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Abstract : With the advent of machine learning techniques, a large number of biological problems have been given a solution.

The interpretation of massive genomic data is a big challenge to the researchers, but literature shows many computational

approaches to counter such problems. Out of many biological issues, one is regarding the Antimicrobial peptides (AMPs),

which are the hosts’ defence molecules gaining extensive research attention worldwide. Today, resistance to chemical

antibiotics is an unsolved and growing problem. AMPs may be a natural alternative to chemical antibiotics and a potential

area of research under applied biotechnology. The present work shows application of Artificial Neural Networks (ANN), a

machine learning algorithm on bovine AMPs for prediction. Total of 99 AMPs related to cattle collected from various

databases and published literature were taken into study. N-terminal residues, C-terminal residues and full sequences were

used for model development and identification (prediction). For N-terminal residues, MultiLayer Perceptron (MLP 31-19-2)

was found to be the best model with accuracy 94% while for C-terminal residues and full sequence, MLP 31-14-2 and MLP 31-

16-2 were the best models with accuracies 94% and 92%, respectively for classification of bovine AMPs. The computational

approach for AMPs identification from this study may be used to design potent peptides against microbial pathogens.
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1. Introduction

Integration of domesticated animal with cropping

system in agriculture decades ago has led to a revolution,

which is emerging as an important growth leverage of

the economy. Livestock renders essential food products

viz. ,  milk and meat, draught power, manure,

employment, income and export earnings. Cattle

domestication initiated sometime in the Neolithic (8,000-

10,000 years ago) with subsequent spread of cattle

throughout the world is intertwined with human

migrations and trade [Willham (1986)]. At present, more

than 1.5 billion cattle are reported, which is liable to

expand to 2.6 billion by 2050, as per Food and

Agriculture Organization [FAO (2012)]. India covers

less than 3% of the world’s total land area but sustains

about 57% of the world’s buffalo population, 16% of

the cattle population and 20% of goat population. After

the cattle genome sequencing, UMD 3.1 assembly is

the third release of Bos Taurus assembly from CBCB,

University of Maryland and enables to more

understanding of mammalian evolution and accelerating

livestock genetic improvement for milk and meat

production.

In the era of genomics, the various machine learning

approaches is applied for some relevant conclusion of

the biological processes. The interpretation of massive

genomic data is a big challenge to the researchers, but

literature shows many computational approaches

[Stanke and Waack (2003), Brusic et al. (1998), Peters

et al. (2003), Saha et al. (2007), Ansari et al. (2010)]

to counter such problems. In this regards, attention has

been given to a peptidic group of bioactive molecules

known as antimicrobial peptides (AMP). These are the

hosts’ defence molecules and an essential part of innate

immunity in response to microbial challenges [Otvos

(2000)]. AMPs comprise of classes like defensins,

thionins, lipid-transfer proteins, cyclotides, snakins and

hevein-like, according to amino acid sequence homology

[Pestana-Calsa et al. (2010)].
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These peptides are known to be alternative to

chemical antibiotics to overcome the problem of

resistance against pathogens, hence termed as “natural

antibiotics”. AMPs have their applicability in

bioengineering and are used as a biotechnological tool

for creating transgenic agricultural crops, biofuels etc

[Bryksa et al. (2010)]. A good bioinformatics resource

has been reported in relation to AMPs like AMSDb

[Tossi and Sandri (2002)], APD2 [Wang and Wang

(2009)], ANTIMIC [Zheng and Zheng (2002)], AMPer

[Fjell et al. (2007)], CAMP [Thomas et al. (2010)]

etc.

2. Materials and Methods

2.1 Extraction of AMPs in legumes

The antimicrobial peptide sequences were

extracted from various specialized databases like

AMSdb, SAPD, APD2, CAMP, ANTIMIC, AMPer

etc. Approximately two hundred peptide sequences

were considered for study for analysis purpose. These

peptides belonged to two major classes of antimicrobial

and non-antimicrobial peptides. Since, no experimentally

validated non antimicrobial source exist, the peptide

synthesized from mitochondria and other intracellular

locations except the secretary proteins were considered

as AMP are mostly secreted outside the cell [Kumar

et al. (2006)].

