

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

MADDINAHUNDI (4B3E2E2g) MICRO WATERSHED

Gundlupet Taluk, Chamarajanagara District, Karnataka

Karnataka Watershed Development Project – II **SUJALA – III**

World Bank funded Project

ICAR - NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation:

Rajendra Hegde, Ramesh Kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Maddinahundi (4B3E2E2g) Microwatershed, Gundlupet Taluk, Chamarajanagara District, Karnataka", Sujala ICAR-NBSS&LUP Sujala MWS Publ.224, ICAR – NBSS & LUP, RC, Bangalore. p.107 & 34,

TO OBTAIN COPIES,

Please write to:

Director, ICAR - NBSS & LUP,

Amaravati Road, NAGPUR - 440 033, India

Phone : (0712) 2500386, 2500664, 2500545 (O)

Telefax : 0712-2522534

E-Mail : director@nbsslup.ernet.in

Website URL : nbsslup.in

Or

Head, Regional Centre, ICAR - NBSS&LUP, Hebbal, Bangalore - 560 024

Phone : (080) 23412242, 23510350 (O)

Telefax : 080-23510350

E-Mail : nbssrcb@gmail.com

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

MADDINAHUNDI (4B3E2E2g) MICROWATERSHED

Gundlupet Taluk, Chamarajanagara District, Karnataka

Karnataka Watershed Development Project – II Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. Thechallenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of the land resources, their constraints, inherent potentials and suitability for various land

based rural enterprises, crops and other uses is a prerequisite for preparing location-specific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component-1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Maddinahundi Microwatershed, Gundlupet Taluk and Chamarajanagar District, Karnataka" for integrated development was taken up in collaboration with the State Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plots and socio-economic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micowatershed. The project report with the accompanying maps for the Microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricutural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner.

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur S.K. SINGH

Date: 22.06.2019 Director, ICAR - NBSS&LUP, Nagpur

Contributors

Dr. Rajendra Hegde	Dr. S.K.Singh
Principal Scientist, Head &	Director, ICAR-NBSS&LUP
Project Leader, Sujala-III Project	Coordinator, Sujala-III Project
ICAR-NBSS&LUP, Regional Centre,	Nagpur
Bangalore	
Soil Survey, Mapping &	& Report Preparation
Dr. K.V. Niranjana	Sh. R.S. Reddy
Dr. B.A. Dhanorkar	Smt. Chaitra, S.P.
	Mr. Somashekar T.N
	Dr. GopaliBardhan
	Ms. Arpitha M
	Dr. Mahendra Kumar
Field V	Vork
Sh. C.Bache Gowda	Sh. Sandesh Shastri
Sh. Somashekar	Sh. Rajeev, G.S.
Sh. Venkata Giriyappa	Sh. Balasubramanyam, M.G.
Sh. M. Jayaramaiah	Sh. Vijaya Kumar
Sh. Paramesha, K.	Sh. Mayur Patil
	Sh. Kamalesh K. Avate
GIS V	Vork
Dr. S.Srinivas	Sh. A.G. Devendra Prasad
Sh. D.H.Venkatesh	Sh. Prakashanaik, M.K.
Smt.K.Sujatha	Sh. Abhijith Sastry, N.S.
Smt. K.V.Archana	Sh. Mahamad Ali, M.
Sh. N.Maddileti	Sh. Amar Suputhra, S.
	Sh. Avinash, K.N.
	Sh. Anudeep, Y.
	Sh. Sudip Kumar Suklabaidya
	Smt. K.Karunya Lakshmi
	Ms. Seema, K.V.
	Ms. A. Rajab Nisha
Laboratory	Analysis
Dr. K.M.Nair	Smt. Savitha, H.R.
Smt. Arti Koyal	Smt. Steffi Peter
Smt. Parvathy, S.	Smt. Thara, V.R.

	Smt. Roopa, G.
	Ms. Shwetha, N.K.
	Smt. Ishrat Haji
	Ms. Pavana Kumari, P.
	Sh. Shanthaveeraswamy, H.M.
	Sh. Ramesh, K.
	Ms. Padmaja, S.
	Ms. Veena, M.
Soil & Water	Conservation
Sh. Sunil P. Maske	
Socio-Econor	nic Analysis
Dr. S.C. Ramesh Kumar	Sh. M. K. Prakashanaik
	Ms. Sowmya K.B
	Sh.Manjunath M
	Sh.Veerabhadraswamy R
	Sh.Lankesh RS
	Sh.Kalaveerachari R Kammar
	Sh.Pradyumma U
	Sh.Yogesha HN
	Sh.Vijay kumar lamani
	Sh.Arun N Kambar
	Sh.Vinay
	Sh.Basavaraj.Biradar
	Sh.Vinod R
	Sh.Praveenkumar P Achalkar
	Sh.Rajendra D
Watershed Development De	partment, GoK, Bangalore
Sh. Rajeev Ranjan IFS	Dr. A. Natarajan
Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project
Dr. S.D. Pathak IFS	
Executive Director & Chief Conservator of Fo	orests, WDD

PART-A LAND RESOURCE INVENTORY

Contents

Preface		
Contributor	rs	
Executive S	Summary	
Chapter 1	Introduction	1
Chapter 2	Geographical Setting	3
2.1	Location and Extent	3
2.2	Geology	4
2.3	Physiography	4
2.4	Drainage	5
2.5	Climate	5
2.6	Natural Vegetation	6
2.7	Land Utilization	7
Chapter 3	Survey Methodology	11
3.1	Base maps	11
3.2	Image Interpretation for Physiography	11
3.3	Field Investigation	14
3.4	Soil Mapping	16
3.5	Laboratory Characterization	16
3.6	Land management Units	18
Chapter 4	The Soils	21
4.1	Soils of Granite gneiss Landscape	21
Chapter 5	Interpretation for Land Resource Management	37
5.1	Land Capability Classification	37
5.2	Soil Depth	39
5.3	Surface Soil Texture	40
5.4	Soil Gravelliness	41
5.5	Available Water Capacity	42
5.6	Soil Slope	43
5.7	Soil Erosion	44
Chapter 6	Fertility Status	47
6.1	Soil Reaction (pH)	47
6.2	Electrical Conductivity (EC)	47
6.3	Organic Carbon (OC)	47
6.4	Available Phosphorus	49
6.5	Available Potassium	49
6.6	Available Sulphur	49
6.7	Available Boron	51
6.8	Available Iron	51
6.9	Available Manganese	51
6.10	Available Copper	51
6.11	Available Zinc	54

Chapter 7	Land Suitability for Major Crops	55
7.1	Land suitability for Sorghum	55
7.2	Land suitability for Maize	58
7.3	Land suitability for Redgram	59
7.4	Land suitability for Horsegram	60
7.5	Land suitability for Fieldbean	62
7.6	Land suitability for Groundnut	63
7.7	Land suitability for Sunflower	64
7.8	Land suitability for Cotton	66
7.9	Land suitability for Onion	67
7.10	Land suitability for Potato	68
7.11	Land suitability for Beans	70
7.12	Land suitability for Beetroot	71
7.13	Land suitability for Mango	72
7.14	Land suitability for Sapota	74
7.15	Land suitability for Guava	75
7.16	Land suitability for Banana	77
7.17	Land suitability for Jackfruit	78
7.18	Land Suitability for Jamun	79
7.19	Land Suitability for Musambi	80
7.20	Land Suitability for Lime	81
7.21	Land Suitability for Cashew	83
7.22	Land Suitability for Custard Apple	83
7.23	Land Suitability for Amla	84
7.24	Land Suitability for Tamarind	85
7.25	Land suitability for Marigold	86
7.26	Land suitability for Chrysanthemum	88
7.27	Land suitability for Turmeric	89
7.28	Land Management Units	90
Chapter 8	Soil Health Management	95
Chapter 9	Soil and Water conservation Treatment Plan	101
9.1	Treatment Plan	101
9.2	Recommended Soil and Water Conservation measures	105
9.3	Greening of Microwatershed	106
	References	109
	Appendix I	I-VIII
	Appendix II	IX-XIV
	Appendix III	XV-XVIII

LIST OF TABLES

2.1	Mean Monthly Rainfall, PET, 1/2 PET at Gundlupet Taluk, Chamarajanagar District	5
2.2	Land Utilization in Gundlupet District	7
3.1	Differentiating Characteristics used for Identifying Soil Series	16
3.2	Soil map unit description of Maddinahundi Microwatershed	17
4.1	Physical and Chemical Characteristics of Soil Series identified in Maddinahundi microwatershed	28
7.1	Soil-Site Characteristics of Maddinahundi Microwatershed	56
7.2	Land suitability criteria for Sorghum	57
7.3	Land suitability criteria for Maize	58
7.4	Land suitability for Red gram	60
7.5	Land suitability for Horse gram	61
7.6	Land suitability for Field bean	62
7.7	Land suitability criteria for Groundnut	64
7.8	Land suitability criteria for Sunflower	65
7.9	Land suitability criteria for Cotton	66
7.10	Land suitability for Onion	68
7.11	Land suitability for Potato	69
7.12	Land suitability criteria for Mango	70
7.13	Land suitability criteria for Sapota	74
7.14	Land suitability criteria for Guava	76
7.15	Land suitability criteria for Banana	77
7.16	Land suitability criteria for Lime	82
7.17	Land suitability criteria for Marigold	87
7.18	Land suitability criteria for Chrysanthemum	88
7.19	Land suitability criteria for Turmeric	90
7.20	Proposed Crop Plan for Maddinahundi Microwatershed	93

LIST OF FIGURES

2.1	Location map of Maddinahundi Microwatershed	3
2.2	Granite and granite gneiss rocks	4
2.3	Rainfall distribution in Gundlupet Taluk, Chamarajanagar District	6
2.4	Natural vegetation of Maddinahundi Microwatershed	6
2.5	Different crops and cropping systems in Maddinahundi Microwatershed	8
2.6	Current Land use – Maddinahundi Microwatershed	9
2.7	Location of Wells- Maddinahundi Microwatershed	9
3.1	Scanned and Digitized Cadastral map of Maddinahundi Microwatershed	13
3.2	Satellite image of Maddinahundi Microwatershed	13
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Maddinahundi Microwatershed	14
3.4	Location of profiles in a transect	15
3.5	Soil phase or management units of Maddinahundi Microwatershed	19
5.1	Land Capability Classification of Maddinahundi Microwatershed	38
5.2	Soil Depth map of Maddinahundi Microwatershed	40
5.3	Surface Soil Texture map of Maddinahundi Microwatershed	41
5.4	Soil Gravelliness map of Maddinahundi Microwatershed	42
5.5	Soil Available Water Capacity map of Maddinahundi Microwatershed	43
5.6	Soil Slope map of Maddinahundi Microwatershed	44
5.7	Soil Erosion map of Maddinahundi Microwatershed	45
6.1	Soil Reaction (pH) map of Maddinahundi Microwatershed	48
6.2	Electrical Conductivity (EC) map of Maddinahundi Microwatershed	48
6.3	Soil Organic Carbon (OC) map of Maddinahundi Microwatershed	49
6.4	Soil Available Phosphorus map of Maddinahundi Microwatershed	50
6.5	Soil Available Potassium map of Maddinahundi Microwatershed	50
6.6	Soil Available Sulphur map of Maddinahundi Microwatershed	51
6.7	Soil Available Boron map of Maddinahundi Microwatershed	52
6.8	Soil Available Iron map of Maddinahundi Microwatershed	52
6.9	Soil Available Manganese map of Maddinahundi Microwatershed	53
6.10	Soil Available Copper map of Maddinahundi Microwatershed	53
6.11	Soil Available Zinc map of Maddinahundi Microwatershed	54
7.1	Land suitability for Sorghum	57

7.2	Land suitability for Maize	59
7.3	Land suitability for Red gram	60
7.4	Land suitability for Horse gram	61
7.5	Land suitability for Field bean	63
7.6	Land suitability for Groundnut	64
7.7	Land suitability for Sunflower	65
7.8	Land suitability for Cotton	67
7.9	Land suitability for Onion	68
7.10	Land suitability for Potato	70
7.11	Land suitability for French Beans	71
7.12	Land suitability for Beetroot	72
7.13	Land suitability for Mango	73
7.14	Land suitability for Sapota	75
7.15	Land suitability for Guava	76
7.16	Land suitability for Banana	78
7.17	Land suitability for Jackfruit	79
7.18	Land Suitability for Jamun	80
7.19	Land Suitability for Musambi	81
7.20	Land Suitability for Lime	82
7.21	Land Suitability for Cashew	83
7.22	Land Suitability for Custard Apple	84
7.23	Land Suitability for Amla	85
7.24	Land Suitability for Tamarind	86
7.25	Land suitability for Marigold	87
7.26	Land suitability for Chrysanthemum	89
7.27	Land suitability for Turmeric	90
7.28	Land Management Units map of Maddinahundi Microwatershed	92
7.29	Soil and water conservation map of Maddinahundi Microwatershed	106

EXECUTIVE SUMMARY

The land resource inventory of Maddinahundi Microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiography and the physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundaries. The soil map shows the geographic distribution and extent, characteristics, classification and use potentials of the soils in the microwatershed.

The present study covers an area of 450 ha in Gundlupet taluk of Chamarajanagar district, Karnataka. The climate is semiarid and categorized as drought-prone with an average annual rainfall of 734 mm, of which about 254 mm is received during south—west monsoon, 268 mm during the north-east and the remaining 212 mm during the rest of the year. An area of about 74 per cent is covered by soils, 21 per cent by forest and 5 per cent by others. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to 10 soil series and 17 soil phases (management units) and 7 land management units.
- \Leftrightarrow The length of crop growing period is about 150 days starting from the 3^{rd} week of June to 3^{rd} week of November.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 250 m grid interval.
- Land suitability for growing major agricultural and horticultural crops were assessed and maps showing the degree of suitability along with constraints were generated.
- ❖ *About 74 per cent area is suitable for agriculture.*
- About 20 per cent of soils are shallow (25-50 cm), 6 per cent are moderately shallow (50-75 cm), 13 per cent of the soils are moderately deep (75-100 cm), 7 per cent of the soils are deep (100-150 cm) and 29 per cent are very deep (>150 cm).
- About 29 per cent of the area has clayey soils at the surface, 42 per cent area has loamy soil and 3 per cent area sandy soils.
- About 37 per cent of the area has non-gravelly soils and 37 per cent gravelly (15-35 % gravel) soils.
- About 27 per cent has soils that are very low (<50 mm/m), 18 per cent are low (51-100 mm/m) in available water capacity and an area of 29 per cent has very high (>200 mm/m) available water capacity.

- **t** Entire area of about 74 per cent has very gently sloping (1-3% slope) lands.
- An area of about 45 per cent has soils that are slightly eroded (e1) and 29 per cent soils are moderately eroded (e2).
- An area of about 2 ha (<1%) is strongly acid (pH 5.0-5.5), 45 ha (10%) is moderately acid (pH 5.5-6.0), 59 ha (13%) is slightly acid (pH 6.0-6.5) and 13 per cent has soils that are neutral (pH 6.5-7.3). An area of about 15 per cent has soils hat are slightly alkaline (pH 7.3 to 7.8), 17 per cent has soils that moderately alkaline (pH 7.85 to 8.4) and 6 per cent has strongly alkaline (pH 8.4-9.0).
- **❖** The Electrical Conductivity (EC) of the soils are <2 dsm⁻¹indicating that the soils are non-saline.
- * About 12 per cent of the soils are low (>0.5%), 53 per cent of the soils are medium (0.5-0.75%) and 10 per cent soils that are high (>0.75%) in organic carbon.
- ❖ About 54 per cent of the soils are medium (23-57 kg/ha) and 20 per cent are high (>57 kg/ha) in available phosphorus.
- ❖ About 11 per cent of the soils are low (<145 kg/ha), 23 per cent are medium (145-337 kg/ha) and 40 per cent are high (>337 kg/ha) in available potassium.
- About 20 per cent of the soils are low in available sulphur, 48 per cent are medium (10-20 ppm) and 6 per cent are high (>20 ppm) in available sulphur.
- * Available boron is low (<0.5 ppm) in about 10 per cent, medium (0.5-1.0 ppm) in 41 per cent and 23 per cent area are high (>1.0 kg/ha).
- Available iron is sufficient (>4.5 ppm) in 70 per cent area and deficient (<4.5 ppm) in 4 per cent.
- Available manganese and copper are sufficient in the entire area of the microwatershed.
- Available zinc is deficient (<0.6 ppm) in 38 per cent and sufficient (>0.6 ppm) in 36 per cent.
- The land suitability for 27 major crops grown in the microwatershed were assessed and the areas that are highly suitable (S1) and moderately suitable (S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, price and finally the demand and supply position.

Land suitability for various crops in the Microwatershed

~	Suitability Area in ha (%)			Suitability Area in ha (%)	
Crop	Highly Moderately		Crop	Highly	Moderately
	suitable(S1)	suitable(S2)		suitable(S1)	suitable(S2)
Sorghum	98 (22)	100 (22)	Sapota	90 (20)	57 (13)
Maize	133 (30)	26 (6)	Guava	109 (24)	38 (8)
Redgram	133 (30)	87 (19)	Banana	90 (20)	82 (18)
Horsegram	133 (30)	113 (25)	Jackfruit	90 (20)	33 (7)
Field bean	90 (20)	108 (24)	Jamun	90 (20)	72 (16)
Groundnut	43 (10)	150 (33)	Musambi	129 (29)	33 (7)
Sunflower	16 (4)	156 (35)	Lime	129 (29)	33 (7)
Cotton	54 (12)	69 (15)	Cashew	90 (20)	57 (13)
Onion	90 (20)	108 (24)	Custard apple	109 (24)	137 (30)
Potato	90 (20)	69 (15)	Amla	109 (24)	137 (30)
French	90 (20)	108 (24)	Tamarind	90 (20)	22 (7)
Beans	90 (20)	108 (24)	Tamarina	90 (20)	33 (7)
Beetroot	90 (20)	69 (15)	Marigold	133 (30)	99 (22)
Turmeric	90 (20)	69 (15)	Chrysanthemum	90 (20)	108 (24)
Mango	90 (20)	33 (7)			

Apart from the individual crop suitability, a proposed crop plan has been prepared for the 7 identified LMUs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fodder, fibre and horticulture crops.

- * Maintaining soil-health is vital to crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.,
- Soil and water conservation treatment plan has been prepared that would help in identifying the sites to be treated and also the type of structures required.
- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands and also in the hillocks, mounds and ridges.

INTRODUCTION

Soil is a finite natural resource that is central to sustainable agriculture and food security. Over the years, this precious resource is faced with the problems of erosion, salinity, alkalinity, degradation, depletion of nutrients and even decline in availability of land for agriculture. It is a known fact, that it takes thousands of years to form a few centimetres of soil, thus, soil is a precious gift of nature. The area available for agriculture is about 51 per cent of the total geographical area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. However, the capacity of a soil to produce is limited and the limits to the production are set by its intrinsic characteristics, agroclimatic setting, and use and management. There is therefore, tremendous pressure on land and water resources, which is causing decline in soil-health and stagnation in productivity. As much as 121 m ha of land is reportedly degraded which leads to impaired soil quality. It is imperative that steps are urgently taken to check and reverse land degradation without any further loss of time. The improvements in productivity will have to come from sustainable intensification measures that make the most effective use of land and water resources. Soil erosion alone has degraded about 35 lakh ha. Almost all the areas are facing various degrees of degradation, particularly soil erosion. Salinity and alkalinity has emerged as a major problem (>3.5 lakh ha) in the irrigated areas of the State. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. Added to this, every year there is a significant diversion of farm lands and water resources for non-agricultural purposes. Thus, developing strategies to slow down the degradation process or reclaim the soils to normal condition and ensure sustainability of production system are the major issues today. This demands a systematic appraisal of our soil and land resources with respect to their extent, geographic distribution, characteristics, behaviour and use potential, which is very important for developing an effective land use and cropping systems for augmenting agricultural production on a sustainable basis.

The soil and land resource inventories made so far in Karnataka had limited utility because the surveys were of different types, scales and intensities carried out at different times with specific objectives. Hence, there is an urgent need to generate detailed site-specific farm level database on various land resources for all the villages/watersheds in a

time bound manner that would help to protect the valuable soil and land resources and also to stabilize farm production. Therefore, the land resource inventory required for farm level planning is the one which investigates all the parameters which are critical for productivity *viz.*, soils, site characteristics (slope, erosion, gravelliness and stoniness) climate, water, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socio-economic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying potential and problem areas, developing sustainable land use plans, estimation of surface run off and water harvesting potential, preparation of soil and water conservation plans, land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agroecosystem as a whole. The LEU is preferred over landform as the base for LRI. LEU is the assemblage of landform, slope and land use. An attempt has been made to upscale the soil resource information from 1:250000 and 1:50000 scale to the LEU map in Goa and other states.

The land resource inventory data and maps presented here aims to provide site-specific database for Maddinahundi Microwatershed in Gundlupet Taluk, Chamarajanagar District, Karnataka State for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery. Later, an attempt will be made to uplink this LRI data generated at 1:7920 scale under Sujala-III Project to the proposed Landscape Ecological Units (LEUs) map.

The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

GEOGRAPHICAL SETTING

2.1 Location and Extent

The Maddinahundi Microwatershed (Gopalpur subwatershed) is located in the southern part of Karnataka in Gundlupet Taluk, Chamarajanagara District, Karnataka State (Fig. 2.1). It comprises of Hongahalli, Kannigala, Maddinahundi, Masahalli and Channamallipur villages. It lies between 11⁰45' to 11⁰47' North latitudes and 76⁰34' to 76⁰36' East longitudes and covers an area of 450 ha. It is about 20 km south of Gundlupet and is surrounded by Hongahalli village on the north, Gopalapur on the south, Kannagal on the east and Channamallipur village on the northwestern side.

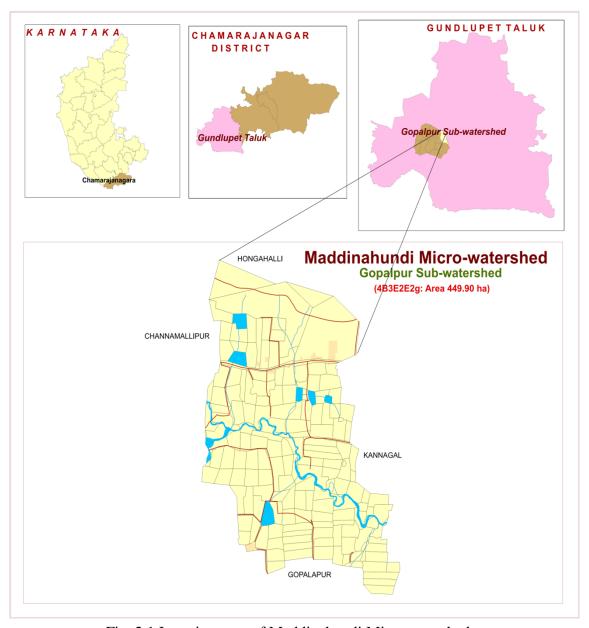


Fig. 2.1 Location map of Maddinahundi Microwatershed

2.2 Geology

Major rock formations observed in the micowatershed are of Archaean age and comprise of (Fig. 2.2a and 2.2b) granite and gneiss. They are essentially pink to gray granite gneisses. The rocks are coarse to medium grained. They consist primarily of quartz, feldspar, biotite and hornblende. The gray granite gneisses are highly weathered, fractured and fissured upto a depth of about 10 m. Dolerite dykes and quartz veins are common with variable width and found to occur in the microwatershed.



Fig. 2.2 a Granite and granite gneiss rocks

Fig. 2.2 b Granite rocks

2.3 Physiography

Physiographically, the area has been identified as granite gneiss landscape based on geology. The microwatershed area has been further divided into mounds/ ridges, summits, side slopes and very gently sloping uplands based on slope and relief features. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

There are no perennial rivers flowing in Gundlupet taluk. However, the area is drained by several small seasonal streams like Gundluhole along its course. Though, it is not a perennial one, during rainy season, it carries large quantities of rain water. The microwatershed has only a few small tanks which are not capable of storing water that flows during the rainy season. Due to this, the ground water recharge is very much affected in the villages. This is reflected in the failure of many bore wells in the villages. If the available rain water is properly harnessed by constructing tanks and recharge structures at appropriate places in the villages, then the drinking and irrigation needs of the entire area can be easily met. The drainage network is dendritic to sub parallel.

2.5 Climate

The district falls under semiarid tract and is categorized as drought-prone with average annual rainfall of 734 mm (Table 2.1). Of the total rainfall, a maximum of 254 mm is received during the south—west monsoon period from June to September, northeast monsoon from October to early December contributes maximum about 268 mm and the remaining 212 mm is received during the rest of the year. The winter season is from December to February. During April and May, the temperatures reach up to 42 °C and in December and January, the temperatures will go down to 16 °C. Rainfall distribution is shown in Figure 2.3. The average Potential Evapo-transpiration (PET) is 128 mm and varies from a low of 106 mm in November to 165 mm in the month of March. The PET is always higher than precipitation in all the months except in the month of October. Generally, the length of crop growing period (LGP) is 150 days and starts from 3rd week of June to third week of November.

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET in Gundlupet Taluk, Chamarajanagara District

Sl. no.	Months	Rainfall	PET	1/2 PET
1	JAN	0.80	129.10	64.55
2	FEB	6.80	133.80	66.90
3	MAR	26.90	164.90	82.45
4	APR	73.60	153.80	76.90
5	MAY	103.90	147.20	73.60
6	JUN	56.00	124.60	62.30
7	JUL	50.40	116.40	58.20
8	AUG	55.80	117.10	58.55
9	SEP	92.00	116.80	58.40
10	OCT	164.10	111.10	55.55
11	NOV	80.50	106.20	53.10
12	DEC	23.50	109.90	54.95
Total		734.30	127.57	

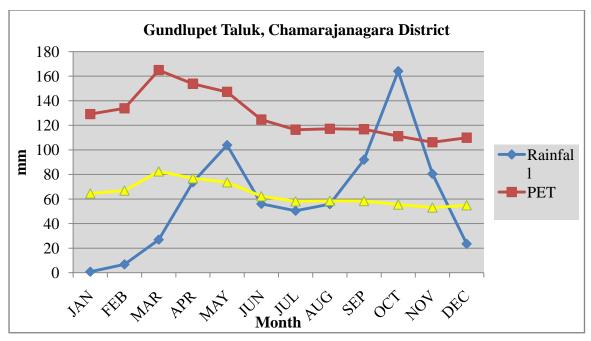


Fig 2.3 Rainfall distribution in Gundlupet Taluk, Chamarajanagara District

2.6 Natural Vegetation

Forests occupy about 32 per cent area in Gundlupet taluk. The major area of these forests are found in Bandipur National Park and Himavad Gopalaswamy Betta. The rest of the area in the taluk has sparse natural vegetation comprising few tree species, shrubs and herbs. The mounds, ridges and boulders occupy very sizeable areas which are under thin to moderately thick forest vegetation. Still, there are some remnants of the past forest cover which can be seen in patches in some ridges and hillocks in the microwatershed.

Fig. 2.4 Natural vegetation of Maddinahundi Microwatershed

Apart from the continuing deforestation, the presence of large population of goats, sheep and other cattle in the microwatershed is causing vegetative degradation of whatever little vegetation is left in the area. The uncontrolled grazing has left no time for the regeneration of the vegetative cover. This leads to the accelerated rate of erosion on the hill slopes, resulting in the formation of deep gullies in the foot slopes and eventually resulting in the heavy siltation of few tanks and reservoirs in the microwatershed.

2.7 Land Utilization

About 48 per cent area (Table 2.2) in Gundlupet taluk is cultivated at present. An area of about 6 per cent is currently barren. Forests occupy an area of about 32 per cent and the tree cover is in a very poor state except in Bandipura National Park and Gopalaswamy Betta. Most of the mounds, ridges and bouldery areas have very poor vegetative cover. Major crops grown in the area are sorghum, maize, cotton, onion, sugarcane, groundnut, red gram, horse gram and sapota (Fig. 2.5 a & b). While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the microwatershed is generated. The current land use map generated shows the arable and non-arable lands, other land uses and different types of crops grown in the area (Fig. 2.6). Simultaneously, enumeration of wells (bore wells and open wells) and existing conservation structures in the microwatershed are made and their location in different survey numbers is located on the cadastral map. Map showing the location of wells and other water bodies in Maddinahundi Microwatershed is given in Figure 2.7.

Table 2.2 Land Utilization in Gundlupet Taluk

CI NI					
Sl. No.	Agricultural land use	Area (ha)	Per cent		
1.	Total geographical area	140607			
2.	Total cultivated area	67339	47.84		
3.	Area sown more than once	13532			
4.	Cropping intensity	-	120.09		
5.	Trees and grooves	3485	2.47		
6.	Forest	44859	31.98		
7.	Cultivable wasteland	3265	2.32		
8.	Permanent Pasture land	10287	7.31		
9.	Barren land	7988	5.68		
10.	Non- Agriculture land	3384	2.40		

Fig. 2.5.a. Different crops and cropping systems in Maddinahundi Microwatershed

Fig. 2.5.b. Different crops and cropping systems in Maddinahundi Microwatershed

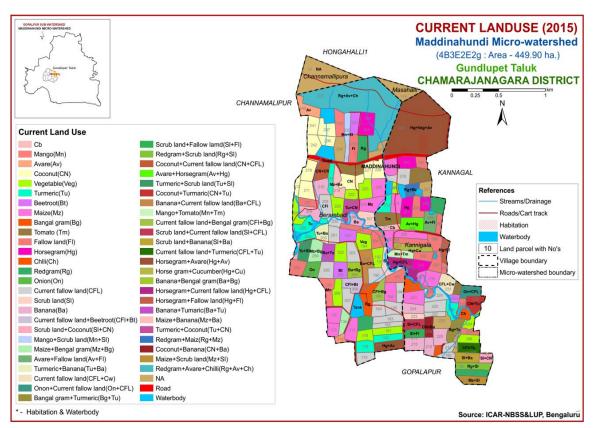


Fig. 2.6 Current Land Use map of Maddinahundi Microwatershed

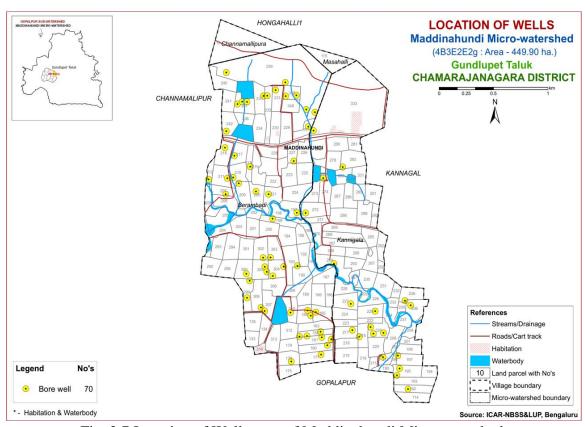


Fig. 2.7 Location of Wells map of Maddinahundi Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly to a given level of management. This was achieved in Maddinahundi Microwatershed by the detailed study of all the soil characteristics (depth, texture, colour, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.), and site characteristics (slope, erosion, drainage, occurrence of rock fragments etc.) followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units, and showing their extent and geographic distribution on the microwatershed cadastral map. The detailed soil survey at 1:7920 scale was carried out in an area of 450 ha. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map and satellite imagery as a base supplied by the KSRSAC. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig. 3.2). The cadastral map was overlaid on the satellite imagery (Fig. 3.3) that helps to identify the parcel boundaries and other permanent features. Apart from cadastral maps and images, toposheets of the area (1:50,000 scale) were also used for initial traversing, identification of geology and landforms, drainage features, present land use and also for selection of transects in the microwatershed.

3.2 Image Interpretation for Physiography

False Colour Composites (FCC) of Cartosat-I and LISS-IV merged satellite data covering the microwatershed area was visually interpreted using image interpretation elements and all the available collateral data with local knowledge. The delineated physiographic boundaries were transferred on to a cadastral map overlaid on satellite imagery. Physiographically, the area has been identified as granite gneiss landscape. They were divided into landforms such as ridges, mounds and uplands based on slope and other relief features. They were further subdivided into physiographic/image interpretation

units based on image characteristics. The image interpretation legend for physiography is given below.

Image Interpretation Legend for Physiography

\boldsymbol{G} - Granite gneiss landform

G1			Hills/ Ridges/ Mounds	
	G11		Summits	
	G12		Side slopes	
		G121	Side slopes with dark grey tones	
G2			Uplands	
	G21		Summits	
	G22		Gently sloping uplands	
		G221 Gently sloping uplands, yellowish green (eroded)		
		G222	Gently sloping uplands, yellowish white (severely eroded)	
	G23		Very gently sloping uplands	
		G231	Very gently sloping uplands, yellowish green	
		G232	Very gently sloping uplands, medium green and pink	
		G233	Very gently sloping uplands, pink and green (scrub land)	
		G234	Very gently sloping uplands, medium greenish grey	
	G235 Very gently sloping uplands, yellow		Very gently sloping uplands, yellowish white (eroded)	
		G236	Very gently sloping uplands, dark green	
		G237	Very gently sloping uplands, medium pink (coconut garden)	
		G238	Very gently sloping uplands, pink and bluish white (eroded)	
	C24		Wallaya / lawlanda	
	G24	G241	Valleys/ lowlands Valleys pink tones	
			Valleys, pink tones	
		G242	Valleys gray mixed with pink tones	



Fig 3.1 Scanned and Digitized Cadastral map of Maddinahundi Microwatershed

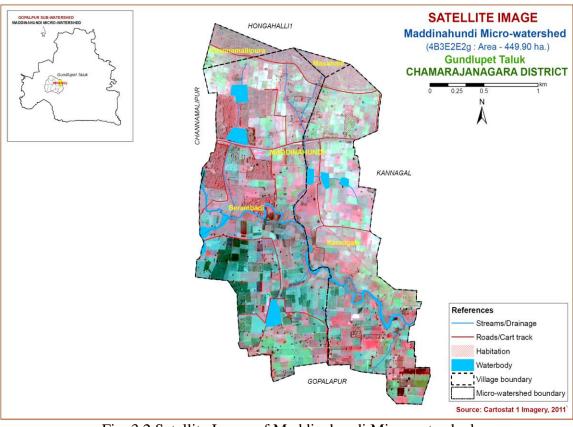


Fig. 3.2 Satellite Image of Maddinahundi Microwatershed

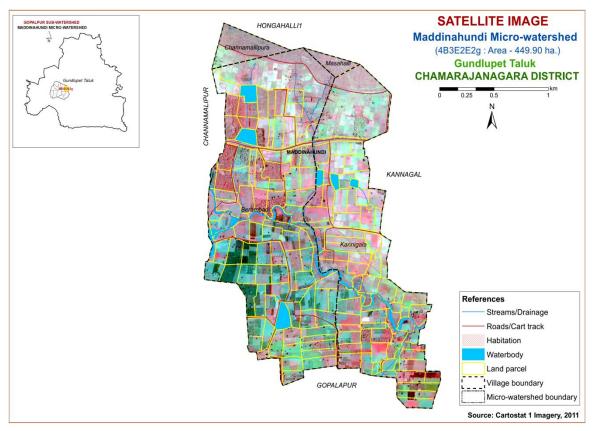


Fig. 3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Maddinahundi Microwatershed

3.3 Field Investigation

The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, *nallas*, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheets. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was generated by studying soils at few selected places. Then, intensive traversing of each physiographic unit like hills, ridges and uplands was carried out. Based on the variability observed on the surface, transects (Fig. 3.4) were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

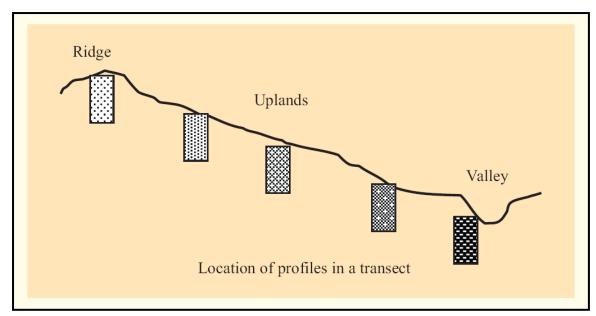


Fig. 3.4 Location of profiles in a transect

In the selected transect, soil profiles (Fig. 3.4) were located at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, soil profiles (vertical cut showing the soil layers from surface to the rock) were opened up to 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas to validate the soil map unit boundaries.

