are sepa-
rate sub-lists in P, corresponding to every attribute of
the product. The order of the values in the respective at-
tribute list, signify their priority in the respective sub-
lists.

oo Uncertain list: This list U, consists of the same type of
information as that of the preference list, but the data
about the taste of A is acquired via the feedback process

mentioned below. However, there is no prioritization
among the values of an attribute as recommender agent
has no idea about the user preference of one value over
the other.

In this paper, we are trying to have a system similar to the
social recommendation process and hence we are not re-
stricting to the preference list or uncertain list for the user
taste. As in real life, to recommend a product to someone
known to us, we do take into consideration the taste of the
person. But if we feel that a particular product may be of
interest to the other person as the product has a general ap-
peal or if the reviews for a product in the newspaper, maga-
zines, etc. are good, then we do recommend that product. In
such cases, if the user likes the product that actually does
not conform to his/her explicitly mentioned taste, then the
user agent gives a feedback as a binary value, yes or no, to
the recommender agent(s) who recommended that particular
product. The recommender agent on getting a positive feed-
back from the user agent adds the attribute values of the
product to the uncertain list for that user. The user agent
does not rate the product in the feedback; as a result it is not
possible for the recommender agent to adjust it in the pref-
erence list. This also helps to overcome the cold start prob-
lem generally faced by the recommender systems.

Generating IFS for the products

A recommender can recommend products known to it.
The recommender agent comes to know about the product
either through usage or through unintentional encounters.
During the unintentional encounters, an agent exchanges the
information about only those products that it has used and is
satisfied with.

An agent stores only the names of the products known to
it in the personal domain ontology. When an agent has to
generate recommendations for other agent, it retrieves
knowledge about known products from the appropriate ver-
sion of the domain temporal ontology.

Let the products be represented by n attributes (ay, ay, ...,
a,). A product P is suggested to the user agent A, along with
the IFS generated for it as shown below:

1. The degree of membership of product P, pp is computed
using the preference list Py, as:
1.1 For every attribute a; (i = 1, ..., n) do the follow-

ing:

1.1.1 Let avi;, aviy, ..., aVimi be the attribute
values of P for the attribute a;. Search for
these values in the sublist of attribute a; of
Pa.

.12 Ifavy (=1, 2, ..., mi) figures in the list
then compute the rank ravj; as the position
of avjj in the a; sublist, else ravj; is 0.

1.1.3 Finally,

(da, * (rav, + rav,, + ... +rav,,,) +
da, * (1avy + rav,, + .. +rav,,,) + ..+
u da,* (rav, + rav,, + .. + rav,,) (1
b, =

toH G+ o ot

I[JCAI-07
2679

where da; (i =1, 2, ..., n) represents the degree
of significance that the user associates
with the i™ attribute,
ti(i=1, 2, ..., n) represents the total num-
ber of values that are present in the i" at-
tribute’s sublists of P4.
2. The degree of uncertainty of product P, mp is computed
using the uncertainty list U, as:
2.1 Lettherebeu; (i=1,2,...,n) entries in the i™ at-
tribute’s sublists in Uj.
2.2 Let k; be the attribute values of P for attribute a;
that are present among u; entries.
2.3 Compute the degree of uncertainty of the product

P as:
_ (dal *kl +da2 *k2 +...+da“ * kn))
’ u, +u, + .. +u,
where, da;(i=1,2,...,n)is same as in step 1.1.3.

3. The degree of non-membership of product P, vp is com-
pute as follows:

v,=1-u, -nr, (3)
Final recommendation list generation

After matching the products with the preference list and
uncertain list, the degree of membership, non-membership
and uncertainty is available with the recommender agent for
all the products that it knows. If a product, P has both pp and

Tp as zero, then the product is not considered further unless

and until the recommender feels that the product has general

appeal or the reviews for it are good. The recommender
provides the degree of uncertainty for the IFS of such prod-
ucts that signify the extent to which the recommender is not
sure about his/her decision to suggest that product to the
user. The degree of membership is zero for such products
and the third parameter is computed using eq. (3). The fol-
lowing method is used to generate the final list of the prod-
ucts that are to be recommended to the user agent along with

IFS that is computed for them:

1. The products having membership as zero and uncer-
tainty as non-zero are followed by the products with
non-zero degree of membership.