2.2 Pre-processing of the sequences

Before using ANN algorithm for training and

testing, the biological sequences need to be converted

to format suitable for input to computer system. For

this study, each instance was denoted by a vector,

having 31 attributes (or features), 20 representing the

amino acid composition (AAC) for that instance and

rest 11 features [viz. molecular weight, number of

carbon atoms, number of hydrogen atoms, number of

nitrogen atoms, number of oxygen atoms, number of

sulphur atoms, theoretical pI, estimated halflife,

instability index, aliphatic index and grand average of

hydropathicity (GRAVY)] are the physico-chemical

parameters for that instance. These eleven features

were computed using bioperl scripts (as in Annexure

1). AAC is a quantitative measure of the sequence that

represents the sequence in terms of 20 values, one for

each amino acid residue. For ith amino acid residue,

AAC is defined as the percentage of ith residue in whole

sequence. Mathematically,

AAC
t
 = (N

t 
/ N) × 100

Where, AAC
t
 = ACC of ith amino acid residue.

N
t
 = Number of occurrences of ith amino acid

residue in the sequence.

N = Total number of amino acid residue in the

sequence.

AAC completely omits the sequence order

information and focuses only on the percentage amino

Annexure 1 :Bioperl script for computing physic chemical

parameters of peptides under study.

#!/bin/perl -w

use Bio::Seq;

use Bio::DB::GenBank;

use Bio::Tools::Protparam;

use Bio::SeqIO;

my $seqio_obj = Bio::SeqIO->new(-file => $ARGV[0], -format

=> “fasta” );

open (OUT,”>$ARGV[0]-OUT”);

open (OUT1,”>res”);

“ID##”,

“Amino acid number##”,

“Number of negative amino acids##”,

“Number of positive amino acids##”,

“Molecular weight##”,

“Theoretical pI##”,

“Total number of atoms##”,

“Number of carbon atoms##”,

“Number of hydrogen atoms##”,

“Number of nitrogen atoms##”,

“Number of oxygen atoms##”,

“Number of sulphur atoms##”,

“Half life##”,

“Instability Index##”,

“Stability class##”,

“Aliphatic_index##”,

“Gravy##”,

print OUT1 “\n”;

while( my $seq_obj = $seqio_obj->next_seq ) {

my $pp=Bio::Tools::Protparam->new(seq=>$seq_obj->seq);

$seq_obj->display_id,”##”,

$pp->amino_acid_number(),”##”,

$pp->num_neg(),”##”,

$pp->num_pos(),”##”,

$pp->molecular_weight(),”##”,

$pp->theoretical_pI(),”##”,

$pp->total_atoms(),”##”,

$pp->num_carbon(),”##”,

$pp->num_hydrogen(),”##”,

$pp->num_nitro(),”##”,

$pp->num_oxygen(),”##”,

$pp->num_sulphur(),”##”,

$pp->half_life(),”##”,

$pp->instability_index(),”##”,

$pp->stability(),”##”,

$pp->aliphatic_index(),”##”,

$pp->gravy(),”##”,

print OUT “\n”;

}
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acid residue content. The addressed problem is binary

classification type. Hence, a matrix of order N × 31

(here, N is 199) is obtained, which is used as input in

further study. The target vector comprises of binary

class i.e. AMP or Non-AMP.

2.3 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a powerful

machine learning technique commonly used in the field

of bioinformatics. In this study, ANN was applied for

prediction of antibacterial peptides. ANN have been

developed as generalizations of mathematical models

of biological nervous systems. The basic processing

elements of neural networks are called artificial neurons,

or simply neurons or nodes. In a simplified mathematical

model of the neuron, the effects of the synapses are

represented by connection weights that modulate the

effect of the associated input signals and the nonlinear

characteristic exhibited by neurons is represented by a

transfer function. The neuron impulse is then computed

as the weighted sum of the input signals, transformed

by the transfer function. The learning capability of an

artificial neuron is achieved by adjusting the weights in

accordance with the chosen learning algorithm [Haykin

(1994)].

