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SUMMARY
Many often two surveys conducted independently, may have some auxiliary variables in common along with a set of extra variables that are not 

common to both the surveys. One survey, which is small in sample size but collects both variable of interest as well as a set of auxiliary variables. The 
another survey which is relatively larger in sample size, does not collects variable of interest but collects a set of auxiliary variables, common to the 
small survey. In addition, the large survey collects multiple response variables as well as set of auxiliary variables not common to the small survey. A 
small area predictor for small domain (or area) means is proposed by combining data from these two surveys using multipurpose weights. Empirical 
results from model-based as well as design-based simulations indicate that the proposed small area predictor that incorporates the additional auxiliary 
variables of the large survey along with the common auxiliary variables, provide better efficiency gain. 

Keyewords: Combining data; Empirical predictor; Independent surveys; Non-sample area; Small domain; Multipurpose weight; Variable specific 
EBLUP weight. 

1.	 Introduction

Sample survey is a cost effective approach for 
obtaining information on wide ranging of topics 
by observing a part of the population and making 
inferences about the population characteristics. 
Recent years demand for subpopulation or domain 
level estimates has increased tremendously. For 
example, estimates for small geographical areas like 
District, Tehsil or Village Panchayat etc, see Molina 
and Rao (2015). In real survey scenarios, frequently 
observed domain of interests are small domains, 
for which domain specific sample size is not large 
enough to produce reliable direct estimates. The 
indirect model based small area estimation (SAE) 
methods are popularly used to produce small area 
estimates (Molina and Rao 2015). But, further making 
improvement in reliability of SAE methods are still 
a challenging issue for survey statistician, due to 
scarcity in area specific sample data and increase in 
overall survey sample size is practically not feasible 
due to, budget and time constraints.

Often multiple agencies, government or private 
departments or organizations conduct surveys on 
same population independently for their own interest. 
Two surveys conducted independently on the same 
population can have one or more auxiliary variables in 
common along with set of variables that are not common 
for both the surveys. Further, it is also possible to have 
some linear relationships of variable of interest with 
the auxiliary variables. Hence, it seems to be attractive 
to utilize the data of both the surveys to improve 
precision in estimation. Different authors are already 
addressing the problem of survey data combining from 
two independent surveys having common variable of 
interest as well as auxiliary variables and considered 
estimation at population and large domain levels, 
see for example, Zieschang (1990), Renssen and 
Nieuwenbroek (1997), Hidiroglou (2001), Merkouris 
(2004), Wu (2004) and Kim and Rao (2012).

It is well known that the problem of scarcity and 
inadequacy of sample data is much more prominent at 
small domain level compared to the population level. 
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small survey. For developing small area estimators, it 
is assumed that the variable of interest is realization of 
linear mixed model with the common set of auxiliary 
variables and the response variables of the large survey 
are also realization of linear mixed with different 
parameter values with the extra set of auxiliary 
variables. Further, it is also considered that the area 
specific aggregate values (e.g. population means or 
totals) for all the auxiliary variables are not available 
but population level aggregate values of the auxiliary 
variables are available from different administrative 
or census sources. The rest of the article is organized 
as follows: In Section 2, we discussed the notations 
and different SAE methods. Further in sub-section 
2.1 proposes an approach of SAE using multipurpose 
weight. The empirical evaluations of the proposed 
estimators are performed through model based as well 
as design based simulation studies in Section 3. Finally, 
concluding remarks are discussed in Section 4.

2.	 �Notations and small area 
estimation

In this section, we define notations which are 
set out as follows. Let us assume that a population 
U consists of N finite population units. Further, 
assume that the population is composed of D non-
overlapping small domains (or areas) denoted as dU  . 
Here, d is indexing D areas. It is assumed that the area 
specific population size is dN  which summed up to 
the whole population, 

1

D
dd

N N
=

= ∑ .We consider

djy  as the value of the variable of interest y for unit 
j in area d and the area-specific population mean 
for area d is 1

1

dN
d d djj

Y N y−
=

= ∑  . Further, we assume 
that two surveys are conducted in the population U 
independently denoted as ( )IS  and ( )IIS m respectively. 
The sample sizes for ( )IS  and ( )IIS  are ( )In  and ( )IIn  
respectively, assuming ( )IIn  is much larger than ( )In . 
In the rest of the article, we also called ( )IS  and ( )IIS  
survey as small and large survey, respectively with 
same meaning. The terms related to sample and non-
sample part of ( )IS  is denoted by the ( )Is  and ( )Ir , 
respectively. Similarly, the terms related to sample and 
non-sample part of ( )IIS  is denoted by the subscripts 

( )IIs  and ( )IIr  , respectively. The area-specific sample 
size for ( )IS  and ( )IIS  are denoted by ( )I dn  and ( )II dn , 
(d = 1, 2, …, D), respectively. The area-specific sample 

