Clay Research, Vol. 24, No. 2, pp. 105-122 (2005)

Landuse, Clay Mineral Type and Organic Carbon Content in Two Millisols-Alfisols-Vertisols Catenary Sequences of Tropical India

T. BHATTACHARYYA¹, D. K. PAL, P. CHANDRAN, S. K. RAY

Division of Soil Resource Studies, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 010, India

Abstract: Soils under different land use attain a certain value of soil organic carbon (SOC) over a period of time. Research attempts to understand such value of major soil types of India are rare. The present study was therefore undertaken to find out SOC value in two Mollisols-Alfisols-Vertisols catenary sequences of Deccan basalt area in Central (Satpura Range) and Western Ghats regions of India. The results indicate that the Vertisols dominated by smectites, are usually under agriculture and has a SOC of ~8 g kg-1 in the top 30 cm of soils. On the other hand the spatially associated Mollisols and Alfisols under forests and dominated by smectites, maintain relatively high SOC values of 12 to 26 g kg-1 in the top 30 cm of soils. The results show that SOC content is mainly a function of clay mineral type rather than clay content. The identification of smectite interstratified with 0.7 nm minerals in these soils demonstrate its influence in SOC accumulation of tropical soils. Establishment of SOC values in relation to land use, and clay mineral type provides valuable hints about the upper limit of SOC sequestration in Vertisols of arid and semi-arid regions of India and elsewhere for their sustained productivity.

The influence of topography in the formation of different kinds of soils is very conspicuous in basaltic terrain of Peninsular India. At the crest and on pediment slopes shallow to moderately deep red soils (Entisols/Inceptisols/Alfisols), and in the lower piedmont plain or valleys deep soils with vertic properties

(Vertisols and their intergrades) are quite common in arid and semi-arid part of the Peninsular India (Murthy et al., 1982). The arid and semi-arid part cover more than 50% area of the country. These soils are in general calcareous and impoverished in soil organic carbon (SOC) (Srivastava et al., 2002). These soils specially, the shrink-swell soils require SOC accumulation to strengthen their health because at present they have limitations that restrict their full potential

E-mail addresses : tapas11156@yahoo.com, tapas@nbsslup.ernet.in (Tapas Bhattacharyya)

¹Corresponding author : Tel.: +91=712-2500545; Fax : +91=712=2500534

to grow both rainy season and winter crops (Kadu et al., 2003).

By and large, the shrink-swell soils under agricultural systems in India contain a SOC value of 0.5% in surface layers. In order to increase the level of SOC in these soils, it is necessary to understand the capacity of these soils to sequester organic carbon. An earlier attempt indicated that the SOC level of these soils under agricultural system of semi-arid environment may be raised from 0.44-0.51% to 0.70-0.80%, considering the SOC of shrink-swell soils (vertic intergrade of Inceptisols) under forest cover of semi-arid (moist) climate (Naitam and Bhattacharyya, 2004). In recent years we have found a repetitive catenary association of Mollisols-Alfisols-Vertisols under various land uses in humid tropical climate (HTC) of the Deccan basalt area in central and western India (Figs. 1 and 2). The formation of these soils under this climate has been possible because of the presence of Ca-rich zeolites (Bhattacharyya et al., 1993, 1999a; Pal et al., 2003). The Mollisols and Alfisols developed in central and western India under mean annual rainfall (MAR) of 1200 and 3947 mm and mean annual temperature (MAT) of 24.4 and 27.0°C, respectively have vertic characters. These two catenary sequences of soils provided us an opportunity to gain knowledge about

their limit of OC accumulation in noncalcareous soils with vertic characteristics under a particular land use system over a period of time. The information on the limit of SOC accumulation under variable soil climatic environments in HTC is very rare, although this is of value as input parameter to develop a model of understanding on the sequestration of organic carbon in shrink-swell soils not only of HTC but also of arid and semiarid climates. Keeping in view of the importance of such information the present study was undertaken with two catenary sequences of central and western India (Fig. 2) to find out the scope of SOC accumulation in calcareous shrink-swell soils especially of Vertisols of semi-arid subtropical climate. This is likely to be achieved from the information gained through this study on land use, clay mineral type and potentiality of SOC accumulation in Mollisols-Alfisols-Vertisols catenary sequence.

Materials and Methods

Figure 1 gives the location of the study area. Two soil catenas consisting of Mollisols-Alfisols-Vertisols (P1 to P7) under study are described schematically showing landuse, SOC content (0-30 cm), mineral suit and other information (Fig. 2).

The Mollisols (P1, P5) and Alfisols

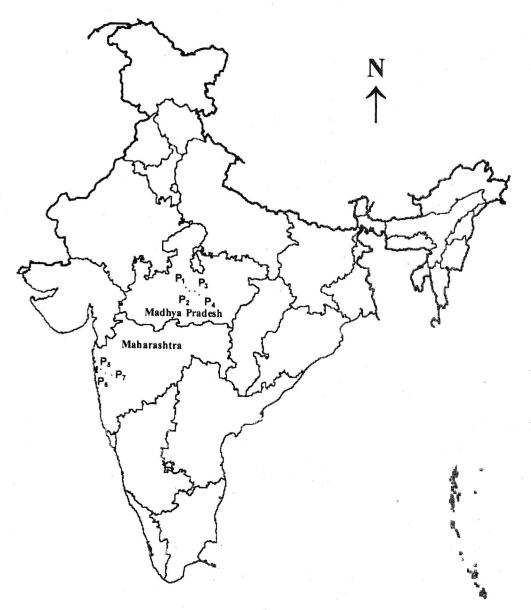


Fig. 1. Study area showing the profile locations in Madhya Pradesh and Maharashtra, India.