Activation function

Every neuron model consists of a processing

element with synaptic input connections and a single

output. The signal flow of neuron inputs, x
j
 is

unidirectional. Fig. 1 illustrates the typical artificial neural

network and the neuron output signal “O” given by the

following relationship

O
=1

= =
F
HG

I
KJ∑f net w xj j

j

n

b g

Where, w
j
 is the weight vector and the function

f(net) is referred to as an activation (transfer) function.

The most important unit in neural network structure

is their net inputs by using a scalar-to-scalar function

called “the activation function or threshold function or

transfer function”, output a result value called the “unit’s

activation”.

The variable net is defined as a scalar product of

the weight and input vectors

net = wT x = w
1
x

1
 + w

2
x

2
 + ... + w

n
x

n

Where, T is the transpose of a matrix and in the

simplest case, the output value O is computed as

Fig. 1 : Architecture of an artificial neural network.

O = =
≥R

S|
T|

U
V|
W|

f net
if w x

otherwise

T

b g 1

0

;

;

θ

Where, θ is called the threshold level and this type

of node is called a linear threshold unit.

2.4 Five-fold cross validation

All models were evaluated using five-fold cross-

validation technique in the study. In this case, dataset is

randomly divided into five sets, each set containing

around equal number of peptides. Four sets among five

are used for training and the remaining one set for

testing. The process is repeated five times such that

each set gets the opportunity to fall under testing.

Average of five sets is finally considered.

2.5 Assessment of the prediction accuracy

After model fitting, the performance needs to be

assessed. Computational models that are valid, relevant,

and properly assessed for accuracy is used for planning

of complementary laboratory experiments. In the study,

prediction quality was examined by testing the model,

obtained after training the system, with test data set.

Several measures are available for the statistical

estimation of the accuracy of prediction models. The

common statistical measures are Sensitivity, Specificity,

Precision or Positive predictive value (PPV), Negative

predictive value (NPV), False Positive Rate (FPR),

False Discovery Rate (FDR), Accuracy and Mathew’s

correlation coefficient (MCC) and F1 score.

These measures are defined as follows

Sensitivity = TP /(TP + FN) * 100

Specificity = TN /(FP + TN) * 100

PPV = TP /(TP + FP) * 100

NPV = TN /(TN + FN) * 100

FPR = FP /(FP + TN) = 1 – Specificity

FDR = FP /(TP + FP) = 1 – PPV
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F
1
 = 2TP /(2TP + FP + FN)

Accuracy
TP TN

TP FP TN FN
=

+

+ + +

b g
b g *100

MCC
TP* TN FP FN

TP FP TP FN TN FP TN FN
=

+

+ + + +

*
*

b g
b gb gb gb g

100

Where, TP = True Positive, TN = True Negative

FP = False Positive and FN = False Negative

3. Results and Discussion

Prior in silico approaches help to get an idea of

the AMP coding potentials of animal species under

study, though it requires further biological validation. In

our study, total of 98 antimicrobial peptides of cattle/

bovidae family belonging to following family of AMPs

were extracted: Bactenecin, Lactoferricin, Defensin,

Indolicidin, seminalplasmin, Cathelicidin, Enkelytin,

casecidin, vasostatin, bactenecin, cathelin, melantropin,

aprotinin, cascocidin, lactoferecin, proenlphlin, casocidin

and apolipoprotein. The maximum number of data was

extracted for “Defensin” family. Fig. 2 represents the

main classes of collected antimicrobial peptide

sequences from cattle along with their percentage

contribution. In silico studies of these AMPs help to

unravel the functional aspects of peptides.
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Fig. 2 : Class wise distribution of cattle AMPs.

Classification model was developed using ANN.

