
Contents lists available at ScienceDirect

Gene

journal homepage: www.elsevier.com/locate/gene

Research paper

Statistical approach for selection of biologically informative genes

Samarendra Dasa,c, Anil Raib, D.C. Mishrab, Shesh N. Raic,⁎

a Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
b Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
c Biostatistics Shared Facility, JG Brown Cancer Center and Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, 40202, KY, USA

A R T I C L E I N F O

Keywords:
Informative genes
Bootstrap
Boot-MRMR
Gene Set Enrichment with QTLs
Gene sampling
Subject sampling

A B S T R A C T

Selection of informative genes from high dimensional gene expression data has emerged as an important re-
search area in genomics. Many gene selection techniques have been proposed so far are either based on re-
levancy or redundancy measure. Further, the performance of these techniques has been adjudged through post
selection classification accuracy computed through a classifier using the selected genes. This performance metric
may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was
proposed based on a composite measure of maximum relevance and minimum redundancy, which is both sta-
tistically sound and biologically relevant for informative gene selection. For comparative evaluation of the
proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ)
and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of
the proposed technique with 12 existing gene selection techniques was carried out using five gene expression
datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and
biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The
performance analysis showed that the proposed technique selects informative genes which are more biologically
relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect
to subject classification and computational time. Our results also showed that under the multiple criteria de-
cision-making setup, the proposed technique is best for informative gene selection over the available alter-
natives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at
https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statis-
tical techniques for selecting informative genes from high dimensional expression data for breeding and system
biology studies.

1. Introduction

Genome wide expression studies are powerful genomic approaches,
which have ability to capture expression dynamics of several thousand
(s) of genes in a cell (Lai et al., 2006; Trevino et al., 2007). Among these
thousands of expressed genes, all may not be required for classification,
gene regulation modeling, modules detection, etc. (Guyon et al., 2002;
Lai et al., 2006; Díaz-Uriarte and de Andrés, 2006; Wang et al., 2013;
Das et al., 2017a). There is a need to select few genes or set of genes
which are highly relevant for particular condition/trait, i.e. informative

genes (Golub et al., 1999; Wang et al., 2013). These informative genes
are used as predictors for diagnosing a disease (Golub et al., 1999;
Guyon et al., 2002; Lai et al., 2006; Trevino et al., 2007) or to under-
stand the stress response mechanism in plants (Wang et al., 2013; Das
et al., 2017a). Further, in order to develop statistical models for Gene
Expression (GE) data having large number of genes as predictors as
compared to small number samples/subjects, leads to large p small n
class of problems and consequently raises several statistical issues like
stability, power and feasibility of the model (Kursa, 2014). Therefore, it
is inevitable to reduce the dimensionality of GE data, which is often
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achieved by informative gene selection.
In a gene selection technique, it is desirable to have two important

features, i.e. minimum redundancy among the selected genes and
maximum relevance of these genes with the experimental condition/
trait (Ding and Peng, 2005; Peng et al., 2005; Mundra and Rajapakse,
2010). Several gene selection techniques have been proposed to select
only pertinent genes from thousand(s) of genes with the help of limited
available experimental samples based on either relevance or re-
dundancy measure (Saeys et al., 2007). In this regard, volcano plot
method is quite popular among biologists (Cui and Churchill, 2003)
where, genes are selected by considering their relevance within a given
level of experimental conditions under which data is being generated.
But volcano plot is a graphical method and is not sufficient to discover
some complex relationships among genes for a certain condition/trait
(Liang et al., 2011). Besides, several statistical and machine learning
algorithms have also been proposed in literature (Inza et al., 2004;
Saeys et al., 2007). Further, these methods select genes by only con-
sidering their relevance within a level of conditions of the class/trait.
However, in these computational techniques, there is a possibility of
selection of spuriously associated genes as they failed to consider re-
dundancy measure. Then, Maximum Relevance and Minimum Re-
dundancy (MRMR) technique has been developed to select cancer re-
sponsible genes by considering both relevancy and redundancy
measures (Ding and Peng, 2005; Peng et al., 2005). Here, both the
measures are computed using mutual information by discretizing the
continuous GE data. In this case, also there is a chance of losing in-
formation and selection of spuriously associated genes (Mundra and
Rajapakse, 2010).

It has been observed that most of the available gene selection
techniques were used to select cancer responsible genes from human GE
data and subsequently used for patient classification (e.g. with and
without cancer) (Golub et al., 1999; Guyon et al., 2002; Lai et al., 2006;
Díaz-Uriarte and de Andrés, 2006). Therefore, it is important and highly
pertinent to systematically explore these techniques in the context of
plant genomics. Usually, Classification Accuracy (CA)/error rate com-
puted at the post gene selection phase has been used as major criterion
to evaluate the performance of gene selection technique(s) (Golub
et al., 1999; Guyon et al., 2002; Ding and Peng, 2005; Peng et al., 2005;
Lai et al., 2006; Díaz-Uriarte and de Andrés, 2006; Mundra and
Rajapakse, 2010; Kursa, 2014). It may be noted that this traditional
criterion may be statistically sound but may not be biologically relevant
for performance evaluation. For instance, a gene selection technique
may lead to identification of a set of genes which predicts the classes of
subjects more accurately, but these selected genes may or may not be
biologically relevant for that particular condition/trait. Hence, it is
important to assess the performance of a gene selection technique based
on both statistically sound and biologically relevant criteria.

Therefore, in this study a statistical approach, i.e. Bootstrap-MRMR
(Boot-MRMR) is developed for selection of biologically relevant in-
formative genes from high dimensional GE data. This proposed ap-
proach is based on a composite measure considering both gene re-
levancy and redundancy, where informative genes are selected after
minimising the effects of spurious associations among genes under a
sound statistical framework. Further, the proposed approach of gene
selection is found to be competitive and even better than the existing
techniques for subject classification while its performance was eval-
uated on five different crop GE datasets. Besides this, two biologically
relevant criteria are also developed based on Quantitative Trait Loci
(QTL) and Gene Ontology (GO) information for comparative perfor-
mance analysis of the proposed Boot-MRMR approach and it was tested
on four rice GE datasets. It was found that the genes selected through
the proposed approach are more biologically relevant when compared
to existing techniques. Also, a systematic and rigorous comparative
evaluation of existing 12 gene selection techniques with the proposed
Boot-MRMR approach has been carried out on four GE datasets related
to various stresses in rice under a Multiple Criteria Decision Making

