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NONORTHOGONAL OPTIMAL PARTIAL DIALLEL
CROSS DESIGNS FOR CONSISTENT ESTIMATION

OF HERITABILITY

Himadri Ghosh*

Diallel cross designs in the framework of random effects model are considered for
the estimation of ratio of variance components, viz. heritability of crosses of inbred
lines. New methods for construction of partial diallel cross (PDC) design sunder
unblocked and blocked set up are proposed. The resulting designs of these methods
are capable of minimizing variance of the estimator of heritability . Consistency of the
estimator is also established. One of the practical advantage of the proposed series of
designs is attributed to its ability to reduce number of distinct crosses over those for
complete diallel cross (CDC) to an extent of 10 to 20 percent. Another heartening
aspect of the proposed methods is that the blocks of these designs are incomplete and
have smaller block sizes up to one-third than those of complete block designs. Note
that, the variance-minimization criterion for optimality reduces to MS-optimality
criterion of PDC designs defined in the context of fixed effects model. Further,
the newly constructed designs are proved to be asymptotically universally optimal
under fixed effects model. Since construction of these designs under blocked set up is
quite involved, therefore a computer program is written in C++ for generating these
designs which is provided in the Appendix.

Key words and phrases: Efficient designs, heritability, optimal diallel cross designs,
orthogonal-nonorthogonal blocking, partially balanced incomplete block design, vari-
ance components.

1. Introduction

Design of experiments for diallel crosses are used for studying genetic prop-
erties of inbred lines, known as general combining ability (g.c.a.) effects, in plant
breeding experiments and has received considerable attention in the literature
too, see e.g. Kempthorne and Curnow (1961), Hinkelmann (1975), Gupta et al.
(1995), Ghosh and Das (2003a), Ghosh et al. (2005), and Singh et al. (2012).
Random effects model are considered due to random selection of g.c.a. effects
from a large hypothetical population of genetic component effects of inbred lines
with variance σ2

g which is to be estimated to study genetic properties. Note
that the number of possible crosses increases rapidly as the number of inbred
lines increases. On the contrary, a small set of CDC is not capable of estimat-
ing population variance of g.c.a. effects since the estimator based on variance
of a small number of observed lines would be subject to a large sampling error.
Therefore, Kempthorne and Curnow (1961) considered PDC by incorporating
a large number of inbred lines in the design through selection of only a subset
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from the set of all possible crosses. Note that, Griffing (1956) had earlier con-
sidered random effects of g.c.a., known as Model II, in the context of analysis
of CDC. Our primary interest is to estimate relative magnitude of genetic vari-
ance components with respect to phenotypic variance. Since g.c.a. effects are
assumed to be the only source of genetic component effects, it is of interest to
obtain optimal and/or efficient designs for estimation of heritability h2, which is
defined as h2 = 4σ2

g/(2σ
2
g + σ2

e), where 4σ2
g and (2σ2

g + σ2
e) represent additive

variance and phenotypic variance respectively, while g and e represent g.c.a. and
random effect respectively. Let T be an unbiased estimator of ratio of variance
components σ2

g/σ
2
e , then 4T/(2T + 1) is an asymptotically unbiased estimator

of h2 and its asymptotic variance is proportional to variance of T . Hence, it is
enough to study optimal and/or efficient designs, which minimize the variance of
T for all values of σ2

g and σ2
e . Under fixed effects set up, Gupta and Kageyama

(1994) introduced the method of constructing block designs for diallel crosses by
treating lines rather than crosses as treatments. The authors also introduced the
construction of optimal designs using nested balanced incomplete block designs.
Some more series of optimal CDC designs were also constructed by Das et al.
(1998a).

In this paper, our objective is to develop new methods of small size designs
in the context of optimal and/or efficient estimation of heritability (Ghosh and
Das (2003a), Ghosh et al. (2005)). We present novel methods of construction of
designs in one replication of a PDC directly without resorting to the approach
of Gupta and Kageyama (1994). Construction of our efficient series of designs
is simpler than that of our optimal designs. The optimality problem is shown
to be directly connected with MS-optimal diallel cross design under fixed effects
model (Das et al. (1998b)). Note that, our criterion of optimality is different
from that of usual A, D, E-optimality, etc. considered in fixed effects paradigm.
However, efficiencies of these designs under fixed effects should be high by virtue
of their asymptotic universal optimality property. To the best of our knowledge,
no universally optimal PDC designs have so far been obtained.

The remaining part of the paper is organized as follows. In Section 2, we
revisit unbiased estimation of σ2

g/σ
2
e for asymptotically unbiased estimation of

h2 (Ghosh et al. (2005)) and its optimality criterion. New series of optimal
unblocked designs are obtained in Section 3. In Subsection 4.1, examples of
blocked non-optimal PDC designs based on the method of treatment as crosses
are discussed, which are shown to be not optimal. Therefore, in Subsection 4.2,
necessary and sufficient condition of given relation between a pair of designs is
derived to characterize series of efficient designs based on transitivity property
of the relation. Two new methods of constructing blocked PDC designs are
proposed. Optimal/efficient designs are characterized along with showing consis-
tency of estimator T by using eigen-values of C-matrix of new designs. Practical
utility of these designs in terms of reduced number of crosses and block size as
compared to that of orthogonal designing of CDC is also discussed. The designs
have proved to be asymptotically universally optimal under fixed effects model.
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In Section 5, a series of optimal designs is constructed for some given class of
designs. Although these designs are obtained in a restricted class, these are far
more efficient than those obtained in Section 4. The performance of these de-
signs in terms of consistent estimation of heritability and asymptotic universal
optimality is also described. Finally, a computer program is written in C++ to
enable the plant breeders/geneticists to apply the methodology developed in the
present article and is included as an Appendix.

2. Some preliminaries

Consider a diallel cross experiment using a design d with p lines and b blocks
each having k crosses in modified or half-diallel and denoted by {i, j}, i < j (see
Singh and Hinkelmann (1995)). The model is

Y = µ1ν + D′
2β + D′

1g + e(2.1)

where Y is the vector of ν (= bk) observations, µ is the general mean, g is
the p × 1 vector of g.c.a. effects with E(g) = 0 and Disp(g) = σ2

gI, β is fixed
effect due to blocks and e is error vector with E(e) = 0 and Disp(e) = σ2

eI.
Also, D1 and D2 are respectively the p × ν line versus observation and b × ν
block versus observation matrices. Here 1t represents a t×1 column vector of all
ones and It denotes an identity matrix of order t. Let Gd = D1D

′
1 = (gdij) and

sd = (sd1, sd2, . . . , sdp)
′ = D11. Then gdij stands for replication of cross {i, j},

i �= j. Let Nd = D1D
′
2 = (ndij) be the incidence matrix, where ndij indicates

the number of times the ith line occurs in jth block of design d. Let C-matrix of
design d be defined as Cd = Gd − (1/k)NdN

′
d. Note that, C-matrix of unblocked

design d is defined as C0d = Gd − (1/ν)sds
′
d.

