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SUMMARY

Many often two surveys conducted independently, may have some auxiliary variables in common along with a set of extra variables that are not
common to both the surveys. One survey, which is small in sample size but collects both variable of interest as well as a set of auxiliary variables. The
another survey which is relatively larger in sample size, does not collects variable of interest but collects a set of auxiliary variables, common to the
small survey. In addition, the large survey collects multiple response variables as well as set of auxiliary variables not common to the small survey. A
small area predictor for small domain (or area) means is proposed by combining data from these two surveys using multipurpose weights. Empirical
results from model-based as well as design-based simulations indicate that the proposed small area predictor that incorporates the additional auxiliary
variables of the large survey along with the common auxiliary variables, provide better efficiency gain.

Keyewords: Combining data; Empirical predictor; Independent surveys; Non-sample area; Small domain; Multipurpose weight; Variable specific
EBLUP weight.

1. INTRODUCTION Often multiple agencies, government or private
departments or organizations conduct surveys on
same population independently for their own interest.
Two surveys conducted independently on the same
population can have one or more auxiliary variables in
common along with set of variables that are not common
for both the surveys. Further, it is also possible to have
some linear relationships of variable of interest with
the auxiliary variables. Hence, it seems to be attractive
to utilize the data of both the surveys to improve
precision in estimation. Different authors are already
addressing the problem of survey data combining from
two independent surveys having common variable of
interest as well as auxiliary variables and considered
estimation at population and large domain levels,
see for example, Zieschang (1990), Renssen and
Nieuwenbroek (1997), Hidiroglou (2001), Merkouris
(2004), Wu (2004) and Kim and Rao (2012).

Sample survey is a cost effective approach for
obtaining information on wide ranging of topics
by observing a part of the population and making
inferences about the population characteristics.
Recent years demand for subpopulation or domain
level estimates has increased tremendously. For
example, estimates for small geographical areas like
District, Tehsil or Village Panchayat etc, see Molina
and Rao (2015). In real survey scenarios, frequently
observed domain of interests are small domains,
for which domain specific sample size is not large
enough to produce reliable direct estimates. The
indirect model based small area estimation (SAE)
methods are popularly used to produce small area
estimates (Molina and Rao 2015). But, further making
improvement in reliability of SAE methods are still
a challenging issue for survey statistician, due to

scarcity in area specific sample data and increase in
overall survey sample size is practically not feasible
due to, budget and time constraints.
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It is well known that the problem of scarcity and
inadequacy of sample data is much more prominent at
small domain level compared to the population level.
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Hence, combining data from two independent surveys
can be advantageous to produce reliable small domain
(or area) estimates. Several authors have already
discussed different approach of combining survey
data from multiple surveys for SAE, see for example
Marker (2001), Moriarity and Scheuren (2001), Lohr
and Prasad (2003), Rao (2003), Elliott and Davis
(2005), Lohr and Rao (2006), Merkouris (2010),
Ybarra and Lohr (2008) and Manzi ef al. (2011). Kim
et al. (2015) developed SAE approach for combining
data from several sources using area level model.
Maples (2017) extended the method of Kim and Rao
(2012) for estimation of small area proportions from
binary variable under logistic linear mixed model by
combining data from two independent surveys. Islam
et al. (2018) proposed small area estimator under a
spatial dependent random effects model by combining
data from two independent surveys. Recently, Islam
and Chandra (2019) proposed estimation of small
area means under a linear mixed model by combining
information from two independent surveys. Maples
(2017), Islam et al. (2018) and Islam and Chandra
(2019) discussed SAE approach by considering the
situation that one survey which is small in sample size,
collects both variable of interest as well as auxiliary
variables whereas the another survey, relatively
larger in sample size, has only collects auxiliary
variables common to small survey. In particular, they
proposed SAE method, using common set of auxiliary
information for combining data from two independent
surveys and they does not consider any extra set of
variables available for large survey not common to
the small survey. In practice, survey with large size
possible to have rich set of variables, of which a subset
of variables possibly common to small survey. The
sub-set of extra variables that are not common to small
survey, can be both set of response variables as well as
auxiliary variables of the large survey.

In this article, we extend the Islam and Chandra
(2019) approach of SAE by combining data from two
independent surveys. We considered that a survey
with small in sample size that collects variable of
interest as well auxiliary information and the another
survey which is large in sample size does not collect
the variable of interest but collect auxiliary variables
common to the small survey. In addition, the large
survey collects a set of extra response variables as
well as auxiliary variables that are not common to the

small survey. For developing small area estimators, it
is assumed that the variable of interest is realization of
linear mixed model with the common set of auxiliary
variables and the response variables of the large survey
are also realization of linear mixed with different
parameter values with the extra set of auxiliary
variables. Further, it is also considered that the area
specific aggregate values (e.g. population means or
totals) for all the auxiliary variables are not available
but population level aggregate values of the auxiliary
variables are available from different administrative
or census sources. The rest of the article is organized
as follows: In Section 2, we discussed the notations
and different SAE methods. Further in sub-section
2.1 proposes an approach of SAE using multipurpose
weight. The empirical evaluations of the proposed
estimators are performed through model based as well
as design based simulation studies in Section 3. Finally,
concluding remarks are discussed in Section 4.