Hence, combining data from two independent surveys 
can be advantageous to produce reliable small domain 
(or area) estimates. Several authors have already 
discussed different approach of combining survey 
data from multiple surveys for SAE, see for example 
Marker (2001), Moriarity and Scheuren (2001), Lohr 
and Prasad (2003), Rao (2003), Elliott and Davis 
(2005), Lohr and Rao (2006), Merkouris (2010), 
Ybarra and Lohr (2008) and Manzi et al. (2011). Kim 
et al. (2015) developed SAE approach for combining 
data from several sources using area level model. 
Maples (2017) extended the method of Kim and Rao 
(2012) for estimation of small area proportions from 
binary variable under logistic linear mixed model by 
combining data from two independent surveys. Islam 
et  al. (2018) proposed small area estimator under a 
spatial dependent random effects model by combining 
data from two independent surveys. Recently, Islam 
and Chandra (2019) proposed estimation of small 
area means under a linear mixed model by combining 
information from two independent surveys. Maples 
(2017), Islam et  al. (2018) and Islam and Chandra 
(2019) discussed SAE approach by considering the 
situation that one survey which is small in sample size, 
collects both variable of interest as well as auxiliary 
variables whereas the another survey, relatively 
larger in sample size, has only collects auxiliary 
variables common to small survey. In particular, they 
proposed SAE method, using common set of auxiliary 
information for combining data from two independent 
surveys and they does not consider any extra set of 
variables available for large survey not common to 
the small survey. In practice, survey with large size 
possible to have rich set of variables, of which a subset 
of variables possibly common to small survey. The 
sub‑set of extra variables that are not common to small 
survey, can be both set of response variables as well as 
auxiliary variables of the large survey. 

In this article, we extend the Islam and Chandra 
(2019) approach of SAE by combining data from two 
independent surveys. We considered that a survey 
with small in sample size that collects variable of 
interest as well auxiliary information and the another 
survey which is large in sample size does not collect 
the variable of interest but collect auxiliary variables 
common to the small survey. In addition, the large 
survey collects a set of extra response variables as 
well as auxiliary variables that are not common to the 



61Sadikul Islam and Hukum Chandra / Journal of the Indian Society of Agricultural Statistics 73(1) 2019   59–69

sizes of both the surveys are summed up to overall 

sample size as ( ) ( )1

D
I I dd

n n
=

= ∑  and ( ) ( )1

D
II II dd

n n
=

= ∑  . 
Now, it is considered that the small survey ( )IS  has 
collected both variable of interest y as well as vector of 
auxiliary variables ( )cx  of order P. The larger survey 

( )IIS  does not collect the variable of interest y but it 
collects all the P auxiliary variables that are common 
to the small survey ( )IS  and in addition ( )IIS  has 
collected K different response variables (denoted as 

1 2, ,..., KY Y Y ) as well as a vector of auxiliary variables 
( ) 1( ,..., )uc QX X=x  of order Q, not collected in the 

small survey ( )IS . It is assumed that the variable of 
interest y is realization of unit level model linear mixed 
model, based on P common auxiliary variables ( )cx  
and further the K response variables are assumed to 
have same relationship with the set of Q extra auxiliary 
variables ( )ucx , with different parameters value. In 
this section, we use an extra subscript ( 1,..., )k k K=  
for indexing quantities associated with the response 
variable k. 

The design-based direct estimator (DIR) of area 
d mean, dY  using data from the small survey, ( )IS  
is 

( )

( )
ˆ

I i

DIR dw
d I dj dj

j s

Y w y
∈

= ∑  Särndal et  al. (1992). Here, 

( )

* *
( ) ( ) ( )

I d

dw dw dw
I dj I dj I djj s

w w w
∈

= ∑  is a normalized survey 

design weight of and *
( )

dw
I djw  is survey design weight 

of ( )IS  for unit j in area d. Following Chandra and 
Chambers (2009, 2011), the MBDE (denoted by 
MBDE) of area d mean of y is defined as 

( )
( )

ˆ
I d

MBDE EBLUP
d I dj djj s

Y w y
∈

= ∑  ,� (1)

with, 
( )

( ) ( ) ( )/
I d

EBLUP EBLUP EBLUP
I dj I dj I djj s

w w w
∈

= ∑ . Here, 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1
( )

ˆ ˆ

ˆ ˆ ˆ

I I I c c s I

I I I I I I I I

EBLUP EBLUP T
s I j s s x x

T T
s s c s s s s r r

w

−

= = + − +

−

w 1 H t t

I H x v v 1 ,�   

with ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
1 1

( ) ( ) ( )
ˆ ˆ ˆ

I I I I I I I I

T T
s c s s s c s c s s s

−
− −=H x v x x v . Here  

( I ) ( I )
ˆ s sv  denotes estimate of variances between sampled 

units, ( ) ( )
ˆ

I Is rv  denotes estimate of variances between 

sampled and non‑sampled units, 
( ) ( )1 1

= d

c

D N
x c djd j= =∑ ∑t x ,  

( )

( ) ( )( ) ( ) ( ) ( )1 1
ˆ I d

c s II

D n
x I dj I c sd j

n
= =

= =∑ ∑t x x , 
( )IsI  is the 

identity matrix of order ( )In , 
( )Is1  and 

( )Ir1  denotes a 
vector of ones of size ( )In  and ( ( )IN n− ), respectively.

Table 1. Description about the information available for the 
survey ( )IS  and ( )IIS .

Variables ( )IS ( )IIS

Response variable Y (Our variable of 
interest) 1 2, ,..., KY Y Y

Auxiliary variable
( )cx  vector of length P ( )cx  vector of order P

( )ucx  vector of order Q

To this end, let us assume a unit level linear mixed 
model of form 

( )
T

dj c dj d djy u e= + +x β , 1,..., ; 1,..,dj N d D= = ,�(2)

where, β  is a P vector of regression coefficients, 
du  denotes area-specific random effect for area d, 
dje  is an individual random effect for unit j in area 

d. It is assumed that du  and dje  are independent and 
separately follow normal distribution with zero mean 
and constant variances 2

uσ  and 2
eσ , respectively 

(Battese et  al., 1988). The model (2) is fitted using 
the data of small survey ( )IS  and the parameters of 
the model are estimated using maximum likelihood 
(ML) or restricted ML (REML) estimation methods 
(Harville 1977). The vector of estimated parameters 
of (2) is denoted as 2 2ˆ ˆ ˆ( , , )T

u eσ σβ . Under this scenario, 
Chandra et al. (2015) discussed an empirical predictor 
for small area mean in area d denoted by EP1 is 
defined as