Based on the soil characteristics, the soils were grouped into different soil series. Soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management. Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area. The differentiating characteristics used for identifying the soil series are given in Table 3.1. Based on the above characteristics, 10 soil series were identified in the Maddinahundi Microwatershed.

Table 3.1 Differentiating Characteristics used for identifying Soil Series (Characteristics are of Series Control Section)

Soils of Granite gneiss Landscape							
Sl. no	Soil Series	Depth (cm)	Colour (Moist)	Texture	Gravel (%)	Horizon sequence	
1	Beemanabeedu (BMB)	>150	10YR2/1,2/2,3/1, 3/2,4/1	sc-c	-	Ap-Bw	
2	Berambadi (BMD)	25-50	10YR3/3,4/2, 7.5YR3/2,3/3,	scl	<15	Ap-Bw-Cr	
3	Gopalapura (GPR)	75-100	2.5YR 3/2, 3/3 5YR3/3, 4/3	gscl	15-35	AP-Bt-Cr	
4	Hindupur (HDR)	25-50	2.5YR2.5/4, 5YR3/2	sl	<15	Ap-A2-Cr	
5	Honnegaudanahalli (HGH)	>150	7.5YR2.5/2,2.5/3, 3/3,2.5/4,3/4	scl-c	<15	Ap-Bw	
6	Hullipura (HPR)	50-75	7.5YR2.5YR2.5/2, 3/2	gscl	15-35	AP-Bw- Cr	
7	Kalligaudanahalli (KDH)	>150	5 YR 2.5/2, 3/2, 3/3 2.5 YR 3/2	scl	<15	Ap-Bt	
8	Kallipura (KLP)	100-150	2.5YR2.5/3,2.5/4, 3/4	sc	<15	AP-Bt-Cr	
9	Kannigala (KNG)	75-100	2.5YR2.5/4,3/4,3/6	gscl	>35	AP-Bt-Cr	
10	Maddinahundii (MDH)	100-150	2.5YR2.5/4,3/4	gc	>35	AP-Bt-Cr	

3.4 Soil Mapping

The area under each soil series was further separated into 17 soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management.

The soil mapping units are shown on the map (Fig. 3.5) in the form of symbols. During the survey 21 soil profile pits, few minipits and a few auger bores representing different landforms occurring in the microwatershed were studied. In addition to the profile study, spot observations in the form of minipits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map. The soil map shows the geographic distribution of 17 mapping units representing 10 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2. The soil phase map (management units) shows the distribution of 17 phases mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one phase will have similar management needs and they have to be treated accordingly.

3.5 Laboratory Characterization

Soil samples were collected from representative master profiles for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected from farmer's fields (67 samples) for fertility

status (major and micronutrients) at 250 m grid interval were analyzed in the laboratory (Katyal and Rattan, 2003). By linking the soil fertility data to the survey numbers through GIS, soil fertility maps were generated using Kriging method for the microwatershed.

Table 3.2 Soil map unit description of Maddinahundi Microwatershed

C	C		•	
Soil No	Soil Series	Soil Phase	Mapping Unit Description	Area in ha (%)
	ВМВ	drained, have	du soils are very deep (>150 cm), moderately well e very dark greyish brown to dark grey and very dark y soils occurring on very gently sloping lowlands tion	38.58 (8.58)
1		BMBiB2	Sandy clay surface, slope 1-3%, moderate erosion	38.58 (8.58)
	BMD	to dark gray	oils are shallow (25-50 cm), well drained, dark brown ish brown sandy clay loam soils occurring on very guplands under cultivation	57.98 (12.89)
2		BMDcB1g1	Sandy loam surface, slope 1-3%, slight erosion, gravelly (15-35%)	40.95 (9.10)
3		BMDcB2g1	Sandy loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	8.10 (1.80)
4		BMDiB1	Sandy clay surface, slope 1-3%, slight erosion	8.93 (1.99)
	GPR	Gopalapura s have dark bro gravelly sand uplands unde	24.30 (5.40)	
5		GPRcB1	Sandy loam surface, slope 1-3%, slight erosion	8.63 (1.92)
6		GPRhB2	Sandy clay loam surface, slope 1-3%, moderate erosion	15.67 (3.48)
	HDR	reddish brow	ils are shallow (25-50 cm), well drained, have dark on to dusky red sandy loam soils occurring on very g uplands under cultivation	30.47 (6.77)
7		HDRcB1g1	Sandy loam surface, slope 1-3%, slight erosion, gravelly (15-35%)	19.58 (4.35)
8		HDRcB2g1	Sandy loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	10.89 (2.42)
	HGH	have very da	nahalli soils are very deep (>150 cm), well drained, rk brown to brown and dark reddish brown sandy clay y clay soils occurring on very gently sloping uplands tion	74.22 (16.50)
9		HGHmB1	Clay surface, slope 1-3%, slight erosion	74.22 (16.50)
	HPR	have dark br	ells are moderately shallow (50-75 cm), well drained, own to very dark brown gravelly sandy clay loam ag on very gently sloping uplands under cultivation	25.64 (5.70)
10		HPRhB1	Sandy clay loam surface, slope 1-3%, slight erosion	4.91

				(1.09)
11		HPRhB1g1	Sandy clay loam surface, slope 1-3%, slight erosion, gravelly (15-35%)	20.73 (4.61)
	KDH	have dark red	nalli soils are very deep (>150 cm), well drained, to dark reddish brown and dark brown sandy clay curring on very gently sloping uplands under	15.89 (3.53)
12		KDHhB1	Sandy clay loam surface, slope 1-3%, slight erosion	15.89 (3.53)
	KLP	reddish brown	s are deep (100-150 cm), well drained, have dark to dark red gravelly sandy clay soils occurring on oping uplands under cultivation	18.87 (4.19)
13		KLPhB2g1	Sandy clay loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	18.87 (4.19)
	KNG	have dark red	Is are moderately deep (75-100 cm), well drained, dish brown to dark red gravelly sandy clay loam g on very gently sloping uplands under cultivation	33.76 (7.50)
14		KNGcB1g1	Sandy loam surface, slope 1-3%, slight erosion, gravelly (15-35%)	8.13 (1.81)
15		KNGcB2g1	Sandy loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	17.93 (3.98)
16		KNGiB2g1	Sandy clay surface, slope 1-3%, moderate erosion, gravelly (15-35%)	7.70 (1.71)
	MDH	dark reddish	i soils are deep (100-150 cm), well drained, have brown gravelly sandy clay soils occurring on very uplands under cultivation	13.85 (3.08)
17		MDHbB2g1	Loamy sand surface, slope 1-3%, moderate erosion, gravelly (15-35%)	13.85 (3.08)
18		Forest		94.93 (21.10)
19		Others	Habitation and water body	21.40 (4.76)

^{*}Soil map unit numbers are continuous for the taluk, not the micro watersheds

3.6 Land management Units

The 17 soil phases identified and mapped in the microwatershed were regrouped into 7 Land Management Units (LMU's) for the purpose of preparing a proposed crop plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Management Units (LMUs) based on the management needs. One or more than one soil site characteristic having influence on the management have been choosen for identification and delineation of LMUs. For Maddinahundi Microwatershed, five soil and site characteristics, namely soil depth, soil texture, slope, erosion and gravel content have been considered for defining LMUs. The land management units are expected to behave similarly for a given level of management.

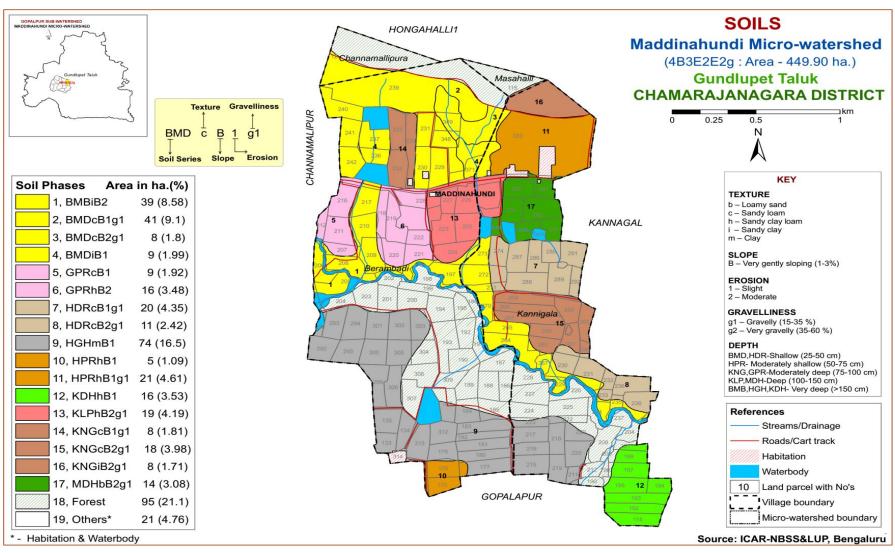


Fig 3.5 Soil Phase or Management Units Map of Maddinahundi Microwatershed

THE SOILS

Detailed information pertaining to the nature, extent and distribution of different kinds of soils occurring in Maddinahundi Microwatershed is provided in this chapter. The microwatershed area has been identified as granite gneiss landscape based on geology. In all, 10 soil series were identified in different landforms. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. In the granite gneiss landform, it is by parent material, relief and climate.

A brief description of each of the 10 soil series identified followed by 17 soil phases (management units) mapped (Fig. 3.5) are furnished below. The physical and chemical characteristics of soil series identified in Maddinahundi Microwatershed along with soil classification are given in Table 4.1. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristics that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of Granite gneiss Landscape

- ❖ In this landscape, 10 soil series are identified and mapped. Of these, Kannigala (KNG) soil series occupies maximum area of about 34 ha (8%) followed by Berambadi (BMD) soil series 58 ha (13%), Kallipura (KLP) soil series 19 ha (4%), Hullipura (HPR) 26 ha (6%), Hindupur (HDR) 30 ha (7%), Gopalpura (GPR) 24 ha (5%), Kalligaudanahalli (KDH) 16 ha (4%), Beemanabeedu (BMB) 39 ha (9%), Honnegaudanahalli (HGH) 74 ha (17%) and Maddinahundi (MDH) soil series 14 ha (3%). The brief description of each soil series along with the soil phases identified and mapped is given below.
- **4.1.1 Beemanabeedu** (**BMB**) **Series:** Beemanabeedu soils are very deep (>150 cm), moderately well drained, have very dark greyish brown to dark grey and very dark brown sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently sloping lowlands. The Beemanabeedu series has been classified as a member of the fine, mixed, isohyperthermic family of Typic Haplustepts.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 12 to 17 cm. Its colour is in 10 YR and 7.5 YR hue with value 2.5 to 4 and chroma 2 to 4. The texture varies from sandy clay to clay with 10 to 12 per cent gravel. The thickness of B horizon is more than 150 cm. Its colour is in 10 YR hue with value 2 to 4 and chroma 1 to 2. Texture is sandy clay to clay. The available water capacity is very high (200 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Beemanabeedu (BMB) series

4.1.2 Berambadi (BMD) Series: Berambadi soils are shallow (25-50 cm), well drained, have very dark gray to dark brown sandy clay loam soils. They have developed from granite gneiss and occur on very gently to moderately sloping uplands under cultivation. The beramadi series has been classified as a member of the fine-loamy, mixed, isohyperthermic family of Typic Haplustepts.

The thickness of the solum ranges from 30 to 50 cm. The thickness of A-horizon ranges from 10 to 17 cm. Its colour is in 10 YR hue with value 3 to 4 and chroma 3. The texture varies from sandy loam to sandy clay with 15 to 25 per cent gravel. The thickness of B horizon ranges from 30 to 40 cm. Its colour is in 10YR and 7.5YR hue with value 3 to 4 and chroma 2 to 4. Its texture is sandy clay loam with gravel content of 10 to 15 per cent. The available water capacity is low (50-100 mm/m). Three phases were identified and mapped.

4.1.3 Gopalapura (GPR) Series: Gopalapura soils are moderately deep (75-100 cm), well drained, have dark brown to dark reddish brown and reddish brown gravelly sandy clay loam soils. They have developed from granite gneiss and occur on very gently to gently sloping uplands.

The thickness of the solum ranges from 73 to 97 cm. The thickness of A horizon ranges from 12 to 18 cm. Its colour is in 2.5 YR and 7.5 YR hue with value 3 and chroma 2. The texture varies from gravelly sandy clay to sandy clay loam with 12-25 per cent gravel. The thickness of B horizon ranges from 66 to 79 cm. Its colour is in 2.5 YR and 5 YR hue with value 3 to 4 and chroma 2 to 3. Its texture is gravelly sandy clay loam to gravelly sandy clay with gravel content of 15-35 per cent. The available water capacity is low (75 mm/m).

Landscape and Soil Profile characteristics of Gopalapura (GPR) Series

4.1.4 Hindupura (HDR) Series: Hundipura soils are shallow (25-50 cm), well drained, have dark reddish brown to dusky red sandy loam soils. They have developed from granite gneiss andoccur on very gently to moderately sloping uplands. The Hindupura series has been classified as a member of the sandy, mixed, isohyperthermic family of Paralithic Ustorthents.

The thickness of the soil ranges from 35 to 46 cm. The thickness of A horizon ranges from 7 to 18 cm. Its colour is in 7.5 YR and 5 YR hue with value 3 and chroma 3 to 4. The texture varies from loamy sand to clay with 10 to 20 per cent gravel. The thickness of subsurface horizon ranges from 19 to 31 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 3 and chroma 2 to 4. Its texture is sandy loam with gravel content of < 15 per cent. The available water capacity is very low (50 mm/m). Two phases were identified and mapped.

Landscape and soil profile characteristics of Hundipura (HDR) Series

4.1.5 Honnegaudanahalli (HGH) Series: Honnegaudanahalli soils are very deep (>150 cm), well drained, have very dark brown to brown and dark reddish brown sandy clay loam to clay soils. They are developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The honnegaudanahalli series has been classified as a member of the fine-loamy over clayey, mixed, isohyperthermic family of Typic Haplustepts.

The thickness of the solum is more than 150 cm. The thickness of a horizon ranges from 14 to 19 cm. Its colour is in 7.5 YR hue with value 2.5 to 4 and chroma 2 to 6. The texture varies from sandy loam to clay with 10 to 15 per cent gravel. The thickness of B horizon is more than 150 cm. Its colour is in 7.5 YR hue with value 2.5 to 3 and chroma 2 to 4. Texture is sandy clay loam to clay with 35 to 50 per cent gravel. The available water capacity is very high (200 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Honnegaudanahalli (HGH) Series

4.1.6 Hullipura (HPR) Series: Hullipura soils are moderately shallow (50-75 cm), well drained, have dark brown to very dark brown gravelly sandy clay loam soils. They have developed from granite gneiss and occur on very gently to gently sloping uplands. The Hullipura series has been classified as a member of the fine-loamy, mixed, isohyperthermic family of Typic Haplustepts.

The thickness of the solum ranges from 51 to 71 cm. The thickness of A horizon ranges from 13 to 18 cm. Its colour is in 7.5YR and 10 YR hue with value 2.5 to 3 and chroma 2 to 4. The texture varies from gravelly sandy loam to gravelly clay with 15 to 25 per cent gravel. The thickness of B horizon ranges from 38 to 52 cm. Its colour is in 2.5 YR and 7.5 YR hue with value 2.5 to 3 and chroma 2. Its texture is gravelly sandy clay loam with gravel content of 15 to 35 per cent. The available water capacity is low (75 mm/m). Four phases were identified and mapped.

Landscape and soil profile characteristics of Hullipura (HPR) series

4.1.7 Kalligaudanahalli (KDH) Series: Kalligaudanahalli soils are very deep (>150 cm), well drained, have dark red to dark reddish brown and dark brown sandy clay loam soils. They are developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The Kalligaudanahalli series has been classified as a member of the fine-loamy, mixed, isohyperthermic family of Typic Palaustalfs.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 13 to 19 cm. Its colour is in 7.5 YR, 5 YR and 2.5 YR hue with value 3 and chroma 2 to 6. Texture varies from sandy clay loam to clay with 10 to 15 per cent gravel. The thickness of B horizon is more than 150 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 3 and chroma 2 to 3. Texture is sandy clay loam to sandy clay with less than 15 per cent gravel. The available water capacity is very high (200 mm/m).

Landscape and soil profile characteristics of Kalligaudanahalli (KDH) Series

4.1.8 Kallipura (**KLP**) **Series:** Kallipura soils are moderately shallow (50 to 75cm), well drained, have brown to very dark brown and dark reddish brown sandy clay soils. They have developed from weathered granite gneiss and occur on nearly level to gently sloping uplands. The kallipura series has been classified as a member of the fine, mixed, isohyperthermic family of typic Rhodustalfs.

The thickness of the solum ranges from 54 to 75 cm. The thickness of A horizon ranges from 11 to 19 cm. Its colour is in 7.5 YR, 5YR and 2.5 YR hue with value 2.5 to 4 and chroma 2 to 6. The texture varies from gravelly sandy loam to gravelly clay loam with 10 to 20 per cent gravel. The thickness of B horizon ranges from 43 to 60 cm. Its colour is in 2.5 YR hue with value 3 and chroma 4 to 6. Its texture is gravelly sandy clay loam to gravelly clay with gravel content of 15 to 35 per cent. The available water capacity is medium (100 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Kallipura (KLP) Series

4.1.9 Kannigala (KNG) Series: Kannigala soils are moderately deep (75-100 cm), well drained, have dark reddish brown to dark red gravelly sandy clay loam soils. They have developed from weathered granite gneiss and occur on very gently to strongly sloping uplands. The Kannigala series has been classified as a member of the loamy-skeletal, mixed, isohyperthermic family of Typic Haplustalfs.

The thickness of the solum ranges from 78 to 94 cm. The thickness of A horizon ranges from 12 to 15 cm. Its colour is in 5YR, 2.5 YR and 7.5 YR hue with value 3 and chroma 3 to 4. The texture varies from gravelly loamy sand to clay with 15 to 25 per cent gravel. The thickness of B horizon ranges from 69 to 80 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture varies from gravelly sandy clay loam with 40 to 60 per cent gravel. The available water capacity is very low (50 mm/m). Four phases were identified and mapped.

Landscape and soil profile characteristics of Kannigala (KNG) Series

4.1.10 Maddinahundi (MDH) Series: Maddinahundi soils are deep (100-150 cm), well drained, have dark reddish brown gravelly clay soils. They have developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Maddinahundi series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Typic Rhodustalfs.

The thickness of the solum ranges from 102 to 150 cm. The thickness of A horizon ranges from 12 to 25 cm. Its colour is in 7.5 YR, 5 YR and 2.5 YR hue with value 3and chroma 2 to 6. The texture varies from gravelly sandy loam to gravelly sandy clay with 15 to 30 per cent gravel. The thickness of B horizon ranges from 90 to 138 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4. Its texture is gravelly sandy clay to clay with gravel content of >35 per cent. The available water capacity is medium (100 mm/m).

Landscape and soil profile characteristics of Maddinahundi (MDH) Series

Table: 4.1 Physical and Chemical Characteristics of Soil Series identified in Maddinahundi microwatershed

Soil Series: Bheemanabeedu (BMB), **Pedon**: RM-34

Location: 11⁰43'45.9"N, 76⁰37'18.6"E, (4B3E2F1c) Honnegaudanahalli village, Gundlupet Taluk, Chamarajanagara District

Analysis at: NBSS&LUP, Regional Centre, Bangalore. Classification: Fine, mixed, isohyperthermic Typic Haplustepts

			8 - 11 - 1	Size class	and part	ticle dian	neter (mm)	Jr · ·	Jr ·		9/ Ma	oisture
Donth	Horizon		Total				Sand			Coarse	Texture	70 IVIC	oisture
Depth (cm)	3 Ap	Sand (2.0-0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)		Medium (0.5-0.25)		Very fine (0.1-0.05)	XX/XX/ 1 4/0 1	Class (USDA)	1/3 Bar	15 Bar
0-13	Ap	63.25	17.32	19.42	3.89	9.31	13.61	19.14	17.30	5	sc	-	-
13-32	Bw1	61.95	18.00	20.05	3.18	12.21	13.54	18.56	14.46	-	sc	-	-
32-53	Bw2	54.42	20.16	25.42	3.89	9.79	12.63	14.95	13.16	-	sc	-	-
53-76	Bw3	40.54	20.40	39.05	2.40	8.25	9.82	11.91	8.15	1	c	-	-
76-114	Bw4	35.54	17.90	46.56	2.00	7.36	8.94	9.88	7.36	1	c	-	-
114-146	Bw5	28.31	19.25	52.44	2.55	5.73	6.68	6.89	6.47	1	c	-	-
146-180	Bw6	19.43	27.91	52.66	1.61	2.35	3.84	6.06	5.57	1	c	-	-

Depth		оН (1:2.5	5)	E.C.	O.C.	CaCO ₃		Exch	angeal	ole bas	ses	CEC	CEC/Clay	Base	ESP
(cm)	,)II (1.2	<i>)</i>	(1:2.5)	0.0.	Cacos	Ca	Mg	K	Na	Total	CLC		saturation	
	Water CaCl ₂ M I 7.59 - -		M KCl	dS m ⁻¹	%	%			cn	ol kg	1			%	%
0-13	7.59	-	-	0.48	0.78	0.59	-	-	1.04	0.17	-	10.83	0.56	100	1.57
13-32	7.94	-	-	0.18	0.66	0.35	-	-	0.62	0.26	-	11.74	0.59	100	2.21
32-53	8.11	-	-	0.13	0.58	0.76	-	-	0.41	0.59	-	14.71	0.58	100	4.01
53-76	8.34	-	-	0.12	0.54	0.71	-	-	0.49	0.92	-	25.31	0.65	100	3.63
76-114	8.21	-	-	0.20	0.50	1.59	-	-	0.64	0.82	-	28.39	0.61	100	2.89
114-146	8.37	-	-	0.27	0.46	2.47	-	-	0.51	0.65	_	30.55	0.58	100	2.13
146-180	8.46	-	-	0.27	0.35	5.28	-	-	0.57	0.94	_	35.34	0.67	100	2.66

Soil Series: Berambadi (BMD), Pedon: RM-125

Location: 11⁰43'17"N, 76⁰41' 41.4"E, (4B3E2J2a) Hundipur village, Gundlupet Taluk, Chamarajanagara District

Analysis at: NBSS&LUP, Regional Centre, Bangalore. Classification: Fine-loamy, mixed, isohyperthermic Typic Haplustepts

				Size clas	s and par	ticle diam	eter (mm)					0/ N/I-	•4
			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)	Sand (2.0- 0.05)		Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-12	Ap	64.81	10.27	24.92	5.78	13.11	18.99	17.54	9.39	15	scl	-	-
12-30	A1	63.68	11.19	25.13	5.52	12.59	16.86	19.98	8.74	<10	scl	-	-
30-43	Bw	55.49	10.87	33.65	17.55	10.76	11.29	10.14	5.75	<10	scl	-	_

Depth	70	оН (1:2.5)	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base satura	ESP
(cm)	P)11 (1.2.3	,	(1:2.5)	0.0.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-12	8.28	-	1	0.23	0.74	1.02	ı	-	0.73	0.15	-	18.13	0.73	100	0.83
12-30	8.61	-	-	0.18	0.70	1.14	ı	-	0.98	0.54	-	19.61	0.78	100	2.75
30-43	8.68	-	-	0.20	0.51	2.28	-	-	0.48	0.58	-	19.15	0.57	1003	3.03

Soil Series: Hundipura (HDR), (Pedon: TR15/P1)

Location: 11⁰42'25.8"N, 76⁰41'26"E, (4B3E2J2a) Hundipura village, Gundlupet Taluk and Chamarajanagara District

Analysis at: NBSS&LUP, Regional Centre, Bangalore Classification: Sandy, mixed, isohyperthermic Paralithic Ustorthents

				Size clas	s and par	ticle diam	eter (mm)					% Mo	istuus
			Total				Sand			Coarse	Texture	70 IVIU	oisture
Depth (cm)	-	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5-0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-17	Ap	76.89	9.00	14.11	11.25	13.60	19.12	22.39	10.53	15	sl	-	-
17-37	A2	75.31	11.73	12.96	9.02	11.27	18.24	23.36	13.42	10	sl	-	-

Depth		Н (1:2.5		E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ŀ)11 (1.2.3	,	(1:2.5)	O.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹						%	%	
		_			, ,	70	Š						, •	, 0	
0-17	8.28	-	-	0.18	0.50	1.06	0.63 0.09					12.54	0.89	100	0.64

Soil Series: Honnegaudanahalli (HGH) (Pedon: RM33) **Location:** 11⁰45'42.5"N, 76⁰36'46.2"E, (4B3E2F1c) Honnegaudanahalli village, Gundlupet Taluk and Chamarajanagara District

Analysis at: NBSS&LUP, Regional Centre, Bangalore. Classification: Fine-loamy over clayey, mixed, isohyperthermic Typic Haplustepts

				Size clas	s and par	ticle diam	eter (mm)					0/- Ma	isture
			Total				Sand			Coarse	Texture	/0 IVIU	oistui e
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)	Coarse (1.0-0.5)	Medium (0.5-0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
Ap	0-18	66.23	11.55	22.23	2.95	10.89	18.41	21.36	12.61	10	scl	-	ı
Bw1	18-30	62.83	16.68	20.49	3.77	10.90	15.99	21.59	10.59	-	scl	-	-
Bw2	30-52	59.33	16.64	24.03	2.14	10.91	13.56	18.76	13.97	-	scl	-	-
Bw3	52-78	65.74	11.85	22.41	3.69	13.13	16.00	19.49	13.44	-	scl	-	ı
Bw4	78-100	68.91	10.58	20.51	3.16	6.73	25.08	21.61	12.33	-	scl	-	ı
Bw5	100-148	30.06	14.12	55.82	1.57	9.81	6.78	6.58	5.32	-	c	-	-
Bw6	148-160	22.82	29.70	47.48	1.49	4.13	6.54	5.39	5.28	-	c	-	1
Bw7	160-190	24.83	28.46	46.71	0.80	2.86	8.47	6.18	6.52	-	c	-	1

Depth	_	JI (1.2 5	`	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ŀ	оН (1:2.5	,	(1:2.5)	U.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%			cm	ol kg ⁻¹				%	%
0-18	7.37	-	-	0.18	0.5	0.00	-	-	0.74	0.13	-	8.66	0.39	100	1.50
18-30	7.55	-	1	0.11	0.46	0.00	1	-	0.37	0.06	-	8.66	0.42	100	0.69
30-52	7.78	-	1	0.08	0.39	0.00	ı	-	0.27	0.07	-	10.03	0.42	100	0.70
52-78	7.98	-	-	0.08	0.39	0.00	1	-	0.21	0.09	-	8.55	0.38	100	1.05
78-100	8.01	-	-	0.05	0.31	0.00	-	-	0.23	0.22	-	8.32	0.41	100	2.64
100-148	7.86	-	-	0.09	0.43	7.20	-	-	0.56	0.51	-	25.65	0.46	100	1.99
148-160	8.47	-	-	0.18	0.35	5.88	-	-	0.42	0.51	-	23.37	0.49	100	2.18
160-190	8.55	-	-	0.17	0.27	6.48	-	-	0.45	0.56	-	23.57	0.50	100	2.38

Soil Series: Hullipura (HPR), Pedon: RM-126

Location: 11⁰43'21.8"N, 76⁰41' 28.1"E, (4B3E2J2a) Hundipur village, Gundlupet Taluk, Chamarajanagara District

Analysis at: NBSS&LUP, Regional Centre, Bangalore Classification: Fine-loamy, mixed, isohyperthermic Typic Haplustepts

				Size clas	s and par	ticle diam	eter (mm)					0/ 1/4-	•-4
			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)	(cm)	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-15	Ap	47.38	17.57	35.05	7.38	9.95	8.98	10.80	10.27	15	sc	-	-
15-28	Bw1	49.95	18.96	31.10	7.21	10.29	9.97	12.51	9.97	15	scl	-	-
28-55	Bc	70.38	11.41	18.21	6.23	13.18	14.20	21.45	15.32	20	sl	-	-

Depth	1	оН (1:2.5)	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base satura	ESP
(cm)	ŀ)11 (1.2.3	,	(1:2.5)	0.0.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-15	8.36	-	-	0.36	0.60	2.34	-	-	0.93	0.43	-	24.17	0.69	100	1.78
15-28	8.36	-	-	0.37	0.72	3.30	ı	-	1.10	0.61	-	6.16	0.20	100	9.90
28-55	8.73	-	-	0.23	0.24	0.84	-	-	0.41	0.85	-	16.30	0.90	100	5.21

Soil Series: Kalligaudanahalli (KDH) (Pedon: RM73)

Location: 11⁰42'58.1"N, 76⁰39'44"E, (4B3E2H1b) Kalligaudanahalli village, Gundlupet Taluk and Chamarajanagara District **Analysis at:** NBSS&LUP, Regional Centre, Bangalore. **Classification:** Fine-loamy, mixed, isohyperthermic Typic Paleustalfs

				Size clas	s and par	ticle diam	eter (mm)		, , , , ,	71		0/ Ma	isture
			Total				Sand			Coarse	Texture	/0 IVIU	oisture
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-27	Ap	58.04	14.10	27.86	2.58	4.23	17.73	16.19	17.32	10	scl	-	1
27-45	Bt1	61.41	12.10	26.48	4.71	10.13	13.61	19.55	13.41	-	scl	-	1
45-66	Bt2	68.99	7.47	23.54	6.55	14.23	18.63	19.86	9.72	-	scl	-	1
66-92	Bt3	61.78	10.30	27.92	6.40	11.57	14.88	16.84	12.09	-	scl	-	-
92-115	Bt4	49.16	14.82	36.01	4.49	9.39	11.48	13.88	9.92	-	sc	-	-
115-134	Bt5	55.60	12.77	31.58	6.63	10.57	13.06	15.85	9.53	-	scl	-	1
134-160	Bt6	47.35	14.43	38.21	3.32	9.66	11.94	12.36	12.36	_	sc	-	-
160-180	Bt7	51.29	13.11	35.60	4.75	11.56	14.24	13.00	13.00	-	sc	-	-

Depth	DH (1:2.5)	`	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/	Base	ESP	
(cm)			,	(1:2.5)	U.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%			cm	ol kg ⁻¹			%	%	
0-27	8.03	-	-	0.13	0.62	0.30	-	-	0.53	0.10	-	13.91	0.50	100	0.72
27-45	7.96	-	-	0.12	0.50	0.10	-	-	0.42	0.04	-	13.57	0.51	100	0.29
45-66	7.95	-	-	0.08	0.39	0.00	-	-	0.29	0.07	-	11.40	0.48	100	0.61
66-92	7.96	-	-	0.07	0.35	0.00	-	-	0.34	0.15	-	13.45	0.48	100	1.12
92-115	7.98	-	-	0.11	0.54	0.48	-	-	0.37	0.08	-	16.64	0.46	100	0.48
115-134	8.04	-	-	0.06	0.35	0.24	-	-	0.34	0.15	-	15.85	0.50	100	0.95
134-160	8.07	-	1	0.07	0.35	0.06	1	-	0.37	0.15	-	17.56	0.46	100	0.85
160-180	8.11	-	-	0.07	0.31	0.48	-	-	0.43	0.18	-	18.24	0.51	100	0.99

Soil Series: Kallipura (KLP) (Pedon: RM52)

Location: 11⁰43'45.9"N, 76⁰37'18.6"E, (4B3E2F2c) Kallipura village, Gundlupet Taluk and Chamarajanagara District **Analysis at:** NBSS&LUP, Regional Centre, Bangalore. **Classification:** Fine, mixed, isohyperthermic Typic Rhodustalfs

				Size clas	s and par	ticle diam	eter (mm)					% Moisture	
			Total				Sand			Coarse	Texture	% N10	oisture
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5-0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-28	Ap	65.05	10.57	24.38	5.17	13.86	17.79	18.20	10.03	10	scl	-	-
28-48	Bt1	61.05	10.50	28.45	2.53	9.37	19.47	20.74	8.95	-	scl	-	-
48-75	Bt2	58.11	10.79	31.10	2.01	12.51	18.45	18.88	6.26	-	scl	-	-
75-97	Bt3	47.69	6.51	45.80	4.74	11.73	12.92	13.02	5.27	-	sc	-	-
97-120	Bt4	37.80	10.25	51.95	4.57	9.45	9.14	9.66	4.98	-	С	-	-
120-136	Вс	53.11	5.08	41.81	20.55	6.95	11.49	9.48	4.64	40	sc	-	-

Depth	- DH (1:2.5))	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases	CEC	CEC/ Clay	Base	ESP		
(cm)				(1:2.5)	0.0.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-28	6.07	-	1	0.14	0.70	0.00	ı	-	0.59	0.26	-	9.23	0.38	100	2.82
28-48	6.45	-	-	0.04	0.58	0.00	1	-	0.25	0.19	-	9.92	0.35	100	1.92
48-75	6.47	-	-	0.04	0.54	0.00	-	-	0.24	0.13	-	9.80	0.32	100	1.33
75-97	6.50	-	-	0.06	0.58	0.00	-	-	0.26	0.17	-	13.22	0.29	100	1.29
97-120	6.51	-	1	0.05	0.50	0.00	ı	-	0.36	0.32	-	15.50	0.30	100	2.06
120-136	6.88	-	-	0.04	0.46	0.00	ı	-	0.24	0.17	-	14.82	0.35	100	1.15

Soil Series: Kannigala (KNG), Pedon: TR-26/1

Location: 11⁰47'25.9"N, 76⁰34'11"E, (4B3E2E2f) Channamallipura village, Gundlupet Taluk, Chamarajanagaraja District

Analysis at: NBSS&LUP, Regional Centre, Bangalore. Classification: Loamy-skeletal, mixed, isohyperthermic Typic Haplustalfs

				Size clas	s and par	ticle diam	eter (mm)					% Moisture	
			Total				Sand			Coarse	Texture		
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-15	Ap	65.41	16.99	17.60	4.18	6.02	15.71	25.61	13.88	20	sl	-	-
15-38	BA	63.15	10.36	26.48	11.98	15.56	11.26	14.43	9.93	15	scl	-	-
38-72	Bt1	61.51	9.22	29.28	22.20	11.00	10.79	10.49	7.03	>35	scl	-	-
72-100	Bt2	50.82	16.19	32.99	10.25	8.20	12.50	9.32	10.55	>35	scl	-	-

Depth	(cm) pri (1:2.5))	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases	CEC	CEC/ Clay	Base satura	ESP	
(cm)			(1:2.5)	0.0.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	tion		
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-15	5.41	-	-	0.23	0.76	0.06	4.23 1.11 0.32 0.04 5.70					6.82	0.39	84	0.59
15-38	6.61	-	-	0.09	0.60	0.09	6.69	1.40	0.15	0.11	8.34	8.74	0.33	95	1.26
38-72	7.01	-	1	0.05	0.32	0.12	ı	-	0.20	0.27	-	6.82	0.23	100	3.96
72-100	6.66	-	-	0.05	0.28	0.24	-	-	0.12	0.38	-	1.15	0.03	100	33.04

Soil Series: Maddinahundi (MDH) (Pedon: RM205)

Location: (4B3E2E2g) Kannigala village, Gundlupet Taluk and Chamarajanagara District

Analysis at: NBSS&LUP, Regional Centre, Bangalore Classification: Clayey-skeletal, mixed, isohyperthermic Typic Rhodustalfs

				Size clas	s and par	ticle diam	eter (mm)					% Moisture	
			Total				Sand			Coarse	Texture	% IVIO	oisture
Depth (cm)	Horizon	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-20	Ap	81.73	9.04	9.24	5.92	15.36	21.08	24.90	14.46	20	ls	-	-
20-40	Bt1	58.51	9.25	32.24	10.19	11.11	13.25	15.19	8.77	20	scl	-	-
40-64	Bt2	41.16	9.23	49.61	9.25	7.48	9.77	9.25	5.41	40	С	-	-
64-92	Bt3	42.49	8.06	49.46	6.74	7.67	11.19	10.05	6.84	45	С	-	-
92-112	Bt4	42.53	12.73	44.74	5.92	15.36	21.08	24.90	14.46	45	С	-	-
112-134	Вс	50.77	11.92	37.31	10.19	11.11	13.25	15.19	8.77	25	sc	-	-

Depth	DH (1:2.5))	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	• • • • • • • • • • • • • • • • • • • •			(1:2.5)	U.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	% cmol kg ⁻¹							%	%	
0-20	4.49	-	1	0.18	0.43	0.00	0.91	0.44	0.21	0.28	1.83	1.82	0.20	100	15.38
20-40	5.28	-	-	0.05	0.51	0.00	5.55	2.00	0.23	0.17	7.95	11.17	0.35	71	1.52
40-64	5.95	-	1	0.04	0.47	0.47	1	-	0.25	0.27	ı	13.00	0.26	100	2.08
64-92	6.69	-	1	0.05	0.39	0.45	ı	-	0.24	0.32	1	14.48	0.29	100	2.21
92-112	7.41	-	1	0.06	0.15	0.76	ı	-	0.26	0.41	1	13.00	0.29	100	3.15
112-134	7.64	-	1	0.06	0.19	0.45	ı	-	0.24	0.42	1	14.36	0.38	100	2.92

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect land use and conservation needs of an area are land capability, land irrigability, soil depth, texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several thematic maps are generated. These would help in identifying the areas suitable for growing crops and conservation structures needed thus helping to maintain good soil health for sustained crop production. The various thematic maps generated are described below.