(P2, P6) have been under thick forest vegetation for centuries. The Alfisols (P3) have been brought under cultivation for the last 20-30 years. The Vertisols (P4 and P7) are under agriculture for the last 50 years. In view of the land use histories of these soils under study it is expected that

under a particular management regime in soil system a steady-state in terms of SOC content is likely to be established (Swift, 2001).

The thickness of the mollic epipedon has been found to be thinner than as laid

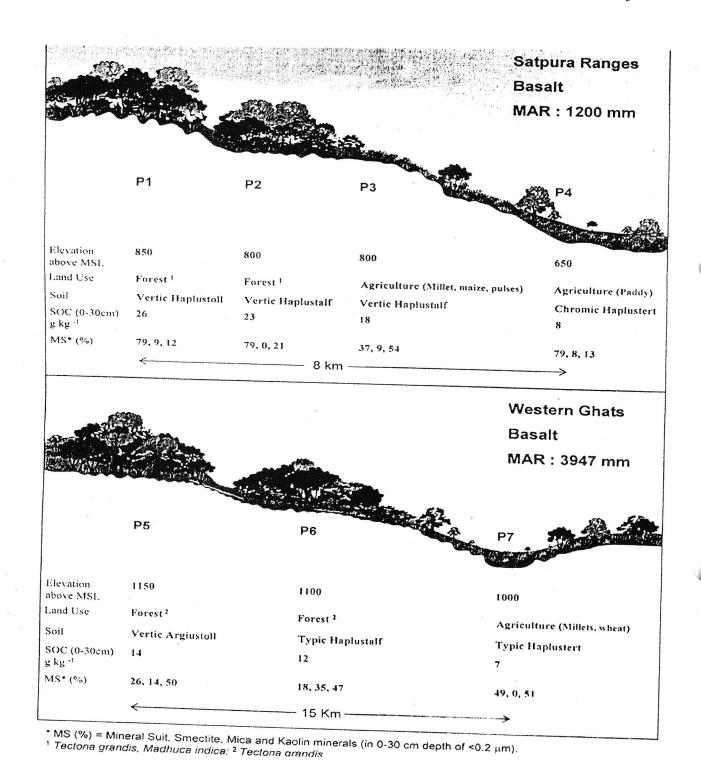


Fig. 2. A schematic diagram of the Mollisols-Alfisols-Vertisols catenary sequence in (a) the Satpura Ranges, Madhya Pradesh and (b) the Western Ghats, Maharashtra, India.

down in Soil Survey Staff (2003); more so for Pedon 1. However judging by SOC content, colour and structure (soft when dry) both the pedons (P1 and P5) have been grouped into Mollisols. The recent modifications of mollic epipedon has been proposed for soils under eroded conditions. The eroded conditions have been explained as a pre-requisite for the willivated soils (Olson et al., 2005). The Mollisols (P1 and P5), although under forest are prone to erosion due to slope factor. This may perhaps justify the thinner mollic epipedon even in soils under forest.

Soil analyses

The profiles were examined to describe the morphological properties of soils (Soil Survey Division Staff, 1995; Soil Survey Staff, 2003). The international pipette method was used to determine article size distribution. Sand, silt, and clay (coarse and fine) fractions were separated following the procedure described by Jackson (1979). Chemical properties such as cation exchange capacity, extractable bases (Ca2+, Mg2+, Na+ and K+) and base saturation were determined following standard methods (Jackson, 1973). Soil organic carbon (SOC) was determined following the procedure of Walkley and Black (1934). The SOC content over the soil depths of 0-30 cm of each soil was measured. The

oriented Ca and K saturated silt and clay fractions were examined by X-ray diffraction (XRD) using a Philips diffractometer and Ni-filtered $CuK\alpha$ radiation at a scanning speed of 1°20/min. The powdered sand samples were also examined by XRD after box mounting. Minerals were identified following various diagnostic methods (Jackson, 1979; Brown, 1984). The semiquantitative estimates of clay minerals were carried out for coarse and fine clay fractions following the method of Gjems (1967). The peak shift analysis (Wilson, 1987) has been found to be a useful method to determine the components of Sm/K interstratified minerals (Bhattacharyya et al., 1993, 1997; Shirsath et al., 2001).

Results

Morphological, physical, chemical and mineralogical properties of soils

Mollisols of Satpura (P1) had a clay loam texture with subangular blocky structure and were black to dark reddish brown in colour whereas these soils on the Western Ghats (P5) had a clay texture, granular to subangular blocky structure and dark brown to dark reddish brown in colour (Tables 1 and 2). The Alfisols of the former (P2, P3) had a silty clay loam to silty clay texture in the solum and a sandy clay loam texture in the C horizons.

