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using autoregressive integrated moving average methodology
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ABSTRACT

A study was conducted on modelling and forecasting time-series data of pigeonpea production [Cajanus cajan (L.)
Millsp.] in India. Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) time-series methodology was
considered for modelling and forecasting country's pigeonpea production data (1969–70 to 2007–08). The augmented
Dicky Fuller test was applied to test stationarity in data set. Root mean square error, Akaike information criterion and
Bayesian information criterion were used to identify the best model. The performance of fitted model was examined
using mean absolute error, mean per cent forecast error, root mean square error and Theil's inequality coefficients.
ARIMA (2, 1, 0) model performed better among other models of ARIMA family for modelling as well as forecasting
purpose. One and two-step ahead forecast value for 2006–07 and 2007–08 for India's pigeonpea production was computed
as 2.54 and 2.53 million tonnes with standard errors 0.29 and 0.31, respectively.

Key words: Autoregressive integrated moving average model, Box-Jenkins, Forecasting, Modelling,
Pigeonpea production, Time-series data

Pigeonpea [Cajanus cajan (L.) Millsp.] is one of the major
legume (pulse) crops of the tropics and sub-tropics. Although
it ranks sixth in area and production in comparison to other
grain legumes such as chickpea, beans and pea, it is used in
more diverse ways than the others. The most important
products come from seed, and dominant among these
products is dal made by dehulling the dry seed. It is also
known to provide several benefits to the soil, in which it is
grown. This crop is outstanding in the depth and lateral
spread of its root system, which incidentally enables
to tolerate drought. It is widely grown in the
Indian subcontinent, which accounts for almost 90% of
the world's crop (Nene et al. 1990). Maharashtra, Uttar
Pradesh, Karnataka, Madhya Pradesh, Gujarat and Tamil
Nadu are the major pigeonpea producing states in the country
(http://dacnet.nic.in).

Forecasting the crop yield or any agricultural produce is
a formidable challenge. Accurate forecasting is important to
both government and industry that needs to predict future
production of foodgrains. Such kind of exercise would enable
the policy-makers to foresee the future requirements of
pigeonpea, its import/export thereby supporting them to take

appropriate measures in this regard. The forecast would thus
help save much of the precious resources of our country,
which otherwise might be wasted.

In many scientific or technical application, data is
generated in the form of time-series, thus making time-series
analysis one of the major tools in research and development.
Since its inception, the univariate Box-Jenkins
ARIMA approach is widely used throughout the world
for different types of agricultural and industrial time-series
analysis. The most significant point of this approach is
that the explanatory variables in these models are the past
values of the same variable. The models are constructed as a
linear function of past values of the series and/or previous
random shocks (or errors). It can be used when the series is
stationary and there is no missing data within the time-series.
Forecasts are generated under the assumption that the past
history can be translated into predictions for the future. This
paper aims to develop model from the observed pigeonpea
data applying ARIMA methodology for uses in future
forecasts.

MATERIALS AND METHODS

For the present study, India's pigeonpea time series
production data from 1969–70 to 2007–08 were collected
from different sources (http://www.indiaagristat.com, http:/
/dacnet.nic.in). Data from 1969–70 to 2005–06 were used
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for model development and 2006–07 and 2007–08 for
validation.

Autoregressive integrated moving average (ARIMA)
methodology

In agricultural research, data are usually collected over time.
Each observation of the observed data series, yt was
considered as a realization of a stochastic process {Yt },
which is a family of random variables {Yt, t ∈T}, where T =
{ 0, ± 1, ± 2 ±,…}. Standard time-series approach was applied
to develop an ideal model, which adequately represented
the set of realizations and also their statistical relationships
in a satisfactory manner. There are number of approaches
available for forecasting time-series. In our study, we
applied Box-Jenkins ARIMA modelling (Kumar 1990,
Hossain et al. 2006, Koutroumanidis et al. 2009),
which is one of the most widely used time-series
prediction methods. This method uses a systematic
procedure to select an appropriate model from a rich
family of ARIMA models. Such models amalgamate three
types of processes, viz autoregressive (AR) of order p,
differencing of degree d to make the series stationary and
moving average (MA) of order q, and is written as ARIMA
(p, d, q). In general, its mathematical form is represented as
follows:

  … (1)

where, φp (Β) and θq (Β) are polynomials in B of degrees p
and q respectively, c = constant; B = a backshift operator; d
= order of difference operator; p = order of nonseasonal AR
operator; and q = order of nonseasonal MA operator.

