Journal of the Indian Society of Soil Science, Vol. 66, No. 1, pp 20-27 (2018)
DOI: 10.5958/0974-0228.2018.00003.8

Geostatistical and Multivariate Analysis of Heavy Metal Pollution
of Coal-mine Affected Agricultural Soils of North-eastern India
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Total concentrations of heavy metals in the soils of mine drainage and surrounding agricultural fields in the
Ledo coal mining area of Tinsukia district, Assam, India, were investigated using statistics, geostatistics
and GIS techniques. The amounts of iron (Fe), manganese (Mn) and zinc (Zn) were determined from 83
soil samples collected within the contaminated area. The mean concentration of Fe, Mn and Zn were
28585, 627 and 227 mg kg!, respectively. The greatest and the smallest standard deviation were observed
in the Fe (7506) and pH (0.44), respectively. All heavy metals exhibited a medium variation (15-50%).
Analysis of the isotropic variogram indicated that the Mn and Zn semivariograms were well-described with
the exponential model, with the distance of spatial dependence being 1083 and 994 m, respectively, while
the Fe semivariogram was well-described with the spherical model, with the distance of spatial dependence
being 1784 m. Thus, the length of the spatial autocorrelation was much longer than the sampling interval of
500 m. The spatial distribution maps of Fe, Mn and Zn showed that high concentration of heavy metals was
located in the low-lying rice field and near coal mining site. Multivariate statistical analyses and principal
component analysis suggested that Fe was derived from anthropogenic sources, particularly coal mining

activities, whereas Mn and Zn were derived from lithogenic and/or anthropogenic sources.
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Coal plays an important role in energy generation,
and ~27% of the world’s energy consumption
originates from the incineration of coal (Bhuiyan et
al. 2010). Underground and open pit coal exploitation
includes a phase development in mine and removal of
surrounding rocks, which are low in coal content
(<30%) and often contain iron sulphide minerals.
During the process of opencast and underground coal
mining, a variety of rock types with different
compositions are exposed to atmospheric conditions
and undergo accelerated weathering (Reza et al.
2015). These waste materials typically contain
variable amounts of sulphide minerals. After disposal,
exposure to atmospheric oxygen and water results in
sulphide oxidation and the formation of acid mine
drainage (AMD) with variable pH, SO,*, and heavy
metal content (Silva et al. 2011).
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When coal is mined, pyrite (FeS,) is exposed to
oxygen and water, setting off a series of reactions
that can result in lowered pH (unless there are
sufficient carbonates to neutralize acids produced by
oxidation and hydrolysis) and the release of high
concentrations of metals, such as iron (Fe), aluminum
(Al), and manganese (Mn) (Adriano 2001). In addition
to causing poor water quality, mine drainage can
affect the substrate of a stream. Ferrous iron (Fe?") is
oxidized to ferric iron (Fe®") to form a precipitate on
the substrate (commonly referred to as ‘‘yellow boy’”)
in the presence of water when the pH is greater than
about 3.5 (Rose and Cravotta 1998). In many mine
drainage streams with a relatively high pH,
precipitated Fe and Al may coat the stream substrate
and cause an unstable habitat for macro-invertebrates
(Simmons et al. 2005).

Earlier studies on environmental impacts of coal
mining have shown that soil acidity, toxic metal
concentrations (Adriano 2001) and vegetation damage
(Madejon et al. 2002) are the predominant negative
impacts of AMD. Seepage of water from overburden
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dumps, exposed overburden and coal processing etc.
constitutes mining effluent, which contains heavy
metals (Wong 2003). Pollution of the natural
environment by heavy metals is a worldwide problem
because these metals are indestructible and most of
them have toxic effects on living organisms at certain
concentrations (MacFarlane and Burchett 2002).
Geostatistics originated from the mining and
petroleum industries began with the work by Danie
G. Krige in the 1950s, and it was further developed
by Georges Matheron in the 1960s. Today,
geostatistics has been extended to many other fields
related to the earth sciences. Geostatistics is a
technology for estimating the soil property values in
non-sampled areas or areas with sparse samplings
(Yao et al. 2004). These non-sampled areas can vary
in space (in one, two or three dimensions) from the
sampled data (Zhu et al. 2005). Geostatistics provides
a set of statistical tools for a description of spatial
patterns, quantitative modeling of spatial continuity,
spatial prediction, and uncertainty assessment
(Goovaerts 1999). Geostatistical techniques
incorporating spatial information into predictions can
improve estimation and enhance map quality (Mueller
and Pierce 2003). Several geostatistical methods have
been used by the researchers for developing the spatial
distribution maps of heavy metal in soil, depending
upon the requirements and situations of field
experiments. Among different methods of spatial
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interpolation, ordinary kriging is most common
(Franzen and Peck 1993). Kriging is a useful tool to
predict and interpolate data between measured
locations (Reza et al. 2010, 2012, 2014, 2016a, 2016b,
2016¢c, 2017).