Observed variance in Y denoted by SST may be split into the sum of squares
due to lines after adjusting blocks (SSL), unadjusted blocks (SSB) and errors
(SSE), based on Henderson’s Method III, which gives SST = SSB + SSL+ SSE .
Using independence between quadratic forms SSL and SSE , Ghosh et al. (2005)
proved the following theorem:

Theorem 2.1. Let d be a design with p lines, b blocks each of size k. Then,
variance of the unbiased estimator

T = {(ν − b− p− 1)(SSL/SSE ) − p + 1}/ tr Cd

of σ2
g/σ

2
e is (2.2)

V (T ; d, σ2
gσ

2
e)

= α{(ν − b− p− 1)σ4
g(tr C2

d/ tr2 Cd) + 2tσ2
eσ

2
g(1/ tr Cd)

+ t(p− 1)σ4
e(1/ tr2 Cd) + σ4

g},

where α = 2/{(ν − b− p− 3)σ4
e} and t = ν − b− 2.
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Note that above result for unblocked diallel cross designs can be easily ob-
tained by taking the number of blocks to be unity and C-matrix of the unblocked
diallel cross design d as C0d.

Let D(p, ν) be the class of unblocked diallel cross designs with p lines and ν
crosses, where D0(p, ν) denotes the subclass of designs in D(p, ν) with sdi = 2ν/p;
i = 1, 2, . . . , p. For blocked diallel cross designs, let D(p, b, k) be the class of
designs with p lines arranged in b blocks of size k. Finally, let D0(p, b, k) be the
subclass of designs in D(p, b, k) for which tr Cd is maximum and D0e(p, b, k) be
the equi-replicated subclass of designs in D0(p, b, k) for which sdi = 2bk/p, i =
1, 2, . . . , p, d ∈ D0e(p, b, k). The following lemmas will be useful for characterizing
optimal designs:

Lemma 2.1 (Cheng (1978)). For given positive integers q and t, the mini-
mum of r2

1+r2
2+· · ·+r2

q subject to r1+r2+· · ·+rq = t, where ri’s are non-negative
integers, is obtained when t− q[t/q] number of the ri’s are equal to [t/q] + 1 and
q − t + q[t/q] number are equal to [t/q], where [z] denotes the largest integer not
exceeding z.

Lemma 2.2 (Ghosh (2003a)). For any design d ∈ D(p, ν), tr C0d ≤ 2ν(p−
2)/p. Equality holds iff sdi = 2ν/p, i = 1, 2, . . . , p.

Lemma 2.3 (Das et al. (1998a)). For any design d ∈ D(p, b, k), tr Cd ≤
k−1b{2k(k − 1 − 2x) + px(x + 1)}, where x = [2k/p]. Equality holds iff ndij = x
or x + 1, i = 1, 2, . . . , p, j = 1, 2, . . . , b. If 2k < p, then x = 0 and in that case
tr Cd ≤ 2b(k − 1), d ∈ D(p, b, k).

Lemma 2.4 (Ghosh (2003a)). Consider a real symmetric square matrix A
of order m and rank r. Then tr A2 ≥ (1/r) tr2 A. Equality holds iff all the
non-zero eigenvalues of A are equal.

A design d is said to be globally optimal if, among all designs in
D(p, b, k)(D(p, ν)), d minimizes V (T ; d, σ2

g , σ
2
e) in (2.2). Observe that the ex-

pression in (2.2) is of the form:

ξ(tr C2
d/ tr2 Cd) + γ(1/ tr Cd) + δ(1/ tr2 Cd) + η,

which depends on parameters σ2
g and σ2

e and information matrix Cd. Note that,
minimization of (2.2) may be carried out by minimizing tr C2

d/ tr2 Cd and max-
imizing tr Cd. To this end, finding optimal design is very difficult unless we
consider some meaningful subclasses of global classes D(p, ν) and D(p, b, k) for
unblocked and blocked PDC experiments. Therefore, equi-replicated class of de-
signs D0(p, ν) is considered to find a new series of optimal PDC designs under
unblocked diallel cross experiment. Although the above approach is success-
fully applied for obtaining optimal PDC designs under orthogonal blocking but
for larger block size (Das et al. (1998b)), very few successes have so far been
achieved to obtain non-orthogonal optimal PDC designs with smaller block size.
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To this end, Mukerjee (1997) showed that some series of E-optimal PDC designs
are also A- and D-efficient at the cost of large block size. Ghosh et al. (2006)
studied efficiencies of a new series of designs with reduced block size by using
sharper bounds of the functional for A- and D-criteria. The efficiencies were
found to be as good as that of Mukerjee’s method. Using Lemmas 2.2–2.4, lower
bound of efficiency of unblocked and blocked PDC designs is defined by

eff (d;σ2
g , σ

2
e) =

ξ(1/(p− 1)) + γ mind(1/ tr Cd) + δ mind(1/ tr2 Cd) + η

ξ(tr C2
d/ tr2 Cd) + γ(1/ tr Cd) + δ(1/ tr2 Cd) + η

.

In case of blocked diallel cross design, note that given two blocked designs d1, d2 ∈
D0(p, b, k), eff (d1;σ

2
g , σ

2
e) ≤ eff (d2;σ

2
g , σ

2
e) ≤ 1 (this is denoted by d2 > d1) for

all values of (σ2
g , σ

2
e) iff tr C2

d1
≤ tr C2

d2
. Now, given a block diallel cross design,

eff (d;σ2
gσ

2
e) ≈ (1/(p− 1))/(tr C2

d/ tr2 Cd) ≈ 1, iff 1/(p− 1) ≈ tr C2
d/ tr2 cd. Here,

the approximation notation a ≈ b stands for a/b is close to unity. It may be
mentioned that Ghosh et al. (2005) have given a series of efficient designs in the
class D0(mn, n,m(n− 1)/2) by considering the above approximation and found
that for 2 ≤ m ≤ 15 and 5 ≤ n ≤ 15, n being odd, the efficiencies are at least
0.893, where variance components vary in the domain (0.1, 3.0). For the present
study also, this approximation holds true thereby yielding efficiencies close to
unity, in view of Table 1. Further, construction of parameter dependent optimal
or efficient design, i.e. d(σ2

g , σ
2
e) is meaningful only when the parameters σ2

g and
σ2
e are assumed to be known, which hardly ever holds. In case of unblocked set up,

a new series of optimal PDC designs are obtained in D0(p, ν) whose efficiency
is unity. It may be noted that above assumption does not pose a problem in
this case as the optimal design d∗0 = d(σ2

g , σ
2
e) does not depend on (σ2

g , σ
2
e) and

is characterized by using the following theorem of Ghosh and Das (2003a) on
A-optimal designs under random effects model:

Theorem 2.2. A design d∗0 with p lines is A-optimal in D0(p, n) with si =
2ν/p = s iff the number of times (gd∗0ii′) that cross {i, i′} occurs in d∗0 satisfies
|gd∗0ii′ − s/(p− 1)| < 1, i �= i′, i, i′ = 1, 2, . . . , p.

Using this theorem, and noting that A-optimal design d∗0 =
arg mind∈D0(p,n) tr C2

d ; it is concluded that d∗0 is also optimal in D0(p, ν) for
asymptotically unbiased estimation of heritability .

3. Optimal PDC designs based on circular PBIB designs

Analogous to circular design, Kempthorne and Curnow (1961) constructed
PDC with p lines and replication 2s; thus ν = ps, where p and s both are not even.
Here the number of distinct crosses is ps/2. As per the authors’ construction
method, unblocked diallel cross design d ∈ D(5, 10) consisting of crosses, viz.
{(1, 3), (1, 4), (2, 4), (2, 5), (3, 5)(1, 3), (1, 4), (2, 4), (2, 5), (3, 5)} is obtained. Note
that, this design is not optimal as the range of gdij ’s (i.e. maxij gdij−minij gdij) is
large by noting the fact that some cross {1, 4} say, occurs twice, i.e. gd1,4 = 2 while
some other cross {1, 5} does not occur in the design, i.e. gd1,5 = 0. To eliminate
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this drawback, a new series of optimal PDC designs in D0((3k− 1), k(3k− 1)/2)
is obtained by us and the method of construction is as follows:

Si = {(i, i + k + j) : j = 0, 1, . . . , k − 1}, i = 0, 1, . . . , k − 1

Sl = {(l, l + k + j) : j = 0, 1, . . . , 2k − l − 2}, l = k, k + 1, . . . , (2k) − 2.

Above crosses can be generated from association scheme of a circular design by
considering blocks of sizes 2 and is described as follows: j is qth associate of
i iff j = i ∓ (q − 1) mod (3k − 1), where q = 2, 3, . . . , 3k/2, if k is even and
q = 2, 3, . . . , (3k + 1)/2, if k is odd. When k is even, only k/2 associates, where
each of qth (q = k + 1, . . . , 3(k/2)) associate of a symbol (line) has cardinality
2 with which the line is crossed λq = 1 times. For other (k − 1) associates, λ’s
are 0. When k is odd, each of qth (q = k + 1, . . . , ((3k − 1)/2)) associate of a
symbol has cardinality 2 with which the line is crossed λq = 1 times, whereas
((3k + 1)/2)th associate of a symbol has cardinality 1 with which the line is
crossed λ((3k+1)/2) = 1 times. For other (k − 1) associates, λ’s are 0.

Example 3.1. Suppose k = 3. Then p = 8 and ν = 12. Using our method of
construction, following design:

{(0, 3), (0, 4), (0, 5), (1, 4), (1, 5), (1, 6), (2, 5), (2, 6), (2, 7), (3, 6), (3, 7), (4, 7)}

is obtained. It may be noted that the condition of Theorem 2.2 is satisfied since
every line appears s = 3 times giving s/(p − 1) = 0.42 and each cross {i, j}
appears gdij times which can take values either 0 or 1. Therefore, this design is
optimal in D0(8, 12).

4. Construction of some efficient block designs

4.1. Motivation
One of the ad-hoc methods for construction of PDC designs is to first obtain

partially balanced incomplete block design (PBIBD) with block size 2 referred
to as auxiliary (AUX) design. Using the correspondence between treatments
and lines, and between blocks and crosses, AUX design determines the mating
(M) design in the following way. The M-design is characterized by cross vs.
line incidence matrix of AUX design. These crosses are to be grown by using
appropriate incomplete block design, called environment (ENV) design (Singh
and Hinkelmann (1988)). One possible approach to get this design is that the
cross vs. line incidence matrix of M-design may be used to obtain treatment
(cross) vs. block incidence matrix of the ENV design and the resultant design is
called embedded mating design into environment (M-ENV) design.

Example 4.1. This example, cited in Singh and Hinkelmann (1995), is
demonstrated to show that the resultant M-ENV design could neither maxi-
mize tr C nor minimize tr C2. This is due to the fact that it yields large val-
ues of ranges for each ndij ’s (i.e. maxi ndij − mini ndij , for each j) and gdij ’s
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(i.e. maxij gdij − minij gdij) respectively. To this end, authors used conventional
PBIBD to obtain AUX-design by using triangular association scheme with p
treatments each replicated s times arranged in b blocks of size k, and considered
following values viz. p = 10, b = 15, s = 3, k = 2, λ1 = 0, λ2 = 1 for selecting
the PDCs. Note that the number of first and second associates are n1 = 6 and
n2 = 3 respectively. Following the above two-step procedure of selecting crosses
(AUX-design) and arranging the crosses in blocks (ENV-design) using M-design,
embedded M-ENV-1 design is obtained which is given below:

Block I (1, 8) (1, 9) (1, 10)

Block II (2, 6) (2, 7) (2, 10)

Block III (3, 5) (3, 7) (3, 9)

Block IV (4, 5) (4, 6) (4, 8)

Block V (3, 5) (4, 5) (5, 10)

Block VI (2, 6) (4, 6) (6, 9)

Block VII (2, 7) (3, 7) (7, 8)

Block VIII (1, 8) (4, 8) (7, 8)

Block IX (1, 9) (3, 9) (6, 9)

Block X (1, 10) (2, 10) (5, 10)

Note that this design has few number of distinct crosses with fewer number
of lines within a block, thereby giving large values of ranges for gdij ’s and ndij ’s,
which reduces the design efficiency. For the above design d ∈ D(10, 10, 3), it is
observed that tr C = 20, which is much smaller than its upper bound of 40. Note
that a series of designs can be described in general for a triangular association
scheme of n(n− 1)/2 treatments by making crosses as pairs of 2nd associates.