(MCDM) set up. These existing techniques are Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) (Guyon et al., 2002; Liang
et al., 2011; Wang et al., 2013), Random Forest (RF) (Díaz-Uriarte and
de Andrés, 2006; Diaz-Uriarte, 2007; Kursa, 2014), Fold Change (FC)
(Das et al., 2017b), t-score (Cui and Churchill, 2003; Das et al., 2017b),
F-score (Lazar et al., 2012), Wilcoxon's statistic (Wilcox) (Hossain et al.,
2013), MRMR (Ding and Peng, 2005; Peng et al., 2005), information
theoretic measures, i.e. Information Gain (IG), Gain Ratio (GR), Sym-
metric Uncertainty (SU) (Forman, 2003; Liu et al., 2005; Mao et al.,
2006; Cheng et al., 2012), Pearson's Correlation Filter (PCF) (Golub
et al., 1999) and Spearman's Rank Correlation (SRC) (Saeys et al., 2007;
Cheng et al., 2012). The results showed that the performance of Boot-
MRMR approach is better for most of the cases under this MCDM en-
vironment.

2. Materials and methods

2.1. Data collection

The GE experimental datasets of rice and soybean were collected
from Gene Expression Omnibus database of NCBI for platforms
GPL2025 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025)
and GPL4592 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GPL4592) respectively. These GE datasets were collected under biotic
(Xanthomonas bacteria) and abiotic stresses (salinity, cold and drought)
for rice and Aluminum (Al) stress for soybean. The summary and details
of these datasets are given in Table 1 and Supplementary Table S1 re-
spectively. Further, a detail description about the collection, pre-pro-
cessing and meta-analysis of these datasets is given in Supplementary
Document S1. The QTL datasets for these stresses viz. salinity, drought,
cold and bacteria for rice were collected from the Gramene QTL data-
base (http://www.gramene.org/qtl/) (Ni et al., 2009) and are given in
Supplementary Document S2.

2.2. Boot-MRMR approach

Here, we proposed an improvised gene selection approach, i.e. Boot-
MRMR for selection of informative genes from high dimensional GE
data. The proposed approach can minimize the spurious associations
among the genes while informative gene selection. Further, this ap-
proach is based on a Non-Parametric (NP) test statistic for informative
gene selection. In usual MRMR technique, genes are ranked by opti-
mizing the combination of relevance and redundancy measures under
two schemes i.e. F-test with Correlation Difference (FCD) and F-test
with Correlation Quotient (FCQ) (Ding and Peng, 2005; Peng et al.,
2005). However, in case of Boot-MRMR approach, we used the FCQ
scheme, as it outperformed the FCD scheme on continuous GE data
(Ding and Peng, 2005).

Let, the MRMR objective function (J) for the gene selection problem
is given as:

=J V Wmax( / ) (1)

where, V and W indicates the relevance and redundancy measures re-
spectively. Further, the near optimal solution of J for the continuous GE
data was obtained by Ding and Peng (2005) and given as:
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where, Ω is the gene space (e.g. number of probes in a microarray chip),
wi is the weight associated with i-th gene, y is the class label of a subject,
F(i, y) is the F-score between the i-th gene in y class and C(i, j) is cor-
relation measure between i-th and j-th genes in GE dataset. In this
technique, wi was used as criterion for gene ranking (Ding and Peng,
2005; Peng et al., 2005). However, many methods of gene selection are
susceptible to small permutation of experimental conditions (Guoyon
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and Elisseeff, 2003; Das et al., 2017a). Further, the ranking of genes was
done using a single high dimensional GE data, which leads to the se-
lection of spuriously associated genes.

Therefore, in the proposed Boot-MRMR technique, a modified
bootstrap based subject sampling model was used. In this model, the GE
experimental samples, i.e. subjects are taken as sampling units and
these subjects are randomly taken from the population. Each subject
has GE measurements for same set of genes of Ω. Moreover, the re-
plicated GE samples were taken as new sampling units under this
sampling model, which may have different GE profiles as compared to
other replicates (Goeman and Buhlmann, 2007). Let, M denotes popu-
lation size, i.e. total number of GE profiles for different subjects in the
experiment and each subject is treated as an independent unit in the
population. The relation of each subject with its class can be shown as:

… …X y X y X y X y( , ), ( , ), , ( , ), , ( , )s s M M1 1 2 2 (3)

where, Xs represents the N-dimensional vector (N is total number of
genes in Ω) of GE levels for s-th subject and ys is the corresponding class
label (e.g. stress: +1 vs. control: −1), s=1, 2, …, M. Therefore, M
expression levels of different subjects are independently and identically
distributed (iid), but expression levels of genes within the same subject
may be correlated for a given condition. Let, m units of realizations
were randomly selected out of M population units (as represented by
Eq. (3)) (m≤M) with replacement to construct one bootstrap sample.
Then, the standard MRMR algorithm was applied on this bootstrap
sample to get one list of the genes along with their ranks (say one gene
list). This procedure was repeated S times to get S gene lists. Here, S, i.e.
number of bootstrap samples must be sufficiently large (Wang et al.,
2013). It has been empirically established that value of S should be
around 200 to ensure all desirable features of bootstrapping (Efron and
Tibshirani, 1993). Accordingly, the value of S was set as 200 in this
study.

Further, genes in every gene list will have ranks between 1 to N.
Then a function, i.e. Rank Score for k-th gene list, i.e. Rk (Rk :Ω→ [0,1])
was defined to map ranks of genes in Ω to corresponding scores. The
Rank Score (R(i)

k ) for i-th gene in k-th (k=1, 2, …, S) gene list can be
defined as:
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− +
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where, pik (1≤ pik≤N) is the rank of i-th gene in k-th gene list. It can be
noted that, for i-th gene, R(i)

k (N−1≈ 0≤ R(i)
k ≤ 1) is a random variable

(rv). So, without loss of generality, another rv rk(i) can be defined as:

= −r R Qk
i

k
i( ) ( )

2 (5)

where, Q2 is second quartile (median) of rank scores, i.e. R(i)
k (here any

quartile can be taken). It may be noted that the rank scores of genes in
each gene list will be symmetrically distributed around Q2 (i.e. 0.5) (as
rank scores are function of gene ranks). Further, to select informative
genes, the following hypothesis needs to be tested for each gene in Ω
successively.