2. NOTATIONS AND SMALL AREA
ESTIMATION

In this section, we define notations which are
set out as follows. Let us assume that a population
U consists of N finite population units. Further,
assume that the population is composed of D non-
overlapping small domains (or areas) denoted as U, .
Here, d is indexing D areas. It is assumed that the area
specific population size is N, which summed up to

the whole population, N =ZdD:1N ,-We consider

Vg as the value of the variable of interest y for unit
j in area d and the area-specific population mean

for area d is Y, :N‘;lzi’l Vg - Further, we assume
that two surveys are conducted in the population U
independently denoted as S;, and S, m respectively.
The sample sizes for S, and S, are 7y and 7
respectively, assuming 7 is much larger than 7 .
In the rest of the article, we also called S, and S,

survey as small and large survey, respectively with
same meaning. The terms related to sample and non-
sample part of S, is denoted by the s, and %,
respectively. Similarly, the terms related to sample and
non-sample part of S, is denoted by the subscripts

S and 7y, respectively. The area-specific sample

size for S;, and S, are denoted by "4 and e,
(d=1,2,...,D), respectively. The area-specific sample
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sizes of both the surveys are summed up to overall

. D D
sample size as 7y = zdzln(l)d and 7y = zd=1n(ll)d .

Now, it is considered that the small survey S, has
collected both variable of interest y as well as vector of
auxiliary variables x, of order P. The larger survey
S 1 does not collect the variable of interest y but it
collects all the P auxiliary variables that are common
to the small survey S, and in addition S, has
collected K different response variables (denoted as
Y.,Y,,...,Y, ) as well as a vector of auxiliary variables
Xy = (X}5»Xp) of order O, not collected in the
small survey S,. It is assumed that the variable of
interest y is realization of unit level model linear mixed
model, based on P common auxiliary variables X,
and further the K response variables are assumed to
have same relationship with the set of Q extra auxiliary
variables X, with different parameters value. In
this section, we use an extra subscript k(k =1,...,K)
for indexing quantities associated with the response
variable £.

The design-based direct estimator (DIR) of area
d mean, Y, using data from the small survey, S,
is ¥ =3 wi v, Sirmndal e al (1992). Here,

JES(1yi
dw dw
Wiy = Wiy / Zjeg(,), e 18 @ normalized survey

design weight of and W(,)dj is survey design weight
of S, for unit j in area d. Following Chandra and
Chambers (2009, 2011), the MBDE (denoted by
MBDE) of area d mean of y is defined as

o MBDE _ ~ EBLUP

Y, = zjes“)d Wag Y (1)
L EBLUP _ | FBLUP WEBLUP

with, Wing = Wag /ZJESW (a4 - Here,

EBLUP EBLUP T 2
=(w,. |J=1_+H [t -t +
Wi ( (i ) 51y s\ e Mo

ST T -1,
I. -H x 1
( 1) son X@say ) Vsasan Ysavin i s

A -1
: T Al T Al
with HS(I) - (X(C)S<1>VS<I>S(1)X(”)SU)) Xy Vs * Here
Vs, denotes estimate of variances between sampled
units, V., denotes estimate of variances between

sampled and non-sampled units, t,

zd 12] =1 Xe)dj »

_ "1ya
x{mm Z“Z X(ng = n(,)x(é)ém Is“) is the

identity matrix of order 7, , and 1, = denotes a

S(l)

vector of ones of size #;) and (N —n;)), respectlvely.

Table 1. Description about the information available for the
survey S, and S,.

Variables Su) S(II )
R ; -
esponse variable Y(01.1r variable of Y,Y,,...Y,
interest)

Auxiliary variable
X(¢) vector of length P| X vector of order P

X(uc) vector of order O

To this end, let us assume a unit level linear mixed
model of form

ydj =X{C)dJ'B+ud +edj, j:1>"'aNd;d:1""D’(2)

where, B is a P vector of regression coefficients,
u, denotes area-specific random effect for area d,
€; 1is an individual random effect for unit j in area
d. It is assumed that #, and €; are independent and
separately follow normal distribution with zero mean
and constant variances O, and O, respectively
(Battese et al., 1988). The model (2) is fitted using
the data of small survey S, and the parameters of
the model are estimated using maximum likelihood
(ML) or restricted ML (REML) estimation methods
(Harville 1977). The vector of estimated parameters
of (2) is denoted as (B,67,62)" . Under this scenario,
Chandra et al. (2015) discussed an empirical predictor

for small area mean in area d denoted by EPI1 is
defined as

TEPI _ — n
Y, = Xo)sya TUg s (3)
where,
A ro= —T QY 5 A2 A A -1
uy =Y, (v, = x(c)s(l)dB) V4= 6,(6, +6; Inina)
-1 ryd