The conditions of stationarity and invertibility of the data
under study were met only if all the roots of the characteristic
equations φp (B)= 0, θq (B)=0 lied outside the unit circle.

Choice of the most appropriate values for p, d and q is
major problem in ARIMA modeling technique. In our study,

this problem is partially resolved by performing prediction
through the following stages:

Model identification: Orders of AR and MA components
were determined.

Model estimation: Linear model coefficients were
estimated.

Model validation: Certain diagnostic methods were used
to test the suitability of the estimated model.

Forecasting: The best model chosen was used for
forecasting.

ARIMA methodology may be precisely visualized from
Fig 1.

Testing for stationarity and estimation of parameters
Preliminary, but very important step was considered at

the identification stage. This was to check whether or not the
time-series under study met the condition of stationarity, since
univariate ARIMA models are only applicable to stationary
series (time-series with no systematic change in mean and
variance). In order to test the stationarity (Pankratz 1983),
autocorrelation function (ACF) of difference series up to 20
lags were computed. The series, in general is considered to
be stationary if ACF for first and higher differences drop
abruptly to zero, which is a heuristic approach. In our study,
more statistically sound technique, viz augmented Dickey
Fuller (ADF) test (Dickey and Fuller 1979) was applied to
the data as such for testing the stationarity. Eviews ver. 3.0
software package was used to calculate ADF test statistic.

After identifying appropriate models in the identification
stage, precise estimates of the parameters for chosen models
were derived. For estimation of parameters Principles of Least
Squares technique was used. Briefly, this estimation process
produces new coefficients from some given initial values of
coefficients in order to minimize residual sum of square. In
the present investigation, SPSS, ver 16.0 software package
was used. Total number of iterations considered was 100 with
convergence criterion 0.001%.

Residual analysis and evaluation of forecast error
Diagnostic stage statistically determines adequacy of the

fitted model. It is also necessary to ascertain whether or not
the assumption of independence of the white noise residuals
is met. If a model is an adequate representation of a time-
series, it should capture all the correlation in the series, and
the white noise residuals should be independent of each other.
Thus, any significant autocorrelation shown in the estimated
white noise residuals at the ACF and/or partial autocorrelation
function (PACF) indicates model inadequacy and suggests
the model modification. With this concept, the residual
analysis in our study was carried out through autocorrelation
function, partial autocorrelation function and Box-Ljung test
(Box et al. 1994). To test the randomness of errors, residual
analysis was also carried out using run test (Gujarati 2003).

There are many statistics available in literature forFig 1 Stages of building ARIMA model
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evaluating forecast error of any model. We often do not
compute all the statistics because one of them is the function
of other. In our study, comparison of the forecasting
performance was done using statistics such as mean absolute
errors (MAE), root mean square error (RMSE), mean per
cent forecast error (MPFE) and Theil's inequality coefficients
(TIC).

RESULTS AND DISCUSSION

Box-Jenkins ARIMA methodology resolved the problem
of deciding appropriate values for p, d and q partially by
following the steps described earlier. The preliminary step
for fitting ARIMA model started with the stationarity test.
The computed ADF test statistic 'tau' (–0.009891) was found
to be greater than critical values (–2.6280, –1.9504, –1.6206)
at 1%, 5% and 10% significant level respectively, leading to
the acceptance of null hypothesis (here H0: Data set is non-
stationary). Hence, the production data series was non-
stationary. After taking the first difference, ADF test statistic
'tau' (–9.008) came to be smaller than critical values (–2.6280,
–1.9504, –1.6206) at 1, 5 and 10% significant level
respectively, which made the series stationary. Hence, the
value of d was assumed to be 1.