Table 1. Morphological, physical and chemical properties of soils of the Satpura Ranges

-			ı																_	
		(%)		91	87	92	87	92	88			75	9/	82		06	83	92	m	90
	CEC	*	100 mm	52.2	59.8	59.8	67.4	71.7	73.9		40.8			35.4		25.5		28.8 7	28.8 93	36.4 98
18 ES		*		2.3	2.0	1.8	1.4	8.0	1.0		4.1	9.0	0.7	0.5		1.0		0.8	1.0	1.2 3
Extractable bases		Mg Na cmol (+) kg ⁻¹	A Control of the Cont	1.0	1.0	-		1.2	1.1		0.3	0.3	0.4	0.2 (0.4	Ū			
tracta		Mg mol (WO STOLEN BOOK AND A STOLEN BO	14.4	16.4	18.8	19.2	4.	9:							0	0.4	0.3	0.4	0.4
Ex	- 1							18.4	17.6		9.0	9.2	9.6	12.7		5.2	6.9	3.9	8.6	8.6
	•	2		29.6	32.8	33.2	36.8	45.4	45.2		18.4	16.4	16.0	15.8		16.0	0.91	8.91	8.91	25.5
00	g kg-1		2	35.0	30.0	20.0	12.1	8.1	5.0		33.0	21.0	15.0	12.0	·	1.61		~ 1		5.0 2
, Hd	(1:2)	w alc	ustaıf	5.9	8.0	S. 0.	5.9	5.6	5.5	stalf	5.1	5.2	5.3	5.6	alf					
	<u> </u>	Fine clay (<0.2 µm)	1: Vertic Haplustalf	220(73)B	190(46)	220(70)			160(57)	Haplu				80) 5	3: Vertic Haplustalf					6.7
ize	g kg-	· ,	ertic							ollic 1	333 (65)	333 (67)	468 (88)	369 (80)	tic H	230(60)	280(59)	330(65)	240(80)	190(65)
Particle size	tion (300	200	210	310	510	280	2: M	507	497	531	429	: Ver				000	
Pari	distribution (g kg-1)	Silt (50-2 µm)	Pedon	390	410	310	070	0/7	700	Pedon 2: Mollic Haplustalf	412	390	153	761	Pedon 3		440			
	0	Sand (2000- 50 μm)		310 230	300	80		9 6	70	 	81									
erties	Stru-	cture		II gr		Shk	2m shk 420	7m cht 520	CAOS				380	9		1m sbk 140	2m shk 180	550	580	
l Prop			31			2m	2m	2	7		If gr	? : E	E	į		lm s	2m s	E	E	
logica		ture	7		ਾਹ	C	ਹ	38			sic					sicl	ပ	scl		
Morphological Properties ^A	Munshell	Colour (moist)	5YR 2 5/1	5YR 2.5/1	5YR 2.5/2	5YR 2.5/2	5YR 4/3	5YR 4/3			7.5YR 3/2 7.5YR 2.5/2	7.5YR 2.5/3	7.5YR 3/3		!	5YR 3/2 5YR 3/2	3/2	3/2		
Depth (cm)		A Marie Carlo						53			2.7 2.7	7.5	7.5			5YR	5YR 3/2	5YR 3/2	5YR 3/2	
			9-0	6-20	20-37	37-74	74-106	106-150		ć	0-10	26-50	50-85		0	10-30	30-59	59-94	94-151	
Hori- zon		-	A1	A2	Bwl	Bw2	Bw3	Bw4			A Bt1	CI	C2		4	Btl	Bt2		C2 9	

Table 1. Morphological, physical and chemical properties of soils of the Satpura Ranges (contd.)

Hori-	. Depth	Depth Morphological Properties ^A	gical	Properties ^A	:	Particle size	size	<u> </u>	Hd	0C		Extractable bases	ole base	Ş		
1107	(CIII)	Minchell Tex- Stru-	Tev	Cfri	dı	distribution (g kg ⁻¹)	(g Kg	(1.6	(1:2)	g kg-1	ı		17	4	CEC	BS
		Colour (moist)	ture	_	Sand (2000- 50 μm)	Silt (50- 2 µm)	Clay (<2 µm)	Fine clay (<0.2 µm)	water		5		Mg Na cmol (+) kg ⁻¹ -	∠		
					I	Pedon 4: Chromic Hapluster	Chro	mic Hap	lustert							
Ap	0-17	10YR 5/4	sic	1m sbk 20	0.	520 4	160	460 260(56)	7.1	8.1	23.3	8.9	0.4	9.0	33.8	86
Bw	17-54	10YR 5/4	sic	2m sbk 20	0.	410 5	570	380(67)	7.4	8.0	26.3	13.4	0.4	9.0	42.4	91
Bss1	54-81	10YR 4.5/3	3 sic	2m sbk 20	0	420 5	260	390(70)	7.3	7.9	21.2	11.6	1.1	1.0	44.6	78
Bss2	81-133	10YR 4/3	sic	2c abk 20	0	430 5	550	270(49)	7.4	7.1	27.2	6.4	- =	1.1	44.6	80
3553	Bss3 133-161	10YR 4/3	၁	2c abk 10	0	340 6	650	200(31)	7.7	5.9	26.4	11.2	1.1	1.1	45.6	87

A 5YR 2.5/1 = Black; 5YR 2.5/2 = Dark reddish brown; 5YR 3/2 = Reddish grey; 5YR 4/3 = Reddish brown; 7.5YR 2.5/2 = Dark brown to very dark grey; 7.5YR 2.5/3 = Dark brown; 7.5YR 3/2 = Dark brown; 7.5YR 3/3 = Dark brown; 10YR 4/3 = Brown; 10YR 4.5/3 = Brown to dark yellowish brown; 10YR 5/4 = Yellowish brown; c = clay; cl = clay loam; scl = sandy clay loam; sic = silty clay; sicl = silty clay loam; 1 f gr = weak fine granular; 1 f sbk = weak fine subangular blocky; 2m sbk = moderate medium subangular blocky; 2c abk = moderate coarse angular blocky; m = massive; B parentheses indicate % of fine clay in total clay (Also see Soil Survey Division Staff, 1995)

Table 2. Morphological, physical and chemical properties of soils of the Western Ghats