X500 = Miya =1 Xxna - Islam and Chandra (2019)

discussed an empirical predictor (denoted by EP3) of
area d mean of y based on S, data is defined as

VEPY _ —EBLUP
Y, ) B+l

U, “)

L EBLUP __ ~ EBLUP
where, X, = ngw Wing X Islam and

(Hdj

Chandra (2019) proposed an empirical predictor of
small area mean in area d (EP2) using design weight
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as well as synthetic values of y of second survey S, is

YEP2 _ﬁ()(u)dﬁ"'” ®)

at _ dw . .
where, X(H)d_Zjes(,,)d WingXeuna 18 design-

based direct estimate of X, Xa =Ny Zd 12

*dw *dw
11 d//z /ev )dj
Welght of S, for unit / in area d and W), is design
weight of large survey S, for unit; in area d. Further,
Islam and Chandra (2019) developed the empirical
predictor (EP4) of area d mean using synthetic values

of variable study and EBLUP weights of ;, is
defined as

X >

is normalized survey

VEP4 _ % EBLUP
Y, (c)(II)d) B +i, (6)
~ EBLUP EBLUP EBLUP
where, in," =win," /Y Jesuna DG and
2EBLUP _ 2 7 EBLUP
(e)nyd — (dj “(e)U)dj .

JES(nya

Here,

EBLUP EBLUP 7 2
=\w,n; |=1_ +H t —t +
wX( ) ( un; ) S Sary \ " Xe Xe)sin

T T -1
- X v 1
Sary Sy (C)S(u) SanScry - Sanuny T Ty

R 4
where Hs :(xT vloox ) x v

(C)S(ll) ScnySr) (0)5(11) (")S(”) ScnySry ’
Q’f(n)s(n) denotes estimate of variances between sampled
denotes estimate of variances between

units, v
Zd 12 =1 d/’

San'un
nrya
x((.)?(” - Zd 12 (‘)(H)dj - n(”) (s ? I-S(][)

the identity matrix of order 7, 1

sampled and non-sampled units,

e and Tt

denotes a vector of ones of size n,, and (N —n,)
respectively.

2.1 Small area estimation using multipurpose
weight

Different estimators described in the previous
section are either based on small survey data S,
or combining data from two surveys using common
auxiliary variables X, and the estimators based on
combining data from two independent surveys are
not incorporating the extra set of variables, collected
for larger survey S, only. Following Chandra and
Chambers (2009), we propose a multipurpose weight

based SAE method by incorporating extra set of
variables [¥,,(k=1,2,....K) and x ., = (X, 0>+ Xg(ue)) ]
oflarge survey S, along with set of common auxiliary
variables X, (xl(c), »Xp(ey) . For developing small
area 1nference, again we assume that the K response
variables individually holds model (2) with X,
although with different parameter values of the form

Yiv = XoooBi + Zou, +ey s ™)

T T \T — T T T
Wherea ka = (yk]’-”’YkD) s X(uc)U - (x(uc)l""’x(uc)Q) s

Z, =diag(z, =1, ;1Sd < D) w, = (u,....u,,)" and

T T \T . :
v=(€,,....e,5) . Since different areas are
independent, the covariance matrix of A™ response

variable y,, has block diagonal structure is given
as Vi =diag(v,;;1<d<D) with v, =Var(y,)
=o,2,2; +0,1 n, and I, is the identity matrix of
order N,. Using the estimated values of the variance
components 0;, and O, , the estimated covariance
matrix is given by V, =diag(¥,,;;1<d < D), with
Vi =02,z +0feINd Given a sample of S, from
this population, without loss of generality, we arrange
the vector y,, so thatitsfirst 7, elements correspond
to the sample units, and then partition Y, , Xuew , Z,,,
and e, according to sample and non-sample units.
Therefore, we can write (7) as follows:

_ yks(ll) _ X(MC)S(H) Zx(u) ek?ul)
Yw = = k Uy

X, e
yk”(u) (we)r Tt Ky |?

. . . . Vks(”)s(,,) Vks(,,)r(,,)
with variance matrix givenby v, =

vV, v
KrimyScm Ky

Here, X(e)s,, is a matrix order of 7, X0,
containing the values of the auxiliary wvariables.
=diag{oi 1, 1 +oll, ;d=1,.,D} is

vks(ll)s(ll) ku Nanya ™ Minya Ninya ?
the 7, X1,y matrix of covariances of the response
variable among the 7, sampled units of S,.