1
( ) ( )

ˆ ˆEP
d c s I d dY u= +x ,� (3)

where, 

( ) ( )( )
ˆˆˆ ( )

I d I d

T
d d s c su y xγ= − β , 2 2 2 1

( )ˆ ˆ ˆ ˆ( / )d u u e I dnγ σ σ σ −= + ,  
( )

( )

1
( ) ( ) ( )( )1

I d

I d

n
c s I d c I djj

n−
=

= ∑x x . Islam and Chandra (2019) 
discussed an empirical predictor (denoted by EP3) of 
area d mean of y based on ( )IS  data is defined as

3
( )

ˆ ˆˆ ˆ( )EP EBLUP T
d I d dY u= +x β , � (4)

where, 
( )

( ) ( ) ( )
ˆ

I d

EBLUP EBLUP
I d I dj I djj s

w
∈

= ∑x x . Islam and 

Chandra (2019) proposed an empirical predictor of 
small area mean in area d (EP2) using design weight 
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as well as synthetic values of y of second survey ( )IIS is

2
( )( )

ˆ ˆˆ ˆEP T
d c II d dY u= +x β ,� (5)

where, ( )( )
( ) ( )( )

ˆ
II d

T dw
II d c II djII djj s

w
∈

= ∑x x  is design-

based direct estimate of 1
( ) ( )1 1

dD N
c d d c djd j

N −
= =

= ∑ ∑x x ,  

( ) ( ) ( )( )

* *

II d

dw dw dw
II dj II dj II djj s

w w w
∈

= ∑  is normalized survey 

weight of ( )IIS  for unit j in area d and *
( )

dw
II djw  is design 

weight of large survey ( )IIS  for unit j in area d. Further, 
Islam and Chandra (2019) developed the empirical 
predictor (EP4) of area d mean using synthetic values 
of variable study and EBLUP weights of ( )II  is 
defined as 

4
( )( )

ˆ ˆˆ ˆ( )EP EBLUP T
d c II d dY u= +x β ,� (6)

where, 
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II d
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II II II II II II II II
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( II ) ( II )
ˆ s sv  denotes estimate of variances between sampled 

units, 
( ) ( )

ˆ
II IIs rv  denotes estimate of variances between 

sampled and non-sampled units, 
( ) 1 1

d

c

D N
x djd j= =

= ∑ ∑t x  , 
( )

( ) ( )( ) ( )( ) ( ) ( )1 1
ˆ II d

c s IIII

D n
x c II dj II c sd j

n
= =

= =∑ ∑t x x , 
( )IIsI  is  

the identity matrix of order ( )IIn , 
( )IIs1  and 

( )IIr1
denotes a vector of ones of size ( )IIn  and ( ( )IIN n− ) 
respectively.

2.1	 �Small area estimation using multipurpose 
weight

Different estimators described in the previous 
section are either based on small survey data ( )IS
or combining data from two surveys using common 
auxiliary variables ( )cx  and the estimators based on 
combining data from two independent surveys are 
not incorporating the extra set of variables, collected 
for larger survey ( )IIS  only. Following Chandra and 
Chambers (2009), we propose a multipurpose weight 

based SAE method by incorporating extra set of 
variables [ , ( 1,2,..., )kY k K=  and ( ) 1( ) ( )( ,..., )uc uc Q ucx x=x  ] 
of large survey ( )IIS  along with set of common auxiliary 
variables ( ) 1( ) ( )( ,..., )c c P cx x=x  . For developing small 
area inference, again we assume that the K response 
variables individually holds model (2) with ( )ucx , 
although with different parameter values of the form

( )kU uc U k U k kU= + +y x Z u eβ ,� (7)

where, 1( , , )T T T
kU k kD= …y y y , ( ) ( )1 ( )( ,..., )T T T

uc U uc uc Q=x x x ,  
( ;1 )

dU d Ndiag d D= = ≤ ≤Z z 1 , 1( , , )T
k k kDu u= …u  and  

1( , , )T T T
kU k kD= …e e e . Since different areas are 

independent, the covariance matrix of kth response 
variable kUy  has block diagonal structure is given 
as ( ;1 )kU kddiag d D= ≤ ≤V v  with ( )kd kdVar=v y

2 2
d

T
ku d d ke Nσ σ= +z z I  and 

dNI  is the identity matrix of 
order dN . Using the estimated values of the variance 
components 2ˆ kuσ  and 2ˆ keσ , the estimated covariance 
matrix is given by ˆ ˆ( ;1 )kU kddiag d D= ≤ ≤V v , with 

2 2ˆ ˆˆ
d

T
kd ku d d ke Nσ σ= +v z z I . Given a sample of ( )IIS  from 

this population, without loss of generality, we arrange 
the vector kUy  so that its first ( )IIn  elements correspond 
to the sample units, and then partition kUy  , ( )uc Ux  , kUZ  
and kUe  according to sample and non-sample units. 
Therefore, we can write (7) as follows: 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( )

( )

II II II II

II IIII II

uc s s
kU k k

uc r r

ks ks

kr krx

      
      = = + +
            

y ex Z
y u

y Z e
β , 

with variance matrix given by ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

II II II II

II II II II

r
kU

kr r

ks s ks

s kr

 
 =
  

v v
V

v v. 

Here, ( )( ) IIuc sx  is a matrix order of ( )IIn Q× ,  
containing the values of the auxiliary variables. 