Hori- De	Depth 1	Morphological Properties ^A	gical P	roperties		Partic	Particle size	er e	hd (c.1)	0C		Extractable bases	ble base	SS	<u> </u>	BC
		Munshell	Tex-	Stru-	į	nnoine	M (8 NB		(1.2)	N N N N	0	Ma	Ŋ	7		(%)
2		Colour (moist)	ture		Sand (2000- 50 μm)	Silt (50-2 µm)	Clay (<2 µm)	Fine clay (<0.2 µm)	walci		g d	mg - cmol (cmol (+) kg ⁻¹ .	a		(0)
		THE REPORT OF THE PROPERTY OF		Constitution of the Consti	The control of the co	Pedon	5: Ver	5: Vertic Argiustalf	ustalf					Tables of the Control		
0-	0-15 7	7.5YR 3/2	O	1f gr	160	330	510 29	510 290 (57)B 5.7	5.7	20.0	9.2	2.5	0.4	0.5	18.6	89
15-40		7.5YR 3/2	ပ	If gr	120	350	530 3	310 (58)	5.7	12.1	10.3	2.7	0.4	0.4	18.5	74
40-74		5YR 3/3	ပ	2m sbk 100	k 100	290	610 3	360 (59)	5.7	7.1	10.3	2.8	0.4	0.2	18.7	73
74-108		2.5YR 3/4	၁	3c sbk	sbk 110	280	610 3	350 (57)	6.1	4.0	12.0	3.9	0.4	0.2	18.6	68
108-146		2.5YR 3/4	ာ	2m sbk 130	c 130	340	590 3	310 (51)	1.9	3.2	12.0	4.6	0.5	0.2	18.7	92
146-175		2.5YR 3/4	၁	2m sbk 130	c 130	360	530 2	250 (47)	6.1	1.1	6.11	5.7	0.4	0.2	20.0	91
175-190		2.5YR 3/4	၁	2m sbk 130	:130	360	510 20	510 200 (39)	6.1	1.0	11.7	5.9	0.5	0.3	19.5	94
						Pedon	Pedon 6: Typic Haplustalf	c Haplu	stalf							
6-0		5YR 3/4	ပ	1f sbk	sbk 150	290	560 33	330 (59)	5.7	13.1	6.7	3.0	9.0	0.4	8.4	127
9-31		5YR 3/4	၁	1m sbk 110	110	330	560 36	360 (64)	5.3	12.0	7.1	1.5	0.5	0.3	8.6	96
31-60		2.5YR 3/4	၁	2m sbk	sbk 130	370	500 37	370 (74) 5.3	5.3	10.2	8.9	1.6	0.4	0.3	9.01	98
60-107		2.5YR 3/4	ပ	2m sbk	sbk 60	270	670 45	450 (67)	5.6	9.1	9.1	3.3	0.3	0.3	9.8	151
107-155		2.5YR 3/4		2m sbk 30		280	690 32	320 (46)	5.6	6.3	10.4	2.8	0.3	0.3	7.3	189

Table 2. Morphological, physical and chemical properties of soils of the Western Ghats (contd.)

		!						1
	8		41	79	85	104	104	79
CFC			*	30.7	28.8	28.9	30.3	39.1
S	×	†		0.4	0.4	0.5	0.4	0.4
le base	Z	*) kg ⁻¹ .		0.5	0.5	0.7	8.0	8.0
Extractable bases	Μα	cmol (+) kg ⁻¹		6.1	6.3	11.1	11.9	11.0
Ш	C ₃	;		17.3	17.4	17.8	18.4	18.9
0C	g kg			9.0	7.1	6.2	4.9	4.8
pH (C.f.	(1:2) water		stert	9.9	6.4	8.9	6.7	6.5
		Fine clay (<0.2 μm)	Pedon 7: Typic Haplustert	610 330 (54) 6.6	600 480 (86) 6.4	610 440 (72) 6.8	660 460 (70) 6.7	610 510 (84) 6.5
e size	n (g kg	Clay (<2 µm)	7: Typ	610	7 009	610 4	7 099	610 5
Particle size	distribution (g kg ⁻ ')	Sand Silt (2000- (50- 50 2 μm) μm)	Pedon	360	370	350	300	350
	gip	Sand (2000- 50 μm)		30	30	40	40	40
operties	Cfm			1m sbk 30	2m sbk 30	3m sbk 40	3c abk 40	3c abk 40
ical Pr	Toy	ture		၁	ပ	ပ	ပ	၁
Depth Morphological Properties ^A	Munchall Tay	Colour (moist)		10YR 3/3	10YR 3/3	10YR 3/3	10YR 3/2	10YR 3/2
Depth	(cm)			0-15	15-35	35-82	82-125	Bss3 125-150
Hori-	zon			Ap	Bw	Bss1	Bss2	Bss3 1

3/2 = Very dark grayish brown; 10YR 3/3 = Dark brown; c = clay; 1 f gr = weak fine granular; 2m sbk = moderate medium subangular A 2.5YR 3/4 = Dark reddish brown; 5YR 3/3 = Dark reddish brown; 5YR 3/4 = Dark reddish brown; 7.5YR 3/2 = Dark brown; 10YR blocky; 3c sbk = strong medium subangular blocky; 3c abk = strong coarse angular blocky; B parentheses indicate % of fine clay in total

(Also see Soil Survey Division Staff, 1995).

clay.

These soils were dark grayish brown in colour and had weak columnar structures which broke into subangular blocks whereas the Alfisols of the Western Ghats (P6) had clay texture, subangular blocky structures and dark brown colour. The Vertisols of the Satpura (P4) were clayey and dark brown to dark reddish brown in colour with coarse prismatic structure whereas those of the Western Ghats (P7) had clay texture, angular blocky structures and dark brown colour (Tables 1 and 2).