Similarly, v, . diag(0'2 ln“”dli,d ny s =1, D)
is a matrix of order 7(;) X(N —n,,) represents the
covariances of the response variable for sampled and
non-sampled units for the survey §,,,,. Here, I,,(”)d is
the identity matrix of order 7, , ln(”)d and 1 Y

denotes a vector of ones of size 7, and N —ng.,

respectively. We fit the model (7) using sample data of

Scry for each of K response variables independently
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with respect to auxiliary variables X, and
parameters are estimated for each response variable

Vi denoted as [3 ‘ 6;, and 0}, (k=1,2,...,K). We use
these parameter estimates for estimation of covariance

matrix denoted by V., =diag(¥,,;1<d < D), where
Vig = 6’1;1[125 + 5’1§,EIN‘, . Now, we define the sample
weights that define the variable specific EBLUP
weight under (7), for the population total of response

variable Vi (k=1,2... K):

EBL ur EBLUP
= (Wuryij )

kS(u) (”)kdj
7
=1, +H, (t, - +
S(ir) ks ( X(uc) Xue)scry )
a7 T ~
- v 1

( S ks (“C)S(m) ks(ll)s(ll) kscnyfry ™ Tar (8)

% T a1 or a1
Herea Hk?(u) - ( (VC)Y(ll)ka(u)s(u) (uc)v(,,, ) (UC)S(U) Vks(,,,s(”) B

ISU“ is the identity matrix of order 7; ls(u) and

1,(”) are denoted as vector of ones of size 7, and

Zd 12 -1 Xweg and

L _Z i 12 o X.yq are the vectors of population
and sample totals of X, respectively. In S, the
variable of interest y is not collected, so it is not

N _”(u), respectively, &y,

possible to use the extra set of covariates X,y directly
to for SAE. For utilising the extra set of variables, a
common multipurpose weights for all the K response
Variables is developed using the parameter estimates
|3 . 0;, and O, , (k=1,2... K) of fitted (7) and variable
specific EBLUP weights (8). Following Islam and
Chandra (2019) generate synthetic values of variable
of interest y using fitted (2) corresponding to common
auxiliary variables X, of large survey S.,. The
developed multipurpose weight of S, is used as a
plugged in weight for synthetic y for developing small
area means estimator.

Following Chandra and Chambers (2009) the
optimal set of multipurpose weights using the K

response variables and the extra set of covariates X(,),
_ MP
= {W(H)dj € S(H)} '

In what follows, we describe the derivations for
construction of multipurpose weights. Let the

. MP
collected in S,,, denoted as W,
1) )

population total of Vi is denoted by I, = 1,¥,s and
the estimator of this based on multipurpose weight,

denoted by T,=(w kS(z)) Y¢. The weights W,

s are
derived based on two criteria are as follows:

(a) E(ﬁ—n)=0 for each value of &k,

(b) Zk l//kVar(Y:k - Tk) is minimized at WSZF:
where  Var (Tk - Tk) is  prediction variance,

Zkl/IkVar(fk —Tk) is called the ¥ -weighted total

prediction variance. Here ¥ is a nonnegative scalar
quantity specified by user and ¥ denotes the relative
importance associate with each response variable in
such a way that Zk ¥, =1. The weights Wi s

S@)
called ¥ -optimal if the two criteria (a) and (b) are
fulfilled. Following Chandra and Chambers (2009) the
expression of optimal multipurpose sample weights
for K response variables are defined as

MP1 _ (~MP1 \_ T 2
wS(//) - (W(H)dj)_ 15(11) + Hls(//) (tx(uc) tx(u(')v“/) )+

T T -1
(Is(”) _Hls(,,)x(uc)s(”) )Ul Wllr(ll)' (9)

-1
T -1 T -1
Herea Hls(”) - (X Ul X(uc)sw)) X(uc)s(”)Ul 5

(uc)s(”)

U, =diag(U,,;;1<d < D) and W, =diag(W,,;;1<d < D)
Where Ul’/ = Zf IW"V/“'W)'UU = zfly/k(o—”z-kz’/zz +O—€2v/‘lN«1)

T
and W, = Zk WiV ks d = Zk ll//k k n(,,)led n(,”d).

The empirical predictor (denoted by EP.MP1) of
area d mean based on the multipurpose weight (9) and
synthetic y values of S, is defined as

y EP.MP1 _ ~ MP1 T @, A
Y D W (X(ogB+it,)
JES(ya
— TP
(zjev(”)d (I)dj (C)d/) B + ud
—MPl
(11)4) B"‘ud, (10)
MPl MP1 MPl
where, Wong = Wi /2 Wit and

JES(ya
ZMP1 _ ~M ZMPL\ _ —
X = Z,—ES(W naXang With E (X(ll)d) =X

Further, following Chandra and Chambers
(2009) we also discuss the second method of
deriving multipurpose weights based on “importance
averaging” of the variable-specific EBLUP sample
weights (8) across all K response variables is defined
as:

~ MP2 K EBLUP

Woury = Laiey VeWisy, (11)
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Here, ¥ is importance of the response variable
Yk in such a way that, 2; v, =1. The empirical

predictor (denoted by EP.MP2) of area d mean
based on the multipurpose weights MP2 (11) and the
synthetic values of S i 1s defined as

FEP.MP2 _ ~ MP2
Y, = z Winydj (X(c)d]ﬁ-i_ud)

€Sy
= (Zjes(”)d WX oa)" B+,
= (X1 B+il,, (12)
where, Wy = Wong ! zjes(”)d Wit and

2Mmp2 - \p2
Xy = zjes(,,)d Wanygi Xeyang With E (X(Il)d) =X,.