In the north-eastern India, coalfields are
confined particularly in the Tinsukia district of upper
Assam. Coal mining activities in these areas have been
in operation since 1882. Most of the coalfields now
been closed due to declining of production while the
collieries of Tikka, Borgolai, Ledo, Tipang and
Namdang of Makum coalfield have so far produced
more than 25 million tonnes (Mt) of coal out of the
reserve estimated at 130 Mt up to a depth of 300 m
(Nesa and Azad 2008). These fields are still under
operation in full swing. Our study investigates the
extent of contamination of heavy metals (Fe, Mn and
Zn) in soil by Ledo coal mine using geostatistics and
GIS techniques to reveal the spatial distribution
patterns and provides a basis for hazard assessment.

Material and Methods

Study area

The study was carried out near the Ledo coal
mining area of Tinsukia district, Assam, north-eastern
India, extended between 27°17°05” to 27°20°45” N
latitude and 95°39’35” to 95°44’53” E longitude
covering an area of 20 km? (Fig. 1). The climate is
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Fig. 1. Location and grid map of the study area
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humid subtropical. The average annual rainfall ranges
between 2000-2500 mm with maximum rainfall during
July-September. The climate is moderately warm
during summer but cold in winter. Mean monthly
minimum and maximum temperatures were 7 and 36
°C, respectively.

Soil sampling and analysis

Eighty three surface soil samples were collected
from a depth of 0-25 cm (plough layer) using a square
500 mx500 m grid (Fig. 1), corresponding to a
sampling density of 4 samples per km? covering not
only the waste disposal site, but also the surrounding
cultivated areas with the help of a hand-held global
positioning system. Soil samples were air-dried and
ground to pass through a 2-mm sieve. A combined
glass calomel electrode was used to determine the pH
of aqueous suspension (1:2.5 soil:solution ratio).
Organic carbon (OC) was determined by the Walkley
and Black (1934) method. Digestion of 0.50 g soil
samples was performed with concentrated HNO,, HF
and HCIO, in a microwave digester (Model Start D,
Milestone). Subsequently, the total concentration of
heavy metals was determined by a Shimadzu AA6300
atomic absorption spectrophotometer.

Geostatistical analysis based on GIS

Spatial interpolation and GIS mapping
techniques were employed to produce spatial
distribution and risk assessment maps for the three
investigated heavy metals, and the software used for
this purpose was ArcGIS v.9.3.1 (ESRI Co, Redlands,
USA). In ArcGIS, kriging can express the spatial
variation and allow a variety of map outputs, and at
the same time minimize the errors of predicted values.
Moreover, it is very flexible and allows users to
investigate graphs of spatial autocorrelation. Kriging,
as applied within moving data neighborhoods, is a
non-stationary algorithm which corresponds to a non-
stationary random function model with varying mean
but stationary covariance (Deutsch and Journal 1992).
In kriging, a semivariogram model was used to define
the weights of the function (Webster and Oliver 2001),
and the semivariance is an autocorrelation statistic
defined as follows (Mabit and Bernard 2007):

y(h) = —— 3" [z~ 2(x, + )T

IN(h) (1)
where, z(x,) is the value of the variable z at location
of x,, h the lag and N(%) the number of pairs of sample
points separated by 4. For irregular sampling, it is
rare for the distance between the sample pairs to be
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exactly equal to 4. That is, / is often represented by a
distance band.

Ordinary kriging (OK) is known to be an
estimator in the sense that observation points are re-
estimated with the minimum error. This method does
not necessarily require observation networks where
data are normally distributed, and for the estimation
of the spatial correlation of the regionalized variables,
only the neighboring points of estimation data are
taken into consideration (De Marsily 1986).