In general, the sand and silt contents of the soils under study were low compared to clay content (Tables 1 and 2). Total clay and fine clay contents ranged from 280 to 690 g/kg, and from 160 to 510 g/kg, respectively. A higher proportion of the fine clay fraction (Tables 1 and 2) indicates more available reactive surface in these soils.

The Mollisols and Alfisols were more acidic and contain more SOC than the Vertisols (Tables 1 and 2). The Mollisols of Satpura (P1) had much higher CEC than those of the Western Ghats due to the presence of smectites (Tables 1 and 2). Extractable bases indicated a higher proportion of Ca and Mg ions in the exchange sites despite acidic to nearly acidic reaction of the soils (except P4). High base saturation (Tables 1 and 2) was earlier explained by the presence of zeolites (Si-poor heulandites) concentrated

in the coarser soil size fractions (Bhattacharyya et al., 1993; 1999a). The higher value of OC in the Mollisols as compared to the Alfisols thus appears to be related to their extensive vegetative cover as well as clay mineral type as discussed later.

The fine clay content ranges from 31 to 84% of the total clay and in general it is more than 50% (Tables 1 and 2). Being the most reactive part of the soil colloids, the XRD of the fine clay fractions is discussed here. The fine clay fractions contain smectite, kaolin and insignificant to moderate amounts of mica. Mollisol (P1), Alfisol (P2) and Vertisol (P4) of Satpura range and Vertisol (P7) of the Western Ghats are dominated by smectite, whereas the other Alfisols (P3 and P6) contain much less amount of smectite but are enriched with kaolin mineral (Fig. 3) of 0.7 nm peak. However, a slight shift and tailing of the 0.70 nm peak on glycolation, gradual reinforcement of the 1.00 nm peak with a corresponding decrease in the 0.7 nm peak intensity on K-saturation and subsequent heating (110°-550°C) (Fig. 3), suggested that these kaolins are to some extent interstratified with chloritized smectite (Sm/K) (Bhattacharyya et al., 1993, 1999a) and thus are not discrete kaolinite (Bhattacharyya et al., 1993, 1997). The interstratification of expanding lattice

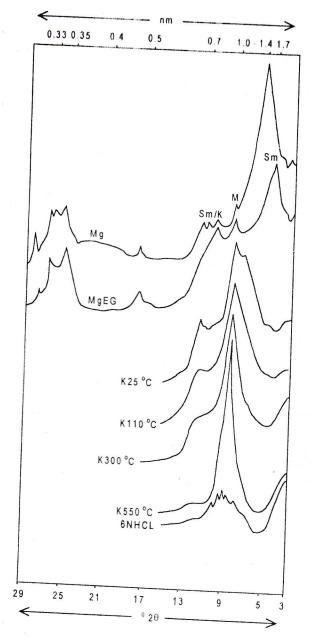


Fig. 3. XRD diagrams of the representative fine clay fractions of Mollisols developed in the Western Ghats (P5) (Bw1-16-37 cm). Mg, Mg-saturated; MgEG, Mg-saturated plus glycerol vapour; K25/110/300/550°C, K-saturated and heated to 25°C, 110°C, 300°C and 550°C; 6 N HCl, samples boiled in 6 N HCl for 30 minutes. Sm=smectite; M=mica; Sm/K=smectite-kaolin.

minerals in 0.7 nm mineral would thus favour the SOC accumulation because of their much larger surface area as compared to kaolinite. The proportion of smectite in these fractions after peak shift analysis (Wilson, 1987) indicates that the Alfisols (P3 and P6) and Mollisol (P5) also contain small to moderate amount of smectite (Table 3).

The relative proportion of smectite in these Sm/K interstratified minerals is shown in table 3. It shows that although the 0.7 nm reflection appears to be a peak of kaolinite (Hajek, 1985; Yerima et al., 1985, 1987), it actually indicates the presence of some smectite in it (Bhattacharyya et al., 1997). This smectite, along with the discrete smectite minerals, is primarily responsible for the storage of high amounts of SOC in the Mollisols and Alfisols.

Discussion

The land use history of the study area indicates the enrichment of OC in soils under forest vegetation. This is reflected in Mollisol (P1) and Alfisol (P2) of Satpura and Mollisol (P5) of the Western Ghats. However, the extent of SOC accumulation as a function of clay mineral type (smectite) is evident when SOC content of Mollisols and Alfisols under forest of the Satpura and also between Mollisols of Satpura and those of the

Western Ghats are compared (Fig. 2 and Table 3). It is also evident when SOC content and smectite content of Alfisols of Satpura (P3) and that of the Western Ghats (P6) are compared. Even under forests, the Alfisols of the Western Ghats (P6) had lesser amount of SOC due to lower amount of smectite than the Alfisols of the Satpura (P3) under agriculture. This emphasizes a fact that the clay mineral type instead of clay content is a more important factor in accumulation and sequestration of SOC (Feller and Beare,

1997; Parfitt et al., 2002; Wattel-Koekkoek et al., 2003). The correlation coefficient (for the selected horizons within the first 30 cm depth of soils) of the SOC and smectite content for Mollisols and Alfisols support this observation (Fig. 4). The Vertisols of the two catenas although highly enriched with smectites (Table 3) are not, however, enriched with SOC like Mollisols. This is a paradoxical situation. The reality is that the Vertisols not only under this study but also occurring elsewhere do not support