Example 4.2. The purpose of this example is to give a motivation to con-
struct an efficient and optimal PDC designs. Specifically, two designs are shown
here to describe the method of construction of these designs by treating lines
rather than crosses as treatments used in Example 4.1, and thereby enabling
us to maximize tr C and minimize tr C2 in a given class of designs. Here, we
used two-associate group divisible scheme to obtain the AUX-design for selecting
PDCs. Specifically, in our case p = 8, b = 24, s = 6, k = 2; λ1 = 0, λ2 = 1.
The procedure of embedding M-design in an ENV-design is carried out by using
another PBIBD design using two associate group divisible scheme with following
values viz. p = b = 8, s = k = 3, λ1 = 0, λ2 = 1 and m = 4, n = 2. The
incomplete blocks of the PBIBD may be delineated as follows:

Block I 1 2 3

Block II 4 5 6

Block III 1 4 7

Block IV 2 5 8
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Block V 1 6 8

Block VI 3 5 7

Block VII 2 6 7

Block VIII 3 4 8

where the groups are represented as

Group I 1 5

Group II 2 4

Group III 3 6

Group IV 7 8

Note that the number of first and second associates are n1 = 1 and n2 = 6
respectively. The M-ENV-2 design is obtained by identifying crosses with blocks
of AUX design arranged in 8 blocks of PBIBD. The occurrence of cross (i, j) in
a block is 1 or 0 whenever both treatments i and j appear or do not appear in
the same block of PBIBD respectively. The resultant M-ENV-2 design is given
below:

Block I (1, 2) (1, 3) (2, 3)

Block II (4, 5) (4, 6) (5, 6)

Block III (1, 4) (1, 7) (4, 7)

Block IV (2, 5) (2, 8) (5, 8)

Block V (1, 6) (1, 8) (6, 8)

Block VI (3, 5) (3, 7) (5, 7)

Block VII (2, 6) (2, 7) (6, 7)

Block VIII (3, 4) (3, 8) (4, 8)

However, one drawback of our methodology is that the number of times
that each line appears in a block are scattered i.e. maxi ndij − mini ndij = 2,
implying thereby that it is not possible to maximize tr C. For the above design
d ∈ D(8, 8, 3), it is observed that tr C = 16, which is much smaller than its upper
bound of 32. To remove this drawback, a possible better design may be obtained
by rearranging the crosses across blocks where tr C attains its maximum and
value of tr C2/ tr2 C is 0.14, which is close to its lower bound. Thus the modified
PDC design is as follows:

Block I (1, 2) (3, 4) (6, 7)

Block II (3, 7) (1, 6) (2, 8)

Block III (1, 4) (5, 7) (2, 6)

Block IV (2, 5) (4, 7) (3, 8)

Block V (4, 6) (2, 7) (5, 8)

Block VI (3, 5) (4, 8) (1, 7)

Block VII (6, 8) (1, 3) (4, 5)

Block VIII (2, 3) (5, 6) (1, 8)
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It may be pointed that the rearrangement of crosses of AUX design, i.e. pairs of
2nd associates, is very difficult to generalize. This observation is the genesis of
general construction approach of arranging crosses as pairs of 2nd associates for
obtaining efficient non-orthogonal PDC designs.

4.2. Efficient designs
Consider D0e(mn,mn, (m − 1)n/2) defined in Section 1. Note that, by

Lemma 2.3, nd,ij = 0 or 1 for any d ∈ D0e(mn,mn, (m − 1)n/2). Define
Xd = ((xd,ii′)) where xd,ii′ denotes number of blocks in which both the lines
i and i′ do not appear, i ≤ i′. Here, xd,ii = n. The following theorem, which
gives some direction to search series of efficient designs, establishes necessary and
sufficient condition of transitive relation between pair-wise designs.

Theorem 4.1. Let m = 2t + 1, t ≥ 1, p = mn, n ≥ 1, k = (m − 1)n/2.
Consider two designs d1 and d2 ∈ D0e(mn,mn, (m − 1)n/2), where xd1,ii′ =
xd2,ii′ , i, i

′ = 1, 2, . . . ,mn. Then d2 > d1, equivalently , tr C2
d2

≤ tr C2
d1

iff

max
(i,i′) �=(j,j′):i<i′,j<j′

|gd2,ii′ − g2,jj′ | ≤ max
(i,i′) �=(j,j′):i<i′,j<j′

|gd1,ii′ − gd1jj′ |.

In other words, d2 > d1 when range for replications (gd,ij) of crosses in design
d2 are less than those in design d1.

Proof. Note that, tr C2
d = tr G2

d−(2/k) tr GdNdN
′
d+(1/k2) tr NdN

′
dNdN

′
d.

Let NdN
′
d = ((n

(2)
d,ii′)). By usual set theoretic operation, and due to binary

property of design d:

n
(2)
d,ii′ = mn− [#{k : nd,ik = 0} + #{k : nd,i′k = 0} − xd,ii′ ] = xd,ii′ + (m− 2)n.

Using the fact that 1′
pGd = 2(m− 1)n1′

p, we get

tr GdNdN
′
d = tr Gd[n(m− 2)1p1

′
p + Xd] = 4k(m− 2)pn + tr GdXd.(4.1)

Define N c
d = ((nc

d,ij)), where nc
d,ij = 1 or 0 according as nd,ij = 0 or 1. Then

tr 1p1
′
pXd = tr 1′

pXd1p = 1′
pN

c
dN

c′
d 1p = p(p− 2k)2.(4.2)

Using (4.2), we get

tr NdN
′
dNdN

′
d = tr [n(m− 2)1p1

′
p + Xd]

2(4.3)

= (pn(m− 2))2 + 2(m− 2)n tr 1p1
′
pXd + tr X2

d .

By (4.1) and (4.3),

tr C2
d = tr G2

d − (2/k) tr GdXd + (1/k2) tr X2
d − 8(m− 2)pn

+ (1/k2){(pn(m− 2))2 + 2(m− 2)np(p− 2k)2}
= tr [Gd − (1/k)Xd]

2 − 8(m− 2)pn

+ (1/k2){(pn(m− 2))2 + 2(m− 2)np(p− 2k)2}.
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Thus, it is enough to show that tr [Gd1−(1/k)Xd1 ]
2 ≤ tr [Gd2−(1/k)Xd2 ]

2 subject
to

∑
i<i′ gd,ii′ = m(m− 1)n2/2, where

tr [Gd − (1/k)Xd]
2 = 2

∑
i<i′

{gd,ii′ − xd,ii′/k}2 + p

{(
(m− 1)2n− 2

(m− 1)

)2
}

.(4.4)

It can be here assumed that gd,ii′ − gd,jj′ ≤ −2. Consider a hypothetical design
d∗ and the functional tr [Gd∗ − (1/k)Xd∗ ]

2, where gd∗,ii′ = gd,ii′ + 1 and gd∗,jj′ =
gd,jj′ − 1. Note that xd,ii′ = xd∗,ii′ . Then

tr [Gd∗ − (1/k)Xd∗ ]
2 − tr [Gd − (1/k)Xd]

2

= 4{(gd,ii′ − gd,jj′) + (xd,jj′/k − xd,ii′/k) + 1}.

