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ABSTRACT

Analysis and interpolation of spatial variability of soil properties is very important
for site specific management. The objective of this study was to determine the
spatial distribution and degree of risk of phosphorus (P) deficiency in Goalpara
district, Assam using statistics and geostatistics. A total number of 1397 soil

samples were collected from 1953 km area using 1 km×1 km grid at 0-25 cm depth
and analyzed for Bray-1 P. Data set was positively skewed, therefore log-
transformation was applied in order to achieve normality in the data set.
Geostatistical analyses were carried out, including experimental variogram and
model fitting and cross-validation. The ordinary kriging estimate map of Pshowed
that the availability of P for plants was low in 78.6% area of the district. Another
6.0% area was ranked medium, while only 3.4% area was mapped with the high in
available P. The probability map produced based on indicator kriging showed that
the probability of deficiency of available P in the higher class [0.9 - 1.0] is 53%,
whereas, probability greater than 0.5 accounted 99% of the total area of the
district. This means that there is chance of 99% area of the district showing P
deficiency in crops. The standard deviation (SD) map generally showing the SD
values are high for the points having the true values high. Thus, the study will help
in to minimize both yield loss and environmental threats such as eutrophication
due to under or over dose of Pfertilizer application.

2

1. INTRODUCTION

et

al.,

Phosphorus (P) is one of the three major nutrients

required in crop nutrition, the other two being nitrogen (N)

and potassium (K). P plays a vital role in the life cycle of

plant, right from the stimulation of root growth to proper

seed filling and seed setting, in addition to being an

indispensable constituent of genetic material(Khasawneh

1986). It is also known to play a role in photosynthesis,

breakdown of carbohydrate and transfer of energy through

ATP and ADP compounds in various metabolic

transformations.

Information on P fertility status of soils is of great

importance, since it helps to determine the level of P

fertilizer to be applied to crops. The information is equally

useful for P fertilizer distribution and planning at both

macro and micro levels. Natural and anthropogenic

activities are both important in determining the complex

spatial variation of P deficiency in soil, soil pH and

parent material, mineralogy and existing climatic condition

of the study area. In acid soils the concentration of iron and

aluminum ions greatly exceeds that of the phosphate ions

consequently, forming the insoluble phosphate. This leaves

only minute quantity of the phosphate ion immediately

available for plants.

Geostatistical methods can provide reliable estimates at

unsampled locations provided that the sampling interval

resolves the variation at the level of interest (Kerry and Oliver,

2004). In the last two decades, the application of geostatistical

methods by soil scientists focused on predicting spatial

variability of soil properties with different kriging methods.

Kriging is one of the important techniques to arrest the spatial

variability of the soil parameters having auto correlation.

Variography and kriging have been used in India to study the

distribution of soil properties (Santra 2008; Reza

2010; Pal 2010), and assessment of ground water

viz.

et al., et al.,

et al.,
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rainfall is from South West monsoon. According to soil

survey report there are eight broad soil subgroups in the

district namely Aeric Fluvaquents, Aeric Haplaquepts,

Aeric Haplaquents, Typic Udifluvents, Typic

Kandihumults, Typic Haplumbrepts, Dystric Eutrochrepts

and Typic Paleudults (Sen 1999).

A total of 1397 surface soil samples were collected

from a depth of 0-25 cm (plough layer) using a square 1 km

× 1 km grid from the entire district with the help of hand-

held global positioning system (GPS) (Fig. 1). The samples

were air-dried, ground to pass through a 2-mm sieve and

Bray-1 P was determined (Bray and Kurtz, 1945) by

colorimetric spectrophotometer.

Ordinary kriging was used as spatial interpolation

methods for preparation of estimated map of available

phosphorus. The experimental semivariogram values were

calculated from directly measured data using measurement

of moment (MoM) approach (Matheron, 1965). The

semivariogram is half the expected squared difference

between paired data values z(x) and z(x + h) to the lag

distance h, by which locations are separated (Webster and

Oliver, 2001).

γ ….....(1)
2

The usual computing equation for the variogram is:

Where z(x ) is the value of the variable Z at location of

x , h is the lag distance and N(h) is the number of pairs of

sample points separated by h. For irregular sampling, it is

rare for the distance between the sample pairs to be exactly

equal to h. Therefore, the lag distance h is often represented

by a distance band.