H0. i-th gene is not informative for a given condition/trait, i.e. Wi≤ 0.

H1. i-th gene is informative for a given condition/trait, i.e. Wi > 0.

where, Wi be the median deviated expected rank score for i-th gene
over all possible bootstrap samples. The bootstrap procedure coupled in
the subject sampling model was used to ensure the iid assumptions of
the rank scores. The test statistics for testing the above hypothesis can
be obtained as:

Let for gene i, the rk's (from Eq. (5)) are arranged in ascending order
of their magnitude. Subsequently, the ranks 1, 2, …, S are assigned,
keeping in mind their original signs. Let, A+ be sum of the ranks of
positive rk's and A− be the sum of the ranks of negative rk's. Thus, for
the computation of distribution of A+, another rv B(l) is defined as:
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Now, the variables B(l) are independent Bernouli variates and its
mean and variance can be obtained as:
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Further, the mean and variance of the test statistic (A+) can be
obtained as:
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Under the simple null hypothesis H0 :Wi=0, the Eqs. (9) and (10)
can be expressed as:
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As the number of bootstrap samples are quite large (S=200), then
under Lindeberg's central limit theorem (Ash, 2000; Rohatgi and
Ehsanes Saleh, 2011), the test statistic (A+) follows normal distribution
asymptotically, i.e.

−+ +
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H

0

0 (13)

Based on the above test statistic, the statistical significance value for
i-th gene (pi-value) was computed. Further, to control the type I error in
cases of multiple tests of genes, we applied the False Discovery Rate
(FDR) method (Benjamini and Hochberg, 1999) to compute adjusted p-

Table 1
Gene expression studies used in the study.

Sl. no. Descriptions GSE accessions #Genes #Samples #Class

D1 Salinity stress in rice GSE13735, GSE14403, GSE21651, GSE28209, GSE16108, GSE6901 6637 70 2
D2 Cold stress in rice GSE38023, GSE31077, GSE33204

GSE37940, GSE6901
8840 100 2

D3 Drought stress in rice GSE6901, GSE26280, GSE21651, GSE23211, GSE24048, GSE25176 9078 90 2
D4 Aluminum stress in soybean GSE18423, GSE18517, GSE18518 8416 76 2
D5 Bacterial stress in rice GSE16793, GSE19239, GSE19844

GSE32426, GSE33411, GSE36093
GSE36272

8356 221 2

GSE Accessions: Accession numbers of Gene Expression studies; #Genes: Number of genes; #Samples: Number of GEO samples; #Class: Number of classes (e.g. 2 in control vs. stress
genomic study); D1–D4: GEO datasets from abiotic stresses; D5: GEO datasets from biotic stress.
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values for selection of informative genes. The implemented algorithm of
the Boot-MRMR approach is given in Fig. 1. Moreover, the comparative
performance analysis of the proposed Boot-MRMR approach with re-
spect to 12 existing gene selection techniques (Supplementary Table S2)
was carried out on five different real crop GE datasets (Table 1).

2.3. Biologically relevant criteria for performance analysis of gene selection
techniques

In this section, two biologically relevant criteria were reported for
performance evaluation of gene selection techniques. The first criterion
is based on the extent of statistical association of selected informative
gene set with related QTLs, i.e. Gene Set Enrichment with QTLs, of the
target trait. The second criterion is about the development of indices
based on associated GO terms with selected informative gene set.

2.3.1. Gene Set Enrichment with QTLs (GSEQ)
QTLs are segments of DNA or genomic region either containing or

linked to genes for a given quantitative trait (Tiwari et al., 2016) and
are widely used in plant breeding experiments (Du et al., 2016). In
order to assess the performance of gene selection techniques, the trait
specific QTLs can be used as biologically relevant criteria for cross
validating the selected gene sets (obtained through gene selection

methods).
Let G be the selected gene set obtained from Ω using any gene se-

lection technique (Supplementary Table S2) for a given condition and Q
be the set of associated QTLs for that condition/trait. Let, i-th gene in G
is represented as gic [a, b] ϵ G, where a and b represent start and stop
positions (in terms of base pairs) of the gene gi on chromosome c. For a
QTL, qtc[d, e] ϵ Q, where d and e represents the start and stop positions
of the QTL qt on chromosome c. Let, the QTL hit by the gene gic can be
expressed by using an indicator function, as:

= ⎧
⎨⎩

≥ ≤
I g

g a q d g b q e
else

( )
1 if [ ,] [ ,] and [, ] [, ]
0

q i
i
c

t
c

i
c

t
c

t (14)

In other words, if a selected gene is completely overlapped with the
QTL regions for a given trait on the same chromosome, then it can be
said that the gene got a QTL hit. Therefore, a statistic (NQTL), i.e. total
number of QTL hits by the informative genes in G can be used to
compute total number of genes in G overlapped with the QTLs in Q and
can be expressed as:

∑ ∑=
= =

NQTL I g( )
t

Q

i

G

q i
1 1

t
(15)

Besides this, a test statistic is also used for GSEQ test to assess the
performance of a gene selection technique. If a gene set G is enriched

Fig. 1. Flowchart depicting the implemented algorithm of Boot-MRMR approach. Gk's are N-dimensional vectors of gene lists having gene rank scores. MRMR is Maximum
Relevance and Minimum Redundancy algorithm. pi-value is statistical significance value for i-th gene. α is the desired level of statistical significance.
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with the underlying QTL information, then member genes in G should
have higher proportion of QTL hits as compared to that of genes in G′

(i.e. Ω−G). For testing the trait specific QTLs enrichment of gene set G,
let us define following null hypothesis:

H0. QTLs enrichment of G and G′ are same.

H1. G is more QTLs enriched as compared to G′.

The constructed null hypothesis is a competitive one, not self-con-
tained, as it considers the genes from both the gene sets (G and G′)
(Goeman and Buhlmann, 2007). For this GSEQ test, we used 2× 2
contingency table and gene sampling procedure. The 2× 2 contingency
table method was extensively used in gene set enrichment test with
known pathways or GO based information (Goeman et al., 2004; Barry
et al., 2005; Al-Shahrour et al., 2005). In this gene sampling procedure,
n genes were randomly selected from the informative gene set (G)
(n≤ |G|) without replacement to construct one random gene sample.
This procedure was repeated p times to get p random gene samples. For
each gene sample, a 2× 2 contingency table, as shown in Table 2, was
constructed. Therefore, total p 2×2 contingency tables were obtained.
Here, the value of p was taken as 100.