Since m ≥ 3, we observe that 0 ≤ xd,ii′/k ≤ 2/(m−1) ≤ 1; so xd,jj′/k−xd,ii′/k ≤
2/(m−1) ≤ 1 and using gd,ii′−gd,jj′ ≤ −2, we obtain {(gd,ii′−gd,jj′)+(xd,jj′/k−
xd,ii′/k) + 1} ≤ 0. The proof is complete by noting that one can always reach
design d2 from design d1 in finite number of steps where in each step the functional
tr C2

d keeps decreasing. Finally, it is easy to note that the relation d2 > d1 is
transitive.

Remark 4.1. Using the fact that
∑

i<i′ gd,ii′ = m(m − 1)n2/2 for d ∈
D0e(mn,mn, (m − 1)n/2) and #{(i, i′) : 1 ≤ i < i′ < mn} =

(
mn
2

)
> m(m −

1)n2/2, a series of designs {de(m,n)} may be constructed with gd,ii′ = 0 or 1
and study their efficiencies. For ease in presentation, let p = mn lines be parti-
tioned into m sets of lines denoted by Qj , where Qj = {aju : 0 ≤ u ≤ (n − 1)},
0 ≤ j ≤ (m− 1). Note line aju represents line labelled as nj + u+ 1. The general
method of construction of design may be carried out in two steps:

(i) Consider a randomized block design with n treatments arranged in m blocks,
which may be symbolically represented as:

00 10 · · · (n− 1)0

01 11 · · · (n− 1)1

· · · · · · · · · · · ·
0(m−1) 1(m−1) (n− 1)(m−1)

(ii) For every occurrence of treatment u, 0 ≤ u ≤ n−1 and at its l-th replication,
0 ≤ l ≤ m−1, i.e. ul, replace treatment ul by a block Bl,u, say, consisting of

(m− 1)n/2 crosses of the form {(aj+l
k , am−j+l

u+k ) : 1 ≤ j ≤ (m− 1)/2, 0 ≤ k ≤
(n−1)}, where j+ l,m−j+ l reduced mod (m) and u+k reduced mod (n).
Note that, for a fixed treatment u, one can generate m blocks of de(m,n)
with respect to running of symbol l, where each l determines a class Cl of
(m − 1) sets of lines given by Cl = {Qk : k ∈ {j + l,m − j + l; 1 ≤ j ≤
(m−1)/2}}. Further, contents of block Bl,u of size (m−1)n/2 are obtained

by crossing lines in (j + l)th set, i.e. aj+l
k with lines in (m − j + l)th set

shifted by u positions, i.e. am−j+l
u+k . To obtain mn blocks of design de(m,n)
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this procedure is applied to all the n treatments defined in Step (i), where
each treatment will generate m blocks with respect to running of symbol l of
Cl, each of size (m−1)n/2. Note that de(m,n) ∈ D0e(mn,mn, (m−1)n/2).

Example 4.3. As an illustration of the above method of construction, con-
sider the following design with parameters m = 3, n = 5; so p = b = 15, and
k = 5 where gd,ii′ = 0 or 1:

Block I (6, 11) (7, 12) (8, 13) (9, 14) (10, 15)

Block II (6, 12) (7, 13) (8, 14) (9, 15) (10, 11)

Block III (6, 13) (7, 14) (8, 15) (9, 11) (10, 12)

Block IV (6, 14) (7, 15) (8, 11) (9, 12) (10, 13)

Block V (6, 15) (7, 11) (8, 12) (9, 13) (10, 14)

Block VI (1, 11) (2, 12) (3, 13) (4, 14) (5, 15)

Block VII (1, 12) (2, 13) (3, 14) (4, 15) (5, 11)

Block VIII (1, 13) (2, 14) (3, 15) (4, 11) (5, 12)

Block IX (1, 14) (2, 15) (3, 11) (4, 12) (5, 13)

Block X (1, 15) (2, 11) (3, 12) (4, 13) (5, 14)

Block XI (1, 6) (2, 7) (3, 8) (4, 9) (5, 10)

Block XII (1, 7) (2, 8) (3, 9) (4, 10) (5, 6)

Block XIII (1, 8) (2, 9) (3, 10) (4, 6) (5, 7)

Block XIV (1, 9) (2, 10) (3, 6) (4, 7) (5, 8)

Block XV (1, 10) (2, 6) (3, 7) (4, 8) (5, 9)

Remark 4.2. The efficiencies are calculated for m = 2t + 1; t = 1, . . . , 8 and
n = 2, 3, . . . , 15 and are reported in Table 1. It is found that lower bounds of
eff (de(m,n)) are more than 95% when t ≥ 2, n ≥ 5. Since maximum value of
efficiency is unity, therefore designs de(m,n) are optimal when t ≥ 6, n ≥ 7 and
t ≥ 9, n ≥ 3. Further, these designs are MS-optimal under fixed effects model.
Also one can achieve the proportion of reduction of number of distinct crosses
in PDC with respect to CDC to (n− 1)/(mn− 1), i.e. between 10 to 20 percent
for 2 ≤ t ≤ 4, n ≥ 7 with efficiencies more than 95%. It may be noted that
reduction of more than 10 percent is large in absolute terms when number of
complete crosses is large. Further, blocks of these designs are incomplete having
smaller block sizes up to 33 percent than those for complete block.

Remark 4.3. Let for a design d, λd1 ≤ λd2 ≤ · · · ≤ λd(p−1) be the non-zero
eigenvalues of Cd. Then after some algebra, we see that for i = 1, 2, . . . , (n−1)m,
λde(m,n)i = θ1 and for i = (n − 1)m + 1, . . . ,mn − 1, λde(m,n)i = θ2 where
θ1 = (m − 1)n and θ2 = θ1 − {(m + 1)/n}/(m − 1). Given, n finite, note
that θ1/θ2 → 1 as m → ∞. This shows that Cde(m,n) is completely symmetric
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and has maximum trace, thus proving that the series of designs de(m,n) are
asymptotically universally optimal under fixed effects. Therefore, these designs
should also have high efficiencies in the context of A, D, E-optimality under
fixed effects model and L-optimality under random effects model (Ghosh and
Das (2003b)).