5.1 Land Capability Classification

Land capability classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Soil characteristics*: Soil depth, texture, gravelliness, soil reaction, available water capacity, calcareousness, salinity/alkali *etc*.

Land characteristics: Slope, erosion, drainage, rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The Land capability classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

Class I: The soil map units have few or very few limitations that restrict their use.

Class II: The soil map units have moderate limitations that reduce the choice of crops or that require moderate conservations practices.

Class III: The soil map units have severe limitations that reduce the choice of crops or that require special conservation practices.

Class IV: The soil map units have severe limitations that reduce the choice of crops or that require very careful management.

Class V: Soils in the mapping units are not likely to erode, but have other limitations that are impractical to remove and as such not suitable for agriculture.

Class VI: The lands have severe limitations that make them generally unsuitable for cultivation.

Class VII: The lands have very severe limitations that make them unsuitable for cultivation.

Class VIII: Soil and other miscellaneous areas that have very severe limitations that nearly preclude their use for any crop production.

The land capability subclasses are recognised based on the dominant limitations observed within the given capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkaline or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam (2), fine texture (cracking clay, silty clay), (3) slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 17 soil map units identified in Maddinahundi Microwatershed are grouped under 2 land capability classes and 5 land capability subclasses (Fig. 5.1).

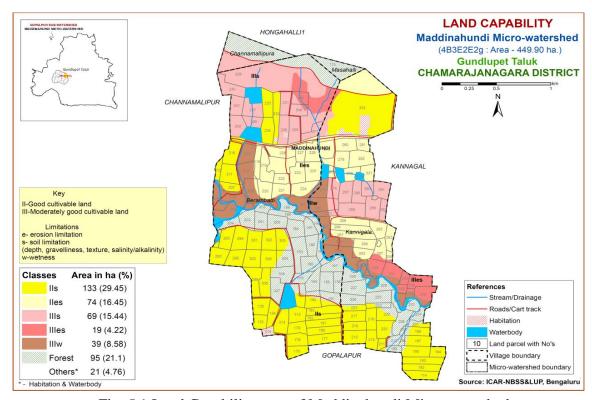


Fig. 5.1 Land Capability map of Maddinahundi Microwatershed

Of the lands suitable for agriculture, about 46 per cent are good cultivable lands (Class II) with minor limitations of soil and erosion and are distributed in the major part of the microwatershed. About 28 per cent are moderately good cultivable lands (Class III) with

moderate limitations of wetness, soil and erosion and are distributed in the northern, eastern, central and western part of the microwatershed. About 21 per cent area is under State forest and 5 per cent under habitation and water bodies.

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was generated. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.2.

Shallow (25-50 cm) soils cover an area of 88 ha (20%) and are distributed in the northern and eastern part of the microwatershed. Moderately shallow (50-75 cm) soils occupy about 26 ha (6%) and are distributed in the southern and northeastern part of the microwatershed. Moderately deep (75-100 cm) soils occupy about 58 ha (13%) and are distributed in the western, northeastern, central and eastern part of the microwatershed. Deep (100-150 cm) soils occur in an area of 33 ha (7%) and are distributed in the central and northeastern part of the microwatershed. An area of about 129 ha (29%) that are very deep (>150 cm) occur in the major part of the microwatershed.

The problematic lands cover 88 ha (20%) that have shallow (25-50 cm) rooting depth. They are suitable for growing short duration agricultural crops but well suited for pasture, forestry or other recreational purposes. The most productive lands cover about 129 ha (29%) where all climatically adapted long duration crops be grown.

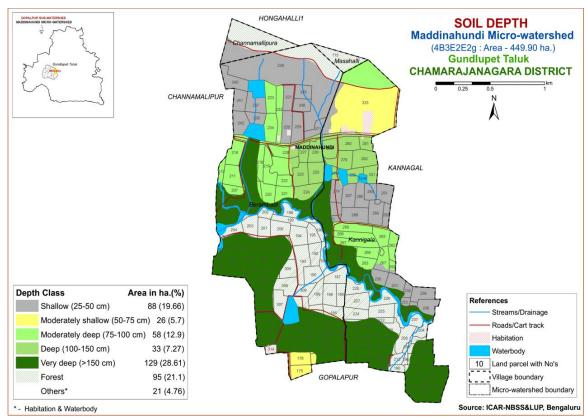


Fig. 5.2 Soil Depth map of Maddinahundi Microwatershed

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behaviour, microbial activity and crop suitability. The textural classes used for LRI were used to classify the soils and a surface soil texture map was generated. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.3.

An area of 14 ha (3%) has soils that are sandy and are distributed in the northeastern part of the microwatershed. An area of 190 ha (42%) has loamy soils and are distributed in the major part of the microwatershed. An area of about 129 ha (29%) are clayey at the surface and are distributed in the central, northeastern, southeastern and southern part of the microwatershed (Fig. 5.3).

The productive lands covering 129 ha (29%) with respect to surface soil texture are the clayey soils that have high potential for soil-water retention and availability, and nutrient retention and availability, but have problems of drainage, infiltration, workability and other physical problems. The other productive lands cover 190 ha (42%) having loamy texture in surface that behave similarly like clayey soils but have no drainage or other physical problems. The problem soils cover 14 ha (3%) that have low soil-water

and availability, nutrient retention and availability. Here only short duration crops can be grown if the rainfall is normal and distributed well during crop growing period.

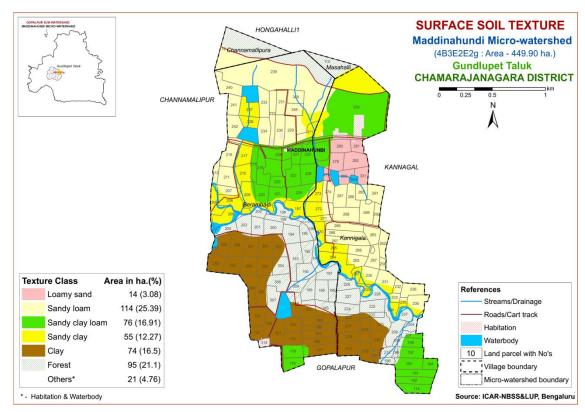


Fig. 5.3 Surface Soil Texture map of Maddinahundi Microwatershed

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage, drainage, infiltration and runoff and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization. The gravelliness classes used in LRI were used to classify the soils and using these classes a gravelliness map was generated. The area extent and their geographic distribution in the microwatershed is shown in Figure 5.4.

The soils that are gravelly (15-35%) cover an area of about 167 ha (37%) and are distributed in the western, central and southern part of the microwatershed (Fig. 5.4). The soils that are non-gravelly (<15%) cover about 167 ha (37%) and are distributed in the northern and eastern part of the microwatershed.

The most productive lands with respect to gravelliness are found to be 37 per cent. They are non-gravelly with less than 37 per cent gravel and have potential for growing both annual and perennial crops.

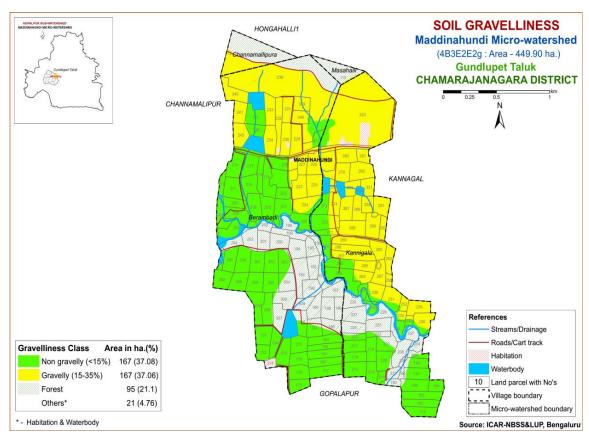


Fig. 5.4 Soil Gravelliness map of Maddinahundi Microwatershed

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was generated. The area extent and their geographic distribution of different AWC classes in the microwatershed is given in Figure 5.5.

Maximum area of about 122 ha (27%) has soils that are very low (<50 mm/m) in available water capacity and are distributed in the northern and eastern part of the microwatershed. An area of 83 ha (18%) has soils that are low (51-100 mm/m) in available water capacity and are distributed in the central and southern part of the microwatershed. An area of about 129 ha (29%) are very high in available water capacity (>200 mm/m) and are distributed in the central, western and southern part of the microwatershed.

About 122 ha (27%) area in the microwatershed has soils that are problematic (<50 mm/m) with regard to available water capacity. Here, only short duration crops can be grown and the probability of crop failure is very high. These areas are best put to other

alternative uses. The potential soils respect to AWC cover about 129 ha (29%) that have very high AWC, where all climatically adapted long duration crops can be grown.

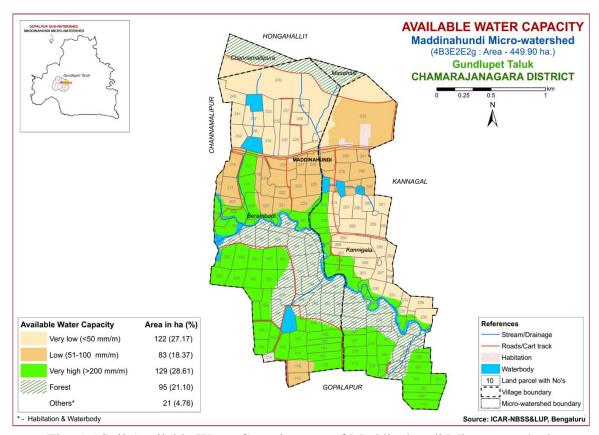


Fig. 5.5 Soil Available Water Capacity map of Maddinahundi Microwatershed

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into four slope classes and a slope map was generated showing the area extent and their geographic distribution in the microwatershed (Fig. 5.6).

The entire area of the microwatershed falls under very gently sloping (1-3% slope) class. It covers an area of about 334 ha (74%) and are distributed in all parts of the microwatershed.

An area of about 334 ha (74%) in the microwatershed has soils that have high potential in respect of soil slopes. In these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures.

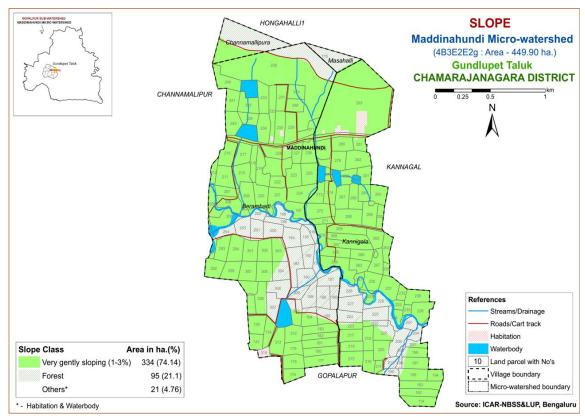


Fig. 5.6 Soil Slope map of Maddinahundi Microwatershed

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from the field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe erosion (e4) are recognized. The soil map units were grouped into different erosion classes and soil erosion map generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

Soils that are slightly eroded (e1 class) cover maximum area of about 202 ha (45%) in the microwatershed. They are distributed in the northern, western, southern and eastern part of the microwatershed. Moderately eroded (e2 class) soils cover an area of about 132 ha (29%) and are distributed in the central, western, eastern and northern part of the microwatershed.

An area of about 132 ha (29%) in the microwatershed is problematic because of moderate erosion. These areas need soil and water conservation and other land development measures for restoring the soil health.

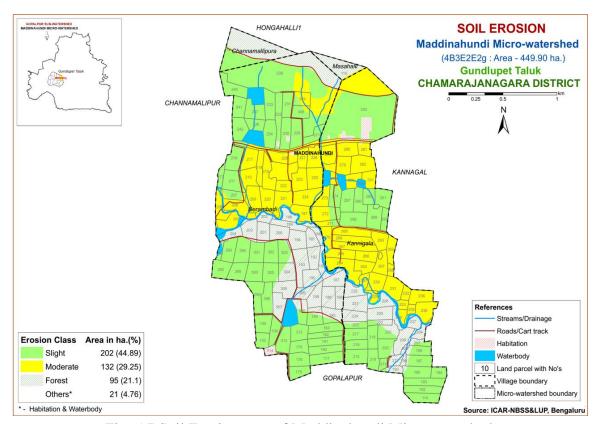


Fig. 5.7 Soil Erosion map of Maddinahundi Microwatershed

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status as these areas characterised by low rainfall and high temperatures. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected from the grid points (one soil sample at every 250 m grid interval) all over the microwatershed through land resource inventory in the year 2015 were analysed for pH, EC, organic carbon, available phosphorus and potassium, and for micronutrients like zinc, boron, copper, iron and manganese, and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been generated using Kriging method under GIS. The village/survey number wise fertility data for the microwatershed is given in Appendix-II.

6.1 Soil Reaction (pH)

The soil analysis of the Maddinahundi Microwatershed for soil reaction (pH) showed that a minor area of about 2 ha (<1%) is strongly acid (5.0-5.5) and is distributed in the northeastern part of the microwatershed. About 45 ha (10%) area is moderately acid (pH 5.5-6.0) and is distributed in the northern part of the microwatershed. About 59 ha (13%) area falls under slightly acid (pH 6.0-6.5) in reaction and is distributed in the northern and eastern part of the microwatershed. An area of 59 ha (13%) is neutral (pH 6.5-7.3) in reaction and is distributed in the western, northern, eastern and southern part of the microwatershed. Slightly to moderately alkaline (pH 7.3-8.4) soils cover an area of 144 ha (32%) and are distributed in the major part of the microwatershed. An area of about 25 ha (6%) is strongly alkaline (pH 8.4-93.0) and is distributed in the central and southern part of the microwatershed.

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is <2 dSm⁻¹ (Fig 6.2) and as such the soils are non saline.

6.3 Organic Carbon

The soil organic carbon content of the microwatershed area is low (<0.5%) and are distributed in an area of 53 ha (12%) and is distributed in the northern and northeastern part of the microwaterhead. Medium (0.5-0.75%) covering a maximum area of 237 ha (53%) and is distributed in the major part of the microwatershed. High

(>0.75%) in available organic carbon occur in an area of 43 ha (10%) and is distributed in the western part of the microwatershed (Fig. 6.3).

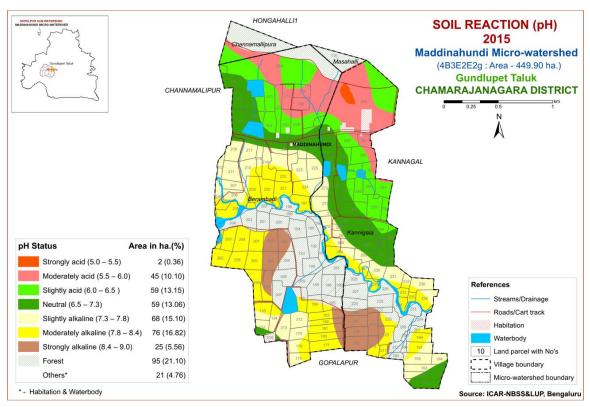


Fig. 6.1 Soil Reaction (pH) map of Maddinahundi Microwatershed

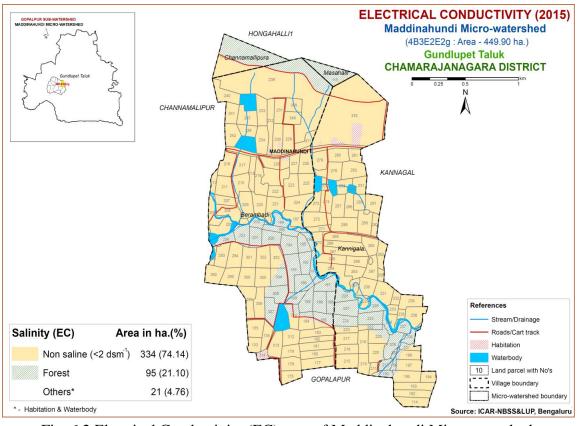


Fig. 6.2 Electrical Conductivity (EC) map of Maddinahundi Microwatershed

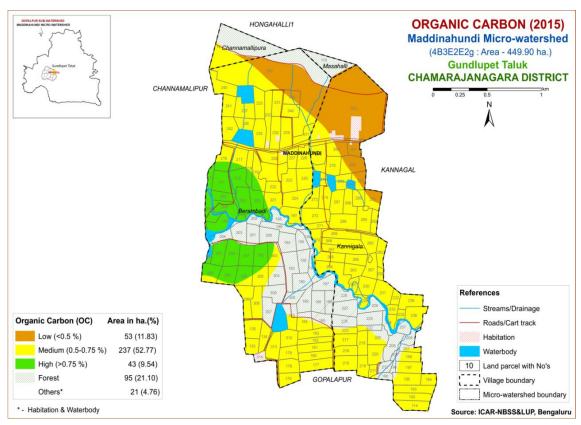


Fig. 6.3 Soil Organic Carbon map of Maddinahundi Microwatershed

6.4 Available Phosphorus

The soil analysis revealed that the available phosphorus is medium (23-57 kg/ha) in an area of about 243 ha (54%) and are distributed in the major part of the microwatershed. An area of about 91 ha (20%) is high (>57 kg/ha) and are distributed in the western, central and southeastern part of the microwatershed (Fig 6.4). There is an urgent need to increase the dose of phosphorus for all the crops by 25 per cent over the recommended dose to realize better crop performance in medium areas.

6.5 Available Potassium

Available potassium content is low (<145 kg/ha) in an area of about 50 ha (11%) and is distributed in the northern part of the microwatershed. An area of 104 ha (23%) is medium (145-337 kg/ha) and is distributed in the northern, northwestern and eastern part of the microwatershed. High in available potassium (>337 kg/ha) cover an area of 180 ha (40%) and are distributed in the major part of the microwatershed (Fig 6.5).

6.6 Available Sulphur

Available sulphur content is low (<10 ppm) in an area of about 91 ha (20%) and is distributed in the northern, eastern and southern part of the microwatershed. An area of 216 ha (48%) is medium (10-20 ppm) and is distributed in the major part of the microwatershed. A small area of 26 ha (6%) is high (>20 ppm) and is distributed in the central and southeastern part of the microwatershed (Fig. 6.6).

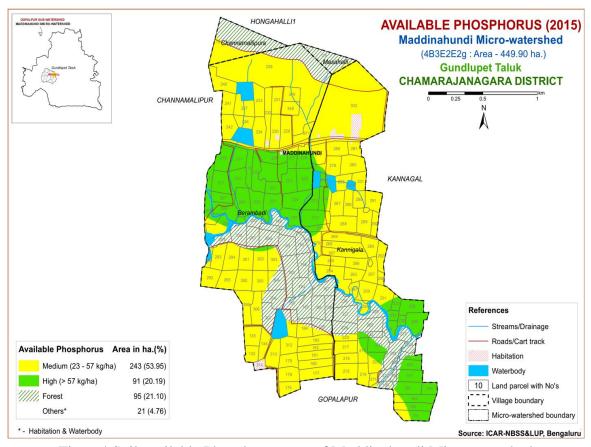


Fig. 6.4 Soil available Phosphorus map of Maddinahundi Microwatershed

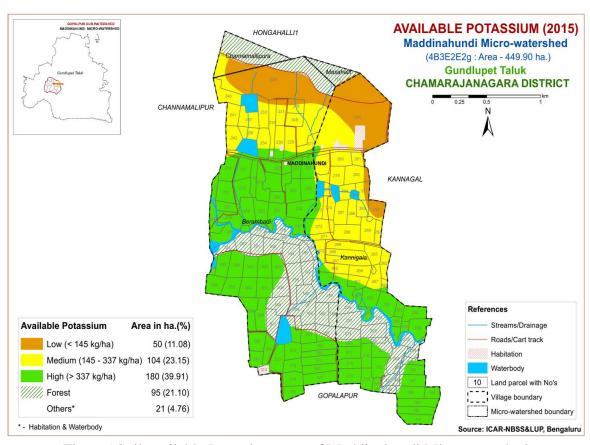


Fig. 6.5 Soil available Potassium map of Maddinahundi Microwatershed

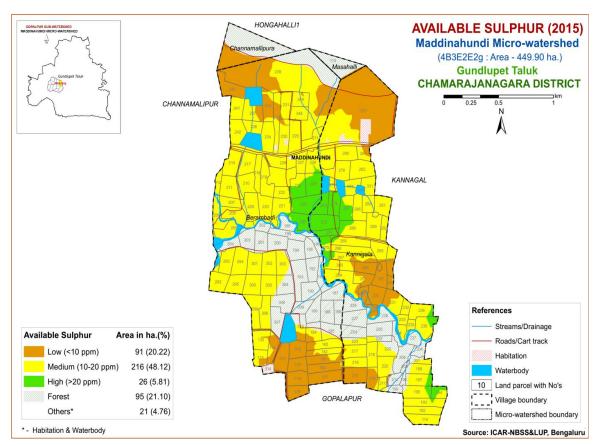


Fig. 6.6 Soil available Sulphur map of Maddinahundi Microwatershed

6.7 Available Boron

Available boron content is low (<0.5 ppm) in an area of about 45 ha (10%) and is distributed in the northern, northwestern and eastern part of the microwatershed. An area of 185 ha (41%) is medium (0.5-1.0 ppm) and is distributed in the major part of the microwatershed. High (>1.0 ppm) in available boron occur in an area of 103 ha (23%) and is distributed in the central, western and southeastern part of the microwatershed (Fig. 6.7).

6.8 Available Iron

Available iron content is sufficient (>4.5 ppm) in a maximum area of about 314 ha (70%) and is distributed in all parts of the microwatershed. A small area of 19 ha (4%) is deficient (<4.5 ppm) and is distributed in the western and southern part of the microwatershed (Fig 6.8).

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig 6.10).

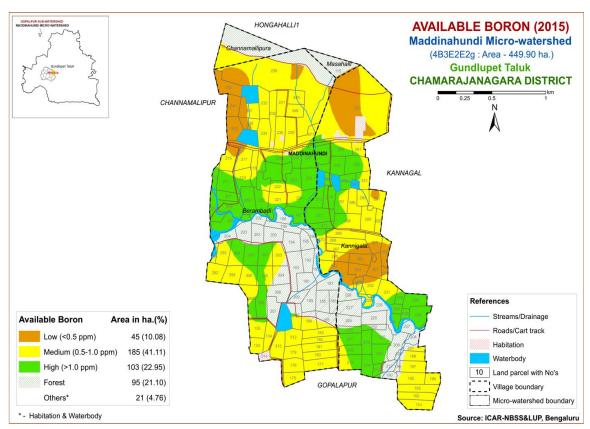


Fig. 6.7 Soil available Boron map of Maddinahundi Microwatershed

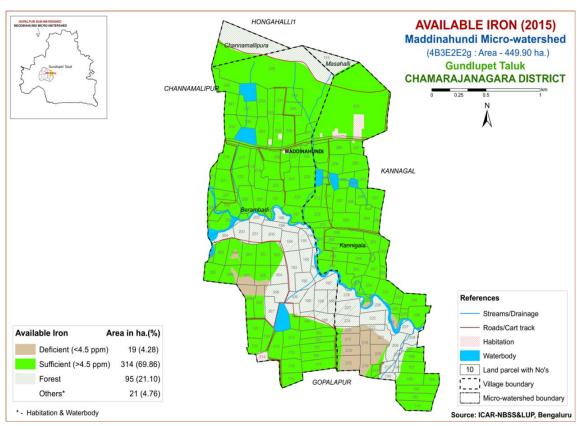


Fig. 6.8 Soil available Iron map of Maddinahundi Microwatershed

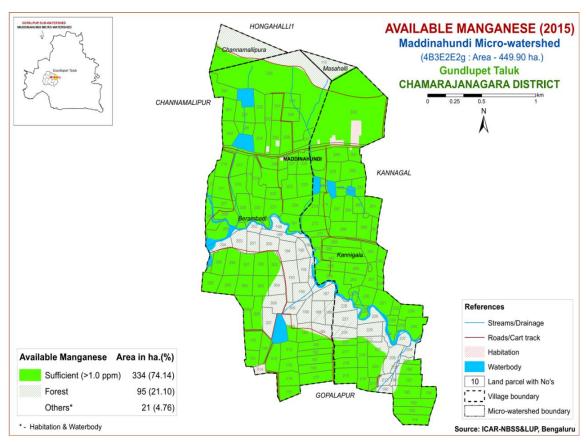


Fig. 6.9 Soil available Manganese map of Maddinahundi Microwatershed

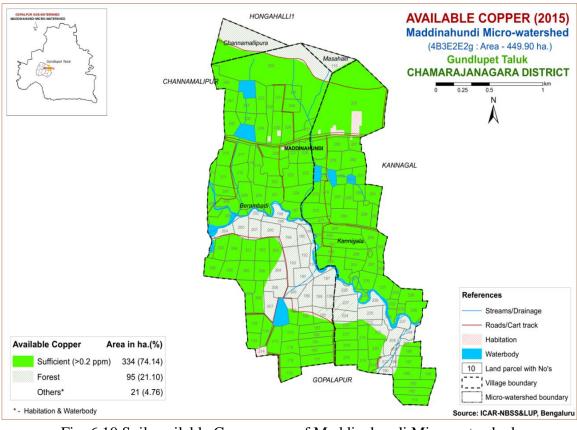


Fig. 6.10 Soil available Copper map of Maddinahundi Microwatershed

6.11 Available Zinc

Available zinc content is deficient (<0.6 ppm) in an area of 171 ha (38%) and are distributed in the western and eastern part of the microwatershed. Sufficient (>0.6 ppm) in available zinc content cover an area of about 163 ha (36%) and are distributed in the northern, western, central, southern and southeastern part of the microwatershed (Fig 6.11).

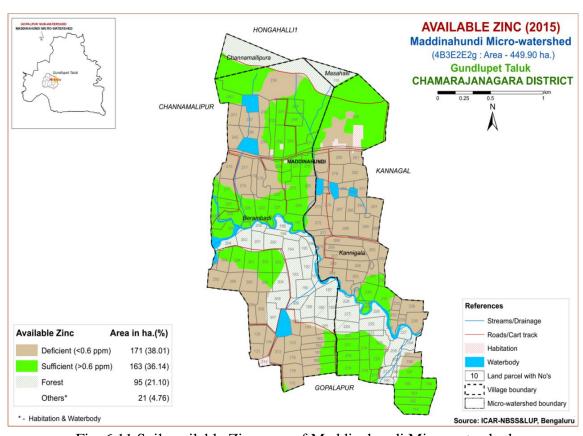


Fig. 6.11 Soil available Zinc map of Maddinahundi Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Maddinahundi microwatershed were assessed for their suitability for growing food, fodder, fibre and horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data, Naidu et. al. (2006) and Natarajan et. al (2015). The crop requirements were matched with the soil and land characteristics (Table 7.1) to arrive at the crop suitability. In FAO land suitability classification, two orders are recognized. Order S-Suitable and Order N-Not suitable. The orders have classes, subclasses and units. Order-S has three classes, Class S1-Highly Suitable, Class S2-Moderately Suitable and Class S3-Marginally Suitable. Order N has two classes, N1-Currently not Suitable and N2-Permanently not Suitable. There are no subclasses within the class S1 as they will have very minor or no limitations for crop growth. Classes S2, S3 and N1 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability, 'z' for calcareousness, 's' for sodium and 'w' for drainage. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable land with the limitations of soil depth and erosion is designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 27 major agricultural and horticultural crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major crop grown in Karnataka in an area of 10.47 lakh ha in northern Karnataka in Bijapur, Kalaburgi, Raichur, Bidar, Belgaum, Dharwad and Bellary districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.1.

An area of about 98 ha (22%) is highly suitable (Class S1) for growing sorghum and are distributed in the central, western and southeastern part of the microwatershed. About 100 ha (22%) has soils that are moderately suitable (Class S2) and are distributed in the southern, and southwestern part of the microwatershed. They have minor

Table 7.1 Soil-Site Characteristics of Maddinahundi Microwatershed

Soil Map	Climate	Growing	Drai-	Soil	Soil t	exture	Gra	velliness	AWC	Slope	Erosion	pН	EC	ESP	CEC	BS
Units	(P)	period	nage	depth	Surf-	Sub-	Surf-	Sub	mm/m)	(%)					[Cmol	(%)
	(mm)	(Days)	class	(cm)	ace	surface	ace	surface							$(\mathbf{p}^{+})\mathbf{k}\mathbf{g}$	1
							(%)	(%)							¹]	1
BMBiB2	734	150	MWD	>150	sc	sc-c	-	-	200	1-3	Moderate	7.59	0.48	1.57	10.83	100
BMDcB1g1	734	150	WD	25-50	sl	scl	15-35	<15	50-100	1-3	Slight	8.28	0.23	0.83	18.13	100
BMDcB2g1	734	150	WD	25-50	sl	scl	15-35	<15	50-100	1-3	Moderate	8.28	0.23	0.83	18.13	100
BMDiB1	734	150	WD	25-50	sc	scl	-	<15	50-100	1-3	Slight	8.28	0.23	0.83	18.13	100
GPRcB1	734	150	WD	75-100	sl	gscl	-	15-35	75	1-3	Slight	-	-	-	-	_
GPRhB2	734	150	WD	75-100	sc	gscl	-	15-35	75	1-3	Moderate	-	-	1	-	_
HDRcB1g1	734	150	WD	25-50	sl	sl	15-35	<15	50	1-3	Slight	8.28	0.18	0.64	0.89	100
HDRcB2g1	734	150	WD	25-50	sl	sl	15-35	<15	50	1-3	Moderate	8.28	0.18	0.64	0.89	100
HGHmB1	734	150	WD	>150	c	scl	-	<15	200	1-3	Slight	7.37	0.18	1.50	8.66	100
HPRhB1	734	150	WD	50-75	scl	gscl	-	15-35	75	1-3	Slight	8.36	0.36	1.78	24.17	100
HPRhB1g1	734	150	WD	50-75	scl	gscl	15-35	15-35	75	1-3	Slight	8.36	0.36	1.78	24.17	100
KDHhB1	734	150	WD	50-75	scl	scl	-	<15	200	1-3	Slight	8.03	0.13	0.72	13.91	100
KLPhB2g1	734	150	WD	100-150	scl	sc	15-35	<15	100	1-3	Moderate	6.07	0.14	2.82	9.23	100
KNGcB1g1	734	150	WD	75-100	sl	gscl	15-35	>35	50	1-3	Slight	5.41	0.23	0.59	6.82	84
KNGcB2g1	734	150	WD	75-100	sl	gscl	15-35	>35	50	1-3	Moderate	5.41	0.23	0.59	6.82	84
KNGiB2g1	734	150	WD	75-100	sc	gscl	15-35	>35	50	1-3	Moderate	5.41	0.23	0.59	6.82	84
MDHbB2g1	734	150	WD	100-150	ls	gsc-c	15-35	>35	100	1-3	Moderate	4.49	0.18	15.38	1.82	100

Symbols and abbreviations are according to Field Guide for LRI under Sujala-III Project, Karnataka

limitations of rooting depth and texture. Marginally suitable (Class S3) lands cover an area of 136 ha (30%) and are distributed in the northern and eastern part of the microwatershed with moderate limitations of gravelliness and rooting condition.

Table 7.2 Land suitability criteria for Sorghum

Crop requires	ment		Rati	ing	
Soil –site characteristics	Unit	Highly Moderatel suitable (S1) suitable (S2)		Marginally suitable (S3)	Not suitable (N)
Slope	%	2-3	3-8	8-15	>15
LGP	Days	120-150	120-90	<90	
Soil drainage	Class	Well to mod. Well drained	imperfect	Poorly/ excessively	V. poorly
Soil reaction	pН	6.0-8.0	5.5-5.9 8.1-8.5	<5.5 8.6-9.0	>9.0
Surface soil texture	Class	c, cl, sicl, sc	1, sil, sic	sl, ls	s, fragmental skeletal
Soil depth	cm	100-75	50-75	30-50	<30
Gravel content	% vol.	5-15	15-30	30-60	>60
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10
Sodicity (ESP)	%	5-8	8-10	10-15	>15

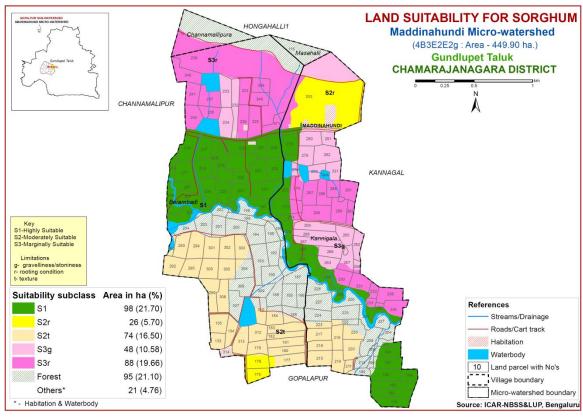


Fig. 7.1 Land Suitability map of Sorghum

7.2 Land Suitability for Maize (Zea mays)

Maize is one of the most important food crop grown in an area of 13.37 lakh ha in all the district of the state. The crop requirements for growing maize (Table 7.3) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.2.

An area of about 133 ha (30%) in the microwatershed has soils that are highly suitable (Class S1) for growing maize and are distributed in the southern, southwestern, western and central part of the microwatershed. About 26 ha (6%) has soils that are moderately suitable (Class S2) and are distributed in the northeastern and southern part of the microwatershed. They have minor limitation of rooting depth. The marginally suitable (Class S3) lands cover an area of about 175 ha (39%) and occur in the major part of the microwatershed. They have moderate limitations of texture, rooting depth, drainage and gravelliness.