During pair calculation for computing the

semivariogram, maximum lag distance was taken as half of

the minimum extent of sampling area. In this study,

omnidirectional semivariogram was computed for available

phosphorus because no significant directional trend was

observed. Best-fit model with smallest nugget values with

minimum root mean square error (RMSE) was selected.

Using the model semivariogram, basic spatial parameters

such as nugget (C ), sill (C+C ) and range (a) was calculated.

Nugget represents variation caused by stochastic factors,

such as error in measurement. Lag reflects the range that soil

has in spatial variations; within which soil fertility factors

have correlations. Sill is the maximum in different sampling

distances. Four commonly used semivariogram models

et al.,

Soil Sampling andAnalysis

Geostatistics

Ordinary kriging

( ) = E[ ( )-z( + )]h z x x h
1 2

i

i

0 0

quality (Adhikary 2010;Adhikary and Biswas, 2011).

In practice, kriging will often be the precursor to some

management decision. The kriged estimates of the

concentrations of pollutants may be used to plan soil

remediation, for example. Estimates of the concentration of

a nutrient may be used to plan spatially variable application

of fertilizer (Schepers 2000). Such management

decisions may often be based on threshold values of a soil

property. For example, if the concentration of available

(Bray-1) P in the soil is larger than 15 mg kg then no

fertilizer input of P is needed according to the University of

Nebraska recommendations (Ferguson 2000).

Fertilizer recommendations based on threshold values are

widely used.

Land use planning may also take into consideration the

threshold values of soil properties. Wood (1990)

reported soil salinity thresholds (electrical conductivity)

that are used to determine land suitability for different crops

in Israel. When a land manager wants to interpret a kriged

map of a soil property with respect to some critical threshold

value(s) then the uncertainty of these estimates becomes

important. An estimate of the probability that the soil

nutrients at a site not exceeding the advisory thresholds

(conditional on the observed values at sample sites) may be

more useful to the manager than a map of the estimated

concentrations of the nutrient. The basic objectives of this

study were 1) to determine the spatial variability of soil

available P using ordinary kriging and 2) to describe the risk

of P deficiency not exceeding a pre-selected threshold value

using indicator kriging techniques.

The area under study belongs to the Goalpara district of

Assam (25º53"-26º30"N, 90º-91º05"E) covering an area of

1953 km (Fig. 1). The climate is humid subtropical. The

maximum temperature is 33ºC during July and August and

minimum temperature falls up to 7ºC in the month of

January. Annual rainfall is 2169 mm and about 80% of

et al.,

et al.,

et al.,

et al.

-1

2

2. MATERIALS AND METHODS

Site Description

Fig. 1. Location and grid map of the study area.

γ( )=h
1

2N( )h �N( )h
i=1 [z ( ) - z( + h)] .. .....(2)x xi i

2
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A set of data on is transformed to the indicator

variable ( ) using Eq. (3). The variogram of the underlying

random function ( ) is then estimated by

Where pairs of observations that are separated by

the lag interval . A set of estimates of this indicator

variogram at different lags may then be modeled by one of

the authorized continuous functions used to describe

variograms (Webster and Oliver, 2001).

An estimate of the indicator random function may then

be obtained for a location by kriging from the neighbouring

indicator-transformed data. IK is equivalent to simple kriging

of the indicator variables ( ) using the mean within the

kriging neighbourhood as the expectation.

Geostatistical analysis consisting of variogram

calculation, kriging, cross validation and mapping was

performed using the geostatistical analyst extention of

ArcGIS 9.3.2.

Descriptive statistics for the analyzed 1397 soil

samples for available soil phosphorus are summarized in

Table 1. The minimum and maximum concentration of

available P in the district was 1.30 and 94.31 kg P O ha

with mean value of 13.76 kg P O ha . The median (10.07 kg

P O ha ) of available P was lower than the mean, which

indicates that the effects of abnormal data on sampling value

were not great. Available P exhibit a high variation (>50%)

according to guidelines provided by Warrick (1998). There

is extensive literature on the variation in soil P

concentrations, and nearly all reported that P is among the

most variable soil properties. Dobermann (1995)

suggested that P concentrations are variable because P is

less mobile in soil than nearly all other solutes, tending to

concentrate in patches and resist homogenization in water

flow across the landscape. Although true at the fine scale,

the small concentration of readily available P at the local

scale might contribute to the small CV, as very strong

biological demand and decomposition homogenize

concentrations spatially. Skewness is the most common

form of departure from normality. If a variable has positive

z

x

x

M

h

x

x

et al.