Remark 4.4. Further, using Lemma 2.3 (tr Cd ≤ 2b(k − 1)) and the fact∑p−1
i=1 (λdi − λ̄)2 = 0(mn2), it can be shown that, eff (de(m,n)) → 1 as m,n →

∞ which implies the series of designs de(m,n) are asymptotically optimal and
asymptotically MS-optimal under fixed effects model.

Remark 4.5. Note that, from (2.2), tα(1/ tr Cd) ≈ 1/(mn)2 → 0 as m,n →
∞, and tα(p − 1)(1/ tr2 Cd) ≈ 1/(mn)3 → 0 as m,n → ∞. Finally, using
Remark 4.3, it is easy to show that (ν − b− p− 1)α(tr C2

d/ tr2 Cd) ≈ 1/(mn) →
0 as m,n → ∞. Here, an ≈ bn implies an/bn → 1 as n → ∞. Therefore,
V (T ; de(m,n), σ2

g , σ
2
e) → 0 as m,n → ∞, which shows that the series of designs

de(m,n) are useful for providing a consistent estimator of heritability .

5. Construction of optimal blocked partial diallel cross designs

Consider arrangement of labels of mn blocks of a design in D0e(mn,mn, (m−
1)n/2) into m sets, each set consisting of n labels. Define a “class of sets (unique
up to permutation) of labels of blocks” by S = {Sw : Sw = {inw, inw+1, . . . ,
in(w+1)−1}; inw+j �= inw′+j′ , (w, j) �= (w′, j′), w = 0, 1, 2, . . . , (m − 1); 1 = i0 <
in < i2n < · · · < in(m−1) = n(m−1)+1}. Consider a subclass D∗

0e(mn,mn, (m−
1)n/2) ⊂ D0e(mn,mn, (m − 1)n/2), such that for any design d ∈ D∗

0e(p, b, k),
there exists a class Sd, say, (i.e. class of sets of labels of blocks) where the n labels
of blocks of each member set Sd,w constitute n blocks of an orthogonal diallel
cross design in D0((m − 1)n, n, (m − 1)n/2). These designs can be constructed
by selecting (m− 1) disjoint sets of labels of lines Hj from some class H denoted
by H = {Hw : Hw = {hnw, hnw+1, . . . , hn(w+1)−1}; 1 ≤ hnw+j �= hnw′+j′ ≤
mn; (w, j) �= (w′, j′), w = 0, 1, 2, . . . , (m−1)} which represents partition of labels
of mn lines. In other words, the designs in D∗

0e(mn,mn, (m− 1)n/2) are nested
orthogonal diallel cross designs with maximum trace.

Theorem 5.1. Let m = 2t + 1, n = 2t∗ + 1. Consider a randomized block
design with n treatments and m blocks. Corresponding to each treatment u, 0 ≤
u ≤ n − 1 and its 0th replication, construct n blocks each of size (m − 1)n/2,
where uth block is obtained by its block content of the form {(aju, am−j

u ) : 1 ≤ j ≤
(m − 1)/2; (ajk+u, a

j
n−k+u) : 1 ≤ k ≤ (n − 1)/2, 1 ≤ j ≤ m − 1}, where m − j

reduced mod (m) and k + u, n− k + u reduced mod (n). Further , corresponding
to each treatment u, 0 ≤ u ≤ n−1 and its lth replication, 1 ≤ l ≤ m−1, develop
the blocks in the same way as described for construction of design de(m,n). Then
the above series of designs {d∗e(m,n)} is optimal in D∗

0e(mn,mn, (m− 1)n/2).
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Proof. By the construction of a design d belonging to D∗
0e(p, b, k), it is

enough to minimize tr C2
d over D∗

0e(mn,mn, (m − 1)n/2) as maximum value of
tr Cd is attained by any design d in this subclass. At the outset, note that, Cd is
independent under relabelling of blocks. Therefore, without any loss of generality,
one can reduce the search space to the class of designs where designs can be
partitioned into m orthogonal diallel cross designs by considering standard form
of “class of sets of labels of blocks”, viz. S = {S∗

w : S∗
w = {nw+1, nw+2, . . . , n(w+

1)}}. Further, note that any design within the reduced space is isomorphic to a
design obtained by considering partitioning of lines in standard form H∗ where
H∗ = {H∗

w : H∗
w = {nw+1, nu+2, . . . , n(w+1)};w = 0, 1, 2, . . . , (m−1)}. This is

due to the fact that tr C2
d is independent under permutation of lines. Having said

that, it is enough to consider problem of minimizing tr C2
d in the re-reduced class

of designs. The designs in this class are nested orthogonal diallel cross designs
with maximum trace, where the line vs. block incidence matrices of designs may
be defined by partitioned matrix where the sub-matrices are either of the form
1n1

′
n or 0n×n.
Define m classes Al by Al = {Al,j : Al,j = {j + l,m − j + l} : 1 ≤ j ≤

(m − 1)/2}; 0 ≤ l ≤ (m − 1). Here each class consists of (m − 1)/2 sets each
of cardinality 2 where elements of sets are indices of disjoint partition of lines
represented by Qj , 0 ≤ j ≤ (m − 1) (equivalently, H∗

w, 0 ≤ w ≤ (m − 1)).
Each of these classes is used to generate crosses of lines for developing nested
orthogonal diallel cross designs with maximum trace. Note that

∑
i<i′ gd,ii′ =

m(m−1)n2/2 <
(
mn
2

)
and for any design d, xd,ii′ are either n or 0 according as the

lines to i and i′ belong to same set of labels of lines H∗
w for some 0 ≤ w ≤ (m−1)

or not respectively.
As described in Theorem 4.1, suppose there exists a design d in re-reduced

class of designs such that max(i,i′) �=(j,j′):i<i′,j<j′ |gd,ii′ − gd,jj′ | = 1 with g values
being at most unity. Note that, this is true for d = de(m,n) from Remark 4.1
which satisfies gd,ii′ = 0 and gd,jj′ = 1 iff xd,ii′ = n and xd,jj′ = 0 respectively.
Denote the cross of lines with both lines from same set H∗

w or different set H∗
w and

H∗
w′ , respectively, by (i, i′) and (j, j′). As Theorem 4.1 only directs us to compare

two designs with respect to replication of cross (i, i′), therefore, attempt should be
made to further reduce tr C2

d subject to max(i,i′) �=(j,j′):i<i′,j<j′ |gd,ii′ − gd,jj′ | = 1.
This is done by further decreasing tr [Gd − (1/k)Xd]

