
Chapter 13
Geospatial Technologies for Semiautomated
Baseline Database Generation for Large-
Scale Land Resource Inventory

S. Chattaraj, S. K. Singh, S. K. Ray, V. Ramamurthy, A. Daripa,
and G. P. Obi Reddy

Abstract The goal of land resource inventory is to enable the lab-to-land transfer of
agro-technology on a sustainable basis through identification of homogeneous soil
management units. The identification of homogeneous landscape ecological unit
(LEU) boundaries for soil mapping through conventional methods is time-
consuming and laborious. Hence, it is necessary to develop a semiautomated
geospatial framework for delivering reliable soil resource information to the users
on time. In the present chapter, the approach for semiautomation in landform
delineation using high-resolution IRS Cartosat-1 and LISS-IV data was discussed.
Cartosat-1 stereopair data are processed to generate the digital terrain model (DTM)
of 10 m spatial resolution. The digital terrain analysis was carried out to generate
contour, drainage, slope, and hillshade for landform delineation in two distinct terrain
conditions. Object-based slope classification algorithm is developed by following
USDA-NRCS slope class thresholds to hasten the process of landform identification.
The land use/land cover (LULC) map of the area is generated based on the rabi
season data of Cartosat-1 merged LISS-IV (2.5 m) as well as high-resolution (0.5 m)
public domain imagery at the backend so as to get the reliable land use boundary at
cadastral level through feature optimization algorithm in eCognition software using
near-infrared (NIR) and Normalized Difference Vegetation Index (NDVI) data. The
integration of three secondary layers, i.e., landform, slope, and LULC, are achieved
through the hierarchical object-based segmentation algorithm to develop landscape
ecological unit (LEU) map. The logical automation algorithm developed at each
stage assists in optimizing sampling intensity, which leads to a considerable saving of
man power, labor, cost, and time.
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13.1 Introduction

The application of satellite remote sensing data products for small- and medium-
scale soil mapping is widely accepted (Soil Survey Division Staff 1995), but its use
in large-scale soil mapping is restricted till date not only for the limited availability of
high-resolution data but also due to lack of understanding the too much details
present in the high-resolution data. Large-scale soil mapping is mostly done follow-
ing conventional methods that are time-consuming and expensive and have low
repetitive value especially in difficult and inaccessible terrain. However, with the
recent advances in satellite data processing and analysis, availability of high-
resolution satellite data like IRS-R2 LISS-IV data (5.8 m) and Cartosat-1 can now
be utilized well for large-scale soil mapping. Srivastava and Saxena (2004) discussed
the technique of large-scale soil mapping (1:12,500 scale) in a basaltic terrain with a
PLU approach and differentiated soil types using topographic information available
in the Survey of India toposheet and LULC information from IRS-1C PAN merged
data of two seasons (kharif and rabi). Similar exercise was also carried out by
Nagaraju et al. 2014 using Cartosat-1 and IRS-R2 LISS-IV data. However, the
traditional way of landform extraction by an interpreter through the topographic
maps, aerial photograph, or satellite imagery followed by ground truthing is accepted
and appropriate. In one hand, the traditional way is relatively time-consuming, and
the results are subjected to interpreter’s biasness, and also not reproducible. On the
other hand, pixel-based digital landform and LULC mapping of high-resolution data
results in noise at the larger scale owing to the presence of minute details in the data.
That’s why object-based image analysis (OBIA) comprising of image objects, i.e.,
groups of pixels that are similar to one another based on a measure of spectral
properties (i.e., color), size, shape, and texture, as well as context from a neighbor-
hood surrounding the pixels, has gained increasing attention in landform and LULC
research from the last decade (Drăguţ and Blaschk 2006; Eisank et al. 2011;
d’Oleire-Oltmanns et al. 2013; Chattaraj et al. 2017).

