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Growth studies are very important for the Iivestock
production because growth is the foundation on which
production of milk, meat and wool rests. These studies serve
as an aid in assessing the maximum production potential of
livestock and play a significant role in animal production
and welfare.

Growth models are used to predict rates and change in
the shape of the organism. Comparison of nonlinear models
for weight-age data in cattle has been studied under
homoscedsticity (Brown et al. 1972, Brown et al. 1976,
Alessandra et al. 2002, Kolluru et al. 2003). A number of
such nonlinear models are available, but comparison of
models are needed to find most appropriate model. Such
comparisons were made ~mong weight-age models for
animals. Kalluru (2000) studied only Logistic model under
heteroscedastic error condition. There is a need to study other
model also, hence logistic and Gompertz models were taken
for the present study.

Data used in the study were collected from Agra station
for FriesianxSahiwal breed. Data for 40 cattle were collected
from birth to 36 months of age for comparing the growth
pattern. Growth pattern of FriesianxSahiwal breed has been
studied by the following models:

Logistic model

x - PI
t - 1+~2exp( - ~3t)

~1- asymptotic weight; B2-scaling parameter; ~3-rate of
maturity; Xt is dependent variable (weight); t-time (age).

Gompertz model

Xt :: E1exp(-J)2e-P3 t)

Fitting of nonlinear models under homoscedastic error
structure, based on some assumptions as explained below:

Let us consider the following model,

Yj=f (Xj,B) +E:j

is covariate vector and is B is parameter vector and f is a
non-linear function. Usually, it is assumed that (i) etTOrs Cj

have zero means, (ii) errors Cj are uncorrelated, (iii) the errors
Ej has common variance, (iv) the errors Ej are normally
distributed.

We explore the various nonlinear interative techniques
for estimation of parameters for the models used in the study.
There are 4 main n1ethods for nonlinear estimation (i)
linearization method, (ii) gradient method, (iii) Levenberg
Marquardt method (1963), (iv) Don't use derivative (DUD)
method. Theoretical details of the methods are given in SAS
User's guide (1990). Procedure NLIN is available in SAS
Package to fit a nonlinear model by anyone of these
procedures, based on relative merits and demerits.

Idea behind the present work is to give best fitted model
for the cattle growth and to have an idea about how the cattle
weight behaves over time, by plotting the data. The scatter
plot of data showed an '8' shaped curve, so the nonlinear
sigmoidal models discussed are fitted to the growth data.
Values of the parameter estimates with their asymptotic
standard error are presented in Table 1.

The empirical comparison of Inodels can be done with
goodness of fit statistics R2, MSE and RMSE. Higher the
value of R2 and lower the values of other measures of
statistics better are the models. It is concluded that the model
which has minimum RMSE and maximum R2, will be the
best fitted model.

R2 =l-(Residual sum of squares/total sum of squares),

~ ~ 2
residual sum of squares =~ (Yi - Yi )

i=l

~ -2
total sum of squares = £.J (Yj - Y) ,

i=l

Present address: 1-3
Yi dependent variables (weights), y. is predicted values or

- 1

estimated value, Y is mean of dependent variables, n =no.
[§]
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Table 1. Parameter estimates of logistic and Gompertz models under homoscedastic and heteroscedastic error structure

(J. 410.5000
(13.6002)

B 8.0829
(0.8657)

y 0.1623
(0.0114)

Goodness of fit statistics
R2 0.9887
MSE 226.0819
RMSE 15.0360

446.1000
(12.8978)

2.5350
(0.0807)
0.0951

(0.0051)

.9956
85.8952
9.3217

Heterscedasticity of error
variance (logistic model)

343.9066
(4.0048)
10.4364
(0.1656)
0.2531

(0.0034)

0.9999
0.0235
0.1534

Heteroscedasticity of error
variance (Gompetz model)

315.6594
(1.4062)
2.5214

(0.0051)
0.1354

(0.0008)

0.9999
0.0072
0.0851

of observation, p= no. of parameter to be estimated.

[

A ]112n (y _ y)2
Root mean squared error (RMSE) = L 1 1

i=l n-p

As in case of the animal growth data, many a times, the
above assumption of nonlinear models under
homoscedasticity is violated. In the present study data
revealed heteroscedasticity. This was tested by using Rank
correlation test. It can be observed from Table 2, that the
rank correlation is high, which reveals the heteroscedasticity
of error variance is present in the growth data.