( ) ( ) ( )( ) ( )

22= { ; 1,..., }
II d II d II dII II

T
ken n nks s kudiag d Dσ σ+ =v 1 1 I  is 

the ( ) ( )II IIn n×  matrix of covariances of the response 
variable among the  ( )IIn   sampled units of ( )IIS . 
Similarly, 

( ) ( )( ) ( )

2= ( ; 1,..., )
II d d II dII II

T
n N nks r kudiag d Dσ − =v 1 1  

is a matrix of order ( ) ( )( )II IIn N n× −  represents the 
covariances of the response variable for sampled and 
non-sampled units for the survey ( )IIS . Here, 

( )II dnI  is 
the identity matrix of order ( )II dn , 

( )II dn1  and 
( )d II dN n−1  

denotes a vector of ones of size ( )II dn  and ( )II dN n−  
respectively. We fit the model (7) using sample data of 

( )IIS  for each of K response variables independently 
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with respect to auxiliary variables ( )ucx  and 
parameters are estimated for each response variable 

ky  denoted as ˆ
kβ 2ˆ kuσ  and 2ˆ keσ , (k=1,2,…,K). We use 

these parameter estimates for estimation of covariance 
matrix denoted by ˆ ˆ( ;1 )kU kddiag d D= ≤ ≤V v , where

Nˆ ˆˆ
d

2 T 2
kd k,u d d k,eσ σ= +v z z I . Now, we define the sample 

weights that define the variable specific EBLUP 
weight under (7), for the population total of response 
variable ky  (k = 1, 2… K) :

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1
( )

( )

ˆ ˆ( )

ˆ ˆ ˆ( )

II

II II uc uc s II

II II II II II II II II

EBLUP EBLUP
ks II kdj

T
s ks

T T
s ks uc s ks s ks r r

w

−

=

= + − +

−

x x

w

1 H t t

I H x v v 1 � (8)

Here, ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
1 1

( ) ( ) ( )
ˆ ˆ ˆ

II II II II II II II II

T T
ks uc s ks s uc s uc s ks s

−
− −=H x v x x v  ; 

( )IIsI  is the identity matrix of order ( )IIn  ; 
( )IIs1  and

( )IIr1  are denoted as vector of ones of size ( )IIn  and 

( )IIN n− , respectively, ( ) ( )1 1

d

uc

D N
uc djd j= =

= ∑ ∑xt x  and 
(2)

( ) ( )1 1
ˆ d

uc

D n
uc djd j= =

= ∑ ∑xt x  are the vectors of population 
and sample totals of ( )ucx , respectively. In ( )IIS  the 
variable of interest y is not collected, so it is not 
possible to use the extra set of covariates ( )ucx  directly 
to for SAE. For utilising the extra set of variables, a 
common multipurpose weights for all the K response 
variables is developed using the parameter estimates 
ˆ

kβ 2ˆ kuσ  and 2ˆ keσ , (k=1, 2… K) of fitted (7) and variable 
specific EBLUP weights (8). Following Islam and 
Chandra (2019) generate synthetic values of variable 
of interest y using fitted (2) corresponding to common 
auxiliary variables ( )cx  of large survey ( )IIS . The 
developed multipurpose weight of ( )IIS  is used as a 
plugged in weight for synthetic y for developing small 
area means estimator. 

Following Chandra and Chambers (2009) the 
optimal set of multipurpose weights using the K 
response variables and the extra set of covariates ( )ucx  , 
collected in ( )IIS  denoted as { }( ) ( ) ( )II

MP MP
s II dj IIw w S= ∈  . 

In what follows, we describe the derivations for 
construction of multipurpose weights. Let the 
population total of ky  is denoted by T

k N kUT = 1 y  and 
the estimator of this based on multipurpose weight, 
denoted by ( 2)

ˆ ( )MP T
k ks kT = w y . The weights ( 2)

MP
sw  are 

derived based on two criteria are as follows:

(a) ( )ˆ 0k kE T T− =  for each value of k, 
(b) ( )ˆ

k k kk
Var T Tψ −∑  is minimized at ( 2)

MP
sw

where ( )k̂ kVar T T−  is prediction variance,

( )ˆ
k k kk
Var T Tψ −∑  is called the ψ -weighted total 

prediction variance. Here ψ  is a nonnegative scalar 
quantity specified by user and ψ  denotes the relative 
importance associate with each response variable in 
such a way that 

1
1.

K
kk

ψ
=

=∑  The weights ( 2)

MP
sw  is 

called ψ -optimal if the two criteria (a) and (b) are 
fulfilled. Following Chandra and Chambers (2009) the 
expression of optimal multipurpose sample weights 
for K response variables are defined as
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( )
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( ) ( ) ( ) ( )
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where 
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The empirical predictor (denoted by EP.MP1) of 
area d mean based on the multipurpose weight (9) and 
synthetic y values of ( )IIS  is defined as 

( )

( )

1
( ) ( )

1
( ) ( )

1
( )

. 1ˆ ˆ ˆ( )

ˆ ˆ( )

ˆˆ ˆ( ) ,

II d

II d

MP T
d II dj c dj d

j s

MP T
II dj c dj dj s

MP T

EP MP

II d d

Y w u

w u

u

∈

∈

= +

= +

= +

∑

∑

x

x

x

β

β

β





� (10)

where, 
( )

1 1 1
( ) ( ) ( )/

II d

MP MP MP
II dj II dj II djj s

w w w
∈

= ∑  and 

( )

1 1
( ) ( ) ( )

ˆ
II d

MP MP
II i II dj II djj s

w
∈

= ∑x x  with 1
( )

ˆ( MP
d II d dE x x) = . 