Table 3. Semi-quantitative estimates of minerals in fine clay fractions ($<0.2 \mu m$) of soils (%)

Depth (cm)	Smectite (Sm) ^A	Mica	Sm/K (Sm:K) (K) ^B
		ra Range	
	Pedon 1 : V	ertic Haplustoll	*
0-6	68 (74)	8	24 (23 : 77) (18)
6-20	73 (79)	10	17 (33 : 67) (11)
20-37	76 (82)	9	15 (33 : 67) (9)
37-74	76 (85)	4	20 (43 : 57) (11)
74-106	72 (82)	5	23 (43 : 57) (13)
106-150	81 (93)	0	19 (65 : 35) (7)
	Pedon 2: V	ertic Haplustalf	
0-10	72 (76)	· ·	28 (16:84) (23)
10-26	75 (81)		25 (24:76) (19)
26-50	71 (78)	-	29 (24:76) (22)
50-85	73 (79)	***************************************	27 (24:76) (20)
*	Pedon 3: V	ertic Haplustalf	
0-10	26 (44)	9	65 (28 : 72) (47)
10-30	17 (33)	9	56 (28 : 72) (58)
30-59	34 (50)	9	57 (28 : 72) (41)
59-94	49 (78)	6	45 (65 : 35) (16)
94-151	60 (84)	5	35 (70 : 30) (11)

Table 3. Semi-quantitative estimates of minerals in fine clay fractions ($<0.2 \mu m$) of soils (%) (contd.)

Depth (cm)	Smectite (Sm) ^A	Mica	Sm/K (Sm:K) (K) ^B
¥	Pedon 4: T	ypic Hapluste	ert
0-17	78 (80)	8	14 (15 : 85) (12)
17-54	73 (79)	8	19 (31 : 69) (13)
54-81	83 (91)	5	12 (64 : 36) (4)
81-133	66 (83)	8	26 (64 : 36) (8)
133-161	85 (91)	,3	10 (64 : 36) (6)
		rn Ghats	
	Pedon 5 : V	ertic Argiusta	ulf
0-15	12 (29)	14	74 (23:77) (57)
15-40	12 (23)	14	74 (15:85) (63)
40-74	16 (26)	15	58 (15:85) (59)
74-108	12 (33)	19	69 (31:69) (48)
108-146	0 (21)	8	92 (23:77) (71)
146-175	0 (7)	8	92 (8:92) (85)
175-190	0 (7)	7	92 (8:92) (85)
	Pedon 6: T	ypic Haplusta	alf
0-9	6 (22)	26	68 (23:77) (52)
9-31	3 (17)	37	60 (25:77) (46)
31-60	9 (23)	30	61 (25:77) (47)
60-107	9 (18)	32	59 (15:85) (50)
107-155	9 (15)	20	71 (8:92) (65)
	Pedon 7: T	ypic Hapluste	ert
0-15	22 (48)	, g × ±	78 (33:67) (52)
15-35	32 (50)		68 (27:73) (56)
35-82	31 (50)	Accession.	69 (28:72) (50)
82-125	44 (58)		56 (25:75) (42)
125-150	51 (62)		49 (23:73) (36)

Effective smectite (after peak shift analysis) = % Smectite + % smectite from Sm/K

[As an example say for 0-6 cm layer of = 68% + 23% of 24

Mollisol effective smectite] = 68% + 6%

Effective kaolin (K) content = 74% (for 0-6 cm layer of Mollisol).

Effective kaolin (K) content (after peak shift analysis) = 77% of 24 = 18% (for 0-6 cm layer of Mollisol).

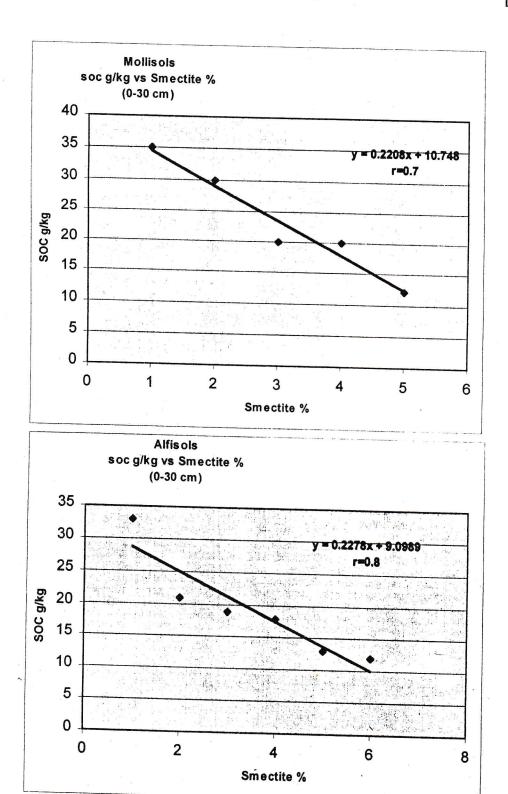


Fig. 4. Relation between SOC and smeetite content for (1) Mollisols and (2) Alfisols.

forest plant species with fast growing deep root system (Soil Survey Staff, 1975; Buol et al., 1978; Bhattacharyya et al., 1999b) because Vertisols (with a depth >100 cm) are capable of tilting trees. This suggests that the Vertisols are capable of sequestering OC but can not because of nonestablishment of forest vegetation in them. Conversely, the Vertisols of the world have high potential of agricultural productivity and thus they are primarily used for agriculture. For any particular soil system under a particular land use, a steady-state is reached in terms of SOC content (Swift, 2001, Batjes, 2001). In the present study under forest and agriculture, Mollisols-Alfisols-Vertisols are tending to attain a stabilized value under the prevailing climate and landuse (Fig. 2). It is understood that the soil environments of Mollisols provide the best conditions for the sequestration of OC. However, in any agriculture dominated country under semi-arid subtropical to humid tropical climates, agriculture is the dominant landuse in Vertisols and soils with vertic intergrades. The SOC values for Vertisols under agricultural system always remain less than those of the Mollisols and Alfisols.