The area with no sample data or non-sample area
(out of sample area) is very common challenge for
any small area estimation method. Hence without
addressing the applicability of the develop estimators
for non-sample areas, purpose cannot be fulfilled.
Recently, Islam and Chandra (2019) proposed
synthetic estimators SYN.EP2 and SYN.EP4 for small
area mean estimation for non-sampled areas. Hence
following the approach of Islam and Chandra (2019)
develop modified version of EPMP1 and EP.MP2
estimators that can produced estimates for non-sample
areas. Here, we assume that the small survey has D,
non-sample areas out of D areas but for large survey

data for non-sample areas are collected. We generate
the synthetic y values corresponding to X(c)s,, data
of S, for D, areas which are non-sampled in S,.

Similarly, multipurpose weights are developed for

D, areas non-sample for S,;,. The proposed synthetic
predictor EPMP1 (denoted by EP.MP1.Syn) of mean
for non-sampled area d is given by

FEP.MPL.Syn _ M
Y, = (zjesw (ndy (c)dj) B
—MPI
(Il)dout) B d (13)
ZMP1 ~MP1
where Xy 0, = ((z jesuna DG X @ )ﬁ ) B d=1.D,,
D, denotes number of non-sampled areas in S,;,. The

synthetic version of EP.MP1 (denoted by EP.MPI.
Syn) of mean for non-sampled area d is given by

7 EP.MP2.Syn M2
oy
d ( jesuna VD Xoq)" B

M2
(Il)d out) B d (14)
2mp2 P2
where, X(ihyd.out = (zjes(” ., Wanydj (()dj) B d= D,,

D, denotes number of non-sampled areas in small
survey S,.

3. EMPIRICAL EVALUATIONS OF THE
PROPOSED ESTIMATORS

In this section, the performances of the proposed
small area estimators are evaluated through two
type of simulation studies. The first one is model
based simulation where samples are drawn from a
hypothetical populations, generated through statistical
models and the second one is design based simulation
where samples are drawn from a population generated
through real survey data. Different small area mean
estimators used for simulation studies are as follows:
DIR, MBDE, EP1, EP2, EP3, EP4, EPMPI1, EP.MP2,
EP.MP1.Syn, EP.MP2.Syn, SYN.EP2 and SYN.EP4
and these estimators are already discussed in section 2.
The two performance criteria are used in the simulation
studies, (i) Average percentage relative bias (RB) and
(i1) Average percentage relative root mean squared
error (RRMSE) and the expressions RB and RRMSE
are given as:

e (o
RB(m)zmedan{mle lzt:l(mdt —mdt)}XIOO and

A 2
RRMSE (m) = mean \/T‘]ZT (u) %100
d = mdt ’

where the subscript d indexes the small areas and
the subscript ¢ indexes the 7" Monte Carlo simulations,
with m, denoting the true area d mean at simulation
t, with predicted value 7, and the average true area

. . - -1 T
d mean over T simulations is m, =T ztzlmd, . The

discussed expressions of RB and RRMSE are for
model based simulation. In design based simulation
formula is same as model based simulation but

only difference that the term 7, is replaced by m,
, since the population is assumed as fixed for design
based simulation. The whole simulation process is
independently repeated 7 times.
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3.1 Model-based Simulation Study

In the model based simulations, we generate
population data using linear mixed model particularly
the random intercepts model of form

Vigi = @ +:Bk1x(c)dj +IBk2x(uc)1d/' +ﬁk3x(uc)2d/' tu, +e,,

d=1,..D;j=1,..,N,;;k=12,3. (11)

The parameters of the model (11) are described in
Table 2.

Table 2. Description of parameters set up of the model (11).

Auxiliary Auxiliary Variable
Variable Common Collected in Large
Response | Model to Both Surveys Survey Only
variable | Intercept
Xy Xweyt Xy
» o, =350 B,=15 B,=12 B,=14
¥, o, =250 B =12 Bn=11 1 B,=15
Vs o, =500 B, =17 B,=10 | B,=16

Here, Xee)ds and x(uc)ldj(d = I,D,] = 1,...,Nd) are
generated using chi-squared distribution with
degrees of freedom 20 and 10 respectively and
Xeypg(d =1,...D5 j=1,..,N,) is generated through
normal distribution with zero mean and 36 variance.
The random area effects u#, and individual effects

e; are independently drawn from N(0,0.) and
N(0,94.09) distributions, respectively. The simulation
studies when normality assumptions of random
components in (11) hold, expressed as Simulation

1. We use two values of area effects variance O,
as 10.40 and 23.52, so that intra area correlation
coefficients are p=0.10 (simulation is denoted as
Simulationl-I) and 0.20 (simulation is denoted as
Simulation1-1I), respectively. Total 25 small areas
are considered and six combinations of area-specific
sample sizes for the small and large samples are taken,
(Mg Mima) =(2,25) ) (2,50), (4,25), and (4,50),
respectively. Here, the stratified random sampling
design is used for sample selection procedure. It is
assumed that the small survey S, collects variable
of interest »; and auxiliary variable X.,. The large
survey S, does not collects ¥, but collects auxiliary
variables X, X, and X.,., as well as extra two
response variables ¥, and ;. The whole process
of generating population data to calculation of small
area means estimates is repeated independently

T=2000 times. Table 3 presents the average values
of percentage relative biases and percentage relative
root mean squared errors of the different small area
estimators in Simulation 1.