Anisotropic semivariograms did not show any
differences in spatial dependence based on direction,
for which reason isotropic semivariograms were
chosen. Circular, spherical, exponential and Gaussian
models were fitted to the empirical semivariograms.
Best-fit model with minimum root mean square error
(RMSE) (Eq. 2) were selected for each heavy metal:

RMSE = J%ZN] [2(x)-2(<) -(2)

Using the model semivariogram, basic spatial
parameters such as nugget (C,), sill (C + C,) and
range (A) was calculated which provide information
about the structure as well as the input parameters for
the kriging interpolation. Nugget is the variance at
zero distance, sill is the lag distance between
measurements at which one value for a variable does
not influence neighboring values and range is the
distance at which values of one variable become
spatially independent of another (Lopez-Granadoz et
al. 2002). Geostatistical analysis consisting of
semivariogram calculation, cross-validation and
mapping was performed using the geostatistical
analyst extension of ArcGIS v.9.3.1 (ESRI Co,
Redlands, USA).

Accuracy of the maps was evaluated through
cross-validation approach (Davis 1987; Reza et al.
2010). Among three evaluation indices used in this
study, mean absolute error (MAE), and mean squared
error (MSE) measure the accuracy of prediction,
whereas goodness of prediction (G) measures the
effectiveness of prediction. The MAE is a measure of
the sum of the residuals (Voltz and Webster 1990).

MAE =§Zil [2(x) - 2(x))] .03

where, z(x,) is the predicted value at location i. Small
MAE values indicate less error. The MAE measure,
however, does not reveal the magnitude of error that
might occur at any point and hence MSE will be
calculated as:
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MSE =§ZN1 [2(x,) - 2(x))] ()

Squaring the difference at any point gives an
indication of the magnitude, e.g. small MSE values
indicate more accurate estimation, point-by-point. The
G measure gives an indication of how effective a
prediction might be relative to that which could have
been derived from using the sample mean alone
(Schloeder et al. 2001).

N A
G= I—Zile[Z(Xi) 2 %100
Z:i:l[z(xi)—i]z
where, z is the sample mean. If G = 100, it indicates
perfect prediction, while negative values indicate that
the predictions are less reliable than using sample
mean as the predictors. The comparison of

performance between interpolations was achieved by
MAE.

.5

Multivariate statistical analysis

The identification of pollutants sources is
conducted with the aid of multivariate statistical
analyses, such as principal component analysis (PCA)
and correlation analysis. Multivariate analyses of the
data in this work were carried out by SPSS v.16.0
software (SPSS Inc., Chicago, USA). Bartlett
sphericity test and Kaiser-Mayer-Olkin test indicated
that the normalized data were suitable for PCA.
Varimax with Kaiser Normalization rotation was
applied to maximize the variances of the factor
loadings across variances for each factor.

Results and Discussion
Descriptive statistics of heavy metals and other soil

properties
The statistical characteristics of soil Fe, Mn and

GEOSTATISTICAL ANALYSIS OF HEAVY METAL POLLUTION 23

the pH ranged from 3.7 to 5.7 with the mean values
4.7. The values of OC ranged from 0.13 to 6.76%
with mean value of 1.59%. The mean concentration
of Fe, Mn and Zn were 28585, 627.1 and 226.9 mg
kg, respectively. A high mean concentration of Fe
(59853 mg kg') and Mn (1886 mg kg') has also been
reported in coal-mine affected agricultural soils
(Bhuiyan et al. 2010). The release of high metal
content in the mine drainage soil is dependent on the
weathering effects of mine drainage water (Banwart
and Malmstrom 2001). Pyrite weathering releases
soluble ferrous iron (Fe*) and acidity that is
represented by production of protons (Eq. 6):
FeS,(s) + H,O + 3%:0,(aq) — Fe* + 2S0?, + 2H*
...(6)

If sufficient dissolved oxygen is present or
solutions is oxygenated by contact with the
atmosphere, the dissolved Fe* would be oxidized to
Fe**, consuming acidity in the process (Eq. 7):

2Fe* + 150, + 2H" — 2Fe** + H,0 .(7)

When Fe* reacts further to precipitate as iron
oxyhydroxide minerals, a much greater net production
of acidity occurs (Eq. 8):

Fe’" + 3H,0 < Fe(OH),(s) + 3H" ...(8)

This may react with pyrite to produce more
acidity and ferrous iron (Eq. 9):
14Fe* + FeS,(s) + 8H,0 — 2SO% + 15F¢* +

...(9)
The Fe** produced by the earlier reaction is re-
oxidized by available dissolved oxygen, perpetuating
the cycle represented by the reactions (Egs. 6-9).
Similarly, Mn is released from siderite (Sakurovs et
al. 2007).