The goal of soil/land resource inventory is to identify and delineate homogeneous
soil patterns formed within a complex, heterogeneous soil-forming environment to
enable the lab-to-land transfer of agro-technology in a sustainable basis. Successful
mapping of soil resources on large scale is highly dependent on precise information
of landforms (the testimony of past climate as well as topographic factors), slope,
and LULC (the indicators of present climate and management conditions). It is
realized that the identification and delineation of homogeneous landscape ecological
unit boundaries for soil mapping through conventional methods is time-consuming.
Further, the experienced man power to carry out soil survey is also declining rapidly.
Hence, it is necessary to develop a semiautomated geospatial framework so that
reliable information on soil resource is delivered to the users in time. However, the
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key to successful knowledge-based modeling depends on how effectively the
implicit knowledge understanding on the target objects is transformed into explicit
decision rules (Cheng and Han 2016). The present chapter discusses the approach for
semiautomation in slope, landforms, and LULC classification for generating the
Hierarchical Landscape Ecological Unit (LEU) segmentation model using high-
resolution Cartosat-1 and IRS-R2 LISS-IV data.

13.2 Methodology Framework

The overall methodology flow diagram is presented in Fig. 13.1.
The steps involved are:

First step is the generation of digital terrain model (DTM) particularly in the
undulating terrain using Cartosat-1 data of 1 m resolution. The primary terrain
attributes, namely, contour, drainage, hillshade, slope, and curvatures, are derived
from DTM, which have been used as input layers for developing precise and
quantified data on landforms (Fig. 13.1a).

Second step is the generation of LULC maps using IRS-R2 LISS-IV data of 5.8 m
resolution. Derived LULC map superimposed on landform and slope map to
develop Landscape Ecological Unit (LEU) map, the base map of soil/land
resource inventory at larger scale. LEUs are defined by a set of symbol D2s,
D4w1, U4w4, D2d, etc., consisting of letters and numerals. First letter in capital is
the landform, second numeral is slope class, and third letter and numeral is LULC
(Fig. 13.1b).

Third and final step is the extensive traversing and ground truth collection through
mini-pits and profile investigations in well-defined strips representing assemblage
of LEUs. Establishing phases of soil series and developing soil-landform rela-
tionship are the next part of third step. However, the third step is beyond the scope
of the present paper. Hence, the development of object-based models for delin-
eation of LEUs is the prime focus of the chapter (Fig. 13.1c).

13.2.1 Semiautomated Modeling

13.2.1.1 Digital Terrain Modeling

Cartosat-1 stereo pair data were processed to generate the digital terrain model
(DTM) of 10 m spatial resolution using rigorous math model (Toutin’s Model). In
the model, OrthoEngine of Geomatica version 14.0 is used to generate DTM
following the sequence of steps, namely, projection setup, sensor data reading,
collection of GCPs and tie points, block adjustment, model computation (Satellite
Math Model), epipolar image generation, and digital surface model (DSM)
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Fig. 13.1 (a)–(c) Steps in large-scale soil/land resource inventory
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extraction. Balancing algorithm is applied to obtain the seamless mosaic DSM
height. Filtering is done to convert bare earth model, DSM to DTM. Editing is
done to smooth out the irregularities and create a quality output. RMSE statistics
report is also generated to evaluate the accuracy of the DTM output (Fig. 13.2).

Further, DTM is subjected to a series of hydro-enforcement process including
reconditioning, sinks and pit removal, flat and level water bodies, flat and level bank
to bank, and gradient smoothening by DAT/EM and Arc Hydro tool, etc. This is

Fig. 13.1 (continued)
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essentially needed to enrich the quality of the hydrological output such as slope,
contour, and drainage (Romstad and Etzelmuller 2012). This altogether needed to
improve the accuracy of landform mapping (Fig. 13.3).

13.2.1.2 Object-Based Digital Terrain Classification Models

The pixel-based classification procedure analyzes only the spectral properties, but
the spatial or contextual information is lacking. Pixel-based methods applied to high-
resolution images give a “salt and pepper” effect that contribute to the inaccuracy of

Fig. 13.1 (continued)
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Fig. 13.2 DTM of 10 m resolution for a part of Indervelly block, Adilabad district, Telangana

Fig. 13.3 Contour (10 m) and auto-drainage derived from DTM for a part of Indervelly block,
Adilabad district, Telangana
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the classification. For decades, geographic information system (GIS) specialists have
theorized about the possibility of developing a fully or semiautomated classification
procedure that would be an improvement over pixel-based procedures. The object-
based modeling by taking into consideration the spectral and spatial/contextual
properties of pixels and segmentation process with interactive learning algorithm
promises to be more accurate than the pixel-based methods (Camargo et al. 2011).
The following object-based semiautomated models are developed in the study.