Further, following Chandra and Chambers 
(2009) we also discuss the second method of 
deriving multipurpose weights based on “importance 
averaging” of the variable-specific EBLUP sample 
weights (8) across all K response variables is defined 
as:

( ) ( )

2
1II II

KMP EBLUP
s k ksk

ψ
=

= ∑w w � (11)



64 Sadikul Islam and Hukum Chandra / Journal of the Indian Society of Agricultural Statistics 73(1) 2019   59–69

Here, kψ  is importance of the response variable 
ky  in such a way that, 

1
1.

K
kk

ψ
=

=∑  The empirical 
predictor (denoted by EP.MP2) of area d mean 
based on the multipurpose weights MP2 (11) and the 
synthetic values of ( )IIS  is defined as 

( )
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2
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∈
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where, 
( )

2 2 2
( ) ( ) ( )/

II d

MP MP MP
II dj II dj II djj s

w w w
∈

= ∑  and 

( )

2 2
( ) ( ) ( )( )

ˆ
II d

MP MP
II i II dj c II djj s

w
∈

= ∑x x  with 2
( )

ˆ( MP
d II d dE x x) = . 

The area with no sample data or non-sample area 
(out of sample area) is very common challenge for 
any small area estimation method. Hence without 
addressing the applicability of the develop estimators 
for non-sample areas, purpose cannot be fulfilled. 
Recently, Islam and Chandra (2019) proposed 
synthetic estimators SYN.EP2 and SYN.EP4 for small 
area mean estimation for non-sampled areas. Hence 
following the approach of Islam and Chandra (2019) 
develop modified version of EP.MP1 and EP.MP2 
estimators that can produced estimates for non-sample 
areas. Here, we assume that the small survey has nsD  
non-sample areas out of D areas but for large survey 
data for non-sample areas are collected. We generate 
the synthetic y values corresponding to ( )( ) IIc sx  data 
of ( )IIS  for nsD  areas which are non-sampled in ( )IS  . 
Similarly, multipurpose weights are developed for 

nsD  areas non-sample for ( )IS . The proposed synthetic 
predictor EP.MP1 (denoted by EP.MP1.Syn) of mean 
for non-sampled area d is given by

( )

1
( ) ( )

1
( ) ,

. 1.ˆ ˆ( )

ˆˆ( ) ; 1,.., ,
II d

MP T
d II dj c djj s

MP T
II d out

EP MP Syn

ns

Y w

d D

β

β

∈
=

= =

∑ x

x



� (13)

where 
( )

1 1
( ) , ( ) ( )

ˆ ˆˆ (( ) ) ; 1,.., ,
II d

MP MP T
II d out II dj c dj nsj s

w d D
∈

= =∑x x β β  

0D  denotes number of non-sampled areas in ( )IS . The 
synthetic version of EP.MP1 (denoted by EP.MP1.
Syn) of mean for non-sampled area d is given by

( )

2
( ) ( )

2
( ) ,

. 2.ˆ ˆ( )

ˆˆ( ) ; 1,.., ,
II d

MP T
d II dj c djj s

MP T
II d out

EP MP Syn
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d D

∈
=

= =

∑ x

x

β

β



� (14)

where, 
( )

2 2
( ) , ( ) ( )

ˆˆ ( ) ; 1,.., ,
II d

MP MP T
II d out II dj c dj nsj s

w d D
∈

= =∑x x β  

nsD  denotes number of non-sampled areas in small 
survey ( )IS .

3.	 �Empirical Evaluations of the 
Proposed Estimators

In this section, the performances of the proposed 
small area estimators are evaluated through two 
type of simulation studies. The first one is model 
based simulation where samples are drawn from a 
hypothetical populations, generated through statistical 
models and the second one is design based simulation 
where samples are drawn from a population generated 
through real survey data. Different small area mean 
estimators used for simulation studies are as follows: 
DIR, MBDE, EP1, EP2, EP3, EP4, EP.MP1, EP.MP2, 
EP.MP1.Syn, EP.MP2.Syn, SYN.EP2 and SYN.EP4 
and these estimators are already discussed in section 2. 
The two performance criteria are used in the simulation 
studies, (i) Average percentage relative bias (RB) and 
(ii) Average percentage relative root mean squared 
error (RRMSE) and the expressions RB and RRMSE 
are given as:

( ){ }1 1
1

ˆ( ) 100
T

d dt dttd
RB m mean m T m m− −

=
= − ×∑  and 

2
1

1

ˆ
( ) 100

T dt dt
td

dt

m m
RRMSE m mean T

m
−

=

  − = ×     
∑ ,

where the subscript d indexes the small areas and 
the subscript t indexes the T Monte Carlo simulations, 
with dtm  denoting the true area d mean at simulation 
t, with predicted value ˆ dtm  and the average true area 

d mean over T simulations is 1
1

T
d dtt

m T m−
=

= ∑ . The 
discussed expressions of RB and RRMSE are for 
model based simulation. In design based simulation 
formula is same as model based simulation but 
only difference that the term dtm  is replaced by dm
, since the population is assumed as fixed for design 
based simulation. The whole simulation process is 
independently repeated T times. 
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3.1	 Model-based Simulation Study

In the model based simulations, we generate 
population data using linear mixed model particularly 
the random intercepts model of form

1 ( ) 2 ( )1 3 ( )2 ,

1,.... ; 1,..., ; 1,2,3.
kdj k k c dj k uc dj k uc dj d dj

d

y x x x u e
d D j N k

α β β β= + + + + +

= = =� (11)

The parameters of the model (11) are described in 
Table 2.

Table 2. Description of parameters set up of the model (11). 