2. Within the products with membership as zero and un-
certainty as non-zero, order the products in ascending
order on degree of uncertainty.

3. Within the products with non-zero degree of member-
ship, order the products in ascending order on degree of
membership.

3.2 Aggregation of recommendation lists after in-
tentional encounters by the user agent

The user agent A, computes the degree of importance of the

products using the recommendation lists. The products are

then suggested to human user using the following method:

1. First identify the distinct products from the lists and
then compute the degree of importance (Dol) of every
product (P;) as follows:

Dol, = DOT(RJ)* {u; (Rl)_Vl (Rl)* n(Rl } * Rank, (Rl)ﬁ
DoT(R,)*{u,(R,)-v,(R,)+ m,(R,) }* Rank,(R,) N....0 “)

DOT(Rk)* {H,‘ (Rk)_Vi (Rk)* T (Rk)}* Rank; (Rk)
where,
Dol;(A) is degree of importance of P; as computed by
A,
M 1is the fuzzy intersection operator,
R;is the j"" recommender,
wi(X) is the degree of membership of P; according to X,
vi(X) is the degree of non-membership of P; according
to X,
mi(X) is degree of uncertainty or hesitation of P; accord-
ing to X,
Xe {Rjlj=1,...,k},
DoT(R;) is the degree of trust of the A on R,
Rank;(R;) is the normalized position of P; in the rec-
ommendation list of R;,
k is the total number of recommenders who have rec-
ommended P;.
2. Compute the threshold, TDOI for degree of importance
as
TDOI=p-v*m (5)
where,
W, v and m are degree of membership, non membership

and uncertainty, respectively that the user agent expects
from the interesting products.
3. For all the distinct products, P; of step 1
if DOI; < 0 or TDOI < DO, then
P; is recommended to the human user corre-
sponding to the user agent
The DOYI; is negative for those products that do not con-
form to the user taste exactly. They have been recom-
mended as they have mass appeal or it has matched
only the uncertain list and not the preference list.

4. Initializing and Updating Degree of Trust
on the recommenders

4.1 Trust Initialization

When a new agent comes up in the system or the system
starts from the scratch, then the agents have to initialize the
trust values for some of the other agents in the application
domain to form its acquaintance set. If an agent is known to
the other agent (i.e., the corresponding humans know each
other), then the human associated with the agent can initial-
ize the degree of trust according to the personal dealings
with the person. However, the system also allows an agent
to initialize degree of trust on an agent X, on the basis of the
experiences of the other agents with X, i.e., to what extent
the other agents in the application domain have received
good recommendations from X. The degree of trust is then
regularly updated on the basis of the personal experience of
the agent with X.

The new agent Y, asks for the experience of other agents’
w.r.t. X. Let q agents return their experience values as the

I[JCAI-07
2680

number of good recommendations received to the total
number of the recommendations received from X. Let j‘h
agent gives the experience as e;. Then the degree of trust on
X is as following:

ie/
DoT(X) == ©)
q

where, DoT(X) is degree of trust as computed by Y on X.

If q is large, then basically we are interested in finding
what is experience of the majority of the agents for which
experiences can be clustered and then degree of trust be
computed [Kaur et al., 2005].

4.2 Updating Trust

The degree of trust on a recommender is updated on the
basis of the distance between degree of importance of the
product as it is there in the aggregated list of the user agent
(A) and the recommendation list of the recommender (R).
The difference of opinion between the user and the recom-
mender is computed as follows:
(D, + D, +

p

d — + D,) (7)

where,

Di = {i(R) = vi(R) * m(R)} — {pu—v * 7},

u, v, w; and i(R), vi(R), m(R) are as defined in the sec-

tion 3.2,

p is the total number of products in the recommendation

list of R.
Depending upon whether the difference between its aggre-
gated list and the recommendations is below its acceptable
threshold d; or not, the user agent updates the degree of
trust, DoT(R) on recommender as follows:
DoT(R) =DoT(R) + (d;—d) (8)

In our model, hence trust increases for those who give good
recommendations and vice-versa.