13.2.1.3 Slope Classification Model

The raster slope layer output of DTM is taken as input in the object-based image
analysis in the environment of eCognition® software. The slope layer was subjected
to chessboard segmentation. Nine slope classes are created following the USDA-
NRCS slope class threshold criteria. The criteria is fitted as fuzzy instead of hard rule
using the less than and greater than “s-curve” membership function so as to get
closer to the natural slope boundary. Morphology and contextual filters are applied
to generate smooth slope class zones (Fig. 13.4).

13.2.1.4 Landform Classification Model

Case Study-I
The terrain attributes derived through digital terrain analysis of DTM layer, i.e.,
contour, drainage, slope, and curvature, are treated as input for landform delineation.
The landform classification process is hastened taking into consideration the slope
class zone, hillshade, contour, and auto-drainage pattern along with legacy physi-
ography unit of 1:250k. The table (Table 13.1) below illustrates an example of
logical rule set used for different landform units occurring in the Indervelly block of
Telangana state (Fig. 13.5).

Case Study-II
The similar kind of exercised is carried out in the northeastern hilly region of
Ri-Bhoi district, Meghalaya, where the objects resulting from segmentation are
partitioned into subdomains based on thresholds given by the mean values of
elevation and standard deviation of elevation, respectively, following the modeling
approach given by Drăguţ and Eisank (2012). The layer variable thresholds are
modified as per the local condition. The rule set window (Fig. 13.6) and resultant
landform (Fig. 13.7) are presented below.
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Table 13.1 Logical rule set used for different landforms

Landform Logical ruleset condition

1. Undissected plateau Slope range, 0–5%

Relative boarder to escarpment, >80%

Existence of drainage ¼ false

Relative topographic position ¼ upper

2. Pediment Side slope of plateau/upland

Slope range, >1 to <15%

Profile curvature ¼ convex

Presence of erosive features

3. Valley Existence of drainage ¼ true

V-shaped contour with decreasing elevation gradient

Profile curvature ¼ concave

Relative topographic position ¼ lower

Fig. 13.4 Slope class zone derived from DTM for a part of Indervelly block, Adilabad district,
Telangana
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Fig. 13.5 Landform map on 1:10000 scale derived from DTM as a part of Indervelly block,
Adilabad district, Telangana

Fig. 13.6 Rule set algorithm for delineating landform in Ri-Bhoi district, Meghalaya
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13.3 Accuracy Assessment

To determine the accuracy of the OBIA-based digital landform output, independent
reference landform is needed to be delineated based on visual interpretation in the
study area (i.e., watershed). This will help in evaluating the accuracy of landform
modeling on a larger scale, i.e., watershed level. The reference landform delineation
is completed manually by using the background information of IRS-P6 LISS-IV
imagery and DTM-based output of slope, contour and drainage pattern on a shaded
relief layer. Finally, the accuracy is assessed based on the following three measures
(d’Oleire-Oltmanns et al. 2013):

1. User’s accuracy (UA), the percentage of correctly classified area from the total
classified area

2. Producer’s accuracy (PA), the percentage of correctly classified area from the
total reference

3. Detection rate, the percentage of reference data that have been detected by the
classification (also including partial detection)

13.3.1 An Example of Accuracy Assessment

Visual illustration of classified and reference landforms of Tandulwani watershed
of Katol tehsil, Maharashtra (Chattaraj et al. 2017) are illustrated in Fig. 13.8.
The top image of each landform section illustrates the classification results (solid
color fill) as well as the reference polygon (black outlines) overlayed with shaded
relief draped as a base layer. The three color-coded insets below in each section
display examples of good matches (green box), as well as underestimations
(yellow box) and overestimations (red box). Similar approach of illustration
was also documented by d’Oleire-Oltmanns et al. (2013). Visual comparison of
different landform segments at the two chosen scales illustrates the GEOBIA
modeled landforms hold good even at larger scale. The values of classification
accuracies and their graphical representation are given in Table 13.2 and
Fig. 13.9, respectively.