Further, another simulation study is performed,
assuming that the normality assumptions of random
effect components u#, and €; in (11) does not hold
denoted by Simulation 2. In the Simulation 2u, and

€; are generated through chi-squared distribution
independently. The Simulation 2 is further divided
into two subsections, Simulation 2-1 and Simulation
2-1I. In Simulation 2-1, #, and €; are independently
generated through chi-squared distribution with 1
and 5 degree of freedom, respectively. Similar way,

in Simulation 2-II, #, and €; are independently
generated through chi-squared distribution with 2 and
5 degree of freedom, respectively. Table 4 presents
the average values of percentage relative biases and
percentage relative root mean squared errors of the
different small area estimators under Simulation 2.

The non-sample area case is also considered in the
model based simulation study denoted as Simulation
3. In Simulation 3, all conditions of Simulation 1
are hold, exception is the small survey S, collects
data for 20 areas and 5 areas out of 25 areas are non-
sampled, whereas the large survey S, collects data
for all the 25 areas. The purpose of the simulation
study is to observe the performance of the proposed
estimators namely EP.MP1.Syn, EP.MP2.Syn under
non-sampled areas. The results of Simulation 3 are
summarized in Table 5.

In Table 3, our discussions focus on the two
developed estimators namely, EP.MP1 and EP.MP2. It
is observed that relative bias is not really an issue in
Table 3, as the biases of all the estimators are almost
negligible and of the same order and magnitude
for all set of sample sizes. But, the difference in
performances are identified with respect to average
percentage RRMSE. The results in Table 3 shows
that the estimators based on combining data from two
independent surveys (EP2, EP4, EP.MP1 and EP.MP2)
has smaller average percentage RRMSE value than
the estimators based on small the survey S, data.
Further, it is found that EP.MP1 and EP.MP2 has lesser
average percentage RRMSE value than EP2 and EP4
estimators. The estimators (EP.MP1 and EP.MP2) that
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combing data from two independent surveys, utilizing
the extra set of variables of the large survey S,
along with common auxiliary variable, further gain
in efficiency with respect to smaller value of average
percentage RRMSE. The results of the EP.MP1 and
EP.MP2 are consistent over all the four sample size
combinations in Table 3. Again, when the intraclass
correlation coefficient value is increases from 0.1
to 0.2 that is Simulation 1-I to Simulation 2-II, the
EP.MP1 and EP.MP2 outperform the other estimators.

Table 3. Values of average percentage relative biases (RB) and
average percentage relative root mean squared errors (RRMSE)
of the different estimators exists under in Simulation 1.

Simulation 1-1 Simulation 1-11
na-and | Bredietor = T RMSE | RB | RRMSE
DIR 0007 | 211 | w0007 | 211
EPI 0007 | 162 | 0007 | 174
EP2 0002 | 113 | 0002 | 1.73
2,25 MBDE | -0010 | 211 | -0010 | 211
EP3 0009 | 160 | -0009 | 131
EP4 0007 | 112 | 0007 | 130
EPMPI | -0.002 | 088 | -0.002 | 1.16
EPMP2 | 0002 | 088 | 0002 | 116
DIR 0007 | 210 | 0007 | 210
EP1 0.007 1.60 | 0.007 1.73
EP2 0.001 0.92 0.001 171
4,50 MBDE | 0000 | 209 | 0000 | 2.09
EP3 -0.001 1.58 0.000 1.13
EP4 0.001 0.92 0.001 112
EPMPI | 0.001 086 | 0.001 111
EPMP2 | 0.001 086 | 0.001 111
DIR -0.001 163 | -0.001 1.63
EP1 -0.001 130 | -0.001 1.40
EP2 0013 | 106 | 0013 | 139
425 MBDE | -0.007 | 163 | -0007 | 1.63
EP3 0007 | 128 | 0007 | 119
EP4 0007 | 106 | 0007 | 1.8
EPMPI | -0014 | 083 | 0014 | 107
EPMP2 | -0014 | 083 | 0014 | 107
DIR 20001 | 164 | -0.001 1.64
EPI -0.001 130 | -0.001 1.41
EP2 20003 | 084 | -0003 | 140
4,50 MBDE | -0.003 | 163 | -0.003 | 1.63
EP3 20003 | 129 | 0003 | 1.00
EP4 20002 | 084 | -0002 | 1.00
EPMPI | 0003 | 079 | -0.003 | 099
EPMP2 | -0.003 | 079 | -0.003 | 0.99

The proposed EP.MP1 and EP.MP2 estimators are
perform at par for throughout in Table 3. Hence, we
can conclude that the proposed EP.MP1 and EP.MP2
estimators are most out performer in Table 3.