To test the null hypothesis for its possible rejection, we proposed the
following procedure. Let N is total number of genes in Ω, NQ is total
number of QTL hits in Ω and n is the size of each random gene sample.
The underlying hypergeometric distribution for each 2× 2 contingency
table can be given as:
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⎛
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N
x

N N
n x
N
n
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where, X is random variable representing value of QTL hits in i-th gene
sample (i=1, 2, …, p). The corresponding statistical significance value
for i-th gene sample (Pi) can be computed by:

= ≥ = − ≤P P X x H P X x H[ | ] 1 [ | ]i i i0 0 (17)

Similarly, statistical significance values were calculated for each p
random gene samples using the above procedure. It may be noted that
these Pi's (i=1, 2, …, p) are iid's and each one follows a uniform dis-
tribution with parameter [0, 1] (Bland, 2013) (i.e. Pi~U [0, 1]). Let's
define (without loss of generality) a rv Zi, i.e. Zi=− 2 log Pi which
follows a chi-squared distribution with 2 df, i.e. Zi~χ2. Here, Zi (i=1,
2, …, p) are also iid's with chi-squared distribution. Therefore, we can
test H0 against H1 through the following test statistic:
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The p-value obtained from the above test statistic is an indicator of
the extent of QTL enrichment for G. The lesser p-value indicates better
informative gene selection technique through which G is selected and
vice-versa.

It may be noted that, in single gene analysis, e.g. Boot-MRMR, each
gene is tested for its involvement in the trait under consideration.
Therefore, there is a problem of multiple hypotheses testing, which was
addressed by computing FDR adjusted p-values. But in case of GSEQ,
gene sets (polygenes) are taken as input for testing their involvement in

QTL enrichment. Hence, the multiple testing of hypothesis problem is
well tackled in GSEQ, as it takes gene set as a functional unit for en-
richment analysis.

2.3.2. Biological similarity score based on GO terms
Under the GO term enrichment analysis, the functions of the genes

are annotated under three taxonomies, i.e. Molecular Function (MF),
Biological Process (BP) and Cellular Component (CC) (GO Consortium,
2015). This analysis helps in evaluating the functional similarities
among the genes in G (Mazandu and Mulder, 2014), as there exists a
direct relationship between semantic similarity of gene pairs with their
structural (sequence) similarity (Lord et al., 2003; Wang et al., 2007).
To assess the performance of gene selection techniques with respect to
biological relevancy of selected genes, we used the GO based semantic
similarity measure developed by Wang et al. (2007) to compute the
biological similarity score for the selected gene set (G) thorough a
particular technique.

Let, GOi={goi1, goi2, …, goiK} and GOj={goj1, goj2, …, gojL} be the
two sets of GO terms that annotate two genes gi and gj in G respectively.
Then the functional semantic similarity (ρij) between gi and gj can be
expressed as:

=
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∪
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GO GO
GO GO

i j G
| |
| |

1, 2, , | |ij
i j

i j (19)

Further, the biological similarity score for G based on the above
semantic similarity measure (Eq. (19)) can be expressed as:
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where, ρ(G) is the proposed biological similarity score for G. Using the
Eq. (20), the biological similarity scores under MF, BP and CC taxo-
nomies were computed for each of the selected informative gene sets.
The higher value of ρ(G) indicates more informative-ness of the selected
gene set and vice-versa. This is due to the fact that for a given trait the
genes present in G are likely to share common GO terms.

2.4. Performance analysis of gene selection techniques based on
classification

The performance of the proposed and existing gene selection tech-
niques (Supplementary Table S2) was evaluated based on subject
classification i.e. CA and Standard Error (SE) in CA. These performance
metrics were computed through a sliding varying window size tech-
nique (Das et al., 2017a). Here, the window size refers to number of
ranked genes obtained by a gene selection technique. The window sizes
were taken as 50, 100, 150, …, 950, 1000 with a sliding length of 50.
Moreover, the number of top ranked genes (equal to the window sizes)
selected through the proposed and other existing techniques were then
used in SVM classifier to discriminate the class labels of samples be-
tween stress (+1) and control (−1). In the SVM classifier, three basis
functions, i.e. linear (SVM-LBF), radial (SVM-RBF) and polynomial
(SVM-PBF) were used to compute the CA and SE in CA. Further, the
techniques which provide maximum discrimination between the two
groups through classification will be the better technique for in-
formative gene selection and vice-versa. The performance of these
techniques was adjudged on the basis of CA and SE in CA.

The other criteria viz. sensitivity, specificity, False Discovery Rate
(FDR), False Positive Rate (FPR), False Negative Rate (FNR), Accuracy
(ACC), F1-Score and Mathew's Correlation Co-efficient (MCC) were also
used in this performance evaluation. The expressions for these criteria
are given in Supplementary Table S3. Usually, the genes were selected
from Ω based on the training GE data and these selected genes were
used as predictors in classifiers to test their ability to differentiate the
class labels of the samples. Then, the performance of that technique was
evaluated on test samples (Guyon et al., 2002; Ding and Peng, 2005;

Table 2
2×2 contingency table for gene set enrichment with QTL test.

Overlapped with QTL
regions

Not overlapped with QTL
regions

Total

Selected gene set nGQ nGQc nG
Not in gene set nGcQ nGcQc nGc

Total nQ nQc N

G: selected gene set; Gc: not selected gene set; nG: number of genes in the gene set.
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Peng et al., 2005; Lai et al., 2006; Díaz-Uriarte and de Andrés, 2006;
Kursa, 2014). This procedure is sometimes unreliable because of the
small number of test samples and imbalances (unequal representation
of samples from both classes) of training and testing data (Wei and
Dunbrack Jr, 2013).

Therefore, to avoid this limitation, we used the following procedure
in classification based performance evaluation of the gene selection
techniques, i.e. (i) the training and testing datasets were merged, (ii) the
bootstrap samples were drawn from this merged data and, (iii) then
bootstrap samples were then partitioned for training and testing sets.
Then, the SVM-LBF, SVM-RBF and SVM-PBF classifiers were trained on
the training dataset for a bootstrap sample. Further, a 2×2 confusion
matrix was constructed from the SVM results for each testing dataset for
that bootstrap sample. From that confusion matrix, the performance
criteria, viz. sensitivity, specificity, FDR, FPR, FNR, ACC, F1 and MCC

(Supplementary Table S3) were computed for each bootstrap sample.
This procedure was repeated over 100 times for 100 bootstrap samples
and then these performance criteria were averaged over 100 trials.

