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Estimation of heritability by Bayesian approach
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For the half-sib model, we know that the unbiased
estimator for 'between sire' variance component (0';) may
take negative values. If, one attempts to restrict the value of
0'; to be non-negative then this will destroy its unbiasedness
property and more importantly, further complicates the
distribution theory ofa;. A second difficulty is the sensitivity
of inferences to departure from underlying assumptions. To
overcome these difficulties, following Box and Tiao (1975)
Bayesian approach has been adopted to estimate the variance
components cr; and 0';. Kumar et al. (2004) obtained Bayesian
estimates of heritability in animal breeding experiment.

Bayesian analysis ofdata involves treating the parameters
as random variables and finding their joint posterior
distribution given the data. The joint distribution of the
unknown random variables and the data (y) can be written
as p(y, IJ, cr;, 0-;) =P(ylll, cr~, cr;) p(IJ) p(0';, cr~)

By taking different prior distributions for crZ and o'z, thes e
posterior distribution given the data can be obtained using
Markov Chain Monte Carlo (MCMC) method and Gibbs
sampling (Gelfand and Smith 1990). It may be pointed out
here that prior distribution represents a population ofpossible
parametric values, from which eofcurrent interest has been
drawn. This prior distribution should be taken in such a way
that the posterior distribution follows a known parametric
form. In MCMC, we construct a stochastic process that has
the desired posterior distribution as its stationary distribution
and then simulate the process. We begin with a set ofstarting
values for Il, 0-;, cr~ and then successively generate values
from the conditional posterior distribution ofeach parameter,
conditioning on the most recently generated values of the
other parameters at each step.

For the set of parameters values 81' 8z,.•• e
k
, Gibbs

sampling proceeds as follows:
Given an arbitrary set of starting values eeo) eeO) eeo)I' Z'· .. k

draw
e(:)-[e/e(~: e(~) e(~l]
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Thus, each variable is visited in the natural order and a

cycle generates k random variables. A sample ofsuch draws
can then be used to make inferences about the population.

For the present study, priors can be specified as,

Il-N(llo' 0';), 0"; - IG (al' bl ) and 0"; - IG (a2, b2)

where Ilo, o'~, aI' bI, az and bz are assumed to be known. Here
IG refers to inverse gamma. With this knowledge of prior
distribution and data at our disposal we can easily obtain the
posterior distribution of the unknown parameters. The
estimation of moments of the posterior distribution will
ultimately result in estimates of the unknown variance
component which in turn yield an estimate ofthe heritability.

Convergence can be'diagnosed using the approach of
Gelman et al. (1995). From the multiple chains of Gibbs
sampler from overdispersed starting values, Gelman et al.
(1995) potential scale reduction factor, (Ry' which assesses
between-chain and within-chain variation can be computed.
Values of Gelman et at. (1995) statistics near one for all of
the model parameters is evidence that the distribution of the
Gibbs iterations is reasonably close to stationary (posterior)
distribution. A sample of draws can then be used to make
inferences about the population to diminish the effect of the
starting distribution, and as such some starting observations
will be discarded as burn in.

The application ofBayesian statistical techniques has also
been illustrated by subjecting the simulated data sets to
Bayesian procedure ofestimating variance components. This
technique is principally based on the posterior distribution
of the unknown parameters by utilizing data and some prior
distribution of the parameters. In the present investigation
inverse gamma distribution IG (aI' b

l
) has been taken as the

prior distribution as it belongs to the conjugate family of
nonnal distribution and the required posterior and conditional
distributions can be obtained in the known form. Because
prior distribution for population variation is not known, the
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Table 1. Comparison of Bayes estimates of heritability of different parametric values in balanced, unbalanced and outlier data sets

Population parameters Parametric values (h2)

0.1 0.2 0.3 0.4 0.5

Balanced 20, 20, 20, 20
Sample estimate -0.0966 -0.0515 0.0652 0.1383 0.2275
Bayes (balanced) 0.1752 0.2025 0.3274 0.4362 0.5268
Bias 0.0752 0.0025 0.0274 0.0362 0.0268

Unbalanced 15, 20,18, 20
Sample estimate -0.1296 -0.1234 0.0351 0.1786 0.2304
Bayes (unbalanced) 0.2134 0.2008 0.3649 0.5085 0.5861
Bias 0.1134 0.0008 0.0649 0.1085 0.0861

Outlier (+10) 20, 20, 20, 20
Sample estimate -0.1237 0.0943 0.1453 0.1569 0.0324
Bayes (Outlier) 0.1 060 0.2506 0.3343 0.3431 0.2035
Bias 0.0060 0.0506 0.0343 -0.0567 -0.2965

parametric values in the prior distribution are set to the low
values of a

1
=b

1
=0.001. In this situation deliberately bad

samples (samples having estimate either inadmissible or
having large bias) are considered so as to examine the
usefulness of Bayesian technique. The simulated samples
were further subjected to Gibbs Sampling by employing the
technique of Monte Carlo Markov Chain (MCMC) method
and results obtained are presented in Table 1. In the present
investigation, 5 Gibbs sequences oflength 100000 were used
to obtain draws from the posterior distributions ofthe model
parameters given the data. The first 25000 draws of each
chain were discarded and then every 150th draw was saved.
The five chain yielded a posterior sample of 2500
approximately uncorrelated draws. An examination ofplots
and (Rt values based on the 2500 draws indicated that Gibbs
sampler reached approximate convergence. As the sample
size (n) has very little effect on the estimation of variances,
so it was considered to be small. From the results it is seen
that even very bad samples resulted very good estimates of
population parameter h2 in all the situations of balanced,
unbalanced and having outliers. This thus advocates that if
one takes into account many samples including good and

bad then it is highly probable that Bayesian method will yield
very good results in the sense that the estimates will have
least bias and MSE.

SUMMARY

The applicability of the Bayesian techniques was also
studied thoroughly and the inference from the results are very
encouraging in the sense that the estimates obtained are very
close to the parametric values of heritability.
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