Table 7.3 Land suitability criteria for Maize

Crop require	ement		Rating						
Soil-site characteristics	Unit	it Highly Moderatel suitable(S1) suitable(S2)		Marginally suitable(S3)	Not suitable (N)				
Slope	%	<3	3.5	5-8					
LGP	Days	>100	100-80	60-80					
Soil drainage	Class	Well drained	Mod. to imperfectly	Poorly/excessively	V. poorly				
Soil reaction	pН	5.5-7.5	7.6-8.5	8.6-9.0					
Surface soil texture	Class	l, cl, scl, sil	sl, sicl, sic	c (s-s), ls	s, fragmental				
Soil depth	cm	>75	50-75	25-50	<25				
Gravel content	% vol.	<15	15-35	35-50	>50				
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	2.0-4.0					
Sodicity (ESP)	%	<10	10-15	>15					

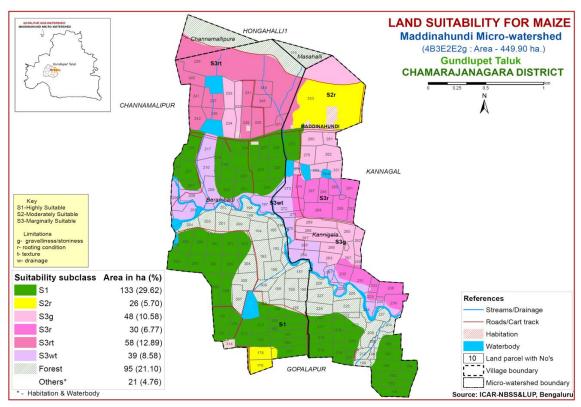


Fig. 7.2 Land Suitability map of Maize

7.3 Land Suitability for Red gram (Cajanus cajan)

Red gram is one of the major pulse crop grown in an area of 7.28 lakh ha mainly in northern Karnataka in Bijapur, Kalaburgi, Raichur, Bidar, Belgaum, Dharwad and Bellary districts. The crop requirements for growing red gram (Table 7.4) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing red gram was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.3.

The highly suitable (Class S1) lands for growing red gram occupy about 133 ha (30%) and are distributed in the western, central, southwestern and southern part of the microwatershed. An area of about 87 ha (19%) is moderately suitable (Class S2) for red gram and are distributed in the northern, western, central and eastern part of the microwatershed. They have minor limitations of gravelliness and drainage. Marginally suitable lands (Class S3) for growing red gram occupy an area of about 26 ha (6%) and occur in the northeastern and southern part of the microwatershed. They have moderate limitation of root depth. Currently not suitable (Class N1) lands occur in an area of 88 ha (20%) and are distributed in the northern, northwestern and eastern part of the microwatershed with severe limitations of rooting depth and texture.

Table 7.4 Land suitability criteria for Red gram

Crop requiren	nent		Ra	iting	
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Slope	%	<3	3-5	5-10	>10
LGP	Days	>210	180-210	150-180	<150
Soil drainage	Class	Well	Mod. to	Imperfectly	Poorly
Son dramage	Class	drained	well drained	drained	drained
Soil reaction	рН	6.5-7.5	5.0-6.5 7.6-8.0	8.0-9.0	>9.0
Surface soil texture	Class	l, scl, sil, cl, sl	sicl, sic, c(m)	ls	s, fragmental
Soil depth	cm	>100	85-100	40-85	<40
Gravel content	% vol.	<20	20-35	35-60	>60
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0	
Sodicity (ESP)	%	<10	10-15	>15	

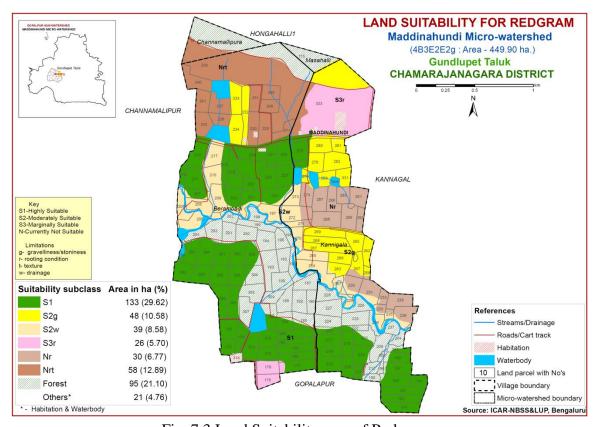


Fig. 7.3 Land Suitability map of Red gram

7.4 Land Suitability for Horse gram (*Macrotyloma uniflorum*)

Horsegram is one of the most important pulse crop grown in an area of 1.8 lakh ha in almost all the districts of the State. The crop requirements for growing horsegram (Table 7.5) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing horsegram was generated and the area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

The highly suitable (Class S1) lands for growing horse gram occupy about 133 ha (30%) and are distributed in the western, southwestern and southern part of the microwatershed. A major area of about 113 ha (25%) is moderately suitable (Class S2) for horse gram and are distributed in the eastern, western, central and southern part of the microwatershed. They have minor limitations of rooting depth, gravelliness and drainage. An area of 88 ha (20%) is marginally suitable (Class S3) and are distributed in the northern, northwestern and eastern part of the microwatershed with severe limitation of rooting depth.

Table 7.5 Land suitability criteria for Horse gram

Crop requireme	ent	Rating						
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable (N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days							
Soil drainage	Class	Well drained/mod. well drained	imperfectly drained	Poorly drained	Very Poorly drained			
Soil reaction	рН	6.0-8.5	8.5-9.0 5.5-5.9	9.1-9.5 5.0-5.4	>9.5			
Surface soil texture	Class	l, sl, scl, cl, sc	ls, sic, sicl, c, ls	Heavy clays (>60%)	-			
Soil depth	cm	50-75	25-50	<25	-			
CaCO ₃ in root zone	% vol.	<15	15-25	25-30	>30			
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	>2.0				
Sodicity (ESP)	%	<10	10-15	>15	_			

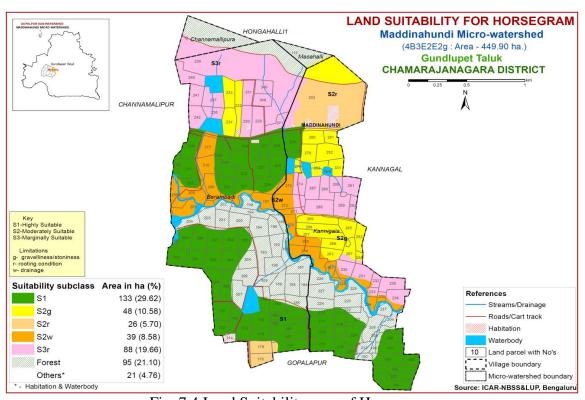


Fig. 7.4 Land Suitability map of Horse gram

7.5 Land Suitability for Field bean (*Dolichos lablab*)

Field Bean is one of the most important pulse crop grown in an area of 0.68 lakh ha in almost all the districts of the State. The crop requirements (Table 7.4) for growing field bean were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing field bean was generated. The area extent and their geographical distribution of different suitability subclasses in different microwatersheds is given in Figure 7.5.

The highly suitable (Class S1) lands for growing field bean occupy an area of about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. An area of about 108 ha (24%) is moderately suitable (Class S2) for field bean and are distributed in the central, northeastern, western and southern part of the microwatershed. They have minor limitations of gravelliness, rooting depth and drainage. An area of about 136 ha (30%) is marginally suitable (Class S3) and are distributed in the major part of the microwatershed with moderate limitations of gravelliness and rooting depth.

Table 7.6 Land suitability criteria for Field Bean

Crop requiren	ient		Rating						
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)				
Slope	%	<3	3-5	5-10	>10				
LGP	Days	>120	90-120	70-90	< 70				
Soil drainage	Class	Well drained/mod. well drained	imperfectly drained	Poorly drained	Very Poorly drained				
Soil reaction	рН	6.0-8.5	8.5-9.0 5.5-5.9	9.1-9.5 5.0-5.4	>9.5				
Sub Surface soil texture	Class	l, sl, scl, cl, sc	sic, sicl, c	Heavy clays (>60%), ls	s				
Soil depth	cm	>75	50-75	25-50	<25				
CaCO ₃ in root zone	% vol.	<15	15-35	35-50	>50				
Salinity (EC)	dsm ⁻¹	<1.0	1.0-2.0	>2.0					
Sodicity (ESP)	%	<10	10-15	15-20	>20				

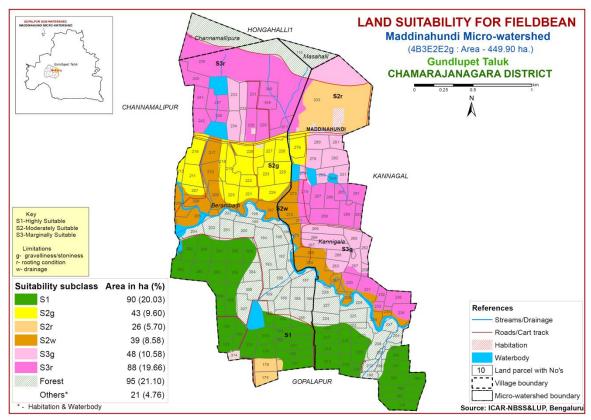


Fig. 7.5 Land Suitability map of Field Bean

7.6 Land Suitability for Groundnut (Arachis hypogaea)

Groundnut is one of the major oilseed crop grown in an area of 6.5 lakh ha in Karnataka in most of the districts either as rainfed or irrigated crop. The crop requirements for growing groundnut (Table 7.7) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and land suitability map for growing groundnut was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.6.

An area of 43 ha (10%) is highly suitable (Class S1) for growing groundnut and are distributed in the central and western part of the microwatershed. A maximum area of about 150 ha (33%) is moderately suitable (Class S2) for growing groundnut and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. Marginally suitable lands (class S3) for growing groundnut occupy an area of about 141 ha (31%) and are distributed in northern, western, eastern and central part of the microwatershed. They have moderate limitations of drainage, rooting depth, gravelliness and texture.

Table 7.7 Land suitability criteria for Groundnut

Crop requires	ment		Rating					
Soil-site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days	100-125	90-105	75-90				
Soil drainage	Class	Well drained	mod. well rained	imperfectly drained	Poorly drained			
Soil reaction	рН	6.0-8.0	8.1-8.5 5.5-5.9	>8.5 <5.5				
Surface soil texture	Class	l, cl, sil, sc, sicl	sc, sic, c,	s, ls, sl c (>60%)	s, fragmental			
Soil depth	cm	>75	50-75	25-50	<25			
Gravel content	% vol.	<35	35-50	>50				
CaCO ₃ in root zone	%	high	medium	low				
Salinity (EC)	dSm ⁻¹	<2.0	2.0-4.0	4.0-8.0				
Sodicity (ESP)	%	<5	5-10	>10				

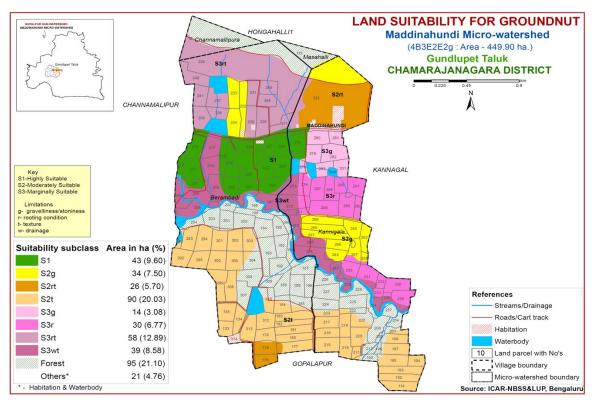


Fig. 7.6 Land Suitability map of Ground nut

7.7 Land Suitability for Sunflower (*Helianthus annus*)

Sunflower is one of the most important oilseed crop grown in an area of 4.1 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.8) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sunflower was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.7.

A small area of 16 ha (4%) is highly suitable (Class S1) for growing sunflower and are distributed in the southeastern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 156 ha (35%) and are distributed in the southern, western and central part of the microwatershed. They have minor limitations of drainage, texture and gravelliness. The marginally suitable (Class S3) lands cover about 74 ha (16%) and occur in the northern, northeastern, eastern and southern part of the microwatershed. They have moderate limitations of rooting depth and gravelliness. Currently not suitable (Class N1) lands cover an area of about 88 ha (20%) and are distributed in the northern and eastern part of the microwatershed with severe limitations of rooting depth and texture.

Table 7.8 Land suitability criteria for Sunflower

Crop require	ment	Rating						
Soil-site characteristics	Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days	>90	80-90	70-80	< 70			
Soil drainage	class	Well drained	Mod. well drained	imperfectly drained	Poorly drained			
Soil reaction	pН	6.5-8.0	8.1-8.5 5.5-6.4	8.6-9.0; 4.5-5.4	>9.0 <4.5			
Surface soil texture	Class	l, cl, sil, sc	scl, sic, c,	c (>60%), sl	ls, s			
Soil depth	cm	>100	75-100	50-75	< 50			
Gravel content	% vol.	<15	15-35	35-60	>60			
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0				
Sodicity (ESP)	%	<10	10-15	>15				

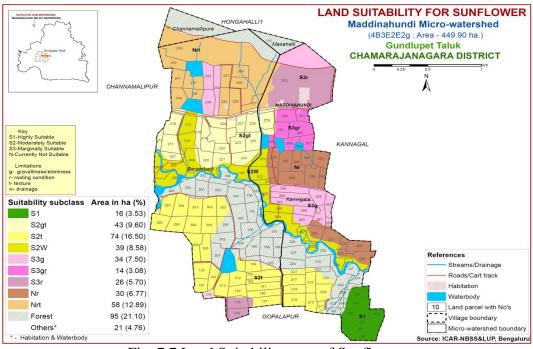


Fig. 7.7 Land Suitability map of Sunflower

7.8 Land Suitability for Cotton (Gossypium hirsutum)

Cotton is one of the most important fibre crop grown in the State in about 6.6 lakh ha area in Raichur, Dharwad, Belgaum, Kalaburgi, Bijapur, Bidar, Bellary, Chitradurga and Chamarajnagar districts. The crop requirements for growing cotton (Table 7.9) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cotton was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.8.

The highly suitable (Class S1) lands for growing cotton is about 54 ha (12%) and are distributed in the western, central and southeastern part of the microwatershed. An area of about 69 ha (15%) has soils that are moderately suitable (Class S2) for growing cotton and are distributed in the western, northeastern, central and southern part of the microwatershed with minor limitations of rooting depth and texture. The marginally suitable (Class S3) lands cover an area of about 210 ha (47%) and are distributed in the major part of the microwatershed with moderate limitations of gravelliness, texture and rooting depth.

Table 7.9 Land suitability criteria for Cotton

Crop requir	ement		Rating						
Soil-site	Unit	Highly	Moderately	Marginally	Not suitable				
characteristic	Omt	suitable(S1)	suitable (S2)	suitable(S3)	(N)				
Slope	%	1-2	2-3	3-5	>5				
LGP	Days	180-240	120-180	<120					
Soil drainage	Class	Well to moderately well	imperfectly drained	Poor somewhat excessive	Stagnant/ excessive				
Soil reaction	pН	6.5-7.5	7.6-8.0	8.1-9.0	>9.0 >6.5				
Surface soil texture	Class	sic, c	sicl, cl	si, sil, sc, scl, l	sl, s,ls				
Soil depth	cm	100-150	60-100	30-60	<30				
Gravel content	% vol.	<5	5-10	10-15	15-35				
CaCO ₃ in root zone	%	<3	3-5	5-10	10-20				
Salinity (EC)	dSm ⁻¹	2-4	4.0-8.0	8.0-12	>12				
Sodicity (ESP)	%	5-10	10-20	20-30	>30				

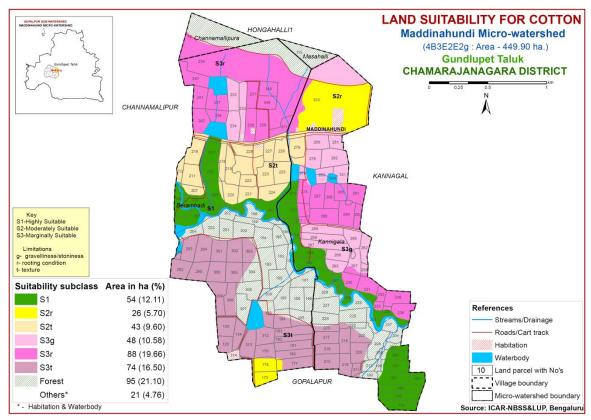


Fig. 7.8 Land Suitability map of Cotton

7.9 Land Suitability for Onion (Allium cepa)

Onion is one of the most important vegetable crop grown in an area in Raichur, Dharwad, Belgaum, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Chamarajnagar districts. The crop requirements for growing Onion (Table 7.10) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Onion was generated and the area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.9.

The highly suitable (Class S1) lands for growing onion are about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. An area of about 108 ha (24%) has soils that are moderately suitable (Class S2) for growing onion and are distributed in the northeastern, western, central, eastern and southern part of the microwatershed with minor limitations of gravelliness, rooting depth, drainage and texture. An area of about 136 ha (30%) is marginally suitable (Class S3) and are distributed in the northern, northeastern and eastern part of the microwatershed with moderate limitations of gravelliness, rooting depth and texture.

Table 7.10 Land suitability criteria for Onion

Crop requiren	nent		Ratii	ng		
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable (N)	
Mean temperature in growing season	⁰ C	20-30	30-35	35-40	>40	
Slope	%	<3	3-5	5-10	>10	
Soil drainage	Class	Well drained	Moderately /imperfectly	Poor drained	Very poorly drained	
Soil reaction	pН	6.5-7.3	7.3-7.8 5.0-5.4	7.8-8.4 <5.0	>8.4	
Surface soil texture	Class	scl, sil, sl	sc, sicl, c (red soil)	sc, c (black soil)	ls	
Soil depth	cm	>75	50-75	25-50	<25	
Gravel content	% vol.	<15	15-35	35-60	60-80	
Salinity (ECe)	dsm ⁻	<1.0	1.0-2.0	2.0-4.0	<4	
Sodicity (ESP)	%	<5	5-10	10-15	>15	

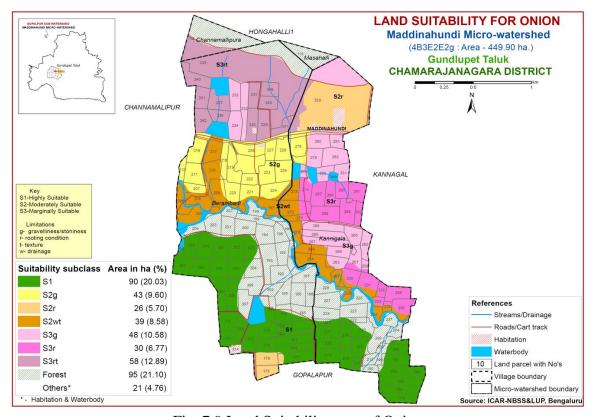


Fig. 7.9 Land Suitability map of Onion

7.10 Land Suitability for Potato (Solanum tuberosum)

Potato is one of the most important vegetable crop grown in Raichur, Dharwad, Belgaum, Chikkaballapur, Kolar, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Chamarajnagar districts. The crop requirements for growing Potato (Table 7.11) were

matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Potato was generated and the area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.10.

The highly suitable (Class S1) lands for growing potato occupy an area of about 90 ha (20%) and are distributed in the and southwestern part of the microwatershed. An area of about 69 ha (15%) is moderately suitable (Class S2) and are distributed in the northeastern, western, southern and central part of the microwatershed. They have minor limitations of rooting depth and gravelliness. Marginally suitable lands (Class S3) for growing potato occupy a maximum of about 175 ha (39%) and occur in the major part of the microwatershed. They have moderate limitations of texture, gravelliness, rooting depth and drainage.

Table 7.11 Land suitability criteria for Potato

Cro	p requiren	nent		Rating						
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable (N)				
Hills		%	<5	5-10	10-15	>15				
Slope	Plains	%	<3	3-5	5-8	>8				
	ature in g season	⁰ C	16-25	26-30 13-15	31-32 10-12	>32 <10				
Soil drainage		Class	Well drained	Moderately /imperfectly	Poor drained	Very poorly drained				
Soil rea	action	pН	5.5-6.5	6.6-8.2 5.0-5.4	>8.2 <5.0	-				
Surface texture	Surface soil texture		scl, sil	s, sil	s					
Soil de	pth	cm	75-100	50-75	25-50	<25				
Stonine	ess	%	0-10	10-15	15-35	>35				
Salinity (ECe) dsi		dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0	>4.0				
Sodicit	y (ESP)	%	<10	10-15	>15	-				

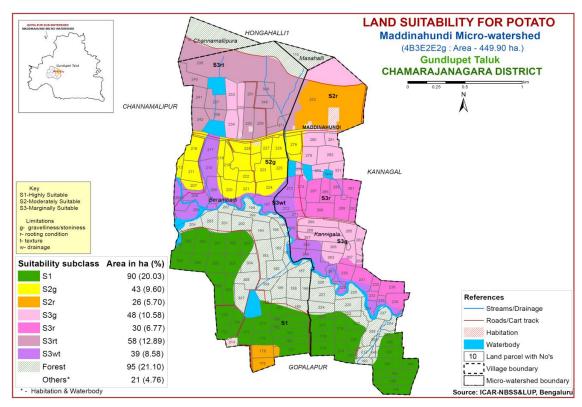


Fig. 7.10 Land Suitability map of Potato

7.11 Land Suitability for Beans (Phaseolus vulgaris)

French Beans are one of the most important vegetable crop grown in almost all the districts of Karnataka. The crop requirements for growing beans were matched with the soil–site characteristics and a land suitability map for growing beans was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

The highly suitable (Class S1) lands for growing French beans cover an area of about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 108 ha (24%) and are distributed in the northeastern, central, western, southeastern and southern part of the microwatershed. They have minor limitations of gravelliness, texture, rooting depth and drainage. A maximum area of about 136 ha (30%) is marginally suitable (Class S3) and are distributed in the major part of the microwatershed with severe limitations of gravelliness, rooting depth and texture.

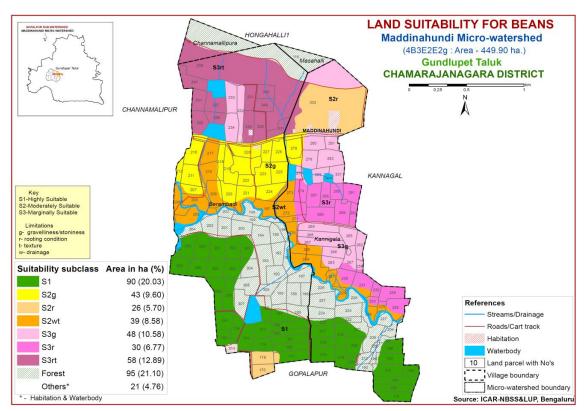


Fig. 7.11 Land Suitability map of French Beans

7.12 Land Suitability for Beetroot (*Beta vulgaris*)

Beetroot is one of the most important vegetable crop grown in almost all the districts of Karnataka. The crop requirement for growing beetroot were matched with the soil site characteristics and a land suitability map for growing beetroot was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.12.

The highly suitable (Class S1) lands for growing beetroot cover an area of about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 69 ha (15%) and are distributed in the northeastern, western, central and southern part of the microwatershed. They have minor limitations of gravelliness and rooting depth. The marginally suitable (Class S3) lands cover a maximum area of about 175 ha (39%) and occur in the major part of the microwatershed. They have moderate limitations of texture, gravelliness, rooting depth and drainage.

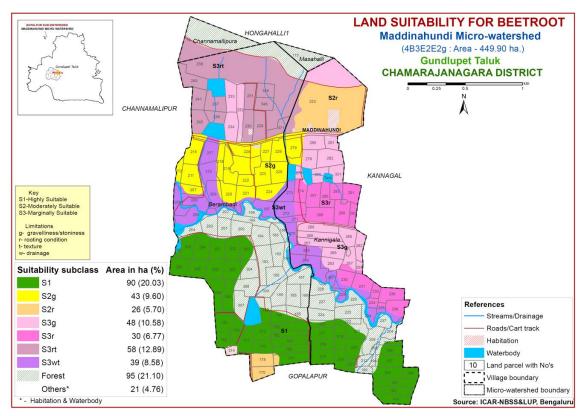


Fig. 7.12 Land Suitability map of Beetroot

7.13 Land suitability for Mango (Mangifera indica)

Mango is one of the most important fruit crop grown in almost all the districts of the State. The crop requirements (Table 7.13) for growing mango were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.13.

The highly suitable (Class S1) lands for growing mango cover an area of about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. An area of 33 ha (7%) is moderately suitable (Class S2) and are distributed in the northeastern part of the microwatershed with minor limitations of rooting depth and gravelliness. The marginally suitable (Class S3) lands cover an area of about 58 ha (13%) and occur in the northern, western and eastern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. Major area of about 153 ha (34%) is currently not suitable (Class N1) for growing mango and are distributed in the major part of the microwatershed.

Table 7.12 Land suitability criteria for Mango

Cro	p requirement		Rating						
Soil-site ch	Soil-site characteristics		Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Climate	Temp. in growing season	⁰ C	28-32	24-27 33-35	36-40	20-24			
Cililate	Min. temp. before flowering	⁰ C	10-15	15-22	>22				
Soil moisture	Growing period	Days	>180	150-180	120-150	<120			
Soil aeration	Soil drainage	Class	Well drained	Mod. To imp.drained	Poor drained	V.poorly drained			
aeration	Water table	M	>3	2.50-3.0	2.5-1.5	<1.5			
	Texture	Class	sc, l, sil, cl	sl, sc, sic, l, c	c (<60%)	c(>60%),			
Nutrient	рН	1:2.5	5.5-7.5	7.6-8.55.0-5.4	8.6-9.04.0-4.9	>9.0<4.0			
availability	OC	%	High	medium	low				
avanaomity	CaCO ₃ in root zone	%	Non calcareous	<5	5-10	>10			
Dooting	Soil depth	cm	>200	125-200	75-125	<75			
Rooting conditions	Gravel content	%vol	Non gravelly	<15	15-35	>35			
Soil	Salinity	dS/m	Non saline	< 2.0	2.0-3.0	>3.0			
toxicity	Sodicity	%	Non sodic	<10	10-15	>15			
Erosion	Slope	%	<3	3-5	5-10				

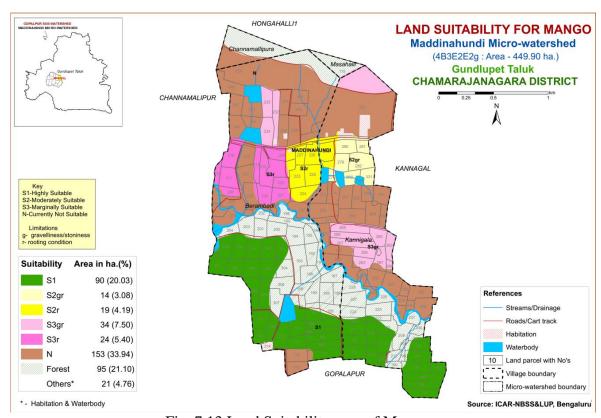


Fig. 7.13 Land Suitability map of Mango

7.14 Land suitability for Sapota (Manilkara zapota)

Sapota is one of the most important fruit crop grown in an area of 3.11 lakh ha in almost all the districts of the State. The crop requirements (Table 7.14) for growing sapota were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.14.

The highly suitable (class S1) lands for growing sapota cover about 90 ha (20%) area and are distributed in the southwestern and southern part of the microwatershed. The moderately suitable (class S2) lands are found to occur in an area of about 57 ha (13%) and are distributed in the western, northern and eastern part of the microwatershed. They have minor limitations of rooting depth and gravelliness. The marginally suitable (class S3) lands cover a maximum area of about 99 ha (22%) and are distributed in the northeastern, western, southern and central part of the microwatershed. They have moderate limitations of texture, drainage, gravelliness and rooting depth. An area of 88 ha (20%) is currently not suitable (Class N1) and are distributed in the northern, northwestern and eastern part of the microwatershed.

Table 7.13 Land suitability criteria for Sapota

Crop requirement			Rating				
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable(N)	
Climate	Temp. in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	>42 <18	
Soil moisture	Growing period	Days	>150	120-150	90-120	<120	
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained	
	Texture	Class	scl, l, cl, sil	sl, sicl, sc	c (<60%)	ls, s, c (>60%)	
Nutrient availabiliy	pН	1:2.5	6.0-7.5	7.6-8.0 5.0-5.9	8.1-9.0 4.5-4.9	>9.0 <4.5	
avanaomy	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15	
Rooting conditions	Soil depth	cm	>150	75-150	50-75	<50	
	Gravel content	% vol.	Non gravelly	<15	15-35	<35	
Soil	Salinity	dS/m	Non saline	Up to 1.0	1.0-2.0	2.0-4.0	
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25	
Erosion	Slope	%	<3	3-5	5-10	>10	

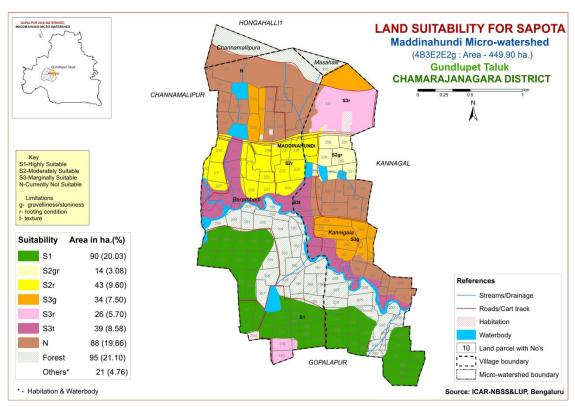


Fig. 7.14 Land Suitability map of Sapota

7.15 Land suitability for Guava (*Psidium guajava*)

Guava is one of the most important fruit crop grown in an area of 0.64 lakh ha in almost all the districts of the State. The crop requirements (Table 7.15) for growing guava were matched with the soil-site characteristics (7.1) and a land suitability map for growing guava was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.15.

The highly suitable (Class S1) lands for growing guava cover about 109 ha (24%) area and are distributed in the central, southwestern and southern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 38 ha (8%) and are distributed in the western, eastern and central part of the microwatershed. They have minor limitations of rooting depth and gravelliness. The marginally suitable (Class S3) lands cover an area of about 99 ha (22%) and are distributed in the northern, eastern, central, western and southern part of the microwatershed. They have moderate limitations of rooting depth, texture and gravelliness. About 88 ha (20%) area is currently not suitable (Class N1) for growing guava and are distributed in the northern, northwestern and eastern part of the microwatershed.

Table 7.14 Land suitability criteria for Guava

Crop requirement			Rating				
Soil –site characteristics		Unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	0 C	28-32	33-36 24-27	37-42 20-23		
Soil moisture	Growing period	Days	>150	120-150	90-120	<90	
Soil aeration	Soil drainage	class	Well drained	Mod. to imperfectly	poor	Very poor	
	Texture	Class	scl, l, cl, sil	sl,sicl,sic.,sc,c	c (<60%)	c (>60%)	
Nutrient	pН	1:2.5	6.0-7.5	7.6-8.0:5.0-5.9	8.1-8.5:4.5- 4.9	>8.5:<4.5	
availability	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15	
Pooting	Soil depth	cm	>100	75-100	50-75	< 50	
Rooting conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	dS/m	<2.0	2.0-4.0	4.0-6.0		
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25	
Erosion	Slope	%	<3	3-5	5-10	>10	

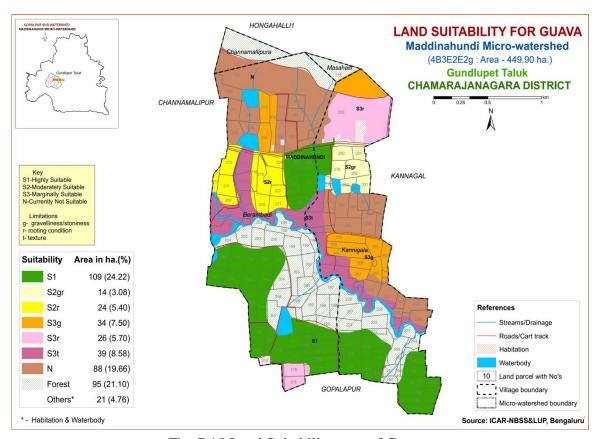


Fig. 7.15 Land Suitability map of Guava

7.16 Land Suitability for Banana (Musa paradisiaca)

Banana is one of the major fruit crop grown in an area of 1.02 lakh ha in Karnataka State. The crop requirements for growing banana (Table 7.16) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing banana was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.16.

The highly suitable (Class S1) lands for growing banana cover about 90 ha (20%) area and are distributed in the southern and southwestern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 82 ha (18%) and are distributed in the western, central and eastern part of the microwatershed. They have minor limitations of gravelliness, texture and drainage. The marginally suitable (Class S3) lands cover an area of about 74 ha (16%) and are distributed in the northern, northeastern and southern part of the microwatershed. They have moderate limitations of rooting depth and gravelliness. Currently not suitable (Class N1) lands cover an area of 88 ha (20%) and are distributed in the northern, northwestern and eastern part of the microwatershed with severe limitations of rooting depth and texture.

Table 7.15 Land suitability criteria for Banana

Cror	requirement		Rating				
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	26-33	34-36 24-25	37-38	>38	
Soil aeration	Soil drainage	Class	Well drained	Moderately to imperfectly drained	Poorly drained	Very poorly drained	
Nutrient	Texture	Class	l,cl, scl,sil	sicl, sc, c(<45%)	c (>45%), sic, sl	ls, s	
availability	рН	1:2.5	6.5-7.0	7.1-8.5 5.5-6.4	>8.5 <5.5		
Rooting	Soil depth	cm	>125	76-125	50-75	< 50	
conditions	Stoniness	%	<10	10-15	15-35	>35	
Soil	Salinity	dS/m	<1.0	1-2	>2		
toxicity	Sodicity	%	<5	5-10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-15	>15	

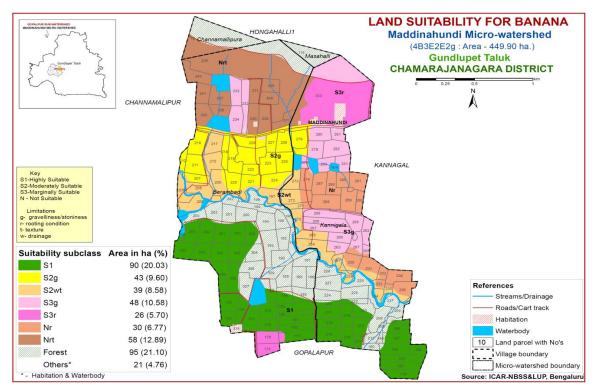


Fig. 7.16 Land Suitability map of Banana

7.17 Land Suitability for Jackfruit (Artocarpus heterophyllus)

Jackfruit is one of the most important fruit crop grown in almost all the districts of the State. The crop requirements for growing jackfruit were matched with the soil-site characteristics and a land suitability map for growing jackfruit was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.17.

The highly suitable (Class S1) lands for growing jackfruit cover about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. An area of 33 ha (7%) is moderately (Class S2) suitable and are distributed in the northeastern part of the microwatershed with minor limitations of gravelliness and rooting depth. The marginally suitable (Class S3) lands cover a maximum area of about 123 ha (27%) and are distributed in the major part of the microwatershed. They have moderate limitations of texture and rooting depth. About 88 ha (20%) is currently not suitable (Class N1) for growing jackfruit and are distributed in the northern and eastern part of the microwatershed.

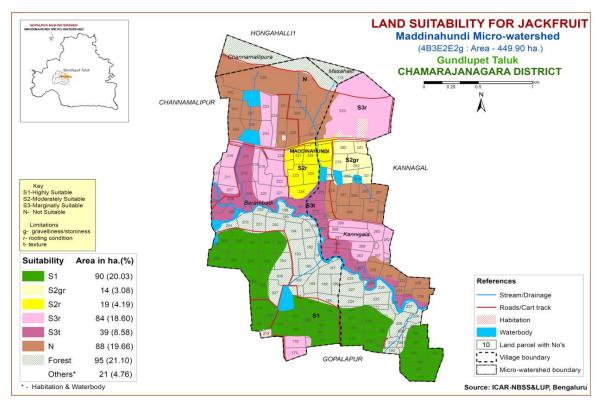


Fig. 7.17 Land Suitability map of Jackfruit

7.18 Land Suitability for Jamun (Syzygium cumini)

Jamun is one of the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing jamun were matched with the soil-site characteristics and a land suitability map for growing jamun was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.18.