2.5. Performance analysis of gene selection techniques based on
computational time

The computational time required to select the informative gene set
of a fixed size from the high dimensional GE dataset was also used as a
performance metric. Here, the gene set of size 1000 was considered.
Through this, the method which requires less runtime is better and vice-
versa. To measure this, we ran the code written in R (v 3.3.1) 100 times
for each gene selection technique to select the informative gene set of
size 1000 and measured the required average CPU time. All these
analyses were performed on a 4 GB RAM computer with Windows 10

Fig. 2. Distribution of weights computed from MRMR algorithm. The horizontal axis represents the genes. The vertical axis shows weights computed through MRMR technique.
Distribution of MRMR weights are shown for (A) salinity stress, (B) cold stress, (C) aluminum stress, (D) drought stress and (E) bacterial stress.
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OS and CPU clock rate as 2.93 GHz.

2.6. Comprehensive performance analysis of gene selection techniques

Here, we emphasized to compare the performance of the proposed
Boot-MRMR approach with respect to 12 existing techniques
(Supplementary Table S2) based on 16 criteria (Supplementary Table
S3) on four real crop datasets (Table 1). In operational research, such
problems are called as MCDM problem (Hwang and Yoon, 1981), where
the main goal is to consider a set of criteria and choose the best per-
forming option over a list of options (Khezrian et al., 2014). Under this
MCDM set up, Technique for Order Performance by Similarity to Ideal
Solution (TOPSIS) (Ahn, 2011) has been extensively used in areas of
research, viz. human resources management, product design, manu-
facturing, water management, quality control, location analysis, DNA
extraction analysis and e-tendering (Kwong and Tam, 2002; Chen and
Tzeng, 2004; Milani et al., 2005; Srdjevic et al., 2004; Yang and Chou,
2005; Wang et al., 2015). However, this is being used for the first time
in gene selection problems. Here, the basic idea is to choose the best
gene selection technique out of 13 gene selection techniques (Supple-
mentary Table S2) based on the 16 decision criteria (C1–C16) (Sup-
plementary Table S3). Further, for the criteria; C2, C5–C7, C12 and
C16, lower value indicates better performance of gene selection tech-
niques and vice-versa. For C1, C3, C4, C9–C11, C13–C15 criteria, higher
value stands for better performance and vice-versa. The comparative
performance analysis of these techniques under the MCDM setup was
carried out using TOPSIS approach and the major steps for this process
are given in Supplementary Document S3. Through this, the gene se-
lection techniques with higher Rr (Rr: TOPSIS score and 0≤ Rr≤ 1) are
preferred and considered as better technique over these multiple cri-
teria and vice-versa.

3. Results

The distributions of weights and p-values for genes obtained from
the existing MRMR algorithm and proposed Boot-MRMR approach are
shown in Figs. 2 and 3 respectively. The distributions of MRMR weights
of genes for salinity, cold, drought and bacterial stresses in rice and Al
stress in soybean contains lower and upper values, which are not so
widely separated (Fig. 2). On the contrary, from the distribution of p-
values of the genes, it was found that these p-values are well separated
and relatively small number of genes were found to be statistically
significant (Fig. 3). The distinction between informative genes (i.e.
genes with lower p-values) and non-informative genes can be better
identified from Fig. 3 as compared to Fig. 2. This comparative graphical
analysis showed the improvement of Boot-MRMR over MRMR algo-
rithm (Figs. 2, 3). Hence, the informative genes selection based on p-
values, computed through the NP test seems to be more statistically
sound and meaningful as compared to gene ranking methods like
MRMR. Further, the performance analysis of the proposed Boot-MRMR
technique was done using rice GE data for salinity, cold, drought and
bacterial stresses and soybean data for Al stress through subject/sam-
ples classification. However, for QTL and GO based approach, perfor-
mance evaluation was carried out on rice data for the four stresses as
rice genome is well annotated.

3.1. Performance analysis of Boot-MRMR technique based on classification

The informative gene sets of size 1500 were selected by using each
of the gene selection techniques as given in Supplementary Table S2.
These selected genes were then used as predictors in SVM-LBF, SVM-
RBF and SVM-PBF classifiers. The post selection CA and SE in CA for
different sliding window sizes over fivefold cross validation for dif-
ferent gene selection techniques with respect to five different stress
scenarios are also shown in Fig. 4. For better performance analysis,
mean CA and SE in CA were computed for each gene selection

techniques and the results are given in Supplementary Tables S4–S6.
For cold and drought stress using SVM-LBF classifier, it was observed
that the CA of Boot-MRMR was higher than that of other gene selection
techniques followed by SVM-RFE (Fig. 4, Supplementary Table S4).
Further, for these stresses, i.e. cold and drought, the SE values in CA are
lowest for Boot-MRMR as compared to other techniques followed by
SVM-RFE, which indicates that the genes selected by this proposed
technique is highly informative and robust (Supplementary Table S4).
In case of salinity, bacterial and Al stresses, the CA of SVM-RFE was
found to be higher than that of other gene selection techniques followed
by Boot-MRMR (Fig. 4, Supplementary Table S4). For these stresses, the
SE values of CA for SVM-RFE are lower followed by Boot-MRMR. Si-
milar interpretations about the performance of these gene selection
techniques can be made for SVM-PBF and SVM-RBF classifiers (Fig. 4,
Supplementary Tables S5, S6). Further, results obtained through
varying window size technique for the Boot-MRMR are given in Sup-
plementary Table S7.