5. Case Study

A case study of tourism recommender system is chosen to
generate the recommendations for the selection of destina-
tion, travel agents and the flight schedule. The generated
recommendations are compared with the manual recom-
mendations provided by peers. The experiment is conducted
to recommend cities of United States of America to the per-
sons living in India, who want to visit USA for tourism pur-
pose.

5.1 Setup

In this experiment, the dataset for developing the destination
temporal ontology is taken from the Places Rated Almanac,
by Richard Boyer and David Savageau, copyrighted and
published by Rand McNally. The data set rates 329 cities of
USA on the nine criteria viz. Climate & Terrain, Housing,
Health Care & Environment, Crime, Transportation, Educa-

tion, The Arts, Recreation, and Economics. Except for
Housing and Crime criteria, higher score is better. The des-
tination ontology is developed using Protégé 2000 with con-
tinent, country, state and city classes in the hierarchy and
then extended to temporal ontology using frame and slot
versioning. The ontology contains 329 cities of USA as in-
dividuals of class city but it can be populated with the indi-
viduals of the countries, states and cities of the world.

The travel agents use flight schedule temporal ontology to
recommend flight information to the user agent. The flight
class has five properties: Airline rating, Fare, Time taken to
reach destination, Ticket class and Availability of tickets
according to traveling plan, on the basis of which the tour
plan is recommended. Presently, we have populated indi-
viduals of classes in the ontology manually but it can be
integrated with the flight reservation systems for creating
individuals dynamically.

5.2 Experiment

The system starts with five agents, each of which can act as
user or recommender agent, and five travel agents that can
recommend flights for the specified destinations. The re-
commenders suggest destinations and the travel agents to
the user agent. The destinations are suggested using destina-
tion temporal ontology. The recommenders suggest travel
agents on the basis of trust on travel agents. The architecture
of the system enables the recommenders to compute the
trust on the travel agents for the first time and then update it
with the growing experience about them. The stored trust is
then used to generate the recommendations about travel
agents. After selection of the destination and the travel
agents, the user agent seeks recommendations about the
flight schedule for the selected destination(s) from the se-
lected travel agent(s). The selected travel agent(s) uses the
flight schedule temporal ontology to recommend flight
schedule to the user agent.

For manual recommendations, two forms are designed:
one for selecting a destination and the other for flight
schedule to be filled by known travel agents. Twenty five
known persons staying in USA were selected as recom-
menders. Five trusted travel agents were selected to provide
traveling schedule on the basis of five attributes considered
in designing flight ontology. The travel agents then sug-
gested flights for the selected destination.

The recommendations for destination were taken against
ten preference lists corresponding to ten different users. The
persons who require these recommendations are of different
age groups and different income groups, so their preferences
are different. In case of manual recommendations, for every
preference list, five recommenders suggest five destinations
and every recommender suggest destinations for two prefer-
ence lists. In system generated recommendations, all five
agents suggest five destinations each for ten preferences.
The results of the comparison of the system generated rec-
ommendations against the manual recommendations are
shown in Fig. 2.

I[JCAI-07
2681

Recom mendations

No. of Recommendations

Preference Lists

Manual = iteration1 & iteration2 T iteration3 = iteration4

Fig. 2: Manual recommendations Vs System generated rec-
ommendations

The graph of Fig. 2 shows that the number of recommen-
dations received from friends and system, which are above
threshold of the user, follow similar pattern. Similarly, the
flight schedules recommended by the system travel agents
and human travel agents matches w.r.t. the cost, choice of
airlines and other parameters.

The temporal effect of ontologies is under study as the
ontologies have not evolved much.

6 Conclusions

Use of temporal ontologies make recommender systems
independent of the knowledge base creation and this allows
them to work seamlessly across different versions of on-
tologies. The system developer has more resources to con-
centrate on recommendation models without worrying about
the knowledge base maintenance and evolution. The pre-
sented system based on temporal ontologies and trust net-
work, generates the recommendations across multiple do-
mains. The similarity measures are taken care in the form of
trust update process. Intuitionistic Fuzzy Sets (IFS) have
been used to capture uncertainty, inherent in the recommen-
dation process. The tourism domain being dependent on a
number of domains like air travel, geography, food, enter-
tainment, sports etc. is taken as a landmark study. At present
the case study uses two domains viz. destination and travel
and can be enhanced easily for other domains.