Total of 199 peptide sequences comprising of 99 from

antimicrobial class and 100 from non-antimicrobial class

of cattle were considered here. These were pre-

processed and converted quantitative required as input

for ANN methodology for further analysis. Pre-

processing of the sequences information and calculation

of amino acid composition (AAC) was done in PERL

scripts. Besides the amino acid composition, other
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physico-chemical properties were considered like

molecular weight, number of carbon atoms, number of

hydrogen atoms, number of nitrogen atoms, number of

oxygen atoms, number of sulphur atoms, theoretical pI,

estimated halflife, instability index, aliphatic index, and

grand average of hydropathicity (GRAVY). Each

instance was denoted by a vector, having 31 attributes

(or features) representing the amino acid composition

(AAC) and other 11 physico-chemical parameters

considered for that instance. This consists of series of

input vectors xi
d

∈ℜ  (i = 1, 2, ..., N). Hence, a matrix

of order 199 x 31 is obtained, which is used as input in

further study. The target vector comprises of binary

class i.e. AMP and Non-AMP. Hence, this is a problem

of binary classification type representing the vector y
i

having +1 and -1 as values. Approximately 70% of total

data was used for training purpose (model development)

and remaining 30% for testing (model validation)

purpose. All the analyses for obtaining the classification

models using ANN have been done in STATISTICA

8.0.

For AMPs, N-terminals play important role in

bacteria-specific interaction process while C-terminus

is responsible for membrane interaction and pore

formation. For this reason, the whole dataset was

analysed with three approaches, i.e. N-terminal

residues, C-terminal residues and full sequence. Various

ANN models were tried for N-terminal residues, C-

terminal residues and full sequence. It was observed

that for C-terminal residues MLP 31-14-2 was the best

model with specificity, sensitivity, PPV, NPV, FPR, FDR,

accuracy, MCC and F1 score as 0.94, 0.94, 0.94, 0.94,

0.06, 0.06, 0.94, 0.87 and 0.94 respectively. The training

algorithm was Broyden-Fletcher-Goldfarb-Shanno

(BGFS) 38 with entropy error function, activation

function as exponential and softmax output layer.

Similarly for N-terminal residues, MLP 31-19-2 was

the best model with specificity, sensitivity, PPV, NPV,

FPR, FDR, accuracy, MCC and F1 score as 0.94, 0.94,

0.94, 0.94, 0.06, 0.06, 0.94, 0.88 and 0.94 respectively.

The training algorithm was BFGS 88 with eror function

as entropy, activation function as exponential and

softmax output layer.

For the full sequence, best model was found to be

MLP 31-16-2 with specificity, sensitivity, PPV, NPV,

FPR, FDR, accuracy, MCC and F1 score as 0.93, 0.92,

0.93, 0.92, 0.07, 0.0.7, 0.92, 0.85 and 0.92 respectively.

The training algorithm was BFGS 6 with error function

as entropy, activation function as Tanh and softmax

output layer.

The performance measures (sensitivity, specificity,

PPV, NPV, FPR, FDR, accuracy, MCC and F1 score)

for N-terminal, C-terminal and full-sequence were

obtained and results were presented in Tables 1, 2 and

3, respectively for 5-fold cross validation.

4. Conclusion

Computational prediction is an important

immunoinformatic technology supporting the

determination of AMPs. For N-terminal residues, MLP

31-19-2 was found to be the best model, while for C-

terminal residues and full sequence, MLP 31-14-2 and

MLP 31-16-2 were the best models respectively for

classification of bovine AMPs. The parameters were

also further fine-tuned to achieve the best performance

in terms of misclassification error. This developed model

may further be used for identification of antimicrobial

peptides from candidate peptides. The current prediction

method can be a useful tool for the systematic analysis

of bovine AMP data. Although, computational analyses

and predictions may complement, but cannot exactly

replace laboratory experiments. However, this analysis

may help to minimize number of required laboratory

experiments. AMPs identified from the studies may be

used to confer disease resistance in other domestic

animals.
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