Response 
variable

Model 
Intercept

Auxiliary 
Variable Common 

to Both Surveys

Auxiliary Variable 
Collected in Large 

Survey Only

( )cx ( )1ucx ( )2ucx

1y 1 350α = 11 1.5β = 12 1.2β = 13 1.4β =

2y 2 250α = 21 1.2β = 22 1.1β = 23 1.5β =

3y 3 500α = 31 1.7β = 32 1.0β = 33 1.6β =

Here, ( ) ( )1and ( 1,.... ; 1,..., )c dj uc dj dx x d D j N= =  are  
generated using chi-squared distribution with 
degrees of freedom 20 and 10 respectively and 

( )2 ( 1,.... ; 1,..., )uc dj dx d D j N= =  is generated through 
normal distribution with zero mean and 36 variance. 
The random area effects du  and individual effects 

dje  are independently drawn from N(0,σ u
2 )  and 

(0,94.09)N  distributions, respectively. The simulation 
studies when normality assumptions of random 
components in (11) hold, expressed as Simulation 
1. We use two values of area effects variance 2

uσ  
as 10.40  and 23.52, so that intra area correlation 
coefficients are 0.10ρ =  (simulation is denoted as 
Simulation1-I) and 0.20 (simulation is denoted as 
Simulation1-II), respectively. Total 25 small areas 
are considered and six combinations of area-specific 
sample sizes for the small and large samples are taken, 

( ) ( )( , ) (2,25)I d II dn n = , (2,50) , (4,25) , and (4,50)  , 
respectively. Here, the stratified random sampling 
design is used for sample selection procedure. It is 
assumed that the small survey ( )IS  collects variable 
of interest 1y  and auxiliary variable ( )cx . The large 
survey ( )IIS  does not collects 1y  but collects auxiliary 
variables ( )cx , ( )1ucx  and ( )2ucx  as well as extra two 
response variables 2y  and 3y . The whole process 
of generating population data to calculation of small 
area means estimates is repeated independently 

T = 2000 times. Table 3 presents the average values 
of percentage relative biases and percentage relative 
root mean squared errors of the different small area 
estimators in Simulation 1.

Further, another simulation study is performed, 
assuming that the normality assumptions of random 
effect components du  and dje  in (11) does not hold 
denoted by Simulation 2. In the Simulation 2 du  and 

dje  are generated through chi-squared distribution 
independently. The Simulation 2 is further divided 
into two subsections, Simulation 2-I and Simulation 
2-II. In Simulation 2-I, du  and dje  are independently 
generated through chi-squared distribution with 1 
and 5 degree of freedom, respectively. Similar way, 
in Simulation 2-II, du  and dje  are independently 
generated through chi-squared distribution with 2 and 
5 degree of freedom, respectively. Table 4 presents 
the average values of percentage relative biases and 
percentage relative root mean squared errors of the 
different small area estimators under Simulation 2.

The non-sample area case is also considered in the 
model based simulation study denoted as Simulation 
3. In Simulation 3, all conditions of Simulation 1 
are hold, exception is the small survey ( )IS  collects 
data for 20 areas and 5 areas out of 25 areas are non-
sampled, whereas the large survey ( )IIS  collects data 
for all the 25 areas. The purpose of the simulation 
study is to observe the performance of the proposed 
estimators namely EP.MP1.Syn, EP.MP2.Syn under 
non-sampled areas. The results of Simulation 3 are 
summarized in Table 5.

In Table 3, our discussions focus on the two 
developed estimators namely, EP.MP1 and EP.MP2. It 
is observed that relative bias is not really an issue in 
Table 3, as the biases of all the estimators are almost 
negligible and of the same order and magnitude 
for all set of sample sizes. But, the difference in 
performances are identified with respect to average 
percentage RRMSE. The results in Table 3 shows 
that the estimators based on combining data from two 
independent surveys (EP2, EP4, EP.MP1 and EP.MP2) 
has smaller average percentage RRMSE value than 
the estimators based on small the survey ( )IS  data. 
Further, it is found that EP.MP1 and EP.MP2 has lesser 
average percentage RRMSE value than EP2 and EP4 
estimators. The estimators (EP.MP1 and EP.MP2) that 
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combing data from two independent surveys, utilizing 
the extra set of variables of the large survey ( )IIS
along with common auxiliary variable, further gain 
in efficiency with respect to smaller value of average 
percentage RRMSE. The results of the EP.MP1 and 
EP.MP2 are consistent over all the four sample size 
combinations in Table 3. Again, when the intraclass 
correlation coefficient value is increases from 0.1 
to 0.2 that is Simulation 1-I to Simulation 2-II, the 
EP.MP1 and EP.MP2 outperform the other estimators. 

Table 3. Values of average percentage relative biases (RB) and 
average percentage relative root mean squared errors (RRMSE) 

of the different estimators exists under in Simulation 1. 