The following step was to choose the most appropriate
values for p and q. This problem was partially overcome by
looking at ACF and PACF for the series. Coefficients of
selected model were estimated. On the basis of minimum

RMSE, AIC and BIC criteria, the ARIMA (2, 1, 0) model
was selected. Graph of fitted ARIMA model along with data
points and error series indicated that model fits well to the
country's pigeonpea production data (Fig 2). The RMSE, AIC
and BIC values were computed as 0.28, 14.57 and 19.31,
respectively. Parameter estimates of the model with standard
errors and significant values are reported in Table 1. The
fitted ARIMA (2, 1, 0) model represented as:

  … (2)

The Box-Ljung statistic reported insignificant values
which were consistent with the hypothesis that residuals are
random (Table 2). The residual ACF and PACF showed no
significant values (Fig 3). Coupled with the results from
residual ACF and PACF plots, it was concluded that the
assumption of independence of error terms was not violated.

The 95% confidence interval for runs was obtained as
(13.17, 24.72). Since the number of runs (21) computed for
run test was in this interval, the null hypothesis that the
residuals are random was accepted at 5% level of
significance.

Goodness of fit measures, viz mean absolute error (MAE),
Table 1 Parameter estimates along with standard errors

and significant values

Parameter Parameter Standard  t -value Aprox.
estimate error sig

c (constant) 0.021 0.023 0.919 0.365
φ1 –0.629 0.153 4.111 0.000
φ 2 –0.476 0.153 3.114 0.004

Fig 2 Fitted ARIMA (2, 1, 0) model along with actual data and
error series

Table 2 Residual analysis along with calculated
Box-Ljung statistics

Lag Autocorrelation Standard Box-Ljung statistics
error Value Df Sigb

1 –0.056 0.160 0.123 1 0.726
2 –0.160 0.158 1.155 2 0.561
3 –0.152 0.160 2.115 3 0.549
4 –0.115 0.153 2.681 4 0.613
5 –0.056 0.151 4.634 5 0.462
6 0.064 0.148 4.823 6 0.567
7 0.020 0.146 4.842 7 0.679
8 –0.165 0.143 6.176 8 0.627
9 0.023 0.140 6.203 9 0.719
10 0.019 0.138 6.221 10 0.796
11 –0.066 0.135 6.461 11 0.841
12 –0.129 0.132 7.410 12 0.829
13 –0.040 0.130 7.504 13 0.874
14 –0.095 0.127 8.070 14 0.886
15 0.142 0.124 9.388 15 0.856
16 –0.037 0.121 9.483 16 0.892

aThe underlying process assumed is independent (white noise)
bBased on the asymptotic chi-square approximation

Table 3 Various measures of goodness of fit

Measures Calculated value

Mean absolute error 0.22
Mean per cent forecast error –0.01
Root mean square error 0.27
Theil's inequality coefficients 0.06
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mean per cent forecast error (MPFE), root mean square error
(RMSE) and Theil's inequality coefficients (TIC) were
computed (Table 3) which indicated that the ARIMA (2, 1,
0) model provided a good fit to data taken under study.

After an appropriate time-series model was decided, its
unknown parameters estimated and it was established that
the model fitted well; forecasting future values of the series
were taken ahead. Forecast value obtained for Yt+1 was used
further to obtain forecast for Yt+2 and then these two forecasts
might be used to generate forecast for Yt+3. For our study,
we considered one and two-step ahead forecast values for
2006–07 and 2007–08 for India's pigeonpea production.
These values were computed as 2.54 and 2.53 million tonnes,
respectively with standard errors 0.29 and 0.31, which are
quite close to their actual values (2.31 and 2.90 million
tonnes). 95% confidence interval (upper and lower) for the
2006–07 and 2007–08 was obtained as (1.96, 3.12) and (1.90,
3.15), respectively. The process might be continued to obtain
forecast to any point further. Since uncertainty increases as
prediction is made further from the data we have, the standard
errors associated with predictions increases. Thus, it is
advisable to use ARIMA methodology for short-term
forecast.

Fig 3 Residual (a) Autocorrelation (ACF) and (b) Partial Autocorrelation (PACF) plots for ARIMA (2, 1, 0)

(a) (b)
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