2 in equation (4.4) through
increasing the replication of crosses involving lines which are from same set H∗

w

by unity, i.e. gd∗,ii′ = 1 (where xd∗,ii′ = n) while decreasing the replication of
crosses involving lines which are from two different sets H∗

w and H∗
w′ by unity,

i.e. gd∗,jj′ = 0 (where xd∗,jj′ = 0) yielding tr C2
d∗ ≤ tr C2

d . Evidently, this claim
is true as one may first compare g and x values for crosses (i, i′) and (j, j′) in
designs d and d∗, where gd∗,jj′ = xd∗,jj′ = 0; gd∗,ii′ = 1, xd∗,ii′/k = 2/(m −
1) while gd,jj′ = 1, xd,jj′ = 0; gd,ii′ = 0, xd,ii′/k = 2/(m − 1). Therefore,
0.5{tr [Gd∗ − (1/k)Xd∗ ]

2 − tr [Gd − (1/k)Xd]
2} = (gd∗,jj′ − xd∗,jj′/k)2 + (gd∗,ii′ −

xd∗,ii′/k)2 − (gd,jj′ − xd,jj′/k)2 − (gd,ii′ − xd,ii′/k)2 ≤ 0. This reduction can be
systematically performed by modifying initial n blocks of design de(m,n) after
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adding and deleting crosses of the form (i, i′) and (j, j′) respectively. Note that,
tr C2

d may be at most decreased by including all the (m − 1)n(n − 1)/2 crosses
of the form (i, i′) in the design, in place of same number of crosses of the form
(j, j′). It is not possible to further decrease tr(C2

d), because number of indices l
such that both w and w′ (1 ≤ w < w′ ≤ m − 1) do not belong to any set Al,j ,
1 ≤ j ≤ (m − 1)/2, is zero, and therefore, any inclusion of crosses of the form
(i, i′) would lead to some g value to become more than unity, which should not
decrease tr C2

d in the class of designs under study. This completes the proof.

Note. The series of designs {d∗e(m,n)} can be obtained by following the
steps discussed in Remark 4.1 and in the statement of Theorem 5.1. However,
computer code is developed in C++ to generate {d∗e(m,n)}, where m and n are
odd integers and included in the Appendix. Here three-dimensional array is used
to store the indices of sets of lines which runs iteratively to generate series of
designs, and is quite involved.

Remark 5.1. It may be observed that de(m,n) ∈ D∗
0e(mn,mn, (m− 1)n/2).

But, using construction method delineated in Theorem 5.1, one may get series
of optimal designs d∗e(m,n), where d∗e(m,n) > de(m,n); so more efficient series
of designs is possible. Since efficiencies of designs de(m,n) are already found
to be near maximum value, viz. unity (see Table 1), therefore efficiencies of
designs d∗e(m,n) are more near to unity. It may be noted that kind of series of
designs de(m,n) (Example 4.3) is relatively simple to construct whereas d∗e(m,n)
(Example 5.1) has desirable optimality property but relatively complicated to
construct.

Remark 5.2. Let n be finite. Using Remark 4.3, and variance-range inequal-
ity, the range for the set of eigen values is at most O(

√
m) because tr C2

d∗e
≤ tr C2

de
.

Observing that tr Cd∗e =
∑p−1

i=1 λi,d∗e = 2b(k−1) = O(m2), it follows λd∗ei/λd∗ej → 1
as m → ∞ implying the series of designs d∗e(m,n) are asymptotically universally
optimal with high efficiencies in the context of A, D, E-optimality under fixed
effects model.

Remark 5.3. From Remark 4.3, and the fact tr C2
d∗e

≤ tr C2
de

, it can be shown
that, eff (de(m,n)) → 1 as m,n → ∞ which implies the series of designs de(m,n)
are asymptotically optimal and asymptotically MS-optimal under fixed effects
model. Finally, Remark 4.5 shows that the series of designs d∗e(m,n) are useful
for providing a consistent estimator of heritability .

A diagrammatic representation showing relative positions of designs
de(m,n), d∗e(m,n) and D(mn,mn, (m − 1)n/2) ⊃ D0e(mn,mn, (m − 1)n/2) ⊃
D∗

0e(mn,mn, (m− 1)n/2) is presented in Figure 1.
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Figure 1. Optimal and Efficient designs with p = b = mn, k = (m− 1)n/2.

Example 5.1. Consider the following design with parameters m = 3, n = 5
thereby p = b = 15, and k = 5.

Block I (6, 11) (7, 10) (8, 9) (12, 15) (13, 14)

Block II (7, 12) (6, 8) (9, 10) (11, 13) (14, 15)

Block III (8, 13) (7, 9) (6, 10) (12, 14) (11, 15)

Block IV (9, 14) (6, 7) (8, 10) (11, 12) (13, 15)

Block V (10, 15) (6, 9) (7, 8) (11, 14) (12, 13)

Block VI (1, 11) (2, 12) (3, 13) (4, 14) (5, 15)

Block VII (1, 12) (2, 13) (3, 14) (4, 15) (5, 11)

Block VIII (1, 13) (2, 14) (3, 15) (4, 11) (5, 12)

Block IX (1, 14) (2, 15) (3, 11) (4, 12) (5, 13)

Block X (1, 15) (2, 11) (3, 12) (4, 13) (5, 14)

Block XI (1, 6) (2, 7) (3, 8) (4, 9) (5, 10)

Block XII (1, 7) (2, 8) (3, 9) (4, 10) (5, 6)

Block XIII (1, 8) (2, 9) (3, 10) (4, 6) (5, 7)

Block XIV (1, 9) (2, 10) (3, 6) (4, 7) (5, 8)

Block XV (1, 10) (2, 6) (3, 7) (4, 8) (5, 9)

To construct above design, let us first identify 15 lines labeled as {1, 2, . . . , 15}
by aju = 5j + u + 1, i.e. first group of 5 lines viz. {1, 2, . . . , 5} are identified
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as {a0
0, a

0
1, a

0
2, a

0
3, a

0
4}; second group of 5 lines viz. {6, 7, . . . , 10} are identified as

{a1
0, a

1
1, a

1
2, a

1
3, a

1
4}; followed by third group of 5 lines viz. {11, 12, . . . , 15} are iden-

tified as {a2
0, a

2
1, a

2
2, a

2
3, a

2
4}. As described in Remark 4.1, consider a randomized

block design with 5 treatments arranged in 3 blocks which may be symbolically
represented as:

00 10 · · · 40

01 11 · · · 41

02 12 42

The blocks of d∗e(3, 5) are constructed by following Step (ii) of Remark 4.1,
and statement of Theorem 5.1. Finally, the set of 15 blocks each of size 5 are
constructed to obtain optimal PDC design in the class D∗

0e(15, 15, 5) where each
cross appears at most once in the design.