Metal sulphides other than pyrite will not
necessarily produce acidity, but will release soluble
metal ions to solution. For example, sphalerite (ZnS)
will release Zn into the environment by oxidization
through the reaction below (Eq. 10):

16H"

. . . .. 2+ 2-
Zn are listed in table 1. In the present investigation, ZnS(s) + 20,(aq) — Zn*" + SO -.-(10)
Table 1. Summary statistics of heavy metal concentrations and selected soil properties
Statistics pH Organic carbon Fe Mn Zn

(%) (mg kg'')

Mean 4.7 1.59 28585 627.1 226.9
SD* 0.44 0.96 7506 252.5 84.9
CV (%)” 9.4 60.4 26.3 40.3 37.5
Minimum 3.7 0.13 12448 129.2 18.9
Maximum 5.7 6.76 41938 1226.8 450.0
Skewness 0.10 2.30 -0.22 0.13 0.23
Kurtosis -0.39 9.22 -0.94 -0.53 -0.10
Distribution pattern Normal Normal Normal

*Standard Deviation; “Coefficient of Variation
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The greatest and the smallest standard deviation
were observed in the Fe (7506) and pH (0.44),
respectively. Similar observations also documented a
higher standard deviation of Fe as compared to other
heavy metals in polluted agricultural soils (Reza et
al. 2016d). All the heavy metals exhibit a medium
variation (15-50%) according to guidelines provided
by Warrick (1998). Skewness is the most common
form of departure from normality. If a variable has
positive skewness, the confidence limits on the
variogram are wider than they would otherwise be
and consequently, the variances are less reliable.
Besides, normality may not be strictly required in
geostatistical analyses but normal distribution may
lead to more reliable results (Webster and Oliver
2001). Therefore, the data distribution was tested for
normality using the Kolmogorov-Smirnov test. All the
studied heavy metals were normally distributed (Table

1.

Semivariogram analysis of heavy metals

Semivariogram parameters (nugget, sill and
range) for each heavy metal with best-fitted model
was identified based on minimum root mean square
error (RMSE). Analysis of the isotropic variogram
indicated that the Mn and Zn semivariograms were
well described with the exponential model, with the
distance of spatial dependence being 1083 and 994
m, respectively, while the Fe semivariogram was well
described with the spherical model, with the distance
of spatial dependence being 1784 m (Table 2) thus,
the length of the spatial autocorrelation was much
longer than the sampling interval of 500 m. Therefore,
the current sampling design is appropriate for this
study and it is expected that a good spatial structure
would be shown on the interpolated map.

The ratio of nugget and sill is commonly used
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dependence. All the studied heavy metals were
moderately spatially dependent suggesting that they
are affected by either anthropogenic or natural factors
or both.

Spatial distribution of heavy metals pollution

Using the available measurements for Fe, Mn
and Zn concentration as well as the aforementioned
structural models, spatial distribution maps of these
heavy metals were produced using the ordinary
kriging procedure (Journel and Huijbregts 1978). The
spatial distribution maps of Fe, Mn and Zn (Fig. 2)
showed that high concentration of heavy metals was
located in the low-lying rice field and near coal
mining site. Evaluation indices resulting from cross-
validation of spatial distribution maps (Table 3) for
all the soil heavy metals the prediction of goodness
(G) value was greater than zero, which indicates that
spatial prediction using semivariogram parameters is
better than assuming mean of observed value as the
values for any unsampled location. This also shows
that semivariogram parameters obtained from fitting
of experimental semivariogram values were fairly
reasonable to describe the spatial variation.