( ) ( ),I d II dn n Predictor
Simulation 1-I Simulation 1-II

RB RRMSE RB RRMSE

DIR -0.007 2.11 -0.007 2.11

EP1 -0.007 1.62 -0.007 1.74

EP2 -0.002 1.13 -0.002 1.73

2,25 MBDE -0.010 2.11 -0.010 2.11

EP3 -0.009 1.60 -0.009 1.31

EP4 -0.007 1.12 -0.007 1.30

EP.MP1 -0.002 0.88 -0.002 1.16

EP.MP2 -0.002 0.88 -0.002 1.16

DIR 0.007 2.10 0.007 2.10

EP1 0.007 1.60 0.007 1.73

EP2 0.001 0.92 0.001 1.71

4,50 MBDE 0.000 2.09 0.000 2.09

EP3 -0.001 1.58 0.000 1.13

EP4 0.001 0.92 0.001 1.12

EP.MP1 0.001 0.86 0.001 1.11

EP.MP2 0.001 0.86 0.001 1.11

DIR -0.001 1.63 -0.001 1.63

EP1 -0.001 1.30 -0.001 1.40

EP2 -0.013 1.06 -0.013 1.39

4,25 MBDE -0.007 1.63 -0.007 1.63

EP3 -0.007 1.28 -0.007 1.19

EP4 -0.007 1.06 -0.007 1.18

EP.MP1 -0.014 0.83 -0.014 1.07

EP.MP2 -0.014 0.83 -0.014 1.07

DIR -0.001 1.64 -0.001 1.64

EP1 -0.001 1.30 -0.001 1.41

EP2 -0.003 0.84 -0.003 1.40

4,50 MBDE -0.003 1.63 -0.003 1.63

EP3 -0.003 1.29 -0.003 1.00

EP4 -0.002 0.84 -0.002 1.00

EP.MP1 -0.003 0.79 -0.003 0.99

EP.MP2 -0.003 0.79 -0.003 0.99

Table 4. Values of average percentage relative biases (RB) and 
average percentage relative root mean squared errors (RRMSE) 

of the different estimators exists in Simulation 2.

( ) ( ),I d II dn n Predictor
Simulation 2-I Simulation 2-II

RB RRMSE RB RRMSE

DIR 0.000 1.71 -0.006 1.68

2,25 EP1 0.000 1.44 -0.006 1.47

EP2 -0.006 0.86 -0.003 0.91

MBDE -0.006 1.69 -0.011 1.66

EP3 -0.006 1.42 -0.012 1.44

EP4 -0.004 0.85 -0.009 0.90

EP.MP1 -0.005 0.46 -0.003 0.57

EP.MP2 -0.005 0.46 -0.003 0.57

DIR -0.019 1.70 0.011 1.69

2,50 EP1 -0.019 1.43 0.011 1.47

EP2 -0.001 0.67 0.001 0.73

MBDE -0.009 1.69 0.001 1.68

EP3 -0.009 1.41 0.001 1.45

EP4 -0.001 0.66 0.001 0.73

EP.MP1 -0.001 0.44 0.001 0.55

EP.MP2 -0.001 0.44 0.001 0.55

DIR -0.001 1.30 -0.008 1.30

4,25 EP1 -0.001 1.11 -0.008 1.15

EP2 0.002 0.83 -0.002 0.88

MBDE 0.000 1.29 -0.006 1.29

EP3 0.000 1.10 -0.006 1.14

EP4 0.002 0.82 -0.005 0.87

EP.MP1 0.002 0.43 -0.002 0.54

EP.MP2 0.002 0.43 -0.002 0.54

DIR 0.009 1.31 -0.005 1.32

4,50 EP1 0.009 1.12 -0.005 1.16

EP2 0.004 0.65 -0.006 0.70

MBDE 0.005 1.30 -0.003 1.31

EP3 0.004 1.11 -0.003 1.15

EP4 0.005 0.64 -0.002 0.69

EP.MP1 0.004 0.41 -0.006 0.51

EP.MP2 0.004 0.41 -0.006 0.51

The proposed EP.MP1 and EP.MP2 estimators are 
perform at par for throughout in Table 3. Hence, we 
can conclude that the proposed EP.MP1 and EP.MP2 
estimators are most out performer in Table 3.

Table 4 shows the average percentage relative bias 
and average relative RMSE of the different estimators 
under Simulation 2. Similar to Table 3 relative bias is 
not really an issue, as the biases of all the estimators 
are almost negligible and of the same order and 
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Table 5. Values of average percentage relative biases (RB) and 
average percentage relative root mean squared errors (RRMSE) 
of the different estimators in Simulation 1 (S(I): 20 sample + 5 

non-sample areas; S(II): all 25 sample areas). 

( )

( )

( ,

)
I d

II d

n

n
Areas Predictor

Simulation 3

RB RRM-
SE

( )

( )

( ,

)
I d

II d

n

n
RB RRM-

SE

2, 25
Sampled DIR -0.008 2.28 4, 25 -0.001 1.76

EP1 -0.008 1.75 -0.001 1.40

EP2 -0.002 1.22 -0.016 1.14

MBDE -0.012 2.28 -0.008 1.76

EP3 -0.011 1.73 -0.008 1.38

EP4 -0.008 1.21 -0.008 1.14

EP.MP1 -0.002 0.95 -0.017 0.90

EP.MP2 -0.002 0.95 -0.017 0.90

Non-
sampled

SYN.EP2 -0.002 1.46 -0.016 1.37

SYN.EP4 -0.008 1.45 -0.008 1.37

EP.MP1.Syn -0.002 1.05 -0.017 1.08

EP.MP2.Syn -0.002 1.05 -0.017 1.08

2, 50
Sampled DIR 0.008 2.27 4, 50 -0.001 1.77

EP1 0.008 1.73 -0.001 1.40

EP2 0.001 0.99 -0.004 0.91

MBDE 0.000 2.26 -0.004 1.76

EP3 -0.001 1.71 -0.004 1.39

EP4 0.001 0.99 -0.002 0.91

EP.MP1 0.001 0.93 -0.004 0.85

EP.MP2 0.001 0.93 -0.004 0.85

Non-
sampled

SYN.EP2 0.001 1.09 -0.004 1.09

SYN.EP4 0.001 1.09 -0.002 1.09

EP.MP1.Syn 0.001 1.02 -0.004 1.02

EP.MP2.Syn 0.001 1.02 -0.004 1.02

magnitude for all set of sample sizes. In Table 4 results 
are also similar to Table 3 with respect to RRMSE. 
The estimators based on combining data from two 
independent surveys (EP2, EP4, EP.MP1 and EP.MP2) 
has smaller average percentage RRMSE value than 
the estimators based on small the survey ( )IS data only. 
Further, it is found that EP.MP1 and EP.MP2 has lesser 
average percentage RRMSE value than EP2 and EP4 
estimators. Hence, the performances of the developed 
estimators are unaltered when the normal distribution 
of random effect components of (11) are replaced 
by chi-squared distribution. Table 4 shows that the 
performances of EP.MP1 and EP.MP2 are consistently 
hold for all the four sample size combinations as 
well as for bot h Simulation 2-I and Simulation 2-II 
similar to Table  3. Hence, we can conclude that the 
proposed EP.MP1 and EP.MP2 estimators are most out 
performer in Table 4.