The highly suitable (Class S1) lands for growing jamun cover about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. An area of 72 ha (16%) is moderately suitable (Class S2) and are distributed in the western, northeastern and central part of the microwatershed. They have minor limitations of gravelliness, texture and rooting depth. The marginally suitable (Class S3) lands cover a major area of about 84 ha (19%) and are distributed in the northeastern, western, eastern and southern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. An area of about 88 ha (20%) is currently not suitable (Class N1) and are distributed in the northern and eastern part of the microwatershed.

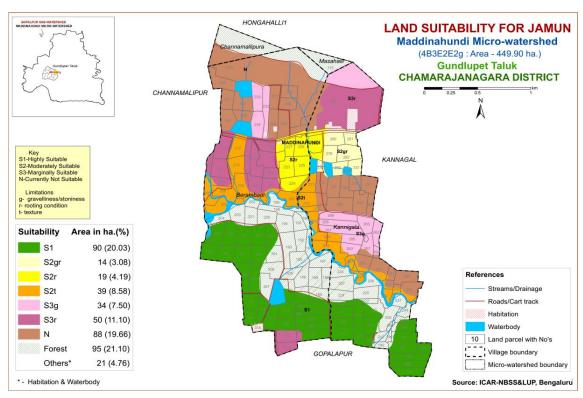


Fig. 7.18 Land Suitability map of Jamun

7.19 Land Suitability for Musambi (Citrus limetta)

Musambi is one of the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing musambi were matched with the soil-site characteristics and a land suitability map for growing musambi was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.19.

The highly suitable (Class S1) lands for growing Musambi cover about 129 ha (29%) area and are distributed in the major part of the microwatershed. An area of 33 ha (7%) is moderately suitable (Class S2) and are distributed in the northeastern part of the microwatershed with minor limitations of rooting depth and gravelliness. The marginally suitable (Class S3) lands cover an area of about 84 ha (19%) and are distributed in the western, northeastern, eastern and southern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. An area of about 88 ha (20%) is currently not suitable (Class N1) and are distributed in the northern, northwestern and eastern part of the microwatershed.

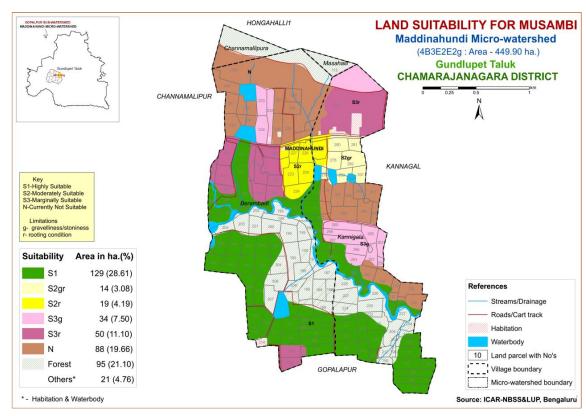


Fig. 7.19 Land Suitability map of Musambi

7.20 Land Suitability for Lime (Citrus sp)

Lime is one of the most important fruit crop grown in an area of 0.11 lakh ha in almost all the districts of the state. The crop requirements for growing lime (Table 7.17) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing lime was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.20.

The highly suitable (Class S1) lands for growing lime cover about 129 ha (29%) area and are distributed in the major part of the microwatershed. An area of 33 ha (7%) is moderately suitable (Class S2) and are distributed in the northeastern part of the microwatershed with minor limitations of rooting depth and gravelliness. The marginally suitable (Class S3) lands cover an area of about 84 ha (19%) and are distributed in the northeastern, eastern, western and southern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. An area of about 88 ha (20%) is currently not suitable (Class N1) and are distributed in the northern, northwestern and eastern part of the microwatershed.

Table 7.16 Land suitability criteria for Lime

Crop requirement			Rating				
Soil —site characteristics		Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Femp. in growing season	0 C	28-30	31-35 24-27	36-40 20-23	>40 <20	
Soil moisture	Growing period	Days	240-265	180-240	150-180	<150	
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly drained	poorly	Very poorly	
	Texture	Class	cl, l, sicl, cl, s	sc, sc, c	c (>70%)	s, ls	
Nutrient	рН	1:2.5	6.0-7.5	5.5-6.4 7.6-8.0	4.0-5.4 8.1- 8.5	<4.0 >8.5	
availability	CaCO ₃ in root zone	%	Non calcareous	Upto 5	5-10	>10	
Rooting	Soil depth	cm	>150	100-150	50-100	< 50	
conditions	Gravel content	% vol.	Non gravelly	15-35	35-55	>55	
Soil	Salinity	dS/m	Non saline	Upto 1.0	1.0-2.5	>2.5	
toxicity	Sodicity	%	Non sodic	5-10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

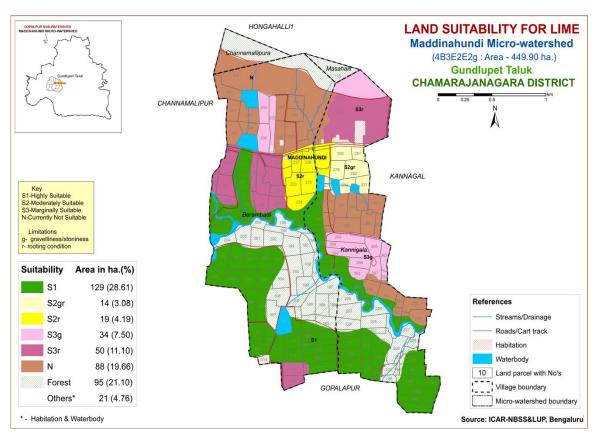


Fig. 7.20 Land Suitability map of Lime

7.21 Land Suitability for Cashew (*Anacardium occidentale*)

Cashew is one of the most important plantation nut crop grown in an area of 1.24 lakh ha in almost all the districts. The crop requirements for growing Cashew were matched with the soil-site characteristics and a land suitability map for growing Cashew was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.21.

The highly suitable (Class S1) lands for growing cashew cover about 90 ha (20%) area and are distributed in the southern and southwestern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 57 ha (13%) and are distributed in the western, eastern and central part of the microwatershed. They have minor limitations of rooting depth and gravelliness. The marginally suitable (Class S3) lands cover an area of about 60 ha (13%) and are distributed in the northeastern, eastern, northern and southern part of the microwatershed. They have moderate limitations of gravelliness and rooting depth. About 127 ha (28%) is currently not suitable (Class N1) for growing cashew and are distributed in the major part of the microwatershed.

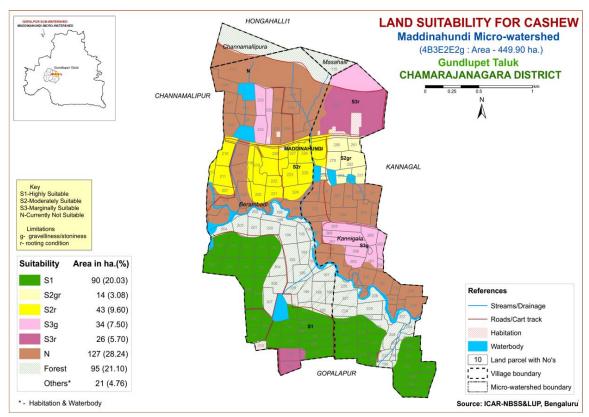


Fig. 7.21 Land Suitability map of Cashew

7.22 Land Suitability for Custard Apple (*Annona reticulata*)

Custard apple is one of the most important fruit crop grown in almost all the districts of the state. The crop requirements for growing custard apple were matched with the soil-site characteristics and a land suitability map for growing custard apple was

generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.21.

The highly suitable (Class S1) lands for growing custard apple cover about 109 ha (24%) area and are distributed in the southern, southwestern and central part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 137 ha (30%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth and gravelliness. An area of 88 ha (20%) is marginally suitable (Class S3) and are distributed in the northern, eastern and northwestern part of the microwatershed with moderate limitation of rooting depth.

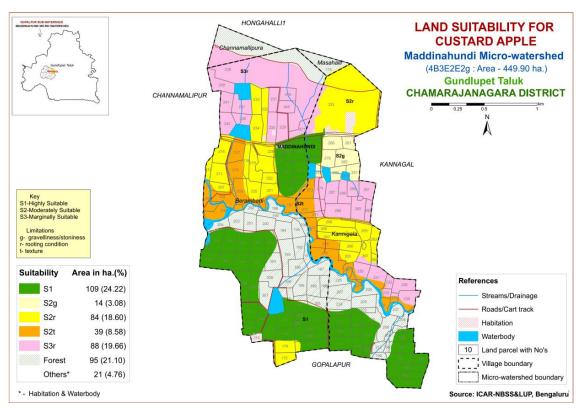


Fig. 7.22 Land Suitability map of Custard Apple

7.23 Land Suitability for Amla (*Phyllanthus emblica*)

Amla is one of the most important medicinal fruit crop grown in almost all the districts of the state. The crop requirements for growing amla were matched with the soil-site characteristics and a land suitability map for growing amla was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.23.

The highly suitable (Class S1) lands for growing amla cover about 109 ha (24%) and are distributed in the central, southern and southwestern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 137 ha (30%) and are distributed in the major part of the microwatershed. They have minor limitations of rooting depth, texture and gravelliness. An area of 88 ha (20%) is

marginally suitable (Class S3) and are distributed in the northern and eastern part of the microwatershed with moderate limitation of rooting depth.

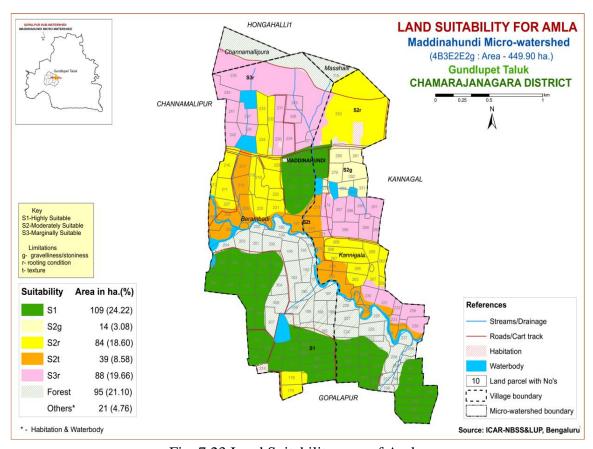


Fig. 7.23 Land Suitability map of Amla

7.24 Land Suitability for Tamarind (Tamarindus indica)

Tamarind is one of the most important spice crop raised in all the districts of the state. The crop requirements for growing tamarind were matched with the soil-site characteristics and a land suitability map for growing tamarind was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.24.

The highly suitable (Class S1) lands for growing tamarind cover about 90 ha (20%) area and are distributed in the southwestern and southern part of the microwatershed. An area of 33 ha (7%) is moderately suitable (Class S2) and are distributed in the northeastern part of the microwatershed. They have minor limitations of rooting depth and gravelliness. The marginally suitable (Class S3) lands cover an area of about 123 ha (27%) and are distributed in the western, central, northern, eastern and southern part of the microwatershed. They have moderate limitations of gravelliness, texture and rooting depth. An area of 88 ha (20%) is currently not suitable (Class N1) and are distributed in the northern and eastern part of the microwatershed.

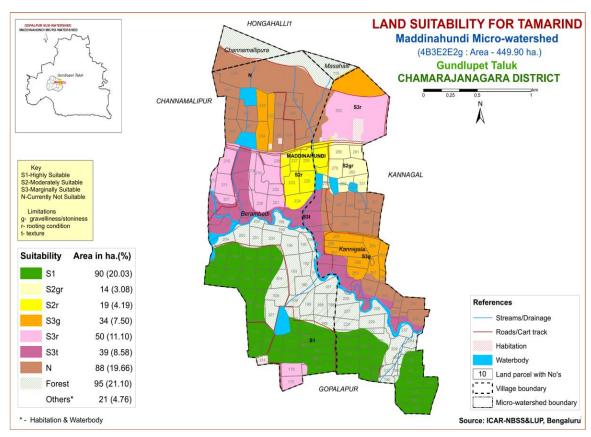


Fig. 7.24 Land Suitability map of Tamarind

7.25 Land Suitability for Marigold (*Tagetes erecta*)

Marigold is one of the most important flower crop grown in an area of 1858 ha in almost all the districts of the State. The crop requirements (Table 7.18) for growing marigold were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing marigold was prepared. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.25.

The highly suitable (Class S1) lands for growing marigold cover about 133 ha (30%) area and are distributed in the central, southern, southwestern and western part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 99 ha (22%) and are distributed in the western, northern, northeastern, central and eastern part of the microwatershed. They have minor limitations of rooting depth, texture, gravelliness and drainage. An area of 102 ha (23%) is marginally (Class S3) suitable and are distributed in the northern, northwestern and eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and texture.

Table 7.17 Land suitability criteria for Marigold

Crop requirement			Rating			
Soil-site characteristics		Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season	⁰ C	18-23	17-15 24-35	35-40 10-14	>40 <10
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained
	Texture	Class	l ,sl, scl, cl, sil	sicl, sc, sic, c	С	ls, s
Nutrient availability	pН	1:2.5	7.0-7.5	5.5-5.9 7.6-8.5	<5 >8.5	-
	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous	-
Dooting	Soil depth	cm	>75	50-75	25-50	<25
Rooting conditions	Gravel content	% vol.	<15	15-35	>35	-
Soil toxicity	Salinity	ds/m	Non saline	Slightly	Strongly	-
	Sodicity (ESP)	%	<10	10-15	>15	-
Erosion	Slope	%	1-3	3-5	5-10	-

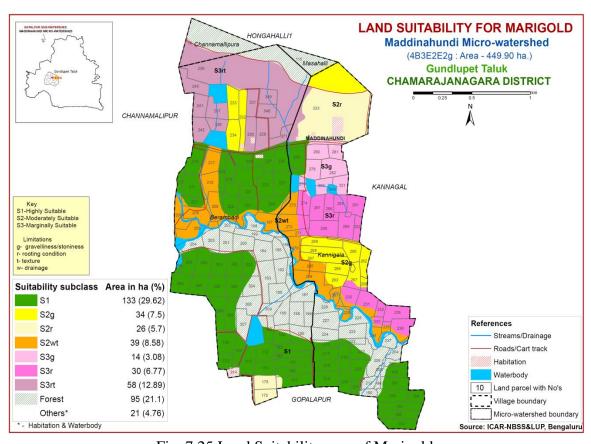


Fig. 7.25 Land Suitability map of Marigold

7.26 Land Suitability for Chrysanthemum (*Chrysanthemum indicum*)

Chrysanthemum is one of the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (7.19) for growing chrysanthemum were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chrysanthemum was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.26.

The highly suitable (Class S1) lands for growing chrysanthemum covers an area of about 90 ha (20%) and are distributed in the southwestern and southern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 108 ha (24%) and are distributed in the eastern, southern, central and western part of the microwatershed. They have minor limitations of gravelliness, rooting depth, texture and drainage. An area of 136 ha (30%) is marginally suitable (Class S3) and are distributed in the major part of the microwatershed with moderate limitations of gravelliness, rooting depth and texture.

Table 7.18 Land suitability criteria for Chrysanthemum

Crop requirement			Rating			
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season	0 C	18-23	17-15 24-35	35-40 10-14	>40 <10
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained
	Texture	Class	l ,sl, scl, cl, sil	sicl, sc, sic,	c	ls, s
Nutrient availability	рН	1:2.5	7.0-7.5	5.5-5.9 7.6-8.5	<5 >8.5	
	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous	
Dooting	Soil depth	cm	>75	50-75	25-50	<25
Rooting conditions	Gravel content	% vol.	<15	15-35	>35	
Soil toxicity	Salinity	ds/m	Non saline	slightly	strongly	
	Sodicity (ESP)	%	<10	10-15	>15	-
Erosion	Slope	%	1-3	3-5	5-10	

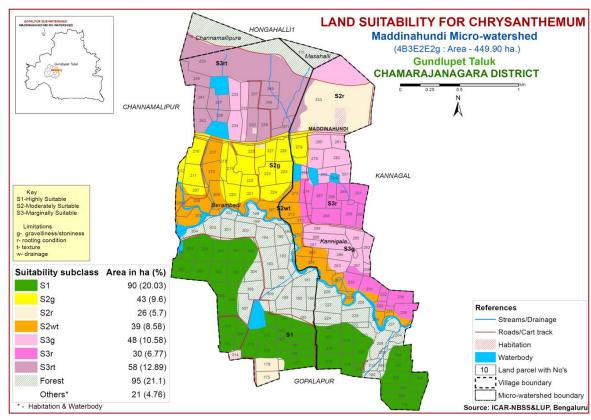


Fig. 7. 26 Land suitability map of Chrysanthemum

7.27 Land Suitability for Turmeric (Curcuma longa)

Turmeric is one of the most important spice crop grown in an area of 1.39 lakh ha in almost all the districts of the State. The crop requirements for growing turmeric (Table 7.12) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing turmeric was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.27.

The highly suitable (Class S1) lands for growing turmeric cover an area about 90 ha (20%) and are distributed in the southern and southwestern part of the microwatershed. The moderately suitable (Class S2) lands are found to occur in an area of about 69 ha (15%) and are distributed in the northeastern, western, central and southern part of the microwatershed. They have minor limitations of gravelliness and rooting depth. The marginally suitable (Class S3) lands cover an area of about 175 ha (39%) and occur in the major part of the microwatershed. They have moderate limitations of gravelliness, drainage, rooting depth and texture.

Table 7.19 Land suitability criteria for Turmeric

Cro	p requiremen	ıt	Rating						
Soil –site cl	naracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Climate	Temperature in growing season	⁰ C	28-32	20-27 33-37	10-19 38-40	<10 >40			
Soil aeration			Well drained	Mod. well drained	Imperfectly drained	Poorly drained			
Nutrient	Texture	Class	l, cl, scl, sl	Sc, sic, sicl	c(40-60%), ls	Stony heavy clay>60%			
availability	pН	1:2.5							
availability	Available nutrient status (NPK)	Fertility rating class	high	medium	low				
Rooting conditions	Soil depth	cm	>75	50-75	25-50	<25			
Erosion	Slope	%	<3	3-8	8-15	>15mm			

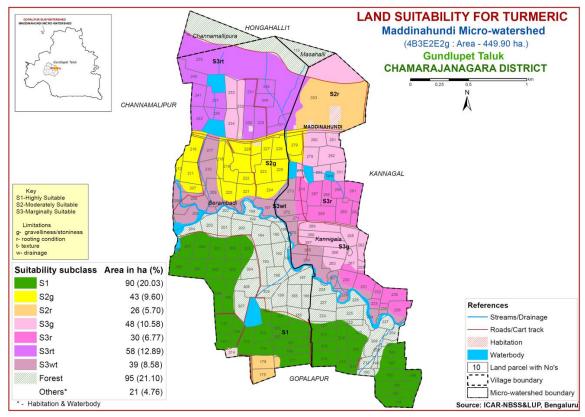


Fig. 7.27 Land Suitability map of Turmeric

7.28 Land Management Units (LMUs)

The 17 soil map units identified in Maddinahundi Microwatershed have been regrouped into 7 Land Management Units (LMU's) for the purpose of preparing a Proposed Crop Plan. Land Management Units are grouped based on the similarities in

respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Management Units map (Fig. 7.28) has been generated. These Land Management Units are expected to behave similarly for a given level of management.

The map units that have been grouped into 7 land management units along with brief description of soil and site characteristics are given below.

LMUs	Soil map units number	Mapping unit	Soil and site characteristics
1	1	BMBiB2	Very deep (>150 cm), very dark greyish brown to dark grey and very dark brown clayey soils
2	9, 12	HGHmB1, KDHhB1	Very deep (>150 cm), very dark brown to dark reddish brown sandy clay loam soils
3	13, 17	KLPhB2g1, MDHbB2g1	Deep (100-150 cm), dark reddish brown to dark red gravelly sandy clay loam to sandy clay soils
4	5, 6, 14, 15, 16	GPRcB1, GPRhB2, KNGcB1g1, KNGcB2g1, KNGiB2g1	Deep (75-100 cm), dark brown to dark reddish brown and reddish brown gravelly sandy clay loam to sandy clay soils
5	10, 11	HPRhB1, HPRhB1g1	Moderately shallow (50-75 cm), dark brown to very dark brown gravelly sandy clay loam to sandy clay soils
6	2, 3, 4	BMDcB1g1, BMDcB2g1, BMDiB1	Shallow (25-50 cm), dark brown to dark greyish brown clayey soils
7	7, 8	HDRcB1g1, HDRcB2g1	Shallow (25-50 cm),dark reddish brown to dusky red sandy clay loam to sandy clay soils

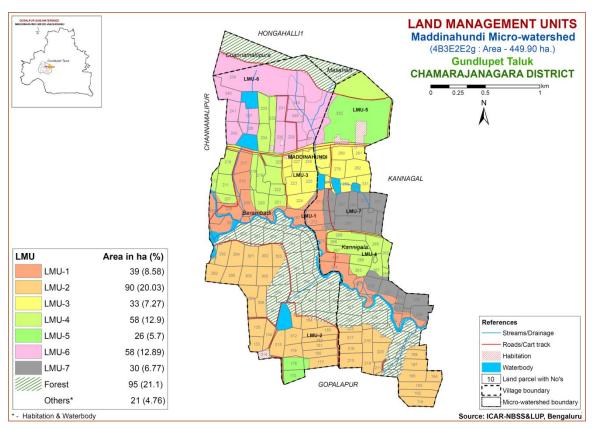


Fig. 7.28 Land Management Units Map- Maddinahundi Microwatershed

After assessing the land suitability for the 27 crops, the proposed crop plan has been generated for the 7 identified LMUs by considering only the highly (class S1) and moderately (class S2) suitable lands for each of the 27 crops. The resultant proposed crop plan is presented below in Table 7.20.

Table 7.20 Proposed Crop Plan for Maddinahundi Microwatershed

LMU	Mapping Units	Survey Number	Field Crops/Forestry	Horticulture Crops (Irrigated)	Horticulture Crops with suitable Interventions	Suitable Interventions
1		Berambadi: 197,205,206,208, 209,210,217 Kannigala: 229,234,235,264, 265,270,271,272,273,387	Sorghum, Redgram, Cotton, Sunflower, Sugarcane Multiple crop rotation: Redgram+Fodder sorghum Pulses+Sorghum	Vegetables: Beetroot, Banana, Lime, Tomato, Beans, Bhendi	Flower crops: Marigold, Chrysanthemum Perennial components: Custard apple, Amla, Lime, Vegetables: Chillies, Bhendi	Drip irrigation, Mulching, crop suitable conservation practises
2	(>150 cm)	Berambadi: 133,134,135,177,179, 180,181, 182,183,184,292, 293,294,295,299,300,301,302,303, 305, 306, 312,313 Kannigala: 114,192,193,194,195, 197,199,201,211,215,216,217,218, 219, 220,223	Maize, Sorghum, Redgram, Cotton,	Mango, Sapota, Guava, Turmeric, Banana, Lime, Tomato, Beans, Bhendi	Flower crops: Marigold, Chrysanthemum Perennial components: Mango, Sapota, Custard apple, Amla, Lime, Moosambi. Vegetables: Chillies, Bhendi	Drip irrigation, Mulching, crop suitable conservation practises
3		Berambadi: 223,224,225,226,227 Kannigala: 276,278,279,280,281, 282,283,331	Maize, Sorghum, Redgram, Cotton, Sugarcane, Sunflower Multiple crop rotation: Redgram+Maize Redgram+Groundnut Pulses+Sorghum	Vegetables: Tomato, Beetroot, Potato, Beans, Bhendi, Turmeric	Perennial components: Sapota, lime Flower crops: Marigold, Chrysanthemum Vegetables: Chillies, Bhendi	Drip irrigation, Mulching, Crop suitable conservation practises
4		Berambadi: 207,211,212,216,218, 219, 220,221,222,228,232,233,234	Maize, Sorghum, Cotton, Ragi,	Fieldbean, Beetroot, Onion, Turmeric,	Perennial components: Sapota, Guava	Drip irrigation, Mulching, Crop

	(75-100 cm)	Kannigala: 258,262,263,266,267,268, 269	Sunflower, Pulses+Sorghum	Tomato	Flower crops: Marigold, Chrysanthemum Vegetables: Bhendi, Chillies	suitable conservation practises
5	10, 11 (50-75 cm)	Berambadi: 175,178 Kannigala:333	Ragi, Groundnut, Maize, Sorghum, Cotton, Pulses+Sorghum	Fieldbean, Beetroot, Onion, Turmeric, Tomato, Banana	Custard apple, Ber, Aonla Flower crops: Marigold, Chrysanthemum, Gaillardia Vegetables: Bhendi, Cluster bean	Drip irrigation, Mulching, Crop suitable conservation practises
6	2, 3, 4 (25-50 cm)	Berambadi: 229,230,231,236,237, 239, 240,241,242,348,349,371	Bengal gram, Horsegram	Custard apple, Amla	Custard apple, Ber	Drip irrigation, Mulching, Crop suitable conservation practises
7	7, 8 (25-50 cm)	Kannigala: 230,231,232,233,236, 274, 285,286,287,288,289,291,292	Groundnut, Horsegram	Custard apple, Amla	Custard apple, Ber	Drip irrigation, Mulching, Crop suitable conservation practises

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil health id basic to plant health and plant health is basic to human and bovine health. Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characteristics of a healthy soil are

- ➤ Good soil tilth
- > Sufficient soil depth
- Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- Large population of beneficial organisms
- > Small proportion of plant pathogens and insect pests
- ➤ Low weed pressure
- Free of chemicals and toxins that may harm the crop
- Resistance to degradation
- Resilience when unfavourable conditions occur

Characteristics of Maddinahundi Microwatershed

- ❖ The soil phases identified in the microwatershed belonged to the soil series of KNG (34 ha), BMD (58 ha), KLP (19 ha), HPR (26 ha), HDR (30 ha), GPR (24 ha), GPR (24 ha), KDH (16 ha), BMB (39 ha), HGH (74 ha) and MDH (14 ha).
- ❖ As per land capability classification, about 74 per cent area in the microwatershed falls under arable land category (Class II and III). The major limitations identified in the arable lands were soil, wetness and erosion.
- ❖ On the basis of soil reaction, an area of about 2 ha (<1%) is strongly acid (pH 5.0-5.5), 45 ha (10%) is moderately acid (pH 5.5-6.0), 59 ha (13%) is slightly acid (pH

6.0-6.5), 59 ha (13%) is neutral (pH 6.5-7.3), 68 ha (15%) is slightly alkaline (pH 6.0-6.5), 76 ha (17%) is moderately alkaline (pH 7.8-8.4) and an area of about 25 ha (6%) is under strongly alkaline (pH 8.4-9.0).

Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Acid soils

Acid soils occupy an area of about 106 ha in the microwatershed. The following measures recommended for reclaiming acid soils

- 1. Growing of crops suitable for a particular soil pH.
- 2. Ameliorating the soils through the application of amendments (liming materials).

Liming materials:

- 1. CaCO₃ (Calcium Carbonate). More than 90% use in India.
- 2. Dolomite [Ca Mg (Co₃)₂]
- 3. Quick lime (Cao)
- 4. Slaked lime [Ca (OH)₂]

For normal pH and pH-4.8 (35 t/ha) and pH 6.0-7.0 (4 t/ha) lime is required

Alkaline soils

Slightly alkaline to strongly alkaline soils cover about 169 ha in the microwatershed.

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron -5kg/ha (once in three years).

Neutral soils

Neutral soils cover 59 ha area in the microwatershed.

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers, (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is one of the major factor affecting the soil health in the microwatershed. Out of total 450 ha area in the microwatershed, about 132 ha is suffering from moderate erosion. These areas need immediate soil and water conservation and, other land development and land husbandry practices for restoring soil health.

Dissemination of Information and Communication of Benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil health especially by the Central Government on issuing Soil-Health Cards to all the farmers, media outlets like Regional, State and National Newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as cellular phones and the Internet, which can be much more effective in reaching younger farmers.

Inputs for Net Planning and Interventions needed

Net planning in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Plans for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.

In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning are briefly presented below.

- ❖ Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- ❖ Surface Soil Texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut, root vegetables (carrot, raddish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, Karnataka can be adopted.

- ❖ Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- ❖ Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these units. In general, erosion and soil are the major constraints in Maddinahundi microwatershed.
- ❖ Organic Carbon: The OC content is low (<0.5%) in about 53 ha (12%) area and is medium (0.5-0.75%) in 237 ha (53%). The areas that are low and medium in OC needs to be further improved by applying farmyard manure and rotating crops with cereals and legumes or mixed cropping. It is high (>0.75%) in an area of 43 ha (10%).
- ❖ Promoting green manuring: Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level in 290 ha area where OC is low and medium (<0.5-0.75%). For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.
- ❖ Available Phosphorus: In 243 ha (54%) area, the available phosphorus is medium (23-57 kg/ha) and 91 ha (20%) is high (>57 kg/ha). Hence for all the crops, 25% additional Pneeds to be applied, where it is medium.
- ❖ Available Potassium: Available potassium is low (<145 kh/ha) in 50 ha (11%) and about 104 ha (23%) is medium (145-337 kg/ha) in the microwatershed. Hence, in all those plots where available potassium is low and medium, for all the crops, additional 25 % potassium may be applied.
- ❖ Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. It is low in an area of 91 ha (20%) and is medium (10-20 ppm) in about 216 ha (48%) area of the microwatershed. These areas need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertitilizer (13% sulphur) for 2-3 years for the deficiency to be corrected.
- ❖ Available Boron: An area of about 45 ha (10%) is low (<0.5 ppm) and about 185 ha (41%) is medium (0.5-1.0 ppm) in available boron content. The areas with low and medium in boron content need to be applied with sodium borate @ 10 kg/ha as soil application or 0.2% borax as foliar spray to correct the deficiency.
- ❖ Available Iron: Available iron is sufficient (>4.5 ppm) in a maximum area of 314 ha (70%) and deficient (<4.5 ppm) in an area of 19 ha (4%) in the microwatershed. To manage iron deficiency, iron sulphate @ 25 kg /ha needs to be applied for 2-3 years.
- ❖ Available Manganese: It is sufficient in the entire area of the microwatershed.
- **Available Copper:** It is sufficient in the entire area of the microwatershed.

❖ Available Zinc: It is deficient (<0.6 ppm) in 171 ha (38%) and about 163 ha (36%) is sufficient (>0.6 ppm) in the microwatershed. Application of zinc sulphate @ 25 kg/ha is recommended for the deficient area.

Land Suitability for various crops: Areas that are highly, moderately and marginally suitable, currently not suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

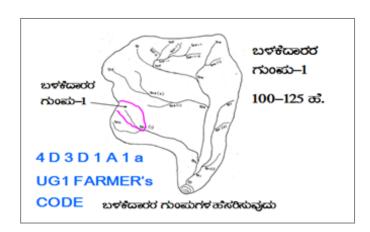
SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Maddinahundi Microwatershed, the land resource inventory database generated under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) generated were

- > Soil depth
- > Surface soil texture
- > Soil gravelliness
- ➤ Available water capacity
- > Soil slope
- > Soil erosion
- > Land capability
- > Present land use /land cover
- > Crop suitability
- > Rainfall
- > Hydrology
- > Water Resources
- > Socio-economic data
- Contour plan with existing features- Network of waterways, pothissa boundaries, cut up/ minor terraces etc.
- ➤ Cadastral map (1:7920 scale)
- > Satellite imagery (1:7920 scale)

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List has to be collected.

Steps for Survey and Preparation of Treatment Plan


The boundaries of Land User Groups' and Survey No. boundaries are traced in the field.

- Naming of user groups and farmers
- > Identification of arable and non arable lands
- ➤ Identification of drainage lines and gullies
- ➤ Identification of non treatable areas
- ➤ Identification of priority areas in the arable lands
- > Treatment plan for arable lands
- ➤ Location of water harvesting and recharge structures

9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment

A. BUNDING

Steps for	Survey and Preparation of Treatment Plan	USER GROUP-1
scale of 1:250 Existing netw boundaries, graines/ watercomarked on the	0 (1:7920 scale) is enlarged to a	CLASSIFICATION OF GULLIES ಕೊರಕಲಿನ ವರ್ಗೀಕರಣ * ಮೇಲ್ವಾರ 15 Ha. * ಮಧ್ಯನ್ಥರ 15+10=25 ಹೆ. * ಕೆಳಸ್ಥರ 25 ಹಕ್ಕಲ್ ಗಿಂತ ಅಧಿಕ

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand Level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department.

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance (m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

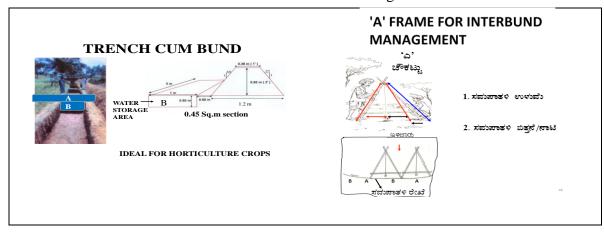
Note: i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1...A=0-1%, 1= slight erosion)) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class ($bg_0-b = loamy \ sand, \ g_0=<15\%$ gravel). The recommended Sections for different soils are given below.


Recommended Bund Section

Top width (m)	Base width (m)	Height (m)	Side slope (Z:1;H:V)	Cross section (sq m)	Soil Texture	Remarks
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetative
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soils	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow black soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow black soils	
0.6	3.1	0.7	1.78:1	1.29	Medium black soils	
0.5	3	0.85	1.47:1	1.49		

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Size of Borrow Pits/ Trench recommended for Trench cum Bund (by machinery)

Bund section	Bund length	Earth quantity			Pit	Berm (pit to pit)	Soil depth Class	
\mathbf{M}^2	M	M^3	L(m)	W(m)	D(m)	Quantity (m ³)	M	
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep

B. Waterways

- **1.** Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- **2.** Considering the contour plan of the MWS, additional waterways/ modernization of the existing ones can be thought of.
- **3.** The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion Channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in *Gokatte*/ Recharge ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bund.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

- a) The cadastral map has to be updated as regards the network of drainage lines (gullies/ nalas/ hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.
- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- c) Considering the Catchment, *Nala* bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ *Nala* bund/ Percolation tank) will be decided considering the commitments and available runoff in water budgeting and quality of water in the wells and site suitability.
- e) Detailed Levelling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from geological maps.
- g) Rainfall intensity data of the nearest Rain Gauge Station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge Structures is reduced by providing vegetative, boulder and earthen checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type. The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been generated which shows the spatial distribution and extent of area. A maximum area of about 299 ha (66%) requires Trench cum bunding and 35 ha (8%) area needs Graded Bunds or strengthening of existing bunds. The conservation plan generated may be presented to all the stakeholders including farmers and after considering their suggestions, the conservation plan for the microwatershed may be finalised in a participatory approach.