�

�

c

c

h

�c

2 5

2 5

2 5

3. RESULTSAND DISCUSSION

Descriptive Statistics of Soil Phosphorus

-1

-1

-1

were fitted. These are the spherical, exponential, Gaussian

and hole-effect model.

Predictive performance of the fitted model was

checked on the basis of cross validation test. The values of

coefficient of determination (R ), mean error (ME), mean

squre error (MSE), kriged reduced mean error (KRME) and

kriged reduced mean square error were estimated to

ascertain the performance of the used model (Sarangi

2005). The predictive value of model was ascertained from

the estimated values approaching 0 or 1.

Risk of P deficiency not exceeding a pre-selected

threshold value was assessed by using indicator kriging.

Indicator kriging is a nonlinear geostatistics where the

conventional linear kriging estimators are applied to the

data after a nonlinear transformation. Here the nonlinear

transform is to a discrete (binary) indicator variable. These

techniques have been widely applied by soil scientists (

Van Meirvenne and Goovaerts, 2001).

Let us assume that a soil property at location x take

value ( ). In geostatistics, we treat this value as a

realization of the random function . An indicator

transformation of ( ) can be defined by

( ) = 1 if ( ) , 0 otherwise, …….....(3)

Where is a threshold value of the property. In

indicator geostatistics, ( ) is regarded as a realization of

the random ( ),

( ) = 1 if ( ) , else 0. ……….(4)

It can be seen that

Prob[ ( )≤ ]= [ ( )] = [ ( ); ,] ……….(5)

Where Prob[], [] denote, respectively, the probability

and the expectation of the terms within the square brackets,

and [ ( ); ] is the cumulative distribution function of

( ) at value . The principal of IK is to estimate the

conditional probability that ( ) is smaller than or equal to a

threshold value , conditional on a set of observations of at

neighbouring sites, by kriging ( ) from a set of indicator-

transformed data.

Performance and cross validation of ordinary kriging

Indicator kriging

2

et al.,

e.g.

z

z x

Z(x)

z x

x z x ≤z

z

x

x

x z x ≤z

Z x z E c x G Z x z

E

G Z x z

Z x z

z x

z z

x

�

�

�

�

c c

c

c

c

c c

c c

c

c

c

c

�

�

γ ( )=h
�c

1

2Mh
� i=1 [ c( )- c( + h)] .....( )� �x xi i

2
6Mh

Table: 1
Descriptive statistics of Bray-1 P measured at soil depth 0-25 cm for 1397 soil samples

Distribution Min. Max. Mean Median Standard Skewness Kurtosis

Normal 1.30 94.31 13.76 10.07 13.16 2.54 11.31
Log 0.26 4.55 2.27 2.30 0.85 -0.40 2.75

Bold face values are the lowest value of skewness and kurtosis for available phosphorus

deviation

67S.K. Reza et al. /Ind.J.Soil Cons. 40(1) : 65-69, 2012
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skewness, the confidence limits on the variogram are wider

than they would otherwise be and consequently, the

variances are less reliable. A logarithmic transformation is

considered where the coefficient of skewness is greater than

one (Webster and Oliver, 2001). Therefore, a logarithmic

transformation performed for all micronutrients because

their skewness was greater than 1.

Investigation was carried out for systematic

dependencies in the data. A physically and statistically

acceptable covariance model is sought to describe the

correlation among data. A spherical theoretical covariance

model suitable for spatial fields was fitted to experimentally

derived covariance values for log-concentration based on

minimum RMSE value. This model is a function of the

distance between any two spatial points (Journel and

Huijbergts 1978).

Semivariogram parameters (range, nugget and sill) for

available P with best fitted model are presented in Table 2.

The variogram of available P exhibits a very good structure,

having very small nugget effect (C =0.66), showing that the

sampling density is adequate to reveal the spatial structures.