Table 4 shows the average percentage relative bias
and average relative RMSE of the different estimators
under Simulation 2. Similar to Table 3 relative bias is
not really an issue, as the biases of all the estimators
are almost negligible and of the same order and

Table 4. Values of average percentage relative biases (RB) and
average percentage relative root mean squared errors (RRMSE)
of the different estimators exists in Simulation 2.

Simulation 2-1 Simulation 2-1T
na=ana | Predietor T RMSE | RB | RRMSE
DIR 0.000 171 | 0006 | 1.68
2,25 EPI 0.000 144 | 0006 | 147
EP2 20006 | 086 | -0003 | 091
MBDE | -0.006 | 1.69 | -0.011 1.66
EP3 20006 | 142 | -0012 | 144
EP4 0004 | 085 | -0009 | 090
EPMPl | -0.005 | 046 | -0.003 | 057
EPMP2 | -0.005 | 046 | -0.003 | 0.57
DIR 0019 | 170 | o011 1.69
2,50 EPI 20019 | 143 0.011 1.47
EP2 20001 | 067 | 0.001 0.73
MBDE | -0.009 | 1.69 | 0.001 1.68
EP3 0009 | 141 0.001 1.45
EP4 20001 | 066 | 0.001 0.73
EPMPI | -0.001 | 044 | 0.001 0.55
EPMP2 | -0.001 | 044 | 0.001 0.55
DIR -0.001 130 | -0.008 | 130
425 EPI -0.001 L1 | 0008 | 115
EP2 0.002 083 | -0.002 | 088
MBDE | 0.000 129 | 0006 | 1.29
EP3 0.000 110 | 0006 | 1.14
EP4 0.002 082 | -0.005 | 087
EPMPI | 0.002 043 | -0002 | 054
EPMP2 | 0.002 043 | -0002 | 054
DIR 0.009 131 | 0005 | 1.32
4,50 EPI 0.009 112 | 0005 | 116
EP2 0.004 065 | -0.006 | 0.70
MBDE | 0.005 130 | 0003 | 131
EP3 0.004 L1 | 0003 | 115
EP4 0.005 0.64 | -0.002 | 0.69
EPMPl | 0.004 041 | -0.006 | 051
EPMP2 | 0.004 041 | -0.006 | 051
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magnitude for all set of sample sizes. In Table 4 results
are also similar to Table 3 with respect to RRMSE.
The estimators based on combining data from two
independent surveys (EP2, EP4, EP.MP1 and EP.MP2)
has smaller average percentage RRMSE value than
the estimators based on small the survey S, data only.
Further, it is found that EP.MP1 and EP.MP2 has lesser
average percentage RRMSE value than EP2 and EP4
estimators. Hence, the performances of the developed
estimators are unaltered when the normal distribution
of random effect components of (11) are replaced
by chi-squared distribution. Table 4 shows that the
performances of EP.MP1 and EP.MP2 are consistently
hold for all the four sample size combinations as
well as for bot h Simulation 2-I and Simulation 2-II
similar to Table 3. Hence, we can conclude that the
proposed EP.MP1 and EP.MP2 estimators are most out
performer in Table 4.

In Table 5 shows the results of Simulation 3 for
sample as well as non-sample areas. Here, 5 areas
of the small survey S, are taken as non-sample
areas and rest 20 areas are in sampled. In Table 5,
the results for sample areas as well as non-sample
areas are averaged over 20 sample areas and 5 non-
sample areas, respectively. The results for sample
areas are similar to the results of Table 3 and Table 4.
The estimators (SYN.EP2, SYN.EP4, EP.MP1.Syn
and EP.MP2.Syn) applied to non-sample areas are
performing more or less similar to sample areas.
The results obtained in Table 5 shows that EP.MPI.
Syn and EP.MP2.Syn estimators are noteworthy. The
values of average percentage RRMSE of the EP.MP1.
Syn and EP.MP2.Syn are smaller than SYN.EP2 and
SYN.EP4 estimators. Further, the performances of
two proposed synthetic estimators, EP.MP1.Syn and
EP.MP2.Syn are at par. The performances of EP.MP1.
Syn and EP.MP2.Syn are consistent for all sample size
pairs as well as for both Simulation 3-1 and Simulation
3-1I. This clearly shows an evidence that the proposed
synthetic estimator EP.MP1.Syn and EP.MP2.Syn has
potential to generate the reliable estimates for non-
sample areas.

3.2 Design-based Simulation Study

Design based simulation studies are conducted to
support the performances of the proposed small area
mean estimators for real survey data. The simulation
studies are conducted using the data of Australian

Table 5. Values of average percentage relative biases (RB) and
average percentage relative root mean squared errors (RRMSE)
of the different estimators in Simulation 1 (S(D: 20 sample + 5

non-sample areas; Sy all 25 sample areas).