The other classification based performance metrics, viz. sensitivity,
specificity, FDR, FPR, FNR, ACC, F1-measure and MCC for each gene
selection techniques in five different stress scenarios of rice and soy-
bean are given in Supplementary Tables S4–S6. For salinity, bacterial
and Al stresses with SVM-LBF classifier, the sensitivity, specificity, ACC,
F1 and MCC measures of SVM-RFE were found to be higher than that of
all other gene selection techniques followed by Boot-MRMR
(Supplementary Table S4). Further, for this classifier, the values of FDR,
FPR and FNR for SVM-RFE were lowest among other techniques fol-
lowed by Boot-MRMR (Supplementary Table S4). These results in-
dicated that SVM-RFE performed better followed by Boot-MRMR for
salinity, bacterial and Al stresses. But, for SVM-LBF classifier in cold
and drought stresses, the values of Sensitivity, Specificity, ACC, F1
measure and MCC of Boot-MRMR were found to be higher than that of
other techniques of gene selection (Supplementary Table S4).
Moreover, the values of FDR, FPR and FNR were lowest for Boot-MRMR
as compared to other existing techniques. The comparative analysis
based on subject classification indicated that out of the five stresses, in
two cases, the performance of Boot-MRMR was better followed by SVM-
RFE (Supplementary Tables S4-S6). In other cases, SVM-RFE out-
performed other techniques followed by Boot-MRMR for gene selection
(Fig. 4, Supplementary Tables S4-S6).

3.2. Performance analysis based on QTL based criteria

We mapped the QTLs and informative genes obtained by using 13
gene selection techniques (for rice) in the whole genome using MSU rice
genome browser (Ouyang et al., 2007). The list of QTLs along with their
genomic regions for different stresses, viz. salinity, bacterial, drought
and cold are given in Supplementary Document S2.

The GSEQ analysis was used to test whether the informative gene
sets (considering gene set of size 1000) selected for each stress through
the gene selection techniques (Supplementary Table S2) is enriched
with the underlying QTL information or not. In other words, the per-
formance of Boot-MRMR and other techniques was assessed by using
the GSEQ test as a biological relevant criterion to evaluate the relia-
bility of selected genes. Further, the p-values along with the NQTL
computed for each gene selection technique are given in Table 3. For
salinity stress, the value of NQTL for Boot-MRMR (125) was higher than
that of other gene selection techniques followed by SVM-RFE (120) and
SRC (120) (Table 3). It was observed that more number of informative
genes selected by Boot-MRMR were overlapped with salinity responsive
QTL regions. Moreover, the p-value (1.02 E-77) from GSEQ test for the
Boot-MRMR was much lesser than that of other techniques for salinity
stress. It was found that informative genes selected by Boot-MRMR
were more enriched with the underlying salinity responsive QTLs as
compared to other 12 techniques. Similar interpretations can be made
for cold and drought stresses in rice except bacterial stress (Table 3).
Further, the QTL wise distributions of informative genes selected
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through Boot-MRMR for all the stresses are given in Supplementary
Document S4. However, for the bacterial stress, GSEQ test was found to
be non-significant for all the gene selection techniques, which is due to
the fact that only 4 QTLs are found to get QTL hit genes out of 24 QTLs
(Fig. S5 in Supplementary Document S4).

3.3. Performance analysis based on GO terms

The GO based similarity analysis was performed on selected in-
formative gene sets of size 1000 by each of the gene selection techni-
ques (Supplementary Table S2) to evaluate functional similarities
among these genes. The results from the GO based similarity analysis
are given in Table 4. In salinity and bacterial stresses, out of three in
two taxonomy categories, the magnitude of the developed biological
similarity score for the Boot-MRMR was higher than other 12 techni-
ques (Table 4). In other words, Boot-MRMR technique selects more

functional similar genes for these stresses as compared to other com-
petitive techniques. But for other two stresses, the biological similarity
score of Boot-MRMR in one taxonomy category was higher than other
contemporary techniques (Table 4). This analysis indicated that the
proposed Boot-MRMR is competitive with other techniques of in-
formative genes selection in terms of functional similarity. Further,
associated GO terms with gene sets of size 1000 selected through pro-
posed Boot-MRMR for all the stresses are given Supplementary Table
S8.

3.4. Performance analysis based on computational time

Based on the average runtime required to select informative gene
sets of size 1000, the 13 gene selection techniques were ranked. The
results are given in Supplementary Table S9. The slowest method was
SVM-RFE followed by RF, with computational training time up to

Fig. 3. Distribution of p-values obtained from the Boot-MRMR approach. The horizontal axis represents the genes. The vertical axis shows the computed statistical significance values
(p-values) associated with the genes obtained from Boot-MRMR technique. Distributions of p-values are shown for (A) salinity stress, (B) cold stress, (C) aluminum stress, (D) drought stress
and (E) bacterial stress.
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several hours, especially for larger datasets irrespective of all stresses.
The proposed Boot-MRMR technique required far less computational
time up to several minutes as compared to these two techniques
(Supplementary Table S9) in all the datasets. However, simple uni-
variate gene selection techniques like FC, t-score and F-score required
less computational time for selection of informative genes.

3.5. Revealing conflicts among the criteria: one-criterion-at-a-time analysis

The performance of the 13 gene selection techniques under these 16
decision criteria (Supplementary Table S3) for rice GE datasets under
various stresses viz. salinity, cold, drought and bacteria are given in
Tables 3, 4 and Supplementary Tables S4–S6, S9. Subsequently, these
techniques were evaluated individually by each of these 16 decision
criteria for multiple datasets and are ranked in Supplementary Table
S10. These rankings indicated that, Boot-MRMR was quite competitive
with SVM-RFE and better than other existing techniques under the
classification based criteria (C1–C10) (Supplementary Table S10). On
the contrary, for QTL based criteria (C11 and C12), the proposed Boot-
MRMR was found to be best for all the four stresses followed by SVM-
RFE (Tables 3, S10). Further, through BP and CC based biological si-
milarity analysis, the Boot-MRMR performed better as compared to
other techniques for salinity stress (Tables 4, S10). But for MF based
biological similarity score for same stress, SVM-RFE was ranked one
followed by Boot-MRMR. Similar interpretations can be made about the
ranking of gene selection techniques for cold, drought and bacterial
stress datasets. Further, when computational time was taken as in-
dividual criterion, the simple technique like FC performed better fol-
lowed by t-score (Supplementary Table S9).

The above comparative analysis of the gene selection techniques
under each criterion individually (Supplementary Table S10) clearly
showed the presence of conflicts among criteria in the given decision-
making problem. For instance, SVM-RFE performed well for most of the
datasets, when classification based criteria (C1–C10) were considered
(Supplementary Tables S4-S6, S10), but performed poor under runtime
(C16) and biology based criteria (C11–C15) (Tables 3, 4, S9). While the
developed Boot-MRMR approach was found to be better when the
biology based criteria, i.e. C11–C15 were considered but performed
poor under runtime (Tables 3, 4, S10). Due to such conflicts in the
performance of these techniques, the MCDM Entropy-TOPSIS approach
was deemed necessary to choose the best gene selection option over the
list of 13 options under these 16 decision criteria for each stress.