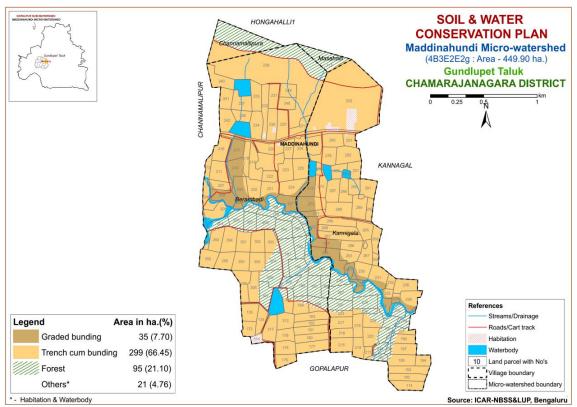


Fig. 9.1 Soil and Water Conservation Plan map of Maddinahundi Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability classes V, VI and VII) and also the lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open pits during the 1st week of March along the contour and heap the dug out soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2nd or 3rd week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Neral (*Sizyziumcumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry De	ciduous Species	Temp (°C)	Rainfall(mm)
1.	Bevu	Azadiracta indica	21–32	400 –1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 -50	500-2,500
5.	Kamara	Hardwikia binata	25 -35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 -2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 -2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist D	eciduous Species		
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 -50	500 - 2000
19.	Shivane	Gmelina arboria	20 -50	500 -2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000
23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20 - 40	500 – 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- 2. FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- 3. IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- 4. Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Research Gap and future needs. Fert. News 48 (4); 9-20.
- 5. Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS &LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- 7. Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015) Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- 8. Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull. 23, NBSS &LUP, Nagpur.
- 9. Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How?, National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- 10. Shivaprasad, C.R., R.S. Reddy, J. Sehgal and M. Velayuthum (1998) Soils of Karnataka for Optimizing Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- 12. Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix I Maddinahundi (2E2g) appendix Soil Phase Information

	1						Sull I liase I	mormation						
Village	Survey Number	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capabili ty	Conservatio n Plan
Berambadi	settlement_m advenahundi	3.49	GPRhB2	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	Not Available	IIes	Trench cum bunding
Berambadi	Tank	6.9	Waterbody	Others	Others	Others	Others	Others	Others	Others	Others	Not Available	Others	Others
Berambadi	133	1.71	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Maize (Mz)	Not Available	IIs	Trench cum bunding
Berambadi	134	1.87	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Maize+Bengal gram (Mz+Bg)	Not Available	IIs	Trench cum bunding
Berambadi	135	2.45	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Maize (Mz)	Not Available	IIs	Trench cum bunding
Berambadi	175	1.89	HPRhB1	LMU-5	Moderately shallow (50-75 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Current fallow land (CFL)	Not Available	IIs	Trench cum bunding
Berambadi	177	2.92	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Horsegram+Avare (Hg+Av)	1 Bore well	IIs	Trench cum bunding
Berambadi	178	2.28	HPRhB1	LMU-5	Moderately shallow (50-75 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Turmeric (Tu)	1 Bore well	IIs	Trench cum bunding
Berambadi	179	1.91	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Vegetable (Veg)	Not Available	IIs	Trench cum bunding
Berambadi	180	2.18	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Turmeric (Tu)	1 Bore well	IIs	Trench cum bunding
Berambadi	181	2.34	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Vegetable (Veg)	2 Bore well	IIs	Trench cum bunding
Berambadi	182	1.6	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Current fallow land (CFL)	3 Bore well	IIs	Trench cum bunding
Berambadi	183	2.35	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Current fallow land (CFL)	Not Available	IIs	Trench cum bunding
Berambadi	184	2.25	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Current fallow land (CFL)	2 Bore well	IIs	Trench cum bunding
Berambadi	185	2.4	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	1 Bore well	Forest	Forest
Berambadi	186	1.6	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	Not Available	Forest	Forest
Berambadi	187	2.35	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fallow land (Fl)	Not Available	Forest	Forest
Berambadi	188	2.39	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Maize (Mz)	Not Available	Forest	Forest
Berambadi	189	2.29	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land+ Bengal gram (CFI+Bg)	Not Available	Forest	Forest
Berambadi	190	2.45	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	Not Available	Forest	Forest
Berambadi	191	2.33	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Scrub land (SI)	Not Available	Forest	Forest
Berambadi	192	2.05	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Vegetable (Veg)	Not Available	Forest	Forest

Village	Survey Number	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capabili ty	Conservatio n Plan
Berambadi	193	3.7	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Banana+Current fallow land	1 Bore well	Forest	Forest
Berambadi	194	2.72	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Vegetable (Veg)	Not Available	Forest	Forest
Berambadi	195	1.61	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fallow land (Fl)	Not Available	Forest	Forest
Berambadi	196	1.01	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fallow land (Fl)	Not Available	Forest	Forest
Berambadi	197	2.07	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Scrub land (Sl)	1 Bore well	IIIw	Graded bunding
Berambadi	198	2.9	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Banana (Ba)	Not Available	Forest	Forest
Berambadi	199	1.89	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fallow land (Fl)	1 Bore well	Forest	Forest
Berambadi	200	2.38	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Beetroot (Bt)	Not Available	Forest	Forest
Berambadi	201	2.11	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	Not Available	Forest	Forest
Berambadi	202	1.49	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	Not Available	Forest	Forest
Berambadi	203	2.36	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Turmeric+Banana (Tu+Ba)	Not Available	Forest	Forest
Berambadi	204	1.63	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Turmeric (Tu)	Not Available	Forest	Forest
Berambadi	205	3.65	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Turmeric (Tu)	Not Available	IIIw	Trench cum bunding
Berambadi	206	2.42	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Vegetable (Veg)	Not Available	IIIw	Trench cum bunding
Berambadi	207	1.7	GPRcB1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	1 Bore well	IIs	Trench cum bunding
Berambadi	208	2.55	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Banana (Ba)	Not Available	IIIw	Graded bunding
Berambadi	209	3.08	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Current fallow land (CFL)	1 Bore well	IIIw	Graded bunding
Berambadi	210	2.67	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Banana (Ba)	1 Bore well	IIIw	Graded bunding
Berambadi	211	2.95	GPRcB1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Trench cum bunding
Berambadi	212	1.05	GPRcB1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Trench cum bunding
Berambadi	216	3.03	GPRcB1	LMU-4	Moderately deep (75-100 cm)	Sandy loam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	Trench cum bunding
Berambadi	217	2.55	BMBiB2	LMU-1	Very deep (>150 cm)		Non gravelly (<15%)		Very gently sloping (1-3%)	Moderate	Coconut+Current fallow land	1 Bore well	IIIw	Graded bunding
Berambadi	218	1.7	GPRhB2	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	, , ,	Very gently sloping (1-3%)	Moderate	Turmeric (Tu)	1 Bore well	IIes	Trench cum bunding
Berambadi	219	2.76	GPRhB2	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam		Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Maize+Banana (Mz+Ba)	Not Available	IIes	Trench cum bunding

Village	Survey Number	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capabili ty	Conservatio n Plan
Berambadi	220	2.44	GPRhB2	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Vegetable (Veg)	1 Bore well	IIes	Trench cum bunding
Berambadi	221	2.8	GPRhB2	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Turmeric+Coconut (Tu+CN)	1 Bore well	IIes	Trench cum bunding
Berambadi	222	1.4	GPRhB2	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Vegetable (Veg)	Not Available	IIes	Trench cum bunding
Berambadi	223	2.71	KLPhB2g1	LMU-3	Deep (100-150 cm)	Sandy clay loam	(15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Vegetable (Veg)	Not Available	IIes	Trench cum bunding
Berambadi	224	3.39	KLPhB2g1	LMU-3	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIes	Trench cum bunding
Berambadi	225	2.83	KLPhB2g1	LMU-3	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIes	Trench cum bunding
Berambadi	226	2.39	KLPhB2g1	LMU-3	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	Not Available	IIes	Trench cum bunding
Berambadi	227	1.57	KLPhB2g1	LMU-3	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	1 Bore well	IIes	Trench cum bunding
Berambadi	228	2.57	GPRhB2	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Tomato (Tm)	Not Available	IIes	Trench cum bunding
Berambadi	229	2.99	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IIIs	Trench cum bunding
Berambadi	230	2.65	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIIs	Trench cum bunding
Berambadi	231	2.34	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Beetroot (Bt)	1 Bore well	IIIs	Trench cum bunding
Berambadi	232	2.82	KNGcB1g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Mango+Scrub land (Mn+Sl)	1 Bore well	IIs	Trench cum bunding
Berambadi	233	2.59	KNGcB1g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIs	Trench cum bunding
Berambadi	234	2.82	KNGcB1g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	Trench cum bunding
Berambadi	236	1.69	BMDiB1	LMU-6	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	Trench cum bunding
Berambadi	237	2.68	BMDiB1	LMU-6	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	3 Bore well	IIIs	Trench cum bunding
Berambadi	239	33.77	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Avare+C hilli (Rg+Av+Ch)	4 Bore well	IIIs	Trench cum bunding
Berambadi	240	2.98	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Avare (Av)	Not Available	IIIs	Trench cum bunding
Berambadi	241	2.21	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	Trench cum bunding
Berambadi	242	2.63	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIIs	Trench cum bunding
Berambadi	290	1.18	Waterbody	Others	Others	Others	Others	Others	Others	Others	Banana (Ba)	Not Available	Others	Others
Berambadi	292	2.57	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIs	Trench cum bunding
Berambadi	293	2.44	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Turmeric+Scrub land (Tu+Sl)	Not Available	IIs	Trench cum bunding

Village	Survey Number	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capabili ty	Conservatio n Plan
Berambadi	294	2.97	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Maize+Bengal gram (Mz+Bg)	Not Available	IIs	Trench cum bunding
Berambadi	295	2.5	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Onion (On)	Not Available	IIs	Trench cum bunding
Berambadi	299	2.86	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	2 Bore well	IIs	Trench cum bunding
Berambadi	300	2.6	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Current fallow land (CFL)	1 Bore well	IIs	Trench cum bunding
Berambadi	301	2.45	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	mm/m)	Very gently sloping (1-3%)	Slight	Banana+Tumaric (Ba+Tu)	Not Available	IIs	Trench cum bunding
Berambadi	302	2.55	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Vegetable (Veg)	1 Bore well	IIs	Trench cum bunding
Berambadi	303	2.42	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Current fallow land (CFL)	1 Bore well	IIs	Trench cum bunding
Berambadi	304	2.48	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Banana+Bengal gram (Ba+Bg)	2 Bore well	Forest	Forest
Berambadi	305	2.51	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Beetroot (Bt)	2 Bore well	IIs	Trench cum bunding
Berambadi	306	2.65	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Vegetable (Veg)	1 Bore well	IIs	Trench cum bunding
Berambadi	307	2.63	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	1 Bore well	Forest	Forest
Berambadi	308	2.82	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land+Beetroot	Not Available	Forest	Forest
Berambadi	309	1.72	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Bangal gram (Bg)	Not Available	Forest	Forest
Berambadi	310	2.33	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Bangal gram (Bg)	1 Bore well	Forest	Forest
Berambadi	312	2.24	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IIs	Trench cum bunding
Berambadi	313	2.62	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Maize (Mz)	Not Available	IIs	Trench cum bunding
Berambadi	314	0.86	Habitation	Others	Others	Others	Others	Others	Others	Others	Avare (Av)	Not Available	Others	Others
Berambadi	348	1.79	BMDcB1g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Horsegram (Hg)	Not Available	IIIs	Trench cum bunding
Berambadi	349	1.85	BMDcB2g1	LMU-6	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Horsegram (Hg)	2 Bore well	IIIes	Trench cum bunding
Berambadi	371	1.64	BMDiB1	LMU-6	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	NA	1 Bore well	IIIs	Trench cum bunding
Channamall ipura	12	13.79	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	NA	Not Available	Forest	Forest
Kannigala	Tank	2.88	Waterbody	Others	Others	Others	Others	Others	Others	Others	Others	Not Available	Others	Others
Kannigala	114	2.47	KDHhB1	LMU-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Maize+Scrub land (Mz+Sl)	Not Available	IIs	Trench cum bunding
Kannigala	190	1.02	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land	Not	Forest	Forest

Village	Survey Number	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capabili ty	Conservatio n Plan
											(CFL)	Available		
Kannigala	192	2.33	KDHhB1	LMU-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	1 Bore well	IIs	Trench cum bunding
Kannigala	193	2.66	KDHhB1	LMU-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Scrub land (Rg+Sl)	Not Available	IIs	Trench cum bunding
Kannigala	194	1.45	KDHhB1	LMU-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land+ Coconut (Sl+CN)	Not Available	IIs	Trench cum bunding
Kannigala	195	2.74	KDHhB1	LMU-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land+Banana (Sl+Ba)	2 Bore well	IIs	Trench cum bunding
Kannigala	196	0.44	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	NA	Not Available	Forest	Forest
Kannigala	197	2.44	KDHhB1	LMU-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Current fallow land+Turmeric	1 Bore well	IIs	Trench cum bunding
Kannigala	199	1.9	KDHhB1	LMU-2	Very deep (>150 cm)		Non gravelly (<15%)		Very gently sloping (1-3%)	Slight	Vegetable (Veg)	Not Available	IIs	Trench cum bunding
Kannigala	200	0.4	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	NA	Not Available	Forest	Forest
Kannigala	201	1.19	KDHhB1	LMU-2	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIs	Trench cum bunding
Kannigala	204	1.56	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Vegetable (Veg)	Not Available	Forest	Forest
Kannigala	208	2.58	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Bangal gram+Turmeric	Not Available	Forest	Forest
Kannigala	211	0.73	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Bangal gram (Bg)	Not Available	IIs	Trench cum bunding
Kannigala	212	1.13	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	1 Bore well	Forest	Forest
Kannigala	215	2.8	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Banana (Ba)	Not Available	IIs	Trench cum bunding
Kannigala	216	1.81	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land+Fallow lamd (Sl+Fl)	Not Available	IIs	Trench cum bunding
Kannigala	217	2.25	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land+Current fallow land	1 Bore well	IIs	Trench cum bunding
Kannigala	218	2.01	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Banana (CN+Ba)	1 Bore well	IIs	Trench cum bunding
Kannigala	219	1.94	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Banana (Ba)	Not Available	IIs	Trench cum bunding
Kannigala	220	4.93	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)		Very gently sloping (1-3%)	Slight	Banana (Ba)	3 Bore well	IIs	Trench cum bunding
Kannigala	222	1.1	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)	Not Available	Forest	Forest
Kannigala	223	1.35	HGHmB1	LMU-2	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land (Sl)	Not Available	IIs	Trench cum bunding
Kannigala	224	2.24	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Banana (Ba)	Not Available	Forest	Forest
Kannigala	225	2.65	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land (CFL)		Forest	Forest
Kannigala	226	2.44	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Current fallow land		Forest	Forest

Village	Survey Number	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capabili ty	Conservatio n Plan
											(CFL)	Available		
Kannigala	227	2.97	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Maize (Mz)	1 Bore well	Forest	Forest
Kannigala	228	2.07	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Bangal gram (Bg)	Not Available	Forest	Forest
Kannigala	229	0.84	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	IIIw	Graded bunding
Kannigala	230	2.49	HDRcB2g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIIes	Trench cum bunding
Kannigala	231	3.02	HDRcB2g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Current fallow land (CFL+Cw)	Not Available	IIIes	Trench cum bunding
Kannigala	232	0.96	HDRcB2g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Tomato (Tm)	Not Available	IIIes	Trench cum bunding
Kannigala	233	0.87	HDRcB2g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Beetroot (Bt)	Not Available	IIIes	Trench cum bunding
Kannigala	234	2.01	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Turmeric (Tu)	Not Available	IIIw	Graded bunding
Kannigala	235	0.65	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (FI)	Not Available	IIIw	Graded bunding
Kannigala	236	5.3	HDRcB2g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Onon+Current fallow land	2 Bore well	IIIes	Trench cum bunding
Kannigala	237	1.73	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Chlli (Ch)	Not Available	Forest	Forest
Kannigala	258	0.66	KNGcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (FI)	Not Available	IIes	Trench cum bunding
Kannigala	262	1.77	KNGcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Horsegram+Fallow land (Hg+Fl)	Not Available	IIes	Trench cum bunding
Kannigala	263	1.83	KNGcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Horsegram (Hg)	Not Available	IIes	Trench cum bunding
Kannigala	264	4.22	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Horsegram+Curren t fallow land	1 Bore well	IIIw	Graded bunding
Kannigala	265	4.23	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay		Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Mango+Tomato (Mn+Tm)	Not Available	IIIw	Graded bunding
Kannigala	266	1.84	KNGcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (FI)	Not Available	Iles	Trench cum bunding
Kannigala	267	4.9	KNGcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Horse gram+Cucumber	Not Available	IIes	Trench cum
Kannigala	268	2.39	KNGcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (FI)	Not Available	IIes	Trench cum bunding
Kannigala	269	2.76	KNGcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIes	Trench cum bunding
Kannigala	270	1.72	BMBiB2	LMU-1	Very deep (>150 cm)		Non gravelly (<15%)		Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIIw	Graded bunding
Kannigala	271	1.17	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)		Very gently sloping (1-3%)	Moderate	Cabbage (Cb)	Not Available	IIIw	Graded bunding
Kannigala	272	3.46	BMBiB2	LMU-1	Very deep (>150	Sandy clav	,	Very high (>200	Very gently	Moderate	Tomato (Tm)	1 Bore	IIIw	Graded

Village	Survey Number	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capabili ty	Conservatio n Plan
					cm)		(<15%)	mm/m)	sloping (1-3%)			well		bunding
Kannigala	273	1.78	BMBiB2	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Turmeric (Tu)	Not Available	IIIw	Graded bunding
Kannigala	274	2.16	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Maize (Mz)	Not Available	IIIs	Trench cum bunding
Kannigala	276	0.73	MDHbB2g1	LMU-3	Deep (100-150 cm)	Loamy sand	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Vegetable (Veg)	1 Bore well	IIes	Trench cum bunding
Kannigala	278	2.99	MDHbB2g1	LMU-3	Deep (100-150 cm)	Loamy sand	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Current fallow land (CFL)	Not Available	IIes	Trench cum bunding
Kannigala	279	2.33	KLPhB2g1	LMU-3	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIes	Trench cum bunding
Kannigala	280	2.47	MDHbB2g1	LMU-3	Deep (100-150 cm)	Loamy sand	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Horsegram (Hg)	Not Available	IIes	Trench cum bunding
Kannigala	281	1.36	MDHbB2g1	LMU-3	Deep (100-150 cm)	Loamy sand	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Fallow land (Fl)	Not Available	IIes	Trench cum bunding
Kannigala	282	3.28	MDHbB2g1	LMU-3	Deep (100-150 cm)	Loamy sand	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Tomato (Tm)	1 Bore well	IIes	Trench cum bunding
Kannigala	283	1.59	MDHbB2g1	LMU-3	Deep (100-150 cm)	Loamy sand	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Redgram+Maiz (Rg+Mz)	Not Available	IIes	Trench cum bunding
Kannigala	285	1.61	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Horsegram (Hg)	Not Available	IIIs	Trench cum bunding
Kannigala	286	2.13	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIIs	Trench cum bunding
Kannigala	287	2.49	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Horsegram (Hg)	Not Available	IIIs	Trench cum bunding
Kannigala	288	3.27	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Avare+Horsegram (Av+Hg)	Not Available	IIIs	Trench cum bunding
Kannigala	289	2.7	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Avare+Fallow land (Av+Fl)	Not Available	IIIs	Trench cum bunding
Kannigala	291	2.35	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Redgram (Rg)	Not Available	IIIs	Trench cum bunding
Kannigala	292	1.23	HDRcB1g1	LMU-7	Shallow (25-50 cm)	Sandy loam	Gravelly (15-35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIIs	Trench cum bunding
Kannigala	331	1.75	MDHbB2g1	LMU-3	Deep (100-150 cm)	Loamy sand	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	NA	Not Available	IIes	Trench cum bunding
Kannigala	333	32.65	HPRhB1g1	LMU-5	Moderately shallow (50-75 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Horsegram+Avare (Hg+Av)	1 Bore well	IIs	Trench cum bunding
Kannigala	387	0.99	BMBiB2	LMU-1	Very deep (>150 cm)		Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderate	Maize (Mz)	Not Available	IIIw	Graded bunding
Masahalli	115	4.72	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	NA	Not Available	Forest	Forest

Appendix II

$Maddinahundi\ (2E2g)\ appendix$

Soil Fertility Information

						11101111111111						
Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available	Available Potassium	Available	Available Boron	Available	Available	Available	Available Zinc
D 1:	CETTI EMPAIT MAD	Cli-later all alies a Call	N1:		Phosphorus		Sulphur		Iron	Manganese	Copper	
Berambadi	SETTLEMENT_MAD	Slightly alkaline (pH			Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
D 1:	VENAHUNDI	7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi		Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Berambadi	133	Slightly alkaline (pH		Medium (0.5-		High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	134	Slightly alkaline (pH		Medium (0.5-		High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	135	Moderately alkaline		Medium (0.5-		High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	175	Slightly alkaline (pH		Medium (0.5-		High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	177	Moderately alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	178	Slightly alkaline (pH	Non saline	Medium (0.5-		High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	179	Slightly alkaline (pH	Non saline	Medium (0.5-	Low (<23	High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	180	Moderately alkaline	Non saline	Medium (0.5-	Medium (23-	High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	181	Moderately alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	182	Moderately alkaline	Non saline	Medium (0.5-		High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	183	Moderately alkaline	Non saline			High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	184	Moderately alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	185	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi	<u> </u>	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi	+	Forest		Forest	Forest			Forest			Forest	
			Forest			Forest	Forest		Forest	Forest		Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi	19/	Moderately alkaline			Medium (23-	Medium (140-	High (>20	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
	100	(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	+	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi	201	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Berambadi	202	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi	203	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi	204	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi	205	Moderately alkaline	Non saline	High (>0.75	Low (<23	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	%)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	206	Moderately alkaline	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	207	Slightly alkaline (pH	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		7.3-7.8)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	208	Slightly alkaline (pH	Non saline	High (>0.75	Low (<23	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		7.3-7.8)	(<2 dsm)	%)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	209	Moderately alkaline	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	210	Slightly alkaline (pH	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	211	Slightly alkaline (pH	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		7.3-7.8)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	212	Slightly alkaline (pH	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		7.3-7.8)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	216	Slightly alkaline (pH	Non saline	Medium (0.5-	Medium (23-	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	217	Slightly alkaline (pH		Medium (0.5-		Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	218	Slightly alkaline (pH	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	219	Moderately alkaline	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	220	Moderately alkaline	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	221	Moderately alkaline	Non saline	Medium (0.5-		High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	222	Moderately alkaline	Non saline	Medium (0.5-	,	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	223	Slightly alkaline (pH	Non saline	Medium (0.5-		Medium (140-	High (>20	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	224	Slightly alkaline (pH	Non saline	Medium (0.5-		Medium (140-	High (>20	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	225	Slightly alkaline (pH		Medium (0.5-		Medium (140-	High (>20	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	226	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-		Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
			(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	227	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	,	Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
			(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	228	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-		Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
			(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	229	Slightly acid (pH 6.0-	Non saline	Medium (0.5-		Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	230	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available
D 1 1	004	N. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	N 11	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Berambadi	231	Moderately acid (pH			Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
D	222	5.5-6.0)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	232	Slightly acid (pH 6.0-		,	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
D 1 1	000	6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	233	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	,	Medium (140-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
	224	6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	234	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	,	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	236	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-		Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
			(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	237	Neutral (pH 6.5-7.3)	Non saline		Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
	222		(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	239	Slightly acid (pH 6.0-	Non saline	Low (<0.5 %)	,	Low (<140	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		6.5)	(<2 dsm)		kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	240	Neutral (pH 6.5-7.3)	Non saline		Low (<23	Medium (140-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
			(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	241	Neutral (pH 6.5-7.3)	Non saline		Low (<23	Medium (140-	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
			(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	242	Neutral (pH 6.5-7.3)	Non saline	,	Medium (23-	Medium (140-	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
			(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	290	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Berambadi	292	Moderately alkaline	Non saline	High (>0.75	Low (<23	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	%)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	293	Moderately alkaline	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	294	Moderately alkaline	Non saline	High (>0.75	Low (<23	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	%)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	295	Moderately alkaline	Non saline	High (>0.75	Low (<23	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	%)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	299	Moderately alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	300	Moderately alkaline	Non saline	High (>0.75	Low (<23	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	%)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	301	Moderately alkaline	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	302	Strongly alkaline	Non saline	High (>0.75	Medium (23-	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 8.4-9.0)	(<2 dsm)	%)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	303	Strongly alkaline	Non saline	Medium (0.5-	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 8.4-9.0)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	304	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Strongly alkaline	Non saline		Low (<23	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 8.4-9.0)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	306	Strongly alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		(pH 8.4-9.0)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	307	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Berambadi		Slightly alkaline (pH		Medium (0.5-		High (>330	Low (<10	Medium (0.5-		Sufficient	Sufficient	Deficient
Derailibaul	J14	Jinginuy aikanine (PII	14011 Sallile	incumin (0.5.	LUW (~43	mgii (/330	TOM (~10	incumin (0.3.	Janucient	Jannelellt	Junicient	DEHICIEHL

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
		7.3-7.8)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	313	Slightly alkaline (pH	,	Medium (0.5-	Low (<23	High (>330	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		7.3-7.8)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Berambadi	314	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Berambadi		Moderately acid (pH		Medium (0.5-	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Berambaar	310	5.5-6.0)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	349	Moderately acid (pH	,	Low (<0.5 %)		Low (<140	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Berumbuur		5.5-6.0)	(<2 dsm)	2011 (1010 70)	kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Berambadi	371	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	Medium (23-	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Berambaar	371	6.5)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Channamal	12	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
lipura	**	101050	Torest	Torest	Torest	Torest	Torest	Torest	Torest	Torest	Torest	Torest
Kannigala	Tank	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kannigala	114	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
- Tunningunu		reactur (pri olo 710)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	190	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	192	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Kannigara	172	Neutrai (pii 0.5-7.5)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	193	Slightly alkaline (pH		Medium (0.5-	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Kaiiiigaia	173	7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	194	Slightly alkaline (pH	,	Medium (0.5-	0, ,	High (>330	High (>20	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Kannigara	174	7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	195	Slightly alkaline (pH		Medium (0.5-	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Kalliligala	173	7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	196	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	197	Moderately alkaline	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Kalliligala	197	(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	199	Moderately alkaline	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Kalliligala	199	(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	200	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
	201			Medium (0.5-							Sufficient	Deficient
Kannigala	201	Moderately alkaline	Non saline		Medium (23-	High (>330	Medium (10-	Medium (0.5-	Sufficient	Sufficient		
Vannisala	204	(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	204	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	208	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	211	Moderately alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Sufficient
17	242	(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	212	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	215	Strongly alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Low (<10	High (>1.0	Deficient	Sufficient	Sufficient	Sufficient
77 . 1	04.6	(pH 8.4-9.0)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	216	Strongly alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Medium (10-	High (>1.0	Deficient	Sufficient	Sufficient	Sufficient
77 . 1	045	(pH 8.4-9.0)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	217	Strongly alkaline	Non saline		Low (<23	High (>330	Medium (10-	High (>1.0	Deficient	Sufficient	Sufficient	Sufficient
Tr	040	(pH 8.4-9.0)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	218	Strongly alkaline	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	High (>1.0	Deficient	Sufficient	Sufficient	Sufficient
77	040	(pH 8.4-9.0)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	219	Moderately alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Low (<10	High (>1.0	Deficient	Sufficient	Sufficient	Sufficient
	222	(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	220	Moderately alkaline	Non saline	Medium (0.5-	Medium (23-	High (>330	Medium (10-	High (>1.0	Deficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	56 kg/ha)	kg/ha)	20 ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kannigala	222	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	223	Strongly alkaline	Non saline	Medium (0.5-	Low (<23	High (>330	Medium (10-	High (>1.0	Deficient	Sufficient	Sufficient	Sufficient
		(pH 8.4-9.0)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(<4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	224	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	225	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	226	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	227	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	228	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	229	Moderately alkaline (pH 7.8-8.4)	Non saline (<2 dsm)	+	Medium (23- 56 kg/ha)	High (>330 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Kannigala	230	Slightly alkaline (pH 7.3-7.8)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Low (<23 kg/ha)	High (>330 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Kannigala	231	Slightly alkaline (pH 7.3-7.8)			Medium (23- 56 kg/ha)	High (>330 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Kannigala	232	Slightly alkaline (pH 7.3-7.8)			Medium (23- 56 kg/ha)	High (>330 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Kannigala	233	Moderately alkaline (pH 7.8-8.4)	Non saline (<2 dsm)		Medium (23- 56 kg/ha)	High (>330 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Kannigala	234	Moderately alkaline (pH 7.8-8.4)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23- 56 kg/ha)	High (>330 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Forest	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Forest
Kannigala	235	Moderately alkaline (pH 7.8-8.4)	Non saline (<2 dsm)		Medium (23- 56 kg/ha)	High (>330 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Kannigala	236	Slightly alkaline (pH 7.3-7.8)	1		Medium (23- 56 kg/ha)	High (>330 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Kannigala	237	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest
Kannigala	258	Neutral (pH 6.5-7.3)	Non saline		Low (<23	Medium (140-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
	250	reactur (pri olo 710)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	262	Neutral (pH 6.5-7.3)	Non saline	-,	Low (<23	Medium (140-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
		(Fire one vie)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	263	Slightly alkaline (pH 7.3-7.8)	Non saline (<2 dsm)		Low (<23 kg/ha)	Medium (140- 330 kg/ha)	Low (<10 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Kannigala	264	Moderately alkaline	Non saline	Medium (0.5-		Medium (140-	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Kaningaia	201	(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	265	Neutral (pH 6.5-7.3)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)		Medium (140- 330 kg/ha)	Medium (10-	Medium (0.5- 1.0 ppm)	Sufficient	Sufficient	Sufficient (>0.2 ppm)	Deficient
Kannigala	266	Neutral (pH 6.5-7.3)	Non saline (<2 dsm)		Low (<23	Medium (140-	20 ppm) Low (<10	Low (<0.5	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	Sufficient	(<0.6 ppm)
Kannigala	267	Neutral (pH 6.5-7.3)	Non saline (<2 dsm)		kg/ha) Low (<23	330 kg/ha) Medium (140-	ppm) Low (<10	ppm) Low (<0.5	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(<0.6 ppm)
Kannigala	268	Neutral (pH 6.5-7.3)	Non saline (<2 dsm)		kg/ha) Low (<23	330 kg/ha) Medium (140-	ppm) Medium (10-	ppm) Medium (0.5- 1.0 ppm)	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Kannigala	269	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	kg/ha) Low (<23	330 kg/ha) Medium (140-	20 ppm) Medium (10-	Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(<0.6 ppm)
Kannigala	270	Slightly alkaline (pH 7.3-7.8)	(<2 dsm) Non saline (<2 dsm)	0.75 %) Medium (0.5- 0.75 %)	kg/ha) Medium (23- 56 kg/ha)	330 kg/ha) Medium (140- 330 kg/ha)	20 ppm) High (>20	1.0 ppm) Medium (0.5- 1.0 ppm)	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient (>1.0 ppm)	(>0.2 ppm) Sufficient (>0.2 ppm)	(<0.6 ppm)
Vannigala	271	-			<u> </u>		ppm)		(>4.5 ppm)			(<0.6 ppm)
Kannigala	271	Slightly alkaline (pH 7.3-7.8)	(<2 dsm)	0.75 %)	Medium (23- 56 kg/ha)	Medium (140- 330 kg/ha)	High (>20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Kannigala	272	Slightly alkaline (pH 7.3-7.8)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23- 56 kg/ha)	Medium (140- 330 kg/ha)	High (>20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kannigala	273	Slightly alkaline (pH	Non saline		Medium (23-	Medium (140-	High (>20	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
g		7.3-7.8)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	274	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-		Medium (140-	High (>20	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
g		(paration)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	276	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	- Oi ,	Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
8		Q	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	278	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-		Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		u ,	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	279	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	Medium (23-	Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		u ,	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	280	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	Medium (23-	Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	281	Moderately acid (pH	Non saline	Low (<0.5 %)	Medium (23-	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		5.5-6.0)	(<2 dsm)		56 kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	282	Slightly acid (pH 6.0-	Non saline	Low (<0.5 %)	Medium (23-	Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)		56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	283	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	Medium (23-	Medium (140-	Medium (10-	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)	0.75 %)	56 kg/ha)	330 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	285	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	286	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	287	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	Low (<23	Medium (140-	High (>20	High (>1.0	Sufficient	Sufficient	Sufficient	Deficient
			(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	288	Neutral (pH 6.5-7.3)	Non saline	Medium (0.5-	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
			(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	289	Slightly acid (pH 6.0-	Non saline	,	Low (<23	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	291	Slightly acid (pH 6.0-	Non saline	Low (<0.5 %)		Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)		kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	292	Slightly acid (pH 6.0-	Non saline	Medium (0.5-	,	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)	0.75 %)	kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	331	Slightly acid (pH 6.0-	Non saline	Low (<0.5 %)	,	Medium (140-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		6.5)	(<2 dsm)		kg/ha)	330 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kannigala	333	Moderately acid (pH		Low (<0.5 %)		Low (<140	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		5.5-6.0)	(<2 dsm)		kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Kannigala	387	Moderately alkaline	Non saline		,	High (>330	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Masahalli	115	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest

Appendix III

Maddinahundi 2E2g appendix Soil Suitability Information

		,	_						_					I IIIICICIC										_				
Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Sunflower	Red gram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Onion	Marigold	Chrysanthemum	Banana	Horse gram	Field-bean	Turmeric	Beetroot	Potato	Beans
Berambadi	Settlement Madvenahundi	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt	S1	S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	Tank	Other	sOthers	Others	sOthers	Others	Others	Other	sOthers	others	Other	others	Other	Others	Others	Others	sOther	Others	Others	Others	others	Others	other	sOthers	Others	Others	Others	others
Berambadi	133	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	134	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	135	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	175	N	S2r	S3r	S2r	S3r	S2r	S3r	S3r	S3r	S3r	S2r	S3r		S3r	S3r	S3r	S2rt		S2r	S2r	S3r	S2r	S2r		S2r	S2r	S2r
Berambadi	177	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	178	N	S2r	S3r	S2r	S3r	S2r	S3r	S3r	S3r	S3r	S2r	S3r		S3r	S3r	S3r	S2rt	S2r	S2r	S2r	S3r	S2r	S2r	S2r	S2r	S2r	S2r
Berambadi	179	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1		S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	180	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1		S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1		S1	S1	S1
Berambadi	181	S1	S1	S1	S2t	S1		S1	S1	S2t	S1	S1	S1		S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	182	S1	S1	S1	S2t	S1		S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	183	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1		S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1		S1	S1	S1
Berambadi	184	S1	S1	S1	S2t	S1	_	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	185	Forest	t Forest	Forest	tForest	Forest	Forest	Fores	t Forest	Forest	Forest	Forest	Forest	Forest		_	tForest	Forest	Forest	Forest	Forest	Forest	_	tForest	Forest	Forest	Forest	Forest
Berambadi	186	_	_	_	_	_		_	_	_	_	_		_		_	_	_		_	_	_	_	_	_			Forest
Berambadi	187			_																_								Forest
Berambadi	188			_		_	_	_			_			Forest					_	_		_						
Berambadi	189			_			_	_			_								_	_								Forest
Berambadi	190	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	191	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	192	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	193	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	194	_		_	_	_		_		_	_	_		_		_	_	_		_	_	_	_		_			Forest
Berambadi	195	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	196			_										Forest						_								
Berambadi	197	N	_	S3t	_	_		_		_	_	_		S2t		_	_	_		_	_	_	_	S2w	_			
Berambadi	198	Forest												Forest														
Berambadi	199	_		_	_	_		_		_	_	_		_		_	_	_		_	_	_	_		_			Forest
Berambadi	200	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	201	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	202	_		_	_	_		_		_	_	_		_		_	_	_		_	_	_	_		_			Forest
Berambadi	203	_	_			_		_	_		_	_		_							_		_	_	_			Forest
Berambadi	204	_	_			_		_	_		_	_		Forest							_		_	_	_			
Berambadi	205	N	S3wt		S1	_	S1	S3t	S1		_	_	S3t	_	N	S2t	S1	_		_	_	_	_	S2w	_			
Berambadi	206	N	S3wt		S1	S3t	S1	S3t	S1	S2W		S2t	S3t		N	S2t	S1				_		_	S2w	_			
Berambadi	207	S3r	S1	S2r	S1		S2t	S3r		S2gt				S2r				S1	S2g	_	S2g			_	S2g			
	1 = 3 ·	1001	102	J = -	102	J	J	301	1001	12-9¢		7-1	301	1		1 301	1001		J-8		J-8	J-8		B		~-8	5	_ _ _8

Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Sunflower	Red gram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Onion	Marigold	Chrysanthemum	Banana	Horse gram	Field-bean	Turmeric	Beetroot	Potato	Beans
Berambadi	208	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	S2wt
Berambadi	209	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	S2wt
Berambadi	210	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	S2wt
Berambadi	211	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt	S1	S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	212	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt	S1	S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	216	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r		S1	S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	217	N	S3wt		S1	S3t	S1	S3t	S1		S2w	S2t	S3t	S2t	N	S2t	S1	S3wt			S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	
Berambadi	218	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r		S1	S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	219	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt		S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	220	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt		S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	221	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt		S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	222	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt		S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	223	S2r	S1	S2r	S1	S1	S2t	S2r	S2r	S2gt		S1	S2r	S1	S2r	S2r	S2r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	224	S2r	S1	S2r	S1	S1	S2t	S2r	S2r	S2gt		S1	S2r	S1	S2r	S2r	S2r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	225	S2r	S1	S2r	S1	S1	S2t	S2r	S2r	S2gt		S1	S2r	S1	S2r	S2r	S2r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	226	S2r	S1	S2r	S1	S1	S2t	S2r	S2r	S2gt	-	S1	S2r	S1	S2r	S2r	S2r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	227	S2r	S1	S2r	S1	S1	S2t	S2r	S2r	S2gt		S1	S2r	S1	S2r	S2r	S2r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	228	S3r	S1	S2r	S1	S2r	S2t	S3r	S3r	S2gt		S2r	S3r	S2r	S2r	S3r	S3r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Berambadi	229	N	S3rt	-	S3r	N	S3r	N	N	Nrt	Nrt	S3r	N	S3r	N	N	N	S3rt	S3rt	_	S3rt	Nrt	S3r	S3r	S3rt	S3rt		S3rt
Berambadi	230	N	S3rt		S3r	N	S3r	N	N	Nrt	Nrt	S3r	N	S3r	N	N	N	S3rt	S3rt	_	S3rt	Nrt	S3r	S3r	S3rt	S3rt		S3rt
Berambadi	231	N	S3rt		S3r	N	S3r	N	N	Nrt	Nrt	S3r	N	S3r	N	N	N	S3rt	S3rt	_	S3rt	Nrt	S3r	S3r	S3rt	S3rt		S3rt
Berambadi	232		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Berambadi	233		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Berambadi	234			S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g		S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Berambadi	236	N	S3rt		S3r	N	S3r	N	N	Nrt	Nrt	S3r	N	S3r	N	N	N	S3rt	S3rt		S3rt	Nrt	S3r	S3r	S3rt	S3rt		S3rt
Berambadi	237	N	S3rt		S3r	N	S3r	N	N	Nrt	Nrt	S3r	N	S3r	N	N	N	S3rt	S3rt	S3rt	S3rt	Nrt	S3r	S3r	S3rt	S3rt	S3rt	S3rt
Berambadi	239	N	S3rt		S3r	N	S3r	N	N	Nrt	Nrt	S3r	N	S3r	N	N	N	S3rt	S3rt	S3rt	S3rt	Nrt	S3r	S3r	S3rt	S3rt		S3rt
Berambadi	240	N N	S3rt		S3r	N N	S3r	N N	N	Nrt	Nrt	S3r	N N	S3r	N N	N N	N N	S3rt	S3rt		S3rt	Nrt	S3r	S3r	S3rt	S3rt		S3rt
Berambadi	241	N	S3rt S3rt	N	S3r S3r	N	S3r S3r	N	N N	Nrt Nrt	Nrt Nrt	S3r S3r	N	S3r S3r	N	N	N	S3rt S3rt	S3rt S3rt	_	S3rt S3rt	Nrt Nrt	S3r S3r	S3r S3r	S3rt	S3rt S3rt		S3rt
Berambadi Berambadi	290		Others		_	_	Others			Others	_	_	_	_			Others			_		-	_	_	S3rt Others		_	S3rt Others
Berambadi	292	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	293	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	_	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	294	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1 S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	295	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	299	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	300	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	301	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	302	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	303	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	304				_				_	_		_	_	_			_	Forest		_					_			
Berambadi	305	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1

			1			1	1					1					1			1		1			1	1		
Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Sunflower	Red gram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Onion	Marigold	Chrysanthemum	Banana	Horse gram	Field-bean	Turmeric	Beetroot	Potato	Beans
	Sul													Cr							Chr							
Berambadi	306	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	307	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	t Forest	Forest	Forest	Forest	Forest
Berambadi									_														_	t Forest				
Berambadi		Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	t Forest	Forest	Forest	Forest	Forest
Berambadi		_	_		_		_				_		_	_	_	_	_	_		_		_	_	t Forest			_	_
Berambadi	312	S1	S1	S1	S2t	S1		S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi	313	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Berambadi		_				_	_		_		_	_		_	_	_	_		_	_		_	_	sOthers	_	_	_	_
Berambadi	348	N	S3rt		S3r	N	S3r	N	N	Nrt	Nrt		N		N	N	N	_	_	S3rt		_	S3r	S3r			S3rt	_
Berambadi	349	N	S3rt		S3r	N	S3r	N	N	Nrt	Nrt	S3r	N		N	N	N			S3rt			S3r	S3r			S3rt	
Berambadi	371	N	S3rt	N	S3r	N	S3r	N	N	Nrt	Nrt	S3r	N	S3r	N	N	N	S3rt	S3rt	S3rt	S3rt	Nrt	S3r	S3r	S3rt	S3rt	S3rt	S3rt
Channamallipura	12	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	Tank	Others	s0ther:	sOthers	others	sOthers	sOthers	Others	Others	Others	other	sOthers	Others	Others	Others	Others	Others			others	Others	Other	Other	s0thers	Others	Others	Others	sOthers
Kannigala	114	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	190	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	192	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	193	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	194	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	195	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	196	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	197	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	199	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	200	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	201	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	204	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	208	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	211	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	212	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	215	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	216	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	217	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	218	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	219	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	220	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala		Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest		Forest	Forest	Forest	Forest	Forest		Forest	Forest	Forest	Fores	t Forest	Forest	Forest	Forest	Forest
Kannigala	223	S1	S1	S1	S2t	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Kannigala	224	Forest	Fores	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	225	Forest	Fores	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	226	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	227	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	t Forest	Forest	Forest	Forest	Forest
Kannigala	228	Forest	Fores	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	t Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores	tForest	Forest	Forest	Forest	Forest
Kannigala	229	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	S2wt
Burn	 -	1	, 55	1000		1556	102			5-11		10-1	550		1		,	155	· · ·	, 52 ***	J- *** t	··· t	5211	5 = 11	, 55 t	, 55	100 11 1	

Village	Survey Number	Mango	Maize	Sapota	Sorghum	Guava	Cotton	Tamarind	Lime	Sunflower	Red gram	Amla	Jackfruit	Custard-apple	Cashew	Jamun	Musambi	Groundnut	Onion	Marigold	Chrysanthemum	Banana	Horse gram	Field-bean	Turmeric	Beetroot	Potato	Beans
Kannigala	230	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	231	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	232	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	233	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	234	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	S2wt
Kannigala	235	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	S2wt
Kannigala	236	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	237	Forest	Forest	Forest	Forest	_	Forest	Forest		Forest	Forest	Forest	Forest	Forest	Forest		Forest	Forest		Forest	Forest	Forest				Forest	Forest	Forest
Kannigala	258	S3gr	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	262	S3gr	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	263	S3gr	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	264	N	S3wt		S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt		S2wt		S2wt	S2w	S2w			S3wt	
Kannigala	265	N	S3wt		S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt		S2wt		S2wt	S2w	S2w				
Kannigala	266		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g		S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	267		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g		S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	268	S3gr	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	269		S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S2r	S3r	S2r	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	270	N	S3wt		S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	-	-	S2wt	S2wt	S2w	S2w				
Kannigala	271	N	S3wt		S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt				S2wt	S2w	S2w			S3wt	
Kannigala	272	N	S3wt		S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt		S2wt			S2w	S2w			S3wt	
Kannigala	273	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt		S3wt	S2wt
Kannigala	274	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	276			S2gr	S3g	S2gr	S3g		S2gr	S3gr	S2g	S2g		S2g	S2gr	S2gr	S2gr	S3g	S3g		S3g	S3g	S2g	S3g		S3g	S3g	S3g
Kannigala	278	S2gr	S3g	S2gr	S3g	S2gr	S3g	S2gr	S2gr	S3gr	S2g	S2g	S2gr	S2g	S2gr	S2gr	S2gr	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	279	S2r	S1	S2r	S1	S1	S2t	S2r	S2r	S2gt	S1	S1	S2r	S1	S2r	S2r	S2r	S1	S2g	S1	S2g	S2g	S1	S2g	S2g	S2g	S2g	S2g
Kannigala	280	S2gr	S3g	S2gr	S3g	S2gr	S3g	S2gr	S2gr	S3gr	S2g	S2g	S2gr	S2g	S2gr	S2gr	S2gr	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	281	S2gr	S3g	S2gr	S3g	S2gr	S3g	S2gr	S2gr	S3gr	S2g	S2g	S2gr	S2g	S2gr	S2gr	S2gr	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	282		S3g	S2gr	S3g	S2gr	S3g		S2gr		S2g	S2g	S2gr	S2g	S2gr		S2gr	S3g	S3g		S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	283		S3g	S2gr	S3g		S3g	S2gr		S3gr	S2g	S2g	S2gr	S2g		S2gr	S2gr	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	285	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r		S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	286	N		N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	287	N		N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	288	N		N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	289	N		N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	291	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	292	N	S3r	N	S3r	N	S3r	N	N	Nr	Nr	S3r	N	S3r	N	N	N	S3r	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	S3r	S3r
Kannigala	331		S3g	S2gr	S3g	S2gr	S3g	S2gr	S2gr	S3gr	S2g	S2g	S2gr	S2g	S2gr	S2gr	S2gr	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g
Kannigala	333	N	S2r	S3r	S2r	S3r	S2r	S3r	S3r	S3r	S3r	S2r	S3r	S2r	S3r	S3r	S3r	S2rt	S2r	S2r	S2r	S3r	S2r	S2r	S2r	S2r	S2r	S2r
Kannigala	387	N	S3wt	S3t	S1	S3t	S1	S3t	S1	S2W	S2w	S2t	S3t	S2t	N	S2t	S1	S3wt	S2wt	S2wt	S2wt	S2wt	S2w	S2w	S3wt	S3wt	S3wt	S2wt
Masahalli	115	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1.	Executive summary	1-4
2.	Introduction	5
3.	Methodology	7-11
4.	Results and discussions	13-34

LIST OF TABLES

I. Soc	ial status	
1	Human population among sample households	13
2	Basic needs of sample households	14
3	Institutional participation among the sample population	14
II. Ec	onomic status	
4	Occupational pattern in sample households	16
5	Domestic assets among samples households	16
6	Farm assets among samples households	17
7	Livestock assets among sample households	18
8	Milk produced and Fodder availability of sample households	19
9	Women empowerment of sample households	20
10	Per capita daily consumption of food among the sample farmers	20
11	Annual average Income from various sources	21
12	Average annual expenditure of sample farmers	22
13	Distribution of land holding among the sample households	23
14	Land holding among samples households	23
III. R	desource use pattern	
15	Number of tree/plants covered in sample farm households	23
16	Present cropping pattern among samples households	24
17	Distribution of soil series in the watershed	25
IV. E	conomic land evaluation	
18	Cropping pattern on major soil series	26
19	Alternative land use options for different size group of farmers	27
19	(Benefit Cast Ratio)	21
20	Economics Land evaluation and bridging yield gap for different crops	28-29
21	Estimation of onsite cost of soil erosion	30
22	Ecosystem services of food grains production	31
23	Ecosystem services of fodder production	32
24	Ecosystem services of water supply for crop production	33
25	Farming constraints	34

LIST OF FIGURES

1	Location of study area	8
2	ALPES Framework	9
3	Basic needs of sample households	15
4	Domestic assets among the sample households	17
5	Farm assets among samples households	18
6	Livestock assets among sample households	19
7	Per capita daily consumption of food among the sample farmers	21
8	Average annual expenditure of sample households	22
9	Present cropping pattern	24
10	Estimation of onsite cost of soil erosion	31
11	Ecosystem services of food production	32
12	Ecosystem services of water supply	33

EXECUTIVE SUMMARY

Baseline socioeconomic characterisation is prerequisite to prepare action plan for program implementation and to assess the project performance before making any changes in the watershed development program. The baseline provides appropriate policy direction for enhancing productivity and sustainability in agriculture.

Methodology: Maddinahundi micro-watershed (Gopalapur sub-watershed, Gundlupet taluk and Chamarajanagar district) is located in between $11^045'-11^047'$ North latitudes and $76^034'-76^036'$ East longitudes, covering an area of about 450 ha, bounded by Channamallipur, Hongahalli, Kannagal and Gopalapur villages with length of growing period (LGP) 120-150 days. We used soil resource map as basis for sampling farm households to test the hypothesis that soil quality influence crop selection, and conservation investment of farm households. The level of technology adoption and productivity gaps and livelihood patterns were analyses. The cost of soil degradation and eco system services were quantified.

Results: The socio-economic outputs for the Maddinahundi micro-watershed (Gopalapur sub-watershed, Gundlupet taluk and Chamarajanagar district) are presented here.

Social Indicators;

- *Male and female ratio is 48.8 to 51.2 per cent to the total sample population.*
- Younger age 18 to 50 years group of population is around 68.4 per cent to the total population.
- *Literacy population is around 87.8 per cent.*
- Social groups belong to other backward caste (OBC) is around 40 per cent.
- Liquefied petroleum gas is the source of energy for a cooking among all sample households.
- About 90 per cent of households have a yashaswini health card.
- Dependence on ration cards for food grains through public distribution system is around 60 per cent.
- Swach bharath program providing closed toilet facilities among the sample households.
- *Institutional participation is only 2.4 per cent of sample households.*
- Women participation in decisions making are around 30 per cent of households.

Economic Indicators;

• The average land holding is 2.3 ha indicates that majority of farm households are belong to small and medium farmers. The dry land account for 23.8 per cent and irrigated land 76.2 per cent of total cultivated land area among the sample farmers.

- Agriculture is the main occupation among 9.8 per cent and agriculture is the main and non agriculture labour is subsidiary occupation for 65.9 per cent of sample households.
- The average value of domestic assets is around Rs. 89440 per household. Mobile and television are popular media mass communication.
- The average value of farm assets is around Rs. 46600 per household, about 70.0 per cent of sample farmers own plough.
- The average value of livestock is around Rs. 25876 per household; about 80 per cent of household are having livestock.
- The average per capita food consumption is around 592 grams (1412.1 kilo calories) against national institute of nutrition (NIN) recommendation at 827 gram. Among all sample households are consuming less than the NIN recommendation.
- The annual average income is around Rs. 83953 per household. Among all sample farm households are below poverty line.
- *The per capita average monthly expenditure is around Rs.1360.*

Environmental Indicators-Ecosystem Services;

- The value of ecosystem service helps to support investment to decision on soil and water conservation and in promoting sustainable land use.
- The onsite cost of different soil nutrients lost due to soil erosion is around Rs.658 per ha/year. The total cost of annual soil nutrients is around Rs. 219693 per year for the total area of 449.9 ha.
- The average value of ecosystem service for food grain production is around Rs. 33300/ ha/year. Per hectare food grain production services is maximum in turmeric (Rs. 116243) followed by banana (Rs. 74635), maize (Rs. 33407), watermelon (Rs. 17425), cowpea (Rs. 9176), horse gram (Rs. 8258), sunflower (Rs. 6503) and sorghum (Rs. 753).
- The average value of ecosystem service for fodder production is around Rs. 2269/ ha/year. Per hectare fodder production services is maximum in horse gram (Rs. 2912) followed by cowpea (Rs. 2435), sorghum (Rs. 2175) and maize (Rs. 1554).
- The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum in bengal gram (Rs. 60694) followed by cotton (Rs. 59710), sorghum (Rs. 53817), bajra (Rs. 52810), sunflower (Rs. 37915), green gram (Rs. 35038), maize (Rs. 20463) and wheat (Rs. 19072).

Economic Land Evaluation;

- The major cropping pattern is sunflower (17.8 %), followed by maize (18.2 %), sorghum (12.9 %), banana (9.6 %), turmeric (9.6 %), safflower (4.8 %), watermelon (3.3 %), horse gram (15.4 %) and cowpea (8.3 %).
- In Maddinahundi micro-watershed, major soil is Berambadi (BMD) series is having shallow soil depth covered around 12.9 % of area. On this soil farmers are presently growing maize (50 %) sunflower (50 %). Hindupur (HDR) are also having shallow soil depth cover 6.8 % of area, the crops are cowpea (13.2) %), horse gram (37.3 %), maize (13.5 %), sorghum (12.1 %) and sunflower (23.8 %). Gopalapura (GPR) soil series having deep soil depth cover around 5.4 % of areas, crops are horse gram (50.0 %) and sorghum (50.0 %). Kallipura (KLP) soil series having moderately shallow soil depth cover around 4.2 % of area, crops are horse gram (50 %), sorghum (25 %) and sunflower (25%). Maddinahundi (MDH) soil series are having moderately deep soil depth cover around 3.1 % of area, respectively. The major crops grown are banana (50 %) and turmeric (50 %). Beemanabeedu (BMB) soil series are having very shallow soil depth covers around 8.6 % of area, the major crop grown is banana (18.2 %), turmeric (30.6 %), maize (27.3 %) and sunflower (27.4 %). Honnegaudanahalli (HGH) soil series having very deep soil depth cover 16.5 % of areas: crops are cowpea (32.9 %), sorghum (32.9 %) and watermelon (34.2 %).
- The total cost of cultivation and benefit cost ratio (BCR) in study area for banana ranges between Rs. 101553/ha in BMB soil (with BCR of 2.19) and Rs. 88801/ha in MDH soil (with BCR of 1.32).
- In horse gram the cost of cultivation range between Rs. 28458/ha in BMB soil (with of 1.35) and Rs. 12329/ha in KLP soil (with BCR of 1.73).
- In sorghum the cost of cultivation range between is Rs. 24941/ha in KLP soil (with BCR of 1.29) and Rs. 38153 in HDR soil (with BCR of 1.09).
- In maize the cost of cultivation range between is Rs. 23511/ha in BMB soil (with BCR of 1.80) and Rs. 37755/ha in BMD soil (with BCR of 2.84).
- In sunflower the cost of cultivation in KLP soil is Rs. 23725/ha (with BCR of 1.09) and Rs. 24907/ha in HDR soil (with BCR of 1.12).
- In turmeric the cost of cultivation in KLP soil is Rs. 112614/ha (with BCR of 1.32) and cowpea the cost cultivation in HDR soil is Rs. 29157/ha (with BCR of 1.41).
- The land management practices reported by the farmers are crop rotation, tillage practices, fertilizer application and use of farm yard manure (FYM). Due to higher wages farmer are following labour saving strategies is not prating soil and water conservation measures. Less ownership of livestock limiting application of FYM.

• It was observed soil quality influences on the type and intensity of land use. More fertilizer applications on deeper soils to maximize returns.

Suggestions;

- Involving farmers is watershed planning helps in strengthing institutional participation.
- The per capita food consumption and monthly income is very low. Diversifying income generation activities from crop and livestock production in order to reduce risk related to drought and market prices.
- Majority of farmers reported that they are not getting timely support/extension services from the concerned development departments.
- By strengthing agricultural extension for providing timely advice improved technology there is scope to increase in net income of farm households.
- By adopting recommended package of practices by following the soil test fertiliser recommendation, there is scope to increase yield in banana (68.4 %), sorghum (38.2 to 52.9 %), cowpea (34.7 %), sunflower (46.9 to 59.3 %), horse gram (9.6 to 36.7 %) and maize (44.4 to 73.9 %).

INTRODUCTION

Watershed Development program aim to restore degraded watersheds in rainfed regions to increase their capacity to capture and store rain water, reduce soil erosion, and improved soil nutrients and carbon contents so they can produce greater agricultural yields and other benefits. As majority of rural poor live in these regions and dependent on natural resources for their livelihood and sustenance, improvements in agricultural yields improve human welfare and simultaneously improve national food security.

Sujala—III watershed development project conceptualised and implemented by the Watershed Development Department of Government of Karnataka with tripartite cost-sharing arrangements. The World Bank through International Development Association provided major portion of plan outlay as a loan to Government of India and in turn loan to Government of Karnataka.

The objectives of Sujala-III is to demonstrate more effective watershed management through greater integration of programs related to rain fed agriculture, innovative and science based approaches and strengthened institutions and capacities. The project is implemented in 11 districts of Bidar, Vijayapura, Gulbarga, Yadgir, Koppal, Gadag, Raichur, Davanagere, Tumkur, Chikkamangalur and Chamarajanagar which have been identified by the Watershed Development Department based on rainfall and socioeconomic conditions. The project will be implemented over six years and linked with the centrally financed integrated watershed management programme.

Economic evaluations can better guide in watershed planning and implementation, as well as raise awareness of benefits of ecosystem restoration for food security and poverty alleviation program. The present study aims to characterize socio-economic status of farm households, assess the land and water use status, evaluate the economic viability of land use, prioritize farming constraints and suggest the measures for soil and water conservation for sustainable agriculture.

Objectives of the study

- 1. To characterize socio-economic status of farm households
- 2. To evaluate the economic viability of land use and land related constraints
- 3. To estimate the ecosystem service provided by the watershed and
- 4. To suggest alternatives for sustainable agriculture production.

METHODOLOGY

Study area

Maddinahundi micro-watershed is located in Southern Dry Zone of Karnataka (Figure 1). It has a total geographical area of 1.56 M ha with 0.74 M ha under cultivation of which 0.22 M ha is irrigated. The mean elevation ranges from 450 to 900 m MSL; most part of the zone is situated at 800-900 m. The major soils are red loams with pockets of black soils in Kollegal, Yalandur and T.N. Pura taluks of Mysore district. The average annual rainfall ranges from 670 to 890 mm, of which about 55 to 75 per cent is received during the kharif season. The major crops of the zone are rice, ragi, sugarcane, pulses and minor millets. It's represented Agro Ecological Sub Region (AESR) 8.2 having LGP 120-150 days.

Maddinahundi micro-watershed (Gopalapur sub-watershed, Gundlupet taluk, Chamarajanagar district) is located in between $11^045^\circ - 11^047^\circ$ North latitudes and $76^034^\circ - 76^036^\circ$ East longitudes, covering an area of about 450 ha, bounded by Channamallipur, Hongahalli, Kannagal and Gopalapur villages.

Sampling Procedure:

In this study we have followed soil variability as criterion for sampling the farm households. In each micro-watershed the survey numbers and associated soil series are listed. Minimum three farm households for each soil series were taken and summed up to arrive at total sample for analysis.

Sources of data and analysis:

For evaluating the specific objectives of the study, primary data was collected from the sample respondents by personal interview method with the help of pre-tested questionnaire. The data on socio-economic characteristics of respondents such as family size and composition, land holdings, asset position, occupational pattern and education level was collected. The present cropping pattern and the level of input use and yields collected during survey. The data collected from the representative farm households were analysed using Automated Land Potential Evaluation System (Figure 2).

LOCATION MAP OF MADDINAHUNDI MICRO-WATERSHED

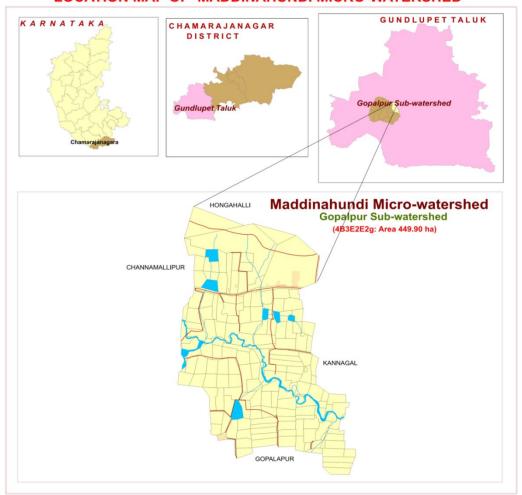


Figure 1: Location of study area

Steps followed in socio-economic assessment

- After the completion of soil profile study link the cadastral number to the soil profile in the micro watershed.
- Download the names of the farmers who are owning the land for each cadastral number in the Karnataka BHOOMI Website.
- Compiling the names of the farmers representing for all the soil profiles studied in the micro watershed for socio-economic Survey.
- Conducting the socioeconomic survey of selected farm households in the micro watershed .
- Farm households database created using the Automated Land Potential Evaluation System (ALPES) for analysis of socio economic status for each micro watershed.
- Synthesis of tables and preparation of report for each micro watershed.

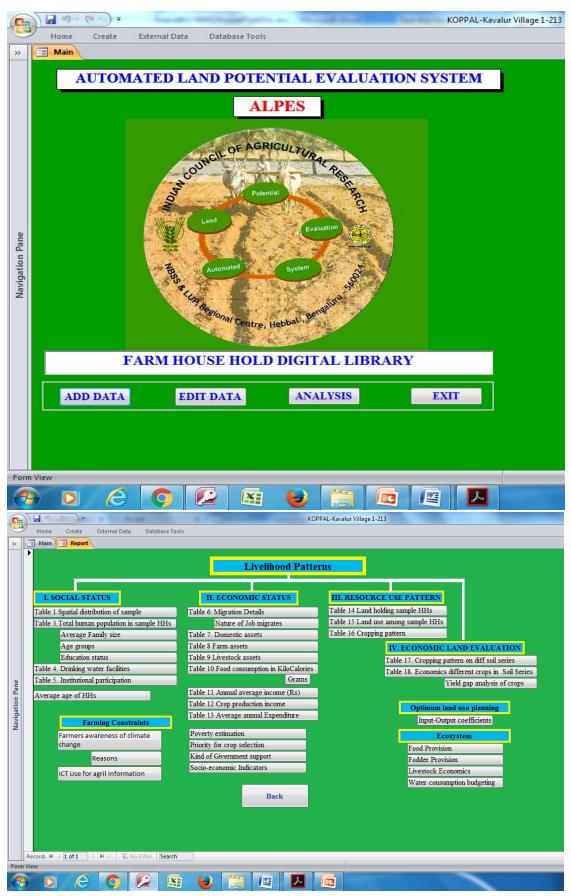


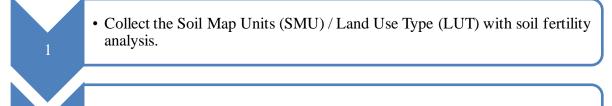
Figure 2: ALPES FRAMEWORK

The sample farmers were post classified in to marginal and small (0.0 to <=2 ha), medium and semi medium (>2 to <=10 ha) and large (>10 ha). The steps involved in estimation of soil potential involve estimation of total cost of cultivation, the yield/gross returns and net income per hectare. The cost of inputs such seed, manure and fertilizer, plant protection chemicals, payment towards human and bullock labour and interest on working capita are included under operational costs. In the case of perennial crops, the cost of establishment was estimated by using actual physical requirements and prevailing market prices. Estimation cost included maintenance cost up to bearing period. The value of main product and by product from the crop enterprise at the market rates were the gross returns of the crop. Net returns were worked out by deducting establishment and maintained cost from gross returns.

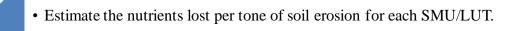
Operational Cost = cost of seeds, fertilizers, pesticides. Cost of human and bullock labour, cost of machinery, cost of irrigation water + interest on working capital.

Gross returns = Yield (Quintals/hectare)*Price (Rs/Quintal)

 $Net\ returns = Gross\ returns - Operational\ cost.$


Benefit Cost Ratio = Net returns/Total cost.

Economic suitability classes: once each land use —land area combination has been assigned an economic value by the land evaluation, the question arises as to its 'suitability', that is, the degree to which it satisfies the land user. The FAO framework defines two suitability orders: 'S'(suitable if benefit cost ratio (BCR)>1) and 'N'(not suitable if (BCR<1), which are dived into five economic suitability classes:'S1'(highly suitable if BCR>3), 'S2'(suitable if BCR>2 and <3),'S3'(Marginally suitable if BCR>1 and <2), 'N1'(Not suitable for economic reasons but physically suitable) and 'N2'(not suitable for physical reasons). The limit between 'S3' and 'N1'must be at least at the point of financial feasibility (i.e. net returns, NPV, or IRR>0 and BCR>1). The other limits depend on social factors such as farm size, family size, alternative employment or investment possibilities and wealth expectations; these need to be specified for the soil series.


Economic Valuation of Soil ecosystem services:

The replacement cost approach was followed for estimating the onsite cost of soil erosion, Market price method was followed for estimating the value of food and fodder production. Value transfer menthods was followed for estimating the value of water demand by different crops in the micro watershed.

Steps followed in Replacement cost methods for estimation of onsite cost of soil erosion

• Integrate the erosion rates per SMU/LUT.

• Estimate the value of soil nutrients lost per ton of soil erosion for each SMU/LUT by taking the market price of soil nutrients.

RESULTS AND DISCUSSIONS

The demographic information shows that the household population dynamics encompasses the socioeconomic status of the farmer. For a rural family, the household size should be optimal to earn a comfortable livelihood through farm and non-farm wage earning. The total number of population in watershed area was 41, out of which 48.8 per cent were males and 51.2 per cent females. Average family size of the households is 4.1. Age is an important factor, which affects the potential employment and mobility status of respondents. The data on age wise distribution of farmers in the sample households indicated that majority of the farmers are coming under the age group of 18 to 30 years (36.7 %) followed by 30 to 50 years (31.7 %), more than 50 years (24.4 %) and 0 to 18 years (7.3 %). Hence, in the study area in general, the respondents were of young and middle age, indicating thereby that the households had almost settled with whatever livelihood options they were practicing and sample respondents were young by age who could venture into various options of livelihood sources. Data on literacy indicated that 12.2 per cent of respondents were illiterate and 87.8 per cent literate (Table 1).

Table 1: Human population among sample households in Maddinahundi Microwatershed

Particulars	Units	Value
Total human population in sample HHs	Number	41
Male	% to total Population	48.8
Female	% to total Population	51.2
Average family size	Number	4.1
Age group	·	·
0 to 18 years	% to total Population	7.3
18 to 30 years	% to total Population	36.7
30 to 50 years	% to total Population	31.7
>50 years	% to total Population	24.4
Average age	Age in years	37.1
Education Status	•	
Illiterates	% to total Population	12.2
Literates	% to total Population	87.8
Primary School (<5 class)	% to total Population	17.1
Middle School (6- 8 class)	% to total Population	12.2
High School (9- 10 class)	% to total Population	17.1
Others	% to total Population	41.5

The ethnic groups among the sample farm households found to be 40 per cent belonging to other backward caste (OBC) followed by 60 per cent belonging to general caste (Table 2 and Figure 3). All the sample households are using liquefied petroleum gas

as source of fuel for cooking. All the sample farmers are having electricity connection. About 90 per cent are sample households having health cards. About 60 per cent of farm households are having ration cards for taking food grains from public distribution system. All the farm households are having toilet facilities.

Table 2: Basic needs of sample households in Maddinahundi Microwatershed

Particulars	Units	Value
Social groups		
OBC	% of Households	40.0
General	% of Households	60.0
Types of fuel use for cooking		
Gas	% of Households	100.0
Energy supply for home		
Electricity	% of Households	100.0
Number of households having	Health card	<u> </u>
Yes	% of Households	90.0
No	% of Households	10.0
MGNREGA Card		
Yes	% of Households	0.0
No	% of Households	100.0
Ration Card	·	<u> </u>
Yes	% of Households	60.0
No	% of Households	40.0
Households with toilet		
Yes	% of Households	100.0
No	% of Households	0.0
Drinking water facilities	·	
Tube Well	% of Households	100.00

The data collected on the source of drinking water in the study area is presented in Table 2. The sample respondents are having Tube well source for water supply for domestic purpose (100 %).

Only 2.4 per cent of the farmers are participating in community based organizations such as user group (Table 3).

Table 3: Institutional participation among the sample population in Maddinahundi Microwatershed

Particulars	Units	Value
No. Of people participating	% to total	2.4
Users groups	% to total	2.4
No. Of people not participating	% to total	97.6

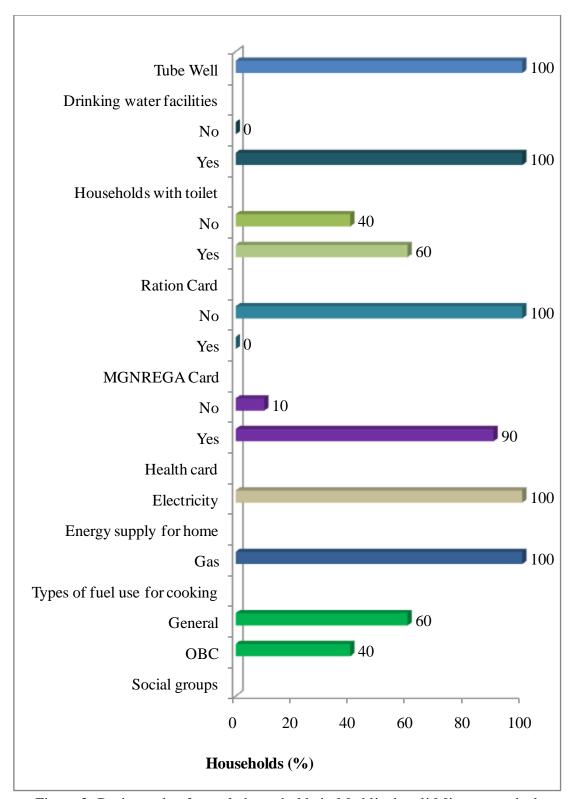


Figure 3: Basic needs of sample households in Maddinahundi Microwatershed

The occupational pattern (Table 4) among sample households shows that agriculture is the main occupation around 9.8 per cent of farmers followed by subsidiary occupations like Agricultural labour (65.9%). About 4.9 per cent of the households are private service as main occupation and agriculture labour as a subsidiary occupation.

Table 4: Occupational pattern in sample population in Maddinahundi Microwatershed

Occupation		% to total
Main	Subsidiary	/0 to total
A original turo	Agriculture	9.8
Agriculture	Agriculture Labour	65.9
Private service	Agriculture Labour	4.9
Studying		19.5
Total		100.0
Family labour availability		Man days/month
Male		36.1
Female		22.7
Total		58.0

The important assets especially with reference to domestic assets were analyzed and are given in Table 5 and Figure 4. The important domestic assets possessed by all categories of farmers are television (80 %) followed by mixer/grinder (80 %), mobile phones (60 %), motorcycle (30%), refrigerator (20%), dvd/cvd (10 %), four wheeler (10 %), computer/laptop (10 %) and bicycle (10 %). The average value of domestic assets is around Rs 89440 per households.

Table 5: Domestic assets among the sample households in Maddinahundi Microwatershed

Particulars	% of households	Average value in Rs
Bicycle	10.0	600
Computer/laptop	10.0	35000
Dvd/Cvd	10.0	2500
Four wheeler	10.0	700000
Mixer/grinder	80.0	3025
Mobile Phone	60.0	6283
Motorcycle	30.0	34333
Refrigerator	20.0	14000
Television	80.0	9222
Average value	89440	

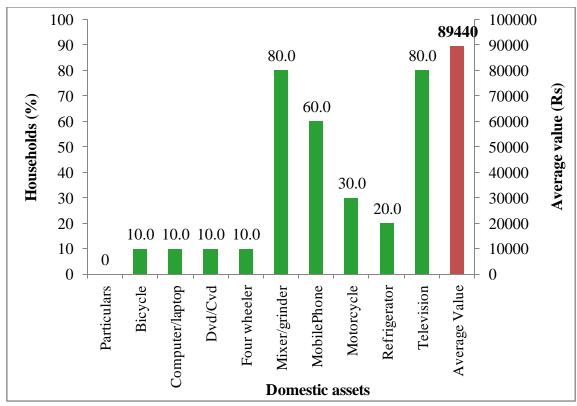


Figure 4: Domestic assets among the sample households in Maddinahundi Microwatershed

The most popularly owned farm equipments were sickles, plough, cattle shed; pump sets, chaff cutter, bullock cart, sprayer and thresher. Plough and sickle were commonly present in all the sampled farmers; these were primary implements in agriculture. The per cent of households owned plough (70 %) followed by bullock cart (50 %), weeder (40 %), sprayer (30 %), drip/sprinkler (30 %), tractor (20 %) and irrigation pump (10 %) was found highest among the sample farmers. The average value of farm assets is around Rs. 113172 per household (Table 6 and Figure 5).