It is known that agricultural systems have an in-built exhaustive mechanism by which soil organic carbon gets depleted (Fenton *et al.*, 1999). Recent studies on

Vertisols from the semi-arid tropics in India indicate that adoption of agricultural system under monocropping (cotton) has reduced the quasi-equilibrium (QE) values SOC to 0.4% (Naitam and Bhattacharyya, 2004), indicating that the QE value is reduced in the semi-arid tract with the rise in temperature. By contrast, the present study indicates that SOC content could be much higher in subhumid ecosystems. It is often advocated that OC could be sequestered in soils through green manuring and application of farmyard manure (Prasad and Goswami Continuous application of 1992). farmyard manure for 45 years in black soils with cotton-sorghum cropping system increased SOC from 0.6 per cent to 1.1 per cent (Swarup et al., 2000). This suggests that due to the presence of smectite, the Vertisols of the semi-arid tropics could be enriched from their present state of impoverished SOC by improving their physical properties such as low hydraulic conductivity (Kadu et al., 2003) and soil compaction (Brevik et al., 2002) through appropriate rehabilitation programme (Pal et al., 2000, 2003) and cropping systems (Goswami et al., 2000; Naitam and Bhattacharyya, 2004) and also by external application of organic inputs (Bhattacharyya et al., 2000). This study thus provides a SOC value as upper limit. The SOC of the smectitic and calcareous Vertisols of arid and semi-arid regions

could be raised from their impoverished status (~0.5%) to a much higher level (~1%) through agricultural management interventions that are likely to reduce the calcareousness and subsoil sodicity of soils (Pal et al., 2000; Swarup et al., 2000; Srivastava et al., 2002). This possibility may improve the health of shrink-swell soils and also raise the SOC stock of soils in semi-arid part of India to 10.5 Pg in first 30 cm depth soils which could be more than 3 times of the existing SOC stock (Bhattacharyya et al., 2000).

Conclusions

Information on the limits of SOC content of the typical soil association of smectitic and non-calcareous Mollisols-Alfisols-Vertisols of tropical India under various land uses indicates that the clay mineral type of soils could be one of the important factors influencing the building up of the SOC. The study also suggests that the impoverished status of SOC of shrink-swell soils of arid and semi-arid climates could be raised to a level of at least ~1% (10 g kg⁻¹) by making them more resilient through appropriate agricultural management interventions.

Acknowledgements

The authors are grateful to the Director, NBSS&LUP, Nagpur for extending facilities to carry out this work.

Thanks are also due to the staff of Division of Soil Resource Studies, NBSS&LUP, Nagpur for the help during the course of this investigation.

References

- Batjes, N.H. 2001. Options for increasing carbon sequestration in West African soils: an exploratory study with special focus on Senegal. Land Degrad. Dev., 12: 131-142.
- Bhattacharyya, T., Pal, D.K. and Deshpande, S.B. 1993. Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and Vertisols) soils on Deccan basalt. J. Soil Sci., 44: 159-171.
- Bhattacharyya, T., Pal, D.K. and Deshpande, S.B. 1997. On kaolinitic and mixed mineralogy classes of shrink-swell soils. *Aust. J. of Soil Res.*, **35**: 1245-1252.
- Bhattacharyya, T., Pal, D.K. and Srivastava, P. 1999a. Role of zeolites in persistence of high altitude ferruginous Alfisols of the Western Ghats, India. *Geoderma*, 90: 263-276.
- Bhattacharyya, T., Pal, D.K. and Velayutham, M. 1999b. A mathematical equation to calculate linear distance of cyclic horizons in Vertisols. *Soil Sur. Hor.*, 40: 109-134.
- Bhattacharyya, T., Pal, D.K., Velayutham, M., Chandran, P. and Mandal, C. 2000. Total Carbon stock in Indian soils: Issues, priorities and management. In: Land Resource Management for Food and Environmental Security. Soil Conservation Society of India, New Delhi, pp.1-46.
- Brevik, E.C., Fenton, T.E. and Moran, L.P. 2002. Effect on soil compaction on organic carbon

- amounts and distribution, South-Central Iowa, Environmental Pollution, 116, S137-S141.
- Brown, G. 1984. Associated minerals. In (G.W. Brindley and G.W. Brown, Eds), Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society, London, pp.361-410.
- Buol, S.W., Hole, F.D. and McCracken, R.J. 1978. Soil Genesis and Classification. Oxford and IBH Publ. Co., New Delhi, India.
- Feller, C. and Beare, M.H. 1997. Physical control of soil organic matter dynamics in the tropics. *Geoderma*, 79: 69-116.
- Fenton, T.E., Brown, J.R. and Mausbach, M.J. 1999. Effects of long-term cropping on organic matter content of soils: implications for soil quality. In (R. Lal, Ed.), Soil Quality and Soil Erosion, CRC Press, New York, pp.95-124.
- Gjems, O. 1967. Studies on clay minerals and clay mineral formation in soil profiles in Scandinavia. *Medd. Nor. Skogsforsk*, 21: 303-415.
- Goswami, N.N., Pal, D.K., Narayanasamy, G. and Bhattacharyya, T. 2000. Soil organic matter Management Issues. Invited Paper. In: International Conference on Managing Natural Resources for Sustainable Agricultural Production in the 21st Century, New Delhi, pp.87-96.
- Hajek, B.F. 1985. Mineralogy of Aridisols and Vertisols. In:Proceedings 5th International Soil Classification. Soil Survey Administration, Khartoum, Sudan, pp.221-230.