3.6. Selection of best gene selection technique: the TOPSIS approach

The TOPSIS scores and ranking of the gene selection techniques
under three different classifiers for each stress are shown in Fig. 5. For
salinity stress under SVM-LBF classifier, it was found that the proposed
Boot-MRMR technique has highest TOPSIS score and subsequently
found best for informative gene selection (Fig. 5). Similarly, for SVM-
PBF and SVM-RBF classifiers under the same stress, the similar findings
were observed (Fig. 5). For this stress, the performance of Boot-MRMR
was found to be superior followed by SVM-RFE, IG, SU, RF, GR, FC, t-
score, Wilcox, SRC, F-score, PCF and MRMR irrespective of the classi-
fiers (Fig. 5). Similar interpretations can be made for cold and bacterial

Fig. 4. Post selection classification accuracy and its standard error. The horizontal
axis represents the gene selection techniques. The vertical axis represents post selection
classification accuracy and its standard error obtained by using sliding window size
technique. The classification accuracies over the window sizes are presented as boxes and
standard error is shown in the form of bars on every boxes. The distributions of classi-
fication accuracy are shown for (A–C) salinity stress with SVM-LBF, SVM-PBF and SVM-
RBF classifiers; (D–F) cold stress with SVM-LBF, SVM-PBF and SVM-RBF classifiers; (G–I)
drought stress with SVM-LBF, SVM-PBF and SVM-RBF classifiers; (J–L) aluminum stress
with SVM-LBF, SVM-PBF and SVM-RBF classifiers; (M–O) bacterial stress with SVM-LBF,
SVM-PBF and SVM-RBF classifiers.
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stresses with SVM-LBF, SVM-PBF and SVM-RBF classifiers (Fig. 5). But
for drought stress, the TOPSIS score of SVM-RFE was found to be higher
than that of other techniques and ranked top in the list followed by
Boot-MRMR (Fig. 5). Moreover, three out of four stresses, the perfor-
mance of Boot-MRMR technique was superior as compared to other
gene selection techniques, whereas, for drought stress it is found to be
quite competitive with SVM-RFE.

4. Boot-MRMR R software package

To facilitate the use of proposed informative gene selection ap-
proach, we have developed an R software package which includes
BootMRMR R package accompanying documentation and model real
data example. This package can be freely downloaded from https://
cran.r-project.org/web/packages/BootMRMR. This software is capable
of computing weights and p-values for genes using Bootstrap and
modified bootstrap based resampling procedure. It also able to identify
group of informative genes of given size based on the proposed ap-
proaches. Further, it provides function to compare the performance of
gene selection methods under MCDM setup using TOPSIS technique.

5. Discussion

We proposed Boot-MRMR technique for selection informative genes
from high dimensional GE data, which is not only effective to remove

redundancy or collinearity among genes, but also improves relevancy of
genes with the target trait/condition. Through this technique, in-
formative genes were selected based on an assessment of the statistical
significance of the hypothesis under consideration, which is more sta-
tistically convincing as compared to other gene ranking methods. Here,
a p-value was assigned to each gene by using the NP test statistic and
informative genes were selected based on these p-values. The p-values
associated with genes represent more scientifically calculated inter-
pretable values to genome researchers and experimental biologists (e.g.
values between 0 and 1 with well-defined statistical meaning) as
compared to other gene ranking techniques. Moreover, Boot-MRMR has
advantage over classical techniques like t-test, F-score, PCF, etc. as it
does not require Gaussian distributional assumption of the data. The
performance of Boot-MRMR technique was found to be better over
other techniques like MRMR, as the bootstrap procedure used in this
approach was able to remove the spurious associations of genes with
the target trait/condition as well as among other genes. The perfor-
mance analysis showed that Boot-MRMR is either competitive or better
with respect to other contemporary techniques like SVM-RFE, in-
formation theoretic measures and RF for development classification
models.

The GSEQ analysis is a new way to validate the findings of the gene
selection techniques, which is more biologically appealing than the
traditional criterion based on classification. Through the GSEQ analysis,
a meaningful measure, i.e. p-value was computed for the selected gene

Table 3
Performance evaluation of gene selection techniques based on GSEQ analysis.

Methods Salinity stress Cold stress Drought stress Bacteria stress

NQTL p-Value NQTL p-Value NQTL p-Value NQTL p-Value

BMRMR 125 1.02E-77 149 1.06E-62 110 7.24E-55 62 0.9078
MRMR 117 1.34E-42 136 1.56E-34 107 4.04E-51 50 0.9227
SVMR 120 1.28E-60 121 2.71E-07 108 2.22E-54 54 0.9245
t 113 2.50E-41 137 1.98E-45 106 2.31E-39 50 0.9221
F 115 1.05E-37 134 7.34E-27 106 1.76E-44 46 0.9220
FC 110 6.43E-14 130 1.96E-43 102 3.47E-45 58 0.9206
PCF 117 1.00E-37 127 8.16E-10 105 1.03E-31 42 0.9290
SRC 120 4.73E-56 140 1.43E-29 103 2.00E-28 49 0.9221
IG 89 0.099 124 1.85E-10 93 1.17E-05 58 0.9207
GR 101 0.0245 97 0.001 98 5.56E-14 44 0.9237
RF 109 4.25E-11 131 1.36E-08 100 3.54E-21 43 0.9222
SU 108 4.44E-09 139 2.30E-20 99 8.36E-17 51 0.9229
Wilcox 116 1.45E-35 143 2.70E-50 103 4.19E-24 43 0.9221

Methods: Codes of the gene selection methods codes as given in Supplementary Table S2; NQTL: number of QTL hits within the selected gene set; p-value; statistical significance value
from GSEQ test.

Table 4
Performance evaluation of gene selection techniques based on biological similarity analysis.