Table 6: Farm assets among samples households in Maddinahundi Microwatershed

Particulars	% of households	Average value in Rs
Weeder	40.0	65
Bullock cart	50.0	15800
Drip/Sprinkler	30.0	8667
Irrigation Pump	10.0	12000
Plough	70.0	2543
Sprayer	30.0	3133
Tractor	20.0	750000
Average value	113172	

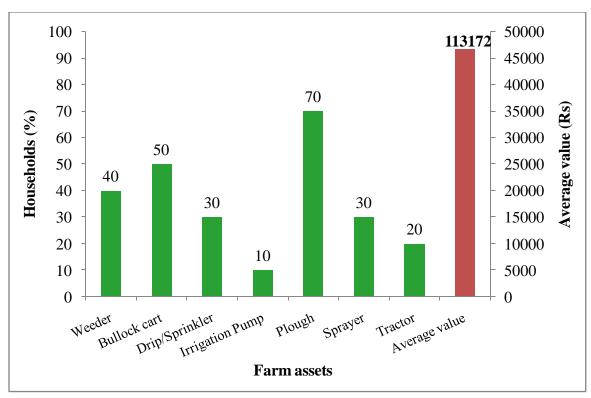


Figure 5: Farm assets among samples households in Maddinahundi Microwatershed

Livestock is an integral component of the conventional farming systems (Table 7 and Figure 6). The highest livestock population is local milching cow were around 25 per cent followed by crossbred milching cow (25 %), crossbred dry cow 16.7 %), bullocks (8.3 %), local dry cow (8.3 %), milching buffalos (8.3%) and poultry (8.3 %). The average livestock value was Rs. 25876 per household.

Table 7: Livestock assets among sample households in Maddinahundi microwatershed

Particulars	% of livestock population	Average value in Rs
Local Dry Cow	8.3	3000
Local Milching Cow	25.0	26000
Crossbred Dry Cow	16.7	12000
Crossbred Milching Cow	25.0	44333
Milching Buffalos	8.3	40000
Bullocks	8.3	55000
Poultry	8.3	800
Average value	25876	

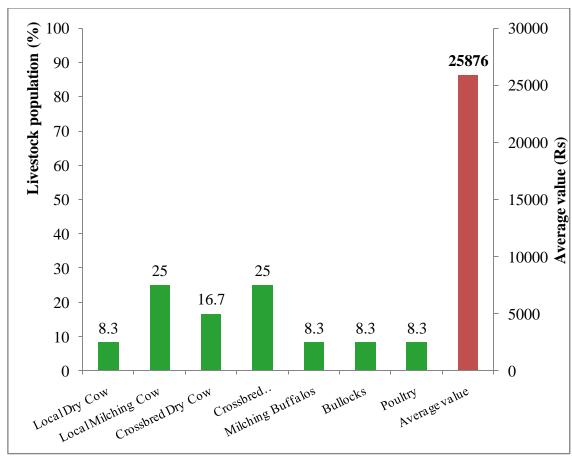


Figure 6: Livestock assets among sample households in Maddinahundi micro-watershed

Average milk produced in sample households was 1414 litters/annum. Among the farm households, sorghum and horsegram are the main crops for domestic food and fodder for animals. About 1667 kg/ha of average fodder is available per season for the livestock feeding (Table 8).

Table 8: Milk produced and fodder availability of sample households in Maddinahundi Microwatershed

Particulars	
Name of the Livestock	Ltr./Lactation/animal
Crossbred Milching Cow	2260
Local Milching Cow	680
Milching Buffalos	1080
Average Milk produced	1414
Fodder produces	Fodder yield (kg/ha.)
Sorghum	1667
Horse gram	1667
Average fodder availability	1667
Livestock having households (%)	80
Livestock population (Numbers)	27

A woman participation in decision making is in this micro-watershed is presented in Table 9. About 30 per cent of women taking decision in her family and agriculture related activities.

Table 9: Women empowerment of sample households in Maddinahundi

Microwatershed % to Grand Total

Particulars	Yes	No
Women participation in local organization activities	0.0	100
Women elected as panchayat member	0.0	100
Women earning for her family requirement	0.0	100
Women taking decision in her family and agriculture related activities	30.0	70.0

The food intake in terms of kilo calorie (kcal) per person per day was calculated and presented in the Table 10 and Figure 7. More quantity of cereals is consumed by sample farmers which accounted for 893.3 kcal per person. The other important food items consumed was pulses 111.1 kcal followed by cooking oil 210.3 kcal, milk 83.2 kcal, vegetables 15.9 kcal, egg 79.2 kcal and meat 19.2 kcal. In the sampled households, farmers were consuming less (1412.1 kcal) than NIN- recommended food requirement (2250 kcal).

Table 10: Per capita daily consumption of food among the sample households in Maddinahundi Microwatershed

Particulars	NIN recommendation (gram/ per day/ person)	Present level of consumption (gram/ per day/ person)	Kilo Calories /day/person
Cereals	396.0	262.7	893.3
Pulses	43.0	32.4	111.1
Milk	200.0	128.1	83.2
Vegetables	143.0	66.4	15.9
Cooking Oil	31.0	36.9	210.3
Egg	0.5	52.8	79.2
Meat	14.2	12.8	19.2
Total	827.7	592	1412.1
Threshold of	NIN recommendation	827 gram*	2250 Kcal*
% Below NIN	I	100	100
% Above NIN	1	0.0	0.0

Note: * day/person

Figure 7: Per capita daily consumption of food among the sample households in Maddinahundi Microwatershed

Annual income of the sample HHs: The average annual household income is around Rs 79781. Major source of income to the farmers in the study area is from crop production (Rs 51907) followed by livestock (Rs. 27874). The monthly per capita income is Rs. 1622 which is more than the threshold monthly income of Rs 975 for considering below poverty line. Due to the fact that erratic rainfall and shortage of water, farmers are diverting from crop production activities to enable the household for a comfortable livelihood. The incomes from the other aforesaid sources are very meagre (Table 11).

Table 11: Annual average income of HHs from various sources in Maddinahundi Microwatershed

Particulars Particulars	Income *
Nonfarm income (Rs)	0 (0)
Livestock income (Rs)	27874 (70)
Crop Production (Rs)	51907 (100)
Total Annual Income (Rs)	79781
Average monthly per capita income (Rs)	1622
Threshold for Poverty level (Rs 975 per month/person)	
% of households below poverty line	50.0
% of households above poverty line	50.0

^{*} Figure in the parenthesis indicates % of Households

The average annual expenditure of farm households indicated that farmers in the study area spend highest on food (Rs. 31195) followed by education, clothing, social

function and health. Now a day's education is most important among all of us. In today's competitive world, education is a necessity for man after food, clothing, and shelter. It is the only fundamental way by which a desired change in the society can happen. The average per capita monthly expenditure is around Rs 1360 and about 50.0 per cent of farm households are above poverty line (Table 12 and Figure 8).

Table 12: Average annual expenditure of sample HHs in Maddinahundi Microwatershed

Particulars Particulars	Value in Rupees	Per cent
Food	31195	46.6
Education	12700	19.0
Clothing	5600	8.4
Social functions	7000	10.5
Health	10400	15.5
Total Expenditure (Rs/year)	66895	100.0
Monthly per capita expenditure (Rs)	1360	

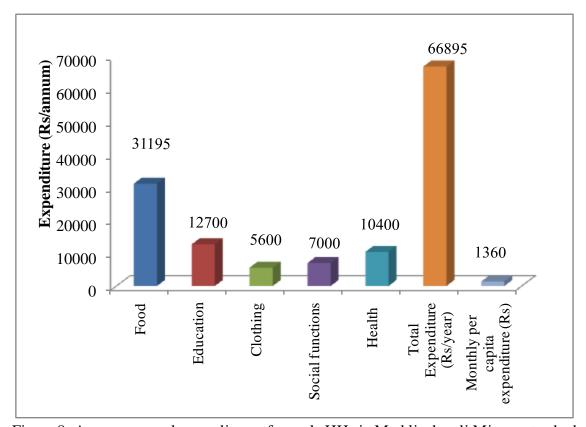


Figure 8: Average annual expenditure of sample HHs in Maddinahundi Microwatershed

Land holding: Total area cultivated by them is 23.4 ha. The average land holding of sample HHs is 2.3 ha. Large number of sample HHs (60 %) belong to small size group with an average holding size of 0.9 ha followed by medium farmers (30 %) with an average holding size of 3.0 ha and a large farmer (10 %) with a average land holding size of 8.9 ha (Table 13)

Table 13: Distribution of land holding among the sample households in Maddinahundi Microwatershed

Particulars	Units	Values
Small farmers	•	
Total land	ha	5.4
Sample size	Percent	60.0
Average land holding	ha	0.9
Medium farmers	•	
Total land	ha	9.1
Sample size	Percent	30.0
Average land holding	ha	3.0
Large farmers		
Total land	ha	8.9
Sample size	Percent	10.0
Average land holding	ha	8.9
Total sample households		
Total land	ha	23.4
Sample size	Percent	100.0
Average land holding	ha	2.3

Land use: The total land holding in the Maddinahundi micro-watershed is 23.4 ha (Table 14). Of which 5.6 ha is rain fed land and 17.8 ha is irrigated land. The average land holding per household is worked out to be 2.3 ha.

Table 14: Land use among samples households in Maddinahundi Microwatershed

Particulars Particulars	Per cent	Area in ha	
Irrigated land	76.2	17.8	
Rainfed Land	23.8	5.6	
Fallow Land	0.0	0.0	
Total land holding	100.0	23.4	
Average land holding	2	2.3	

Table 15: Number of trees/plants covered in sample farm households in Maddinahundi Microwatershed

Particulars Particulars Particulars	Number of Plants/trees	Per cent
Coconut	20	5.9
Lime	2	0.6
Mango	50	14.7
Neem trees	6	1.8
cashew	2	0.6
Eucalyptus	250	73.7
Guava	1	0.3
pomegranate	1	0.3
Teak	7	2.1
Grand Total	339	100.0

In the Microwatershed, the prevalent present land uses under perennial plants are eucalyptus (73.7 %) followed by mango (14.7 %), coconut (5.9 %), teak (2.1 %), neem

trees(1.8 %), lime (0.6 %), cashew (0.6 %), guava (0.3%) and pomegranate (0.3 %) (Table 15).

The land use decisions are usually based on experience of farmers, tradition, expected profit, personal preferences, resources and social requirements.

The present dominant crops grown in dry lands in the study area were by sunflower (17.8%), followed by maize (13.0%), sorghum (12.9%), banana (9.6 %), turmeric (9.6 %), safflower (4.8 %) and watermelon (3.3 %) which are taken during kharif and horse gram (15.4 %), cowpea (8.3 %) and maize (5.2 %) during rabi season respectively. The cropping intensity was 140.6 per cent (Table 16 and Figure 9).

Table 16: Present cropping pattern and cropping intensity in Maddinahundi Microwatershed% to Grand Total

Crops	Kharif	Rabi	Grand Total
Banana	9.6	0.00	9.6
Cowpea	0.0	8.3	8.3
Horse gram	0.0	15.4	15.4
Maize	13.0	5.2	18.2
Safflower	4.8	0.0	4.8
Sorghum	12.9	0.0	12.9
Sunflower	17.8	0.0	17.8
Turmeric	9.6	0.0	9.6
watermelon	3.3	0.0	3.3
Grand Total	71.1	28.9	100.0
Cropping intensity (%)		140.6	

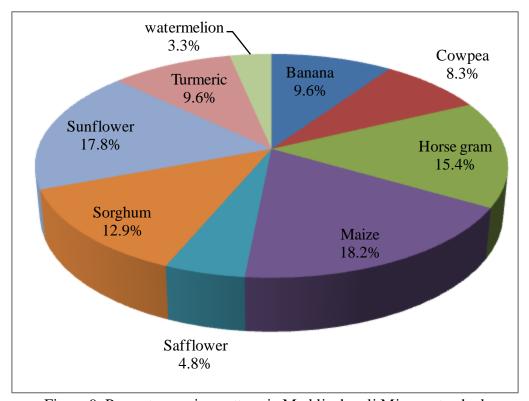


Figure 9: Present cropping pattern in Maddinahundi Microwatershed

Economic land evaluation

The main purpose of economic land evaluation in the watershed is to identify the existing production constraints and propose the potential/alternate options for agrotechnology transfer and for bridging the adoption and yield gap.

In Maddinahundi micro-watershed, 8 soil series are identified and mapped (Table 17). The distribution of major soil series are Honnegaudanahalli covering an area around 74.2 ha (16.5%) followed by Berambadi 58.0 ha (12.9%), Beemanabeedu 38.6 ha (8.6%), Kannigala 33.8 ha (7.5%), Hindupur 30.5 ha (6.8%), Gopalapura 24.3 ha (5.4%), Kallipura 18.9 ha (4.19%) and Maddinahundi 13.8 ha (3.1%).

Table 17: Distribution of soil series in Maddinahundi Microwatershed

Soil	Soil	Mapping Unit Description	Area in
No	Series		ha (%)
1	BMB	Beemanabeedu soils are very deep (>150 cm), moderately well	38.6
		drained, have very dark greyish brown to dark grey and very	(8.6)
		dark brown clayey soils occurring on very gently sloping	
	77.67	lowlands under cultivation	
2	BMD	Berambadi soils are shallow (25-50 cm), well drained, dark	58.0
		brown to dark grayish brown clayey soils occurring on very	(12.9)
	CDD	gently sloping uplands under cultivation	24.2
3	GPR	Gopalapura soils are moderately deep (75-100 cm), well	24.3
		drained, have dark brown to dark reddish brown and reddish	(5.4)
		brown gravelly sandy clay loam to sandy clay soils occurring	
4	IIDD	on very gently uplands under cultivation	20.5
4	HDR	Hindupur soils are shallow (25-50 cm), well drained, have dark	30.5
		reddish brown to dusky red sandy clay loam to sandy clay soils	(6.7)
5	HGH	occurring on very gently sloping uplands under cultivation	74.2
3	нон	Honnegaudanahalli soils are very deep (>150 cm), well drained, have very dark brown to brown and dark reddish brown sandy	(16.5)
		clay loam soils occurring on very gently sloping uplands under	(10.5)
		cultivation	
6	KLP	Kallipura soils are deep (100-150 cm), well drained, have dark	18.9
		reddish brown to dark red gravelly sandy clay loam to sandy	(4.2)
		clay soils occurring on very gently sloping uplands under	` /
		cultivation	
7	KNG	Kannigala soils are moderately deep (75-100 cm), well drained,	33.8
		have dark reddish brown to dark red gravelly sandy clay loam	(7.5)
		to sandy clay soils occurring on very gently sloping uplands	
		under cultivation	
8	MDH	Maddinahundi soils are deep (100-150 cm), well drained, have	13.8
		dark reddish brown gravelly sandy clay soils occurring on very	(3.1)
		gently sloping uplands under cultivation	
Fo	orest		94.9
			(21.1)
O	thers		21.4
			(4.8)

Present cropping pattern on different soil series are given in Table 18. Crops grown on Berambadi soils are maize and sunflower. Cowpea, horsegram, maize, sorghum and sunflower on Hindupur soil are grown. Horse gram and sorghum are grown on Gopalapura soils. Horse gram, sorghum and sunflower on Kallipura soils are grow. Banana and turmeric on Maddinahundi soils are grow. Banana, maize, sunflower and turmeric on Beemanabeedu soils is grow. Cowpea, sorghum and watermelon on Honnegaudanahalli soils is grow.

Table 18: Cropping pattern on major soil series in Maddinahundi micro-watershed

(Area in per cent)

Soil	Coll Donth	Crana	Dr	y	Irriga	ited	Grand
Series	Soil Depth	Crops	Kharif	Rabi	Kharif	Rabi	Total
BMD	Shallow	Maize	0.0	0.0	0.0	50.0	50.0
DIVID	(25-50 cm)	Sunflower	0.0	0.0	50.0	0.0	50.0
		Cowpea	0.0	13.2	0.0	0.0	13.2
	Shallow	Horsegram	0.0	37.3	0.0	0.0	37.3
HDR	(25-50 cm)	Maize	13.5	0.0	0.0	0.0	13.5
	(23-30 CIII)	Sorghum	12.1	0.0	0.0	0.0	12.1
		Sunflower	23.8	0.0	0.0	0.0	23.8
GPR	Moderately deep	Horsegram	0.0	50.0	0.0	0.0	50.0
GFK	(75-100 cm)	Sorghum	50.0	0.0	0.0	0.0	50.0
	Doon	Horsegram	0.0	50.0	0.0	0.0	50.0
KLP	Deep (100-150 cm)	Sorghum	25.0	0.0	0.0	0.0	25.0
	(100-130 cm)	Sunflower	0.0	0.0	25.0	0.0	25.0
MDH	Deep	Banana	0.0	0.0	50.0	0.0	50.0
MIDIT	(100-150 cm)	Turmeric	0.0	0.0	50.0	0.0	50.0
		Banana	0.0	0.0	18.2	0.0	18.2
BMB	Very deep	Maize	27.3	0.0	9.1	0.0	36.4
DIVID	(>150 cm)	Sunflower	27.3	0.0	0.0	0.0	27.3
		Turmeric	0.0	0.0	18.2	0.0	18.2
	Vary doop	Cowpea	0.0	32.9	0.0	0.0	32.9
HGH	Very deep (>150 cm)	Sorghum	32.9	0.0	0.0	0.0	32.9
	(>150 cm)	Watermelon	0.0	0.0	34.2	0.0	34.2

Land is used for agricultural use for growing cereals, pulse, oilseeds and commercial crops. The soil/ land potential are measures in terms of physical yield and net income. The alternative land use options for each micro-watershed are given below (Table 19).

Table 19: Alternative land use options for different size group of farmers (Benefit Cost Ratio) in Maddinahundi Microwatershed.

Soil	Small	Medium	Large
Series	Farmers	Farmers	Farmers
BMD	Maize (1.80), Sunflower (1.09)		
HDR	Cowpea (1.41), Horse gram		
	(1.60), Maize (1.57), Sorghum		
	(1.09 &Sunflower (1.12)		
GPR			Horse gram (1.35)
			& Sorghum (1.05)
KLP		Horse gram (1.73),	
		Sorghum (1.29) &	
		Sunflower (1.42)	
MDH	Banana (1.32) & Turmeric		
	(2.07)		
BMB		Banana (2.19), Maize (2.84),	
		Sunflower (1.39) &	
		Turmeric (2.34)	
HGH	Cowpea (1.34),Sorghum (1.02)		
	& Watermelon (1.20)		

The productivity of different crops grown in Maddinahundi micro-watershed under potential yield of the crops is given in Table 20 and Table 20a.

The data on cost of cultivation and benefit cost ratio (BCR) of different crops is given in Tables 21 and Table 21a. The total cost of cultivation in study area for banana ranges 101553/ha in BMB soil (with BCR of 2.19) and Rs.88801/ha in MDH soil (with BCR of 1.32), horsegram range between Rs 28458/ha in BMB soil (with of 1.35) and Rs.12329/ha in KLP soil (with BCR of 1.73), sorghum cost of cultivation range between is Rs.24941/ha in KLP soil (with BCR of 1.29) and Rs 38153 in HDR soil (with BCR of 1.09), maize cost of cultivation range between is Rs 23511/ha in BMB soil (with BCR of 1.80) and Rs. 37755/ha in BMD soil (with BCR of 2.84), sunflower the cost of cultivation in KLP soil is Rs.23725/ha (with BCR of 1.09) and Rs. 24907/ha in HDR soil (with BCR of 1.12), turmeric the cost of cultivation in KLP soil is Rs.112614/ha (with BCR of 1.32) and cowpea the cost cultivation in HDR soil is Rs.29157/ha (with BCR of 1.41).

Table 20: Economic land evaluation and bridging yield gap for different crops in Maddinahundi micro-watershed

Table 20: Economic land ev			R (25-50				25-50 cm)		5-100 cm)		(100-150) cm)
Particulars	Cow	Horse	Maize	Sor	Sun	Maize	Sun	Horse	Corchum	Horse	Sor	Sun
	pea	gram		ghum	flo we r	Maize	flower	gram	Sorghum	gram	ghum	flower
Total cost (Rs/ha)	29157	20172	35538	38153	24907	23511	23725	28458	26375	12329	24941	24354
Gross Return (Rs/ha)	41034	32208	55624	41600	27788	42229	25952	38373	27567	21366	32172	34580
Net returns (Rs/ha)	11877	12036	20086	3447	2881	18718	2227	9915	1192	9036	7231	10226
BCR	1.41	1.60	1.57	1.09	1.12	1.80	1.09	1.35	1.05	1.73	1.29	1.42
Farmers Practices (FP)						<u> </u>						
FYM (t/ha)	0.0	0.7	2.0	2.2	1.1	0.0	2.3	2.2	0.0	0.0	2.5	1.3
Nitrogen (kg/ha)	9.7	14.7	24.6	9.7	9.7	55.3	55.3	45.8	45.8	50.0	50.0	50.0
Phosphorus (kg/ha)	22.7	31.2	48.2	22.7	22.7	39.7	39.7	51.3	51.3	45.0	45.0	45.0
Potash (kg/ha)	24.8	16.5	0.0	24.8	24.8	51.8	51.8	33.5	33.5	25.0	25.0	25.0
Grain (Qtl/ha)	8.1	7.9	39.4	17.5	6.7	21.9	6.9	8.9	13.4	6.3	17.5	8.8
Price of Yield (Rs/Qtl)	5000	3500	1400	2200	4200	1900	3800	4000	2000	3400	1800	4000
Soil test based fertilizer Re	commen	dation (S7	TBR)									
FYM (t/ha)	7.4	0.0	8.6	7.4	6.6	8.6	6.6	0.0	7.4	0.0	7.4	6.6
Nitrogen (kg/ha)	24.7	24.7	123.5	81.5	55.2	123.5	55.2	24.7	81.5	24.7	81.5	55.2
Phosphorus (kg/ha)	49.4	40.1	77.2	56.8	59.3	77.2	74.1	37.1	56.8	37.1	56.8	59.3
Potash (kg/ha)	18.5	20.6	32.1	29.6	27.8	32.1	37.1	18.5	29.6	24.7	39.5	37.1
Grain (Qtl/ha)	12.4	9.9	84.0	28.4	16.5	84.0	16.5	9.9	28.4	9.9	28.4	16.5
% of Adoption/yield gap (S	TBR-FP	P) / (STBR	.)									
FYM (%)	100.0	0.0	77.2	70.4	83.1	100.0	65.0	0.0	100.0	0.0	66.3	81.0
Nitrogen (%)	60.8	40.7	80.1	88.1	82.5	55.2	-0.2	-85.3	43.9	-102.4	38.7	9.4
Phosphorus (%)	54.1	22.3	37.5	60.1	61.8	48.5	46.4	-38.6	9.6	-21.5	20.8	24.1
Potash (%)	-34.0	19.6	100.0	16.3	10.7	-61.5	-39.9	-80.7	0.0	-1.2	36.7	32.5
Grain (%)	34.7	19.8	53.1	38.2	59.3	73.9	58.0	9.6	52.9	36.7	38.4	46.9
Value of yield and Fertilizer (Rs)												
Additional Cost (Rs/ha)	8641	-61	9780	7678	7687	10716	5497	-3413	8003	-659	6098	6268
Additional Benefits (Rs/ha)	21427	6857	62454	23895	41035	117972	36306	3806	30024	12342	19629	30867
Net change Income (Rs/ha)	12786	6918	52674	16216	33348	107256	30809	7218	22021	13001	13531	24599

To be continued...

Table 20a: Economic land evaluation and bridging yield gap for different crops in Maddinahundi micro-watershed

		DH 50			BMB			HGH	
Particulars	`	50 cm)		` `	50 cm)			(>150 cn	
	Banana	Turmeric	Banana	Maize	Sunflower	Turmeric	Cowpea	Sorghum	Watermelon
Total cost (Rs/ha)	88801	112614	101553	37755	24889	87150	33156	27150	88432
Gross Return (Rs/ha)	117325	233415	222300	87603	34580	203775	44501	27558	105857
Net returns (Rs/ha)	28524	120801	120747	49848	9691	116625	11344	408	17425
BCR	1.32	2.07	2.19	2.84	1.39	2.34	1.34	1.02	1.20
Farmers Practices (FP)									
FYM (t/ha)	2.5	2.5	2.5	2.2	0.8	2.5	0.0	2.1	4.0
Nitrogen (kg/ha)	48.1	48.1	79.2	54.7	17.9	79.2	18.6	18.6	97.2
Phosphorus (kg/ha)	104.4	104.4	105.4	79.1	39.6	105.4	47.5	47.5	117.1
Potash (kg/ha)	75.0	75.0	7.1	4.3	0.0	7.1	0.0	0.0	59.5
Grain (Qtl/ha)	125.0	25.0	125.0	46.7	10.0	18.8	8.3	14.5	178.6
Price of Yield (Rs/Qtl)	950	9000	1800	1880	3500	11000	5000	1700	600
Soil test based fertilizer Recomme	endation (ST	BR)							
FYM (t/ha)	39.5	24.7	39.5	8.6	6.6	24.7	7.4	7.4	24.7
Nitrogen (kg/ha)	540.3	185.3	432.3	123.5	55.2	148.2	18.5	61.1	98.8
Phosphorus (kg/ha)	324.2	154.4	259.4	67.9	74.1	123.5	61.8	71.0	108.1
Potash (kg/ha)	543.4	247.0	543.4	28.9	27.8	247.0	18.5	29.6	74.1
Grain (Qtl/ha)	395.2	24.7	395.2	84.0	16.5	24.7	12.4	28.4	790.4
% of Adoption/yield gap (STBR-	FP) / (STBR)							
FYM (%)	93.7	89.9	93.7	74.9	87.3	89.9	100.0	72.1	83.9
Nitrogen (%)	91.1	74.0	81.7	55.7	67.5	46.6	-0.4	69.6	1.6
Phosphorus (%)	67.8	32.4	59.4	-16.4	46.6	14.6	23.0	33.1	-8.3
Potash (%)	0.0	69.6	98.7	85.3	100.0	97.1	100.0	100.0	19.7
Grain (%)	68.4	-1.2	68.4	44.4	39.3	24.1	33.1	49.1	77.4
Value of yield and Fertilizer (Rs)			•						
Additional Cost (Rs/ha)	61966	29486	58756	7306	8275	28622	8406	7481	20646
Additional Benefits (Rs/ha)	256690	-2700	486360	70149	22633	65450	20428	23702	367097
Net change Income (Rs/ha)	194724	-32186	427604	62843	14359	36828	12022	16221	346451

The data on FYM, Nitrogen, Phosphorus and Potash application by the farmers to different crops and recommended FYM for different crops is given in Table 20 and 20a. There is a huge gap between FYM application by farmers and recommended FYM in all the crops across the soils. There is a larger yield gap in crops grown across different soil series. Adequate knowledge about recommended package of practices is the pre-requisite for their use in cultivation of crops. It is a fact that, recommended practices are major contributing factors to yield. Inadequate knowledge about recommended practices leads to their improper adoption. Strengthening of extension services by concerned agency is required to increase adoption of recommended cultivation practices and ultimately reducing the gap. By adopting soil-test fertiliser recommendation, there is scope to increase yield and income to a maximum of Rs.427604 in banana and a minimum of Rs.6918 in horse gram cultivation.

Economic valuation of Ecosystem Services (ES) was aimed at combining use and non-use values to determine Total Economic Value (TEV) of ES. Ecosystem Services (ES) were valued based on their annual flow or utilization in common monetary units, Rs/year. The valuation of ES was based on market price in 2017 or market cost approaches whichever is applicable, and in other cases on value or benefit transfer from previous valuation studies.

The onsite cost of different soil nutrients lost due to soil erosion is given in Table 21 and Figure 10. The average value of soil nutrient loss is around Rs 658 per ha/year. The total cost of annual soil nutrients is around Rs 219693 per year for the total area of 449.90 ha.

Table 21: Estimation of onsite cost of soil erosion in Maddinahundi micro-watershed.

Particulars	Quai	ntity(kg)	Value (Rs)		
Tatticulars	Per ha	Total	Per ha	Total	
Organic matter	94.37	31521	594.56	198581	
Phosphorus	0.21	70	9.22	3081	
Potash	1.34	447	26.76	8939	
Iron	0.16	53	7.63	2549	
Manganese	0.01	2	1.39	464	
Cupper	0.01	4	7.32	2444	
Zinc	0.14	46	5.53	1845	
Sulfur	0.13	42	5.04	1683	
Boron	0.01	3	0.32	107	
Total	85.83	32188	658	219693	

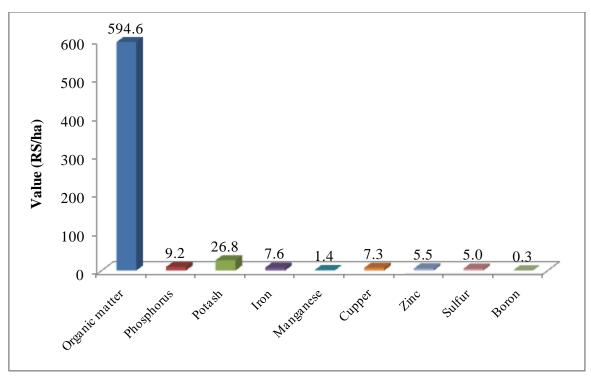


Figure 10: Estimation of onsite cost of soil erosion in Maddinahundi micro-watershed

The average value of ecosystem service for food grain production is around Rs 33300/ha/year (Table 22 and Figure 11). Per hectare food grain production services is maximum in turmeric (Rs 116243) followed by banana (Rs.74635), maize (Rs.33407), watermelon (Rs. 17425), cowpea (Rs. 9176), horse gram (Rs.8258), sunflower (Rs.6503) and sorghum (Rs.753).

Table 22: Ecosystem services of food grain production in Maddinahundi Microwatershed

Production items	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Gross Returns (Rs/ha)	Cost of Cultivation (Rs/ha)	Net Returns (Rs/ha)
Cereals	Maize	3.0	38	1775	67047	33639	33407
	Sorghum	2.2	16	1925	29907	29155	753
Pulses	Cowpea	1.0	8	5000	40333	31157	9176
	Horse gram	3.5	7	3850	28541	20283	8258
Oil seeds	Sunflower	3.8	8	3875	30971	24469	6503
Fruits	Banana	1.6	124	1375	169813	95177	74635
	Watermelon	0.5	176	600	105857	88432	17425
Spice crops	Turmeric	1.6	22	10000	216125	99882	116243
Average valu	ie	17.2	49.875	3550	86074.25	52774.25	33300

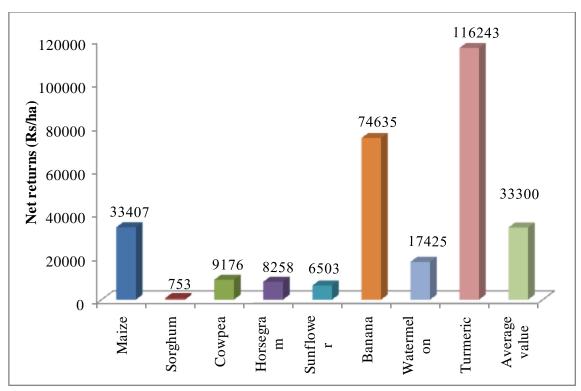


Figure 11: Ecosystem services of food grain production in Maddinahundi Microwatershed

The average value of ecosystem service for fodder production is around Rs.2269/ha/year (Table 23). Per hectare fodder production services is maximum in horse gram (Rs 2912) followed by cowpea (Rs 2435), sorghum (Rs.2175) and maize (Rs.1554).

Table 23: Ecosystem services of fodder production in Maddinahundi Microwatershed

Production	Cwang	Area	Yield	Price	Net Returns
items	Crops	in ha	(Qtl/ha)	(Rs/Qtl)	(Rs/ha)
Cereals	Maize	3.0	2.7	575	1554
Ccicais	Sorghum	2.2	1.9	1138	2175
Pulses	Cowpea	1.0	4.1	600	2435
1 uises	Horse gram	3.5	3.5	838	2912
Average value		9.7	3.0	787.5	2269

The water demand for production of different crops was worked out in arriving at the ecosystem services of water support to crop growth. The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum (Table 24 and Figure 12) in bengal gram (Rs 60694) followed by cotton (Rs 59710), sorghum (Rs 53817), bajra (Rs 52810), sunflower (Rs 37915), green gram (Rs 35038), maize (Rs 20463) and wheat (Rs 19072).

Table 24: Ecosystem services of water supply in Maddinahundi Microwatershed

Crops	Yield	Virtual water	Value of Water	Water consumption
	(Qtl/ha)	(cubic meter) per ha	(Rs/ha)	(Cubic meters/Qtl)
Banana	123.5	9757	97565	79
Cowpea	8.1	1013	10132	126
Horsegram	7.4	2282	22818	308
Maize	37.8	4616	46158	122
Sorghum	15.5	4735	47354	305
Sunflower	8.0	2690	26903	337
Turmeric	21.6	3581	35812	166
Watermelon	176.4	63867	638671	362
Average value	49.8	11567.7	115676.7	225.5

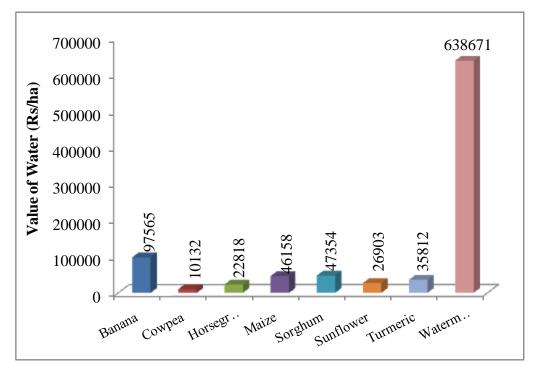


Figure 12: Ecosystem services of water supply in Maddinahundi Microwatershed

The main farming constraints in Maddinahundi micro-watershed to be found are less rainfall, lack of good quality seeds, lack of storage, non availability fertilizers, damage of crops by wild animals and non availability of plant protection chemicals. Majority of farmers depend up on money lender of the sources of loan for purpose of crop production. Farmers to sell the agriculture produce through village market and the farmers getting the agriculture related information on newspaper. Farmers reported that they are not getting timely support/extension services from the concerned development department (Table 25).

Table 25: Farming constraints related land resources of sample households Maddinahundi Microwatershed

Sl. No	Particulars	Per cent
1	Less Rainfall	100.0
2	Lack of good quality seeds	30.0
3	Non availability Fertilizers	10.0
4	High Crop Pests & Diseases	10.0
5	Animal Pests & Diseases	10.0
6	Lack of transportation	10.0
7	Damage of crops by Wild Animals	100.0
8	Non availability of Plant Protection Chemicals	40.0
9	Source of loan	
	Bank	10.0
	Money Leander	90.0
10	Market for selling	
	Regulated	10.0
	Village market	90.0
11	Sources of Agri-Technology information	
	Newspaper	100.0

The findings of the study would be very much useful to the planners and policy makers of the study area to identify the irrationality in the existing production pattern and to suggest appropriate production plans for efficient utilization of their scarce resources resulting in increased net farm incomes and employment. The study also throws light on future potentialities of increasing net farm income and employment under different situations viz., with existing and recommended technology.