- Jackson, M.L. 1973. Soil Chemical Analysis, Prentice Hall, India.
- Jackson, M.L. 1979. Soil Chemical Analysis, Advanced Course. 2nd edn. University of Wisconsin, Madison, WI, USA, 11th Printing, Published by the author. 895 p.
- Kadu, P.R., Vaidya, P.H., Balpande, S.S., Satyavathi, P.L.A. and Pal, D.K. 2003. Use of hydraulic conductivity to evaluate the suitability of Vertisols for deep-rooted crops in semi-arid parts of central India. Soil Use Managt., 19: 209-216.
- Murthy, R.S., Bhattacharjee, J.C., Landey, R.J. and Pofali, R.M. 1982. Distribution, characteristics and classification of Vertisols. *Trans. 12th Int. Congr. Soil Sci.*, 2: 3-22.
- Naitam, R. and Bhattacharyya, T., 2004. Quasi-equilibrium of organic carbon in shrink-swell soils of the subhumid tropics in India under forest, horticulture, and agricultural systems. *Aust. J. Soil Res.*, 42: 181-188.
- Olson, K.R., Fenton, T.E., Smeck, N.E., Hammer, M.D., Ransom, C.W., Zanner, C.W., McLeese, R. and Sucik, M.T., 2005. Proposal modifications of mollic epipedon thickness criteria for eroded conditions and potential impacts on existing soil classification. Soil Surv. Horizons, 46: 39-47.
- Pal, D.K., Bhattacharyya, T., Ray, S.K. and Bhuse, S.R., 2003. Developing a model on the formation resilience of naturally degraded black soils of the Peninsular India as a decision support system for better land use planning, NRDMS, DST Project Report, NBSSLUP (ICAR), Nagpur, 144 p.
- Pal, D.K., Dasog, G.S., Vadivelu, S., Ahuja, R.L. and Bhattacharyya, T. 2000. Secondary

- calcium carbonate in soils of arid and semiarid regions of India. In (R. Lal, J.M. Kimble, H. Eswaran, and B.A. Stewart, Eds), *Global Climate Change and Pedogenic Carbonate*, Lewis Publishers, CRC Press, Boca Raton, Florida, pp. 149-185.
- Parfitt, R.L., Purshotam, A. and Salt, G.J. 2002. Carbon turnover in two soils with contrasting mineralogy under long term maize and pasture. *Aust. J. Soil Res.*, 40: 127-136.
- Prasad, R. and Goswami, N.N., 1992. Soil fertility restoration and management for sustainable agriculture in South Asia. *Adv. Soil Sci.*, 17: 37-77.
- Shirsath, S.K., Bhattacharyya, T. and Pal, D.K. 2000. Minimum threshold value of smectite for vertic properties. *Aust. J. Soil Res.*, 38: 189-201.
- Soil Survey Division Staff, 1995. Soil Survey Manual, United States Department of Agriculture, Handbook No. 18, New Revised Edition Scientific Publishers, Jodhpur, India, p. 437.
- Soil Survey Staff, 1975. Soil Taxonomy: A Basic System of Soil Classification for making and Interpreting Soil Surveys. USDA-SCS Agricultural handbook 436. U.S. Govt. Printing Office, Washington, DC.
- Soil Survey Staff, 2003. Keys to Soil Taxonomy, 9th Edition, United States Department of Agriculture, Natural Resources Conservation Service, Washington, D.C. p.332.
- Srivastava, P., Bhattacharyya, T. and Pal, D.K. 2002. Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking

- clay soils (Vertisols) of India. Clays Clay Miner., 50: 111-126.
- Swarup, A., Manna, M.C. and Singh, G.B. 2000. Impact of land use and management practices on organic carbon dynamics in soils of India. In (R. Lal, J.M. Kimble and B.A. Stewart, Eds), Global Climate Change and Tropical Ecosystems, CRC Press, Boca Raton, Florida, pp. 261-281.
- Swift, S.R. 2001. Sequestration of carbon by soil, *Soil Sci.*, **166**: 858-871.
- Walkey, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid and titration method. *Soil Sci.*, 37: 29-38.
- Wattel-Koekkoek, E.J.W., Buurman, P., van der Plicht, J., Wattel, E. and van Breemen, N. 2003. Mean residence time of soil organic matter associated with kaolinite and smectite. *Eur. J. Soil Sci.*, **54**: 269-278.
- Wilson, M.J. 1987. X-ray powder diffraction methods. In (M.J. Wilson, Ed.), A Handbook of Determinative Methods in Clay Mineralogy, Chapman and Hall, New York, pp.26-98.
- Yerima, B.P.K., Colhom, F.G., Senkayi, A.L. and Dixon, J.B. 1985. Occurrence of interstratified kaolinite-smectite in El Salvador Vertisols. Soil Sci. Soc. Am. J., 49: 462-466.
- Yerima, B.P.K., Wilding, L.P., Calhoun, F.G. and Hallmark, C.T. 1987. Volcanic ashinfluenced Vertisols and associated Mollisols of El Salvador: physical, chemical and morphological properties. Soil Sci. Soc. Am. J., 51: 699-708.