As the data were heteroscedastic, OLS is not to be used
any more. So to estimate the parameters we go for using the
procedure explained in Model with heteroscedastic error

Table 2. Rank correlation test for FrisianxSahiwal breed at Agra
Station

y pred res Abs r2 r1 d=r1-r2 d*d

0 24.36 21.443 2.9165 2.9165 9 1 -8 64
0.25 27.71 25.729 1.9808 1.9808 8 2 -6 36
0.5 30.79 29.994 0.7963 0.7963 1 3 2 4
1 37.64 38.459 -0.819 0.8188 2 4 2 4
2 54.07 55.134 -1.064 1.064 4 5 1 1
3 70.14 71.469 -1.329 1.3289 5 6 1 1
5 106.43 103.12 3.3118 3.3118 10 7 -3 9
7 138.07 133.41 4.6633 4.6633 11 8 -3 9
9 161.36 162.33 -0.975 0.9745 3 9 6 36
11 178.79 189.9 -11.11 11.111 16 10 -6 36
13 205.21 216.11 -10.9 10.898 15 11 -4 16
15 242.93 240.95 1.9771 1.9771 7 12 5 25
18 273.93 275.67 -1.74 1.7395 6 13 7 49
21 312.92 307.32 5.5957 5.5957 13 14 1 1
24 340.77 335.92 4.8527 4.8527 12 15 3 9
30 395.43 383.92 11.512 11.512 17 16 -1 1
36 410 419.67 -9.672 9.6716 14 17 3 9

310

R= 0.6201

r1 denots Rank of time (independent variable); r2 denotes rank
of residuals~ abs denotes absolute value.

structure. For the procedure discussed a computer program
has been developed in IML (Interactive Matrix Language)-a
module of SAS and the parameters under heteroscedastic
error structure are estimated. Parameters are estimated and
weights are predicted, using homoscedastic error structures.
Results are given in Table 1.

Test for heteroscedasticity of variance
Various tests are available in literature (Koutsoyannis

1993) for testing heteroscedasticity in data. We will consider
here rank correlation test which is easy to use both
computationally and conceptually. It is the simplest test and
is used for both small and large samples. Technique involved
following steps;
Consider the model

Y =f (X, B)+e (1)
(i) Regress Y on X and obtain residuals.

(ii) Order the residuals (ignoring their sign) and X values
in ascending or descending order and compute the rank
correlation coefficient by following formula

R e,x =1 - {6L d i
2

/ (n (n 2 - 1» } (2)

di , difference between the ranks of corresponding pairs
of X and ei;
n, Number of observations in the sample.

A high rank correlation suggests the presence of
heteroscedasticity.

Models with hetroscedastic error structure
Logistic and Gomperatz model are used for developing

appropriate models under heteroscedastic error structure for
growth of cattle, as it is well known that in most of the cases
growth data follows logistic and Gompertz model. However,
as far as cattle growth is concerned, it is assumed that the
errors are independently distributed with constant variance.
However, this assumption rarely meets in the reality,
particularly for growth models.

Let us consider the following model,

Yj = f (Xi' B)+ej (3)
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(6)

Cornputational aspect
For implementation of above explained procedure we will

consider functional form of mean response as

- 1
Step 2 Fonn estimated weights Wj = f2(X B '

. j' OLS)

Ste~ 3. Using the weights from step 2, re-estimate B by
the weIghted least squares. Treating the resulting estimator
as a new prelimina£y estilnator, return to step 2. Denote the
final estimate by ~GLS and calculate variance by fornlula
given above in (7).

And then solving (6), using the Wj in place ofWj intuition

suggests that the resulting estimator for B will be preferred
to that obtained by ordinary least squares.

This example is a special case of a very general class of
methods for estimation of Bknown in the context of nonlinear
regression as generalized least squares (GLS). GLS method
can be characterized by the following scheme.

Step 1. Estim~te Bby a preliminary estimator ~p e.g. the
OLS estimator ~OLS

(8)

(9)

(10)

f(XjB) =: ----:....-_­

1+ 32 exp(-B3X)

[
'HI]

B= ::
This is Gompertz function.

B=[::]

This is Logistic function.
f(Xj , B) == Btexp(-B2e-B3xi)

'" 1 ~ ~,. ').
aWLs2 =-:-L.JWj{Yj -f(Xj'~WLS)}" (7)

n P j=I

where p are the number of parameters to be estimated.
For definiteness, consider the constant coefficient of

variation in equation (4), except for the multiplicative
constant 0'2 variance is known up to the value of the
regression parameter B, which appears through the mean
response. An obvious approach is thus to take advantage of
the functional fornl for a variance to construct estimated
weights, replacing Bby a suitable estimate, and to apply the
weighed least squares idea. The OLS estimator B OLS is a
natural choice to use for construction of estiInated weights.
Formally, an estimator for B that takes into account the
assumed mean-variance relationship may be obtained by
forming estimated weights.

¥! =: 1 _,
J f2(X

1
, B

OLS
)

estimating equivalently Bwls by the equation

t W/Yj - (f(X j , B»fs (X j , B)=O
j=l

BW Is is weighted least square estimate

As the ordinary least squares, the maximum likelihood
estimation for 0 2 is usually replaced by

Xj is covariate vector, B is parameter vector and f is a non­
linear function. Usually, it is assumed that the errors have
zero means and uncorrelated, the errors c' have common

. J
vanance and are normally distributed.

Though the first assumption ensures that the model f for
mean response is correctly specified. This assumption is
rarely called into question, as it is usually the case that the
form of the covariate-response relationship is fairly well
understood, especially for nonlinear relationships, where the
model may result directly from theoretical considerations.