6. Concluding remarks

The paper gives two new methods of constructing PDC designs for consistent
and unbiased estimation of heritability, which is a nonlinear function of variance
components arising out of random effects model of diallel cross experiment. How-
ever, there are some other methods of estimation of variance components like
maximum likelihood, minimum norm quadratic unbiased estimation. Therefore,
attempt would be made to study new unbiased estimator of heritability by repa-
rameterization of variance components so that variance of estimator is minimum
for a given design. The variance of estimator could be minimized over a class
of optimal design. Further, the random effects model of diallel cross experiment
may be extended to include specific combining ability (s.c.a.) effects. To this end,
total genetic variance is sum of variances due to g.c.a. and s.c.a., and, accordingly
narrow sense heritability is defined by h2 = 4σ2

g/(2σ
2
g +σ2

s +σ2
e) where σ2

s denotes
variance due to s.c.a. effects (see Falconer (1989)). It is then required to propose
estimator of narrow sense heritability and characterize efficient/optimal designs
which minimizes the variance of the estimator.

Appendix

#include<iostream.h>

#include<conio.h>

void main()

{ clrscr();

int storage[20][20][20],pair[20][20][20],

missing[20],block[60][60],group[10][60],

i,j,k,l,d,p1,p2,ind,count,element,m,n,t,counting=0,

aa,bb,storea,storeb,number=1,

index1,index2,index3,index4,x,y,xx,yy,p,q,fix,fixed,fun1,fun2,

row,col,a,b,c,mod=0,temp;

//***********************************

//Develop class of m sets of blocks each containing n blocks.
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//***********************************

cout<<"\n Enter the value of m (odd) ";

cin>>m; t=(m-1)/2; fix=(m-1)/2;

for(i=0;i<1;i++)

{ count=1;

element=2*t;

for(j=0;j<t;j++)

{storage[j][i][0]=count;

storage[j][i][1]=element;

count=count+1;

element=element-1;

}

}

for(k=0;k<t;k++)

{ for(i=1;i<m;i++)

{ p1=storage[k][i-1][0]+1;

p2=storage[k][i-1][1]+1;

if(p1>(2*t))

{ storage[k][i][0]=p1%(2*t+1);

}

else

{ storage[k][i][0]=p1;

}

if(p2>(2*t))

{storage[k][i][1]=p2%(2*t+1);

}

else

{ storage[k][i][1]=p2;

}

}

}

//*****************************

// Arrangement of crosses in a block.

//*****************************

cout<<"\n Enter the value of n (odd) ";

cin>>n;

t=(n-1)/2;fixed=(n-1)/2;

for(i=0;i<1;i++)

{ count=1;

element=2*t;

for(j=0;j<t;j++)

{ pair[j][i][0]=count;

pair[j][i][1]=element;
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count=count+1;

element=element-1;

}

}

for(k=0;k<t;k++)

{ for(i=1;i<n;i++)

{ p1=pair[k][i-1][0]+1;

p2=pair[k][i-1][1]+1;

if(p1>(2*t))

{ pair[k][i][0]=p1%(2*t+1);

}

else

{ pair[k][i][0]=p1;

}

if(p2>(2*t))

{pair[k][i][1]=p2%(2*t+1);

}

else

{ pair[k][i][1]=p2;

}

}

}

//***********************

// Labelling of lines in m groups

//***********************

for(i=0;i<m;i++)

{ for(j=0;j<n;j++)

{ group[i][j]=++counting;

}

}

for(i=0;i<n;i++)

{ missing[i]=i;

}

//*********************************************

// Construction of initial set of n blocks of size ((m-1)*n)/2

//*********************************************

for( k=0;k<n;k++) { cout<<"\n Block"<<number<<endl;

for(i=1;i<=fix;i++)

{ block[fix*n-i][0]=group[storage[i-1][0][0]][missing[k]];

block[fix*n-i][1]=group[storage[i-1][0][1]][missing[k]];

if(block[fix*n-i][0]>block[fix*n-i][1])

{ temp=block[fix*n-i][0];
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block[fix*n-i][0]=block[fix*n-i][1];

block[fix*n-i][1]=temp;

}

}ind=0;

for(d=1;d<m;d++)

{ for(j=0;j<fixed;j++)

{ index1=pair[j][k][0];

index2=pair[j][k][1];

block[ind][0]=group[d][index1];

block[ind][1]=group[d][index2];

if(block[ind][0]>block[ind][1])

{ temp=block[ind][0];

block[ind][0]=block[ind][1];

block[ind][1]=temp;

}ind++;

}

} cout<<endl;

for(i=0;i<fix*n;i++)

{ cout<<" {";

for(j=0;j<2;j++)

{ cout<<" "<<block[i][j]<<" ";

} cout<<"} ";

cout<<";";

getch();

}number=number+1;

}

getch();

cout<<endl;

//************************************************************

//Construction of (m-1) sets of blocks each containing n blocks

//of size ((m-1)*n)/2.

//*************************************************************

for(a=1;a<m;a++)

{ for(k=-1;k<n-1;k++)

{ cout<<"\n Block"<<number<<endl;

q=k; b=0;

for(i=0;i<fix*n;i++)

{ mod=i%n;

if(mod==0 &&i>0)

{b=b+1;

}

p=mod;

q=q+1;



NONORTHOGONAL OPTIMAL PARTIAL 57

if(q>(n-1))

{ q=q%n;

}

storea=storage[b][a][0];

storeb=storage[b][a][1];

if(storea<storeb)

{ storea=storea;

storeb=storeb;

} else

{ temp=storea;

storea=storeb;

storeb=temp;

}

block[i][0]=group[storea][p];

block[i][1]=group[storeb][q];

}

cout<<endl;

for(i=0;i<fix*n;i++)

{ cout<<" {";

for(j=0;j<2;j++)

{ cout<<" "<<block[i][j]<<" ";

}cout<<"} ";

cout<<";";

getch();

}

number=number+1;

}

} getch();

}
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