For each individual landform, the UA, PA, and detection rate were calculated. A
visual comparison of the GEOBIA modeled landform map to the visually interpreted
reference landforms is shown in Fig. 13.10 revealing a highly satisfactory areal
extent matching of the modeled output. Similarly, the quantitative assessment result
of the modeling performance documents a high-level accuracy as indicated by the
excellent kappa (0.91) and overall accuracy (92.8%) statistics. The UA and PA for
all the landforms have achieved more than 90% accuracy except for lower alluvial
plain and upper pediment (Table 13.2). It is noteworthy that the detection rate for all
the landform units are around 100%. This indicates the sound performance of the
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knowledge-based modeling to capture the existence of the landform units occurring
in the watershed including partial detection.

13.4 Object-Based Land Use/Land Cover Classification
Model

The LULC map was prepared based on the current rabi season data of Cartosat-1
merged LISS-IV (2.5 m) as well as high-resolution (0.5 m) public domain imagery at
the backend so as to get the reliable land use boundary at cadastral level. The
delineation of subclasses, viz., single- and double-cropped areas within the agricul-
ture zone, was done using novel LULC subclass classification algorithm
(Fig. 13.11). The merged data was segmented into spectrally homogeneous region
using multiresolution segmentation algorithm. The optimum scale parameter for
segmentation of the layer was achieved through estimation of scale parameter (ESP)

Fig. 13.8 Classification results for major landform units (solid color fill) and the corresponding
reference landform units (black outlines) are illustrated. A shaded relief layer is displayed in the
background. Three color-coded insets show examples of (green) good matches between classifica-
tion and reference, (yellow) underestimations of reference, and (red) overestimations of reference
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Fig. 13.9 Graphical representation of classification accuracy report across different landform units
in the watershed

Fig. 13.10 Landform map of the study area as well as the modeled and reference landform map of
the Tandulwani watershed as validation site
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analysis tool. The point of interest lies where the local variance and rate of change
are minimum in the graphical output. The data mining technique, i.e., feature space
optimization, was applied to extract the double-cropped area based on certain
number of layer variables and vegetation indices combination as obtained through
the maximum separation distance. Following such scheme LULC map for a part of
Indervelly block is given in Fig. 13.12.

13.5 Hierarchical Landscape Ecological Unit (LEU) Model

The integration of three secondary layers, i.e., landform, slope, and land use, was
achieved through the hierarchical object-based segmentation algorithm taking into
consideration the area, morphology of the landform units, and its relation with the
neighbor objects to develop landscape ecological unit (LEU) map. The segmentation
was accomplished in three levels:

1. Level-I: First level segmentation was done based on the landform layer.
2. Level-II: This segmentation was run within each of the first level segment based

on fuzzy threshold-based slope class. Second level intermediate output gave rise
to landform-slope unit.

3. Level-III: The landform-slope segments of second level were further subdivided
into landform-slope-land use unit, i.e., LEU, by incorporating the land use factor.
The logical condition used to incorporate the land use factor is that the minimum

Fig. 13.11 LULC subclass classification model workflow
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overlap with the thematic polygon, i.e., level-II segment, will be more than or
equal to 60%. The criteria ensure the continuity of LEU zone vis-à-vis soil
boundary by ignoring negligible change in land use. Figure 13.13 explains the
steps involved in the delineation of LEU.

13.6 Base Map in LRI Project

This LEU map has been used as base for developing soil-landform relationship for
mapping soils on 1:10000 scales. Transacts were demarcated in GIS-based
geo-database framework by assimilating the legacy data of 1:250 k scale and expert
knowledge as shown in Fig. 13.14.

Fig. 13.12 Land use/land cover map on 1:10000 scale for a part of Indervelly block, Adilabad
district, Telangana
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13.7 Conclusions

The logical automation algorithm developed at each stage results in considerable
reduction in time for base map preparation. This will assist in optimizing sampling
intensity, which leads to a considerable saving of man power, labor, cost, and most
importantly the time. Finally, a hierarchical geo-database structure having unified
schema is proposed for deploying in the National Soil Geo-portal to disseminate the
information in a user-friendly way.

Fig. 13.13 Hierarchical object-based segmentation algorithm process for generating LEU maps

Fig. 13.14 Base map on 1:10000 scales for a part of Indervelly block, Adilabad district, Telangana
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