Methods Salinity stress Cold stress Drought stress Bacteria stress

MF BP CC MF BP CC MF BP CC MF BP CC

BMRMR 0.124 0.156 0.187 0.121 0.166 0.068 0.173 0.145 0.112 0.128 0.189 0.116
MRMR 0.085 0.126 0.059 0.129 0.151 0.053 0.132 0.135 0.116 0.096 0.114 0.096
SVMR 0.152 0.112 0.120 0.113 0.158 0.068 0.170 0.129 0.132 0.089 0.128 0.074
t 0.119 0.125 0.076 0.117 0.138 0.058 0.146 0.130 0.122 0.098 0.118 0.103
F 0.094 0.129 0.062 0.133 0.140 0.051 0.122 0.143 0.104 0.097 0.128 0.113
FC 0.114 0.114 0.079 0.125 0.155 0.058 0.104 0.117 0.122 0.120 0.109 0.086
PCF 0.102 0.134 0.057 0.147 0.154 0.054 0.116 0.138 0.109 0.092 0.117 0.111
SRC 0.088 0.140 0.067 0.126 0.155 0.057 0.093 0.141 0.086 0.093 0.127 0.108
IG 0.117 0.133 0.107 0.096 0.141 0.070 0.118 0.161 0.074 0.102 0.101 0.112
GR 0.101 0.143 0.082 0.112 0.103 0.076 0.116 0.131 0.064 0.145 0.177 0.075
RF 0.099 0.145 0.093 0.117 0.132 0.068 0.116 0.156 0.091 0.086 0.144 0.101
SU 0.098 0.143 0.101 0.133 0.151 0.064 0.096 0.142 0.115 0.075 0.120 0.104
Wilcox 0.094 0.134 0.077 0.125 0.155 0.058 0.089 0.146 0.090 0.095 0.123 0.111

Methods: gene selection methods codes as given in Supplementary Table S2; Values in table represents biological similarity score among genes within the selected gene set; MF: Molecular
function GO terms; BP: Biological process; CC: Cellular component GO; values in bold indicate highest value.
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set. Based on the computed p-value, the performance of the gene se-
lection techniques was inferred, as it is biological relevant criterion
under a sound statistical framework. The GSEQ test and GO based
biological similarity score provided several biologically reliable criteria
for performance analysis of gene selection techniques. Further, through
this performance analysis, it was found that Boot-MRMR approach se-
lects more biologically relevant informative genes as compared to other
existing techniques.

The interpretation of statistical significance values for both the
approaches, i.e. Boot-MRMR and GSEQ were quite different and greatly
depends on the sampling scheme which forms the basis of the test
(Goeman et al., 2004). For Boot-MRMR, the p-values were computed for
each gene (single gene testing) based on a self-contained null hypoth-
esis and bootstrap procedure coupled in subject sampling model. While
for GSEQ analysis the p-values were computed for each gene set (gene
set testing) based on a competitive null hypothesis with the use of 2× 2
contingency table method and gene sampling procedure. Further, this
subject sampling model was the mirror image of the gene sampling
procedure (with different sampling units), which reverses the meaning
of statistical significance values in these two approaches. For Boot-
MRMR approach, a significant p-value gives confidence that the given
gene is biologically informative for the target condition/trait. On the
contrary, for the GSEQ test, the significant p-value provides the strength
of the gene selection technique, which selected biologically informative
gene set.

The performance of the gene selection techniques was demonstrated
on a broad spectrum of comparative metrics. These metrics include
biological relevant criteria, i.e. GSEQ as well as biological similarity
analysis, statistically meaningful criteria, i.e. performance metrics
based on classification and computational time. Further, adjudging the
performance of these techniques based on only CA, might lead to the
selection of biologically irrelevant genes. Through the GSEQ analysis, it
was evident that informative genes selected by the developed Boot-
MRMR technique, were more enriched with the QTLs, i.e. more genes
are associated with the QTL regions as compared to other gene selection
techniques. Further, the GO based biological similarity analysis showed
that the functional similarities exist among the informative genes se-
lected by Boot-MRMR, which were comparable to those of popular
techniques like SVM-RFE, information theoretic measures. However,
the Boot-MRMR selects genes which are more biologically informative
for the target trait/condition (which may have biological functions
important to stress tolerance) as compared to other techniques, viz. t-
score, F-score, RF, MRMR and correlation based approaches by elim-
inating redundant and spuriously associated genes. It may also be noted
that, the proposed Boot-MRMR was not so computationally expensive
and required less execution time to provide statistically and biologically
informative minimal gene set as compared to other existing competitive
techniques.

After informative gene set selection using classification based cri-
teria, the selected gene set need to be scrutinized based on functional
similarity and enrichment with the trait specific QTLs to assess its
biological relevance. Ideally, a gene selection technique should con-
sider both biological relevance measures and traditional statistical cri-
teria to select an informative gene set. Such type of challenges could be
easily solved by MCDM based approach of operation research.
Therefore, in this case, we used MCDM-TOPSIS approach to identify
best gene selection technique based on these diversified criteria on
multiple crop datasets. This approach was also able to avoid the ex-
isting conflicts among the criteria to select the best gene selection
technique. This was the first systematic and rigorous study to evaluate

the performance of gene selection techniques under MCDM setup on
multiple crop GE datasets. The MCDM-TOPSIS analysis revealed that
for most of the datasets, the proposed Boot-MRMR was found to be best
for informative gene selection over other existing techniques.

6. Conclusions

Selection of informative genes from available high dimensional GE
data is a challenging task. In this study, we proposed a statistical ap-
proach for informative gene selection from such GE data by considering
gene relevance and redundancy simultaneously. Here, the informative
genes were selected based on the statistical criterion, which is more
convincing as compared to other competitive gene selection techniques.
Further, the GSEQ analysis provided two innovative biologically re-
levant criteria for performance analysis of gene selection technique(s).
Through this, it was observed the gene set obtained by Boot-MRMR are
more enriched with the underlying QTLs and has more functional si-
milarity as compared to other techniques. Further, the systematic
MCDM-TOPSIS analysis of the gene selection techniques revealed that
Boot-MRMR approach is better method over the available alternatives
with respect to a broad spectrum of criteria. The Boot-MRMR approach
is independent of platforms on which gene expressions are measured.
However, results may have little variations based on platforms as this
method is based on resampling procedure, i.e. bootstrapping in which
distributional properties of the data is being taken in to account. Hence,
all major informative genes will remain same irrespective of platform.
Further, the proposed approaches can be used for other case vs. control
genomic studies including GE based on NGS data. The findings of this
study will guide the genome researchers and experimental biologists to
select informative gene set scientifically and objectively.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.gene.2018.02.044.
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