Simulation 3
(”(1)(1)» Areas | Predictor RB RRM- |y » RB RRM-
" i1yd SE Hana) SE
Sampled| DIR  [-0.008| 2.28 | 4,25 [-0.001] 1.76
2,25 EPl | -0.008| 1.75 -0.001| 1.40
EP2  |-0.002] 122 -0016| 1.14
MBDE |-0.012| 2.28 -0.008| 1.76
EP3  |-0011| 1.73 -0.008| 138
EP4 | -0.008] 121 20008 | 1.14
EPMPI | -0.002| 0.95 -0.017| 0.90
EPMP2 | -0.002| 0.95 -0.017| 0.90
Non- | SYN.EP2 |-0.002] 1.46 0016] 137
sampled | oy Ep4 [ -0.008 | 1.45 20.008| 137
EPMP1.Syn | -0.002| 1.05 -0.017] 1.08
EPMP2.Syn | -0.002 | 1.05 -0.017] 1.08
Sampled| DIR | 0.008 | 2.27 | 4,50 [-0.001] 1.77
2,50 EPI | 0.008 | 1.73 -0.001| 1.40
EP2 | 0.001 | 0.99 -0.004 | 0.91
MBDE | 0.000 | 2.26 -0.004| 1.76
EP3  |-0.001| 1.71 -0.004| 139
EP4 | 0.001 | 0.99 20.002| 091
EPMPI | 0.001 | 0.93 -0.004 | 0.85
EPMP2 | 0.001 | 0.93 -0.004 | 0.85
Non- | SYN.EP2 | 0.001 | 1.09 20.004| 1.09
sampled | oy N Ep4 | 0.001 | 1.09 20.002| 1.09
EPMP1.Syn | 0.001 | 1.02 -0.004| 1.02
EPMP2.Syn | 0.001 | 1.02 -0.004| 1.02

Agricultural Grazing Industry Survey (AAGIS),
conducted by the Australian Bureau of Agricultural
and Resource Economics in the year 1995-96. The
original sample is of size 759 farms from 12 regions
(the areas of interest). Following the process of Islam
and Chandra (2019), the original sample is used to
generate the population of size 39562 farms. The
sample size for the large survey are taken as 759 farms
(original sample) and three different area specific
sample sizes 5, 10 and 15 are drawn for the small
survey. The whole process from sample selection
to estimation is repeated 2000 times. The variable
of interest is assumed as the total cash costs (TCC),
and the aim is to estimate region specific mean TCC
value. In small survey that collects TCC as well as
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auxiliary variables namely, number of closing stock-
beef, number of closing stock-sheep and quantity of
harvested wheat. The large survey that does not collects
TCC but collects auxiliary variables common to the
small survey. In addition, the large survey collects
extra set of variables where, total cash receipts (TCR)
and Debt taken as response variables and land area
is taken as auxiliary variables, not common to small
survey. The results of the design-based simulations are
summarized in Table 6.

Table 6. Values of average percentage relative biases (RB) and

average percentage relative root mean squared errors (RRMSE)

of the different estimators under design based simulations using
the AAGIS data.

n(,)d=5 n(,)d:10 n(,)d:15

Predictor

RB | RRMSE | RB | RRMSE | RB | RRMSE
DIR 1.36 57.35 -0.30 37.29 0.19 27.59
EP1 4.58 51.96 2.75 32.67 2.63 24.61
EP3 4.47 51.06 2.62 32.64 2.17 24.33

MBDE 1.25 60.17 -0.36 38.01 -0.10 28.37
EP2 0.90 35.52 0.71 25.90 0.66 21.32
EP4 0.91 35.26 0.67 25.85 0.52 21.18

EPMP1 | 0.52 32.70 0.36 24.22 0.30 20.00

EPMP2 | 0.52 32.70 0.36 24.22 0.30 20.00

In Table 6, the results reveal that the EP.MP1 and
EP.MP2 has lowest relative bias followed by EP4 and
EP2 estimators. Further, the results of Table 6 with
respect to average percentage RRMSE clearly support
the results of model based simulations that EP.MP1
and EPMP2 has minimum average percentage
RRMSE followed by EP2 and EP4 estimators. Table
6 results provide an encouraging performance of the
proposed EP.MP1 and EP.MP2 estimators. The results
set out in Table 6 support the conclusion that the use
of extra set of variables in combining data from two
surveys along with common auxiliary variables further
improves small area estimation. Hence, the proposed
EP.MP1 and EP.MP2 emerging as the best performing
of the methods that we investigated in the empirical
evaluations.

4. CONCLUDING REMARKS

We developed SAE method by combining data
from two independent surveys. The empirical results,
based on simulated data as well as on real survey data,
clearly indicate that combining information from two

surveys can bring significant gains in SAE efficiency
and the incorporation of extra set of variables of
the large survey that is not common to small survey
further gain in efficiency in small area estimation. The
conclusions are same for estimate of non-sample areas
using synthetic version of EP.MP1 and EP.MP2 as
well as the situation when the normality assumption of
random effect components of linear mixed model are
replaced by chi-squared distribution.
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