Furthermore, the range of 2.37 km implies that the length of

the spatial autocorrelation is much longer than the sampling

interval of 1 km. Therefore, the current sampling design is

appropriate for this study and displayed a good spatial

structure will be shown on the interpolated map (Goovaerts,

1997). The range in geostatistical analysis indicates the size

of patches. Smaller sized patches in the study soils suggest

that biological processes play an important role in surface

soils vs. geochemical processes ( , 203).

Semivariogram model Range (km) Nugget (C ) Sill (C)

Spherical 2.37 0.66 0.947

Spatial map prepared through ordinary kriging using

semivariogram parameters was cross-validated. Evaluation

indices resulting from cross-validation of spatial map of soil

phosphorus is given in Table 3.

Semivariogram of Soil Phosphorus

Table: 2
Semivariogram parameters of soil available phosphorus

Spatial Variation of Soil Phosphorus

,

0

0

Augustine

Table: 3
Cross validation results of ordinary kriging of soil available
phosphorus

ME MSE KRME KRMSE

0.192 0.467 0.005 0.930

ME = Mean Error, MSE = Mean Square Error,
KRME = Kriged Reduced Mean Error, KRMSE = Kriged Reduced
Mean Square Error

Risk of Soil Phosphorus Deficiency

Risk map of P deficiency not exceeding a pre-selected

threshold value was prepared by using indicator kriging. A

threshold value 34 kg P O ha was chosen, which

represents soils with less than 34 kg P O ha is low in

available P (Baruah and Barthakur, 1997)) showing

deficiency symptoms for most of the crops and is

recommended to receive large application rates to build up

their P concentration. This threshold was used to create

probability map (Fig. 3) in order to delineate the deficiency

area of available P of the study area. The map showing the

probability of deficiency of available P in the higher class

[0.9 1.0] is 53%, whereas, probability greater than 0.5

accounted 99% of the total area of the district. This means

that there is chance of 99% area of the district showing P

deficiency in crops like some necrotic spots on leaves and

the plants are dwarfed or stunted. P deficient plants develop

very slowly in relation to other plants growing under similar

environmental conditions but without Pdeficiency.

Kriging standard deviation (KSD) is the square root of

the kriging variance. In this study, the KSD map for

available P is shown in Fig. 4. This map shows the level of

model errors. It is evident that the KSD was greater for high

2 5

2 5

-1

-1

Spatial map of soil phosphorus prepared through

ordinary kriging are presented in Fig. 2. Spatial map

indicated that the availability of phosphorus for plants was

low (<34 kg P O ha ) in 78.6% area of the district. Another

6.0% area was ranked medium (34-68 kg P O ha ), while

only 3.4% area was mapped with the high (>68 kg P O ha )

available phosphorus (Table 4).

Available Range Area % area of

phosphorus class (kg P O ha ) (km ) the district

Low <34 1503 78.6

Medium 34-68 115 6.0

High >68 65 3.4

Miscellaneous (Brahmaputra river, .) 228 11.9

Total 1911 100.0

2 5

2 5

2 5

2 5

-1

-1

-1

-1 2

Table: 4
Delineated area under different classes of available
phosphorus content

etc

Fig. 2. Estimated map for available phosphorus

(kg P O ha ).2 5

-1
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Fig. 3. Probability map for deficiency of available
phosphorus.

Fig. 4. Standard deviation error map for available
phosphorus.

estimated values of available P. In contrast, the error was

smaller for small estimated available Pvalues.

The spatial variability and risk of deficiency of P in

Goalpara district of Assam was evaluated and mapped

using geostatistical techniques. The raw data sets of

available P are strongly positively skewed. The

application of log-transformation was effective in

normalizing the data. Spherical model was best fitted with

strongly spatially dependent. A good variogram structure

of available P is observed, revealing that there are clear

spatial patterns of available P on the distribution map and

also that the current sampling density is ample to reveal

such spatial patterns. The kriging interpolated map has

shown the availability of phosphorus for plants was low in

78.6% area of the district. Another 6.0% area was ranked

medium, while only 3.4% area was mapped with the high

in available phosphorus. The probability and standard

deviation map produced based on indicator kriging

interpolation provides useful information for deficiency

areas identification and decision support. The map

showing the probability of deficiency of available P in the

higher class [0.9-1.0] is 53%, whereas, probability greater

than 0.5 accounted 99% of the total area of the district.

This means that there is chance of 99% area of the district

showing P deficiency in crops.

4. CONCLUSIONS
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