Source identification based on multivariate statistics
For further evaluation of extent of metal
contamination in the study area and source
identification, PCA was used following standard
procedure reported in literature (Bhuiyan e al. 2010;
Reza et al. 2013, 2015). Varimax rotation (Franco-
Uria et al. 2009) was used to maximize the sum of
the variance of the factor coefficients. The loadings
of measured heavy metal concentrations in the

Table 3. Evaluation performance of ordinary kriged map of
heavy metals through cross-validation

to express the spatial autocorrelation of regional Heavy metals Mean Mean Goodness of

variables, which also indicates the predominant factors absolute square prediction

among all natural and anthropogenic factors crror ctror (&)

(Robertson et al. 1997). The ratios of nugget and sill (MAE) (MSE)

between 0.25 and 0.75 represented moderate spatial Fe 25.59 329276 40

dependence; those below 0.25 represented strong Mn 0.835 33729 46

spatial dependence; and all others represented weak 20 -0.709 5109 28

Table 2. Semivariogram model and parameters of heavy metals

Heavy metals Fitted model Nugget Sill Range (A) Nugget/Sill
(Cy) (C+Cy) (m)

Fe Spherical 0.258 0.592 1784 0.436

Mn Exponential 0.403 0.697 1083 0.578

Zn Exponential 0.315 0.752 994 0.419
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(a) Fe (mgkg") N{ (b) Mn (mg kg™) Ne
12448 - 17765 0 004 o.o; 0.16 129.2 - 342.8 0 0.040.08 0-12‘“
17765 — 22624 342.8 - 505.9
[T 22624 - 27066 [ 505.9-630.4
I 27066 - 31126 N 630.4-725.5
I 31126 - 34836 I 725.5 - 850.0
I 34836 - 38227 I 850.0 - 1013.1
I 35227 - 41938 I 1013.1 - 1226
(€) Zn (mg kg ”{
18.9-132.8 0 004008 0.6
132.8 - 193.4 Km
[ 193.4-2258
I 225.8 - 243.0
I 243.0-275.3
Il 275.3 - 336.0
Il 336.0 - 449.9
Fig. 2. Spatial distribution maps of (a) iron, (b) manganese and (c) zinc
Table 4. Matrix of the three principal components (PC) accounting for most of the total variance
Heavy metals PC1 PC2 PC3 Communities
Fe 0.998 -0.055 0.007 1.00
Mn 0.016 0.961 0.278 0.92
Zn 0.040 0.960 -0.277 0.92
Percentage of variance 61.56 33.10 5.14
Cumulative percent 61.56 94.66 99.80
Table 5. Correlation-coefficients between heavy metals and soil properties and their level of significance (n = 83)
Soil properties pH Organic carbon Fe Mn Zn
pH 1.000
Organic carbon -0.491™ 1.000
Fe -0.100 0.014 1.000
Mn 0.331" -0.404™ -0.034 1.000
Zn 0.304™ -0.339" -0.014 0.846™ 1.000

"Significant at P=0.01; "Significant at P=0.05

coordinate system of three principal components (PC)
were obtained by analyzing the correlation matrix.

In detail, principal component 1 (PC1) has the
high positive loadings of Fe (+0.998) and accounts
for 61.5% of variance (Table 4) and is the most
important component. The PC1 could be better
explained as anthropogenic source, specifically
derived from coal mine effluents. Geochemical
weathering of sulphide minerals (Eqgs. 6-9) derived

from mine drainage leads to accumulation of Fe in
the soil (Bhuiyan et al. 2010). Meanwhile, there were
non-significant correlations between Fe with Mn and
Zn in the soils of the study area (Table 5), which
implied that Fe in soils might have originated from
coal mine effluents. Considering the above reason,
the components loading of PC1 might have been
derived from coal-mine drainage sources, and PCl
might be defined as a coal mine drainage component.
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The PC2, which has high positive loading of Mn
(+0.961) and Zn (+0.960), accounts for 33.1% of
variance. The PC2 could be considered as a measure
of leaching of crustal materials because an important
fraction of all the metals is lithogenic (Bhuiyan et al.
2010). The sulphide minerals (e.g. siderite and
sphalerite) might be oxidized in an open environment
and released Mn and Zn to soil.

Conclusions

Geostatistics and statistics have been employed
for assessment and mapping of soil pollution in the
waste disposal site and surrounding cultivated areas
around the Ledo coal mine in the Tinsukia district of
north-eastern India. A good variogram structure of
heavy metals was observed, showing that there are
clear spatial patterns of heavy metals on the
distribution map and also that the current sampling
density is sufficient to indicate such spatial patterns.
The kriging interpolated map showed that high
concentration of heavy metals was located in the low-
lying rice field and near coal mining site. Principal
component analysis and correlation matrix used in
this study provide important tools for the source
identification. However, further information is needed
for more details about possible and real sources.
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