The remaining 3 assumptions are fairly restrictive and
may not hold in some applications. For the present data,
which are observed over time, the specification of
uncorrelated errors may be unrealistic. Assumption of
constant intra-individual response variance is violated
frequently in practice. For example, growth data, often exhibit
constant coefficient ofvariation rather than constant variance
(Davidian and Giltinan 1995); that is variance proportional
to the squares of the mean response. In this case, a more
appropriate assumption would be:

E (Y)==f (Xj , B), V (Yj )= (CV)2 [f(Xj ,B)]2 (4)

Where, CV< the scale parameter, is the coefficient of
variation.

Since we are considering that heterogeneity of variance
is evident in growth data of cattle, this can be verified by
applying the testing procedure as given in Test for
~eterosced~sticityof variance, we found that heterogeneity
IS present In data. Hence if we apply ordinary least square
method, the parameter estimates would be inefficient relative
to method that considers heteroscedasticity.

Motivating our discussion of this issue and of how the
classical least squares are nonconstant across the response
range such that the variances of Y are known up to a constant
of proportionality as:

E(Yj)=f(Xj , B), V (Yj )=cr2/Wj (5)

for some constants Wj , j=l, ..., n
Under this setting with the assumption of independent

normal errors, it is st~aightforward to show that the maximum

likelihood estimator B of parameter is the value B-- hWLS t at
minimized normal equation

tWj{Yj-f(Xj , B)}2
j=l
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(16)

Logistic and Gompertz model are fitted for all sets of data
estimated parameters denoted by BOLS by using SAS
software.

A program written in SASIIML is used to obtain parameter
estimate under heteroscedastic error variance models.

Steps are given as follows:

Step 1
The preliminary estimates of B calculated by Gauss­

Newton procedure. This procedure has been discussed with
full detail SAS USER'S guide. After calculating preliminary
estimates of Bwe will go for step 2.

Step 2
In step 2, the motive is to form weights to use them for

weighted least square procedure. Since functional form of
mean response in known, we will estimate the value of mean
response for each ordinary least squares estimate. After
calculating estimated values, weights are fonned by using
equation (8) for functions of equation (9) and (10). Once
weights have been calculated we go for step 3. Vi are fonned
by using equation (8) for functions of equation (9) and (10).
Once weights have been calculated we go for step 3.

Step 3
Third step consists of applying (weighted least squares)

W.L.S. to obtain estimates by using weights obtained from
previous step. Now our objective function is

O(B)= [Y-f(X,B))' W-l[Y-f(X,B) (11)
where 0 (B) is objective function to be minimized, W is a
diagonal matrix, whose diagonal elements are the weights,
Y is vector of observations and f is mean response.

To get estimate of Bwe will minimize objective function
i.e, equation (11). Because closed from solution ofthe genera­
lized least squares estimating equations are rarely available,
computation of nonlinear least squares estimates required the
use of iterative numerical Newton-Rephson technique for
quadratic Taylor Series expansion, which is given by

B=B*-J-1 (B*)S(8*) (12)
where J is known as Hessian matrix, whose elements

pxp . . f .
are second order partial derivatives of the objectIve unctIon
with respect to parameters, such that

Computation ofthe Hessian matrix may be quite burdensome.
Actually J (8) is replaced by its expectation. In general, the
expectation matrix will be easier to calculate than J (B). The
expectation of J(B) can be written as

2Z'W-1Z(B) (15)
where Znxp is matrix of first order partial derivatives of
mean response with respect to parameters such that

Zij =(~)f(Xi'P), i = 1,2, '" n,j=l, 2, ... P
aP j

where, ll, number of observations, and p, number of
parameters to be estimated.

Vectors can be computed by the formula given below,
S(B) = 2Z'W-1 [Y-f(B)] (17)

Since it is an interative process so first we will estimate
value of Sand J by preliminary estimates of B =BpRL i.e,
BOLS and will use them in equation (12). After getting new
estimates of B(sayB*) and use again in equation (12), till the
values of B converges. Final value of estimates of B will be
represented as BaLs.

It is evident from Table 1 that for Friesian x Sahiwal breed
at Agra station RMSE (9.3217) is less for Gompertz model
than RMSE (15.0360) of Logistic model, which shows that
results of Gompertz model are better than Logistic model
under homoscedastic error structure condition, hence growth
rate is batter for Logistic model. As data having
heteroscedasticity of variance, so models are modified,
incorporating heteroscedasticity of variance. When results
are compared under homoscedastic error condition and
heteroscedastic error condition, RMSE is found less for
heteroscedastic error condition. This shows that when model
fitted under heteroscedastic error condition, it gives better
results than homoscedastic error condition.

SUMMARY

Different growth models are fitted in growth data for
FriesianxSahiwalbreed at Agra station. Gompertz model gave
better fit than Logistic modeL The GLS estimates are found
to be more precise than OLS estimates for both Logistic as well
as Gompertz model under heteroscedastic error condition.
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