References

[Atanassov, 1999] K. Atanassov. Intuitionistic Fuzzy Sets:
Theory and Applications, Studies in Fuzziness and Soft
Computing, Vol. 35, September 1999, Physica-Verlag.

[Bedi et al., 2006] Punam Bedi and Harmeet Kaur. Trust
based Personalized Recommender System. INFOCOM
Journal of Computer Science, 5(1):19-26, March 2006.

[Bedi et al., 2005] Punam Bedi and Sudeep Marwaha,
Framework for Ontology Based Expert Systems: Disease
& Pests Identification in Crops - A Case Study. In the
Proc. of the International Conf. of Artificial Intelligence
(IC-AI), pages 256-259, 2005.

[Bedi et al., 1993] Punam Bedi, K.D. Sharma, Saroj Kaus-
hik. Time Dimension to Frame Systems. Journal of In-
formation Science and Technology, 2(3): 212-228, April
1993.

[Bonhard et al., 2006] P. Bonhard, C. Harries, J. McCarthy
and M.A. Sasse, 2006. Accounting for Taste: Using Pro-
file Similarity to Improve Recommender Systems. In the

Proc. of the Conf. on Computer-Human Interaction, Mon-
tréal, Québec, Canada, pp. 1057-1066.

[Donovan et al., 2005] John O’Donovan and Barry Smyth.
Trust in Recommender Systems. In Proc. of the Interna-
tional Conf. on Intelligent User Interfaces, pages 167-
174, San Diego, California, USA, January 2005.

[Guha et al, 2004] R. Guha, Ravi Kumar, Prabhakar
Raghavan, and Andrew Tomkins. Propagation of Trust
and Distrust. In the Proc. of World Wide Web, pages 403-
412, New York, USA. 2004.

[Herlocker et al., 2000] J.L. Herlocker, J.A. Konstan, A.
Borchers and J. Riedl. Explaining Collaborative Filtering
Recommendations. In the Proc. of the ACM 2000 Conf.
on Computer Supported Cooperative Work, Philadelphia,
PA, pages 241-250, 2000.

[Karypis, 2001] George Karypis. Evaluation of Item-Based
Top-N Recommendation Algorithms. In the Proc. of the
tenth International Conf. on Information and Knowledge
Management, New York, USA, 2001, ACM Press.

[Kaur et al., 2005] Harmeet Kaur and Punam Bedi. Using
Fuzzy Clustering to Determine Agent Reputation. In Proc

of International Conference on Data Mining, pages 79-
85, Las Vegas, USA, June 2005.

[Massa et al., 2004] Paolo Massa, Bobby Bhattacharjee.
Using Trust in Recommender Systems: an Experimental
Analysis. In the Proc. of iTrust, pages 221-235, Oxford,
UK, Springer, Vol 2995, 2004.

[Middleton et al., 2002] Stuart E. Middleton, Harith Alani
and David Roure. Exploiting Synergy Between Ontolo-
gies and Recommender Systems. In Proc. of Semantic
Web Workshop, Hawaii, USA, May 2002.

[Noy et al., 2004] Natalya F. Noy and Mark A. Musen. On-
tology Versioning in an Ontology Management Frame-
work, Intelligent Systems, IEEE, 19(4): 6-13, 2004.

[Sinha et al., 2001] Rashmi Sinha and Kirsten Swearingen.
Comparing Recommendation made by Online Systems
and Friends. In the Proc. of the DELOS-NSF Workshop
on Personalization and Recommender Systems in Digital
Libraries, Ireland, 200.

[Ziegler et al., 2004] Nicolas Ziegler, Georg Lausen. Ana-
lyzing Correlation between Trust and User Similarity in
Online Communities. In the Proc. of iTrust, Oxford,
pages 221-235, UK, Springer, Vol. 2995, 2004.

I[JCAI-07
2682

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