In Table 5 shows the results of Simulation 3 for 
sample as well as non-sample areas. Here, 5 areas 
of the small survey ( )IS  are taken as non-sample 
areas and rest 20 areas are in sampled. In Table 5, 
the results for sample areas as well as non-sample 
areas are averaged over 20 sample areas and 5 non-
sample areas, respectively. The results for sample 
areas are similar to the results of Table 3 and Table 4. 
The estimators (SYN.EP2, SYN.EP4, EP.MP1.Syn 
and EP.MP2.Syn) applied to non-sample areas are 
performing more or less similar to sample areas. 
The results obtained in Table 5 shows that EP.MP1.
Syn and EP.MP2.Syn estimators are noteworthy. The 
values of average percentage RRMSE of the EP.MP1.
Syn and EP.MP2.Syn are smaller than SYN.EP2 and 
SYN.EP4 estimators. Further, the performances of 
two proposed synthetic estimators, EP.MP1.Syn and 
EP.MP2.Syn are at par. The performances of EP.MP1.
Syn and EP.MP2.Syn are consistent for all sample size 
pairs as well as for both Simulation 3-I and Simulation 
3-II. This clearly shows an evidence that the proposed 
synthetic estimator EP.MP1.Syn and EP.MP2.Syn has 
potential to generate the reliable estimates for non-
sample areas.

3.2	 Design-based Simulation Study

Design based simulation studies are conducted to 
support the performances of the proposed small area 
mean estimators for real survey data. The simulation 
studies are conducted using the data of Australian 

Agricultural Grazing Industry Survey (AAGIS), 
conducted by the Australian Bureau of Agricultural 
and Resource Economics in the year 1995-96. The 
original sample is of size 759 farms from 12 regions 
(the areas of interest). Following the process of Islam 
and Chandra (2019), the original sample is used to 
generate the population of size 39562 farms. The 
sample size for the large survey are taken as 759 farms 
(original sample) and three different area specific 
sample sizes 5, 10 and 15 are drawn for the small 
survey. The whole process from sample selection 
to estimation is repeated 2000 times. The variable 
of interest is assumed as the total cash costs (TCC), 
and the aim is to estimate region specific mean TCC 
value. In small survey that collects TCC as well as 
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auxiliary variables namely, number of closing stock-
beef, number of closing stock-sheep and quantity of 
harvested wheat. The large survey that does not collects 
TCC but collects auxiliary variables common to the 
small survey. In addition, the large survey collects 
extra set of variables where, total cash receipts (TCR) 
and Debt taken as response variables and land area 
is taken as auxiliary variables, not common to small 
survey. The results of the design-based simulations are 
summarized in Table 6.

Table 6. Values of average percentage relative biases (RB) and 
average percentage relative root mean squared errors (RRMSE) 
of the different estimators under design based simulations using 

the AAGIS data. 

Predictor
( ) 5I dn = ( ) 10I dn = ( ) 15I dn =

RB RRMSE RB RRMSE RB RRMSE

DIR 1.36 57.35 -0.30 37.29 0.19 27.59

EP1 4.58 51.96 2.75 32.67 2.63 24.61

EP3 4.47 51.06 2.62 32.64 2.17 24.33

MBDE 1.25 60.17 -0.36 38.01 -0.10 28.37

EP2 0.90 35.52 0.71 25.90 0.66 21.32

EP4 0.91 35.26 0.67 25.85 0.52 21.18

EP.MP1 0.52 32.70 0.36 24.22 0.30 20.00

EP.MP2 0.52 32.70 0.36 24.22 0.30 20.00

In Table 6, the results reveal that the EP.MP1 and 
EP.MP2 has lowest relative bias followed by EP4 and 
EP2 estimators. Further, the results of Table 6 with 
respect to average percentage RRMSE clearly support 
the results of model based simulations that EP.MP1 
and EP.MP2 has minimum average percentage 
RRMSE followed by EP2 and EP4 estimators. Table 
6 results provide an encouraging performance of the 
proposed EP.MP1 and EP.MP2 estimators. The results 
set out in Table 6 support the conclusion that the use 
of extra set of variables in combining data from two 
surveys along with common auxiliary variables further 
improves small area estimation. Hence, the proposed 
EP.MP1 and EP.MP2 emerging as the best performing 
of the methods that we investigated in the empirical 
evaluations.

4.	 Concluding Remarks

We developed SAE method by combining data 
from two independent surveys. The empirical results, 
based on simulated data as well as on real survey data, 
clearly indicate that combining information from two 

surveys can bring significant gains in SAE efficiency 
and the incorporation of extra set of variables of 
the large survey that is not common to small survey 
further gain in efficiency in small area estimation. The 
conclusions are same for estimate of non-sample areas 
using synthetic version of EP.MP1 and EP.MP2 as 
well as the situation when the normality assumption of 
random effect components of linear mixed model are 
replaced by chi-squared distribution.
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