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Abstract
Rapid cycle genomic selection (RC-GS) helps to shorten the breeding cycle and
reduce the costs of phenotyping, thereby increasing genetic gains in terms of both
cost and time. We implemented RC-GS on two multi-parent yellow synthetic
(MYS) populations constituted by intermating ten elite lines involved in each
population, including four each of drought and waterlogging tolerant donors
and two commercial lines, with proven commercial value. Cycle 1 (C1) was con-
stituted based on phenotypic selection and intermating of the top 5% of 500 S2
families derived from each MYS population, test-crossed and evaluated across
moisture regimes. C1 was advanced to the next two cycles (C2 and C3) by inter-
mating the top 5% selected individuals with high genomic estimated breeding
values (GEBVs) for grain yield under drought and waterlogging stress. To esti-
mate genetic gains, population bulks from each cycle were test-crossed and eval-
uated across locations under different moisture regimes. Results indicated that
the realised genetic gain under drought stress was 0.110 t ha−1 yr−1 and 0.135 t
ha−1 yr−1, respectively, for MYS-1 and MYS-2. The gain was less under waterlog-
ging stress, where MYS-1 showed 0.038 t ha−1 yr−1 and MYS-2 reached 0.113 t
ha−1 yr−1. Genomic selection for drought and waterlogging tolerance resulted in
no yield penalty under optimal moisture conditions. The genetic diversity of the
two populations did not change significantly after two cycles of GS, suggesting
that RC-GS can be an effective breeding strategy to achieve high genetic gains
without losing genetic diversity.

Abbreviations: ASI, anthesis-silking interval; BLUP, best linear
unbiased predictor; C1, Cycle 1; C2, Cycle 2; C3, Cycle 3; CML, CIMMYT
maize line; DT, drought tolerance; GEBV, genomic estimated breeding
value; GS, genomic selection; GY, grain yield; MYS, multi-parent yellow
synthetic; RC-GS, rapid-cycle genomic selection; SNP, single-nucleotide
polymorphism; TC, test-cross; WL, waterlogging tolerance.
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1 INTRODUCTION

The rainfed system occupies a major part (∼80%) of
maize mega-environments in the Asian tropics, is largely
dependent on prevailingweather conditions, and therefore
extremely vulnerable to climate change effects (Prasanna,
2018). Drought and excess moisture stress are the two
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major abiotic stresses limiting maize production in large
parts of the Asian tropics fed by monsoon rains. The per
unit area productivity of the rainfed crop is usually less
than half of maize in the irrigated system. The erratic and
uneven distribution of monsoon rains occasionally causes
drought or waterlogging at different crop growth stages
within the same crop season and is the primary cause
of the relatively low productivity of rainfed maize (Zaidi,
Seetharam, & Vinayan, 2016a). Because farmers growing
maize in such stress-prone ecologies are not assured of
returns, they are often hesitant to invest in recommended
crop management, for example, adequate fertilizers, weed
management, etc., which results in marginal agronomic
conditions, and eventually further poor yields. Climate
change effects are further threatening and challenging
maize mega-environments in the Asian tropics with high
vulnerability and low adoption capacity (Cairns et al.,
2012). Given the increasing climate variability, crop vari-
eties need to be bred for resilience to variable weather con-
ditions rather than tolerance to individual stresses in a spe-
cific situation or at a specific crop stage.
In the past, genotypes tolerant to individual stresses

such as drought (Bänziger, Setimela, Hodson, & Vivek,
2006; Cairns & Prasanna, 2018; Edmeades, Bolanos, &
Lafitte, 1992) and excessmoisture (Ferreira, Coelho,Magal-
haes, Gama,&Aluizio, 2007; Zaidi, Rafique, & Singh, 2003,
2007) have been successfully developed. However, the
major challenge lies in putting together tolerance to multi-
ple abiotic stresses and develop productive cultivars with
combined stress tolerance. Previous studies have shown
significant overlap between stresses such as drought and
low nitrogen tolerance (Bänziger, Edmeades, & Lafitte,
2002; Zaidi, Rafique, Rai, Singh, & Srinivasan, 2004) and
drought and waterlogging tolerance (Zaidi, Yadav, Singh,
& Singh, 2008). Both drought and waterlogging toler-
ance are polygenic traits with significant additive effects
conferred by many chromosomal regions. Crop improve-
ment for tolerance to these stresses and building resilience
for both in the same genetic background involves most
chromosomal regions. Marker-assisted recurrent selection
(MARS), a method designed to increase the frequency of
additively-inherited favorable alleles in elite breeding pop-
ulations, has been widely used in plant breeding where
a few markers significantly associated with the pheno-
typic trait are employed (Bernardo, 2008, 2016). Genomic-
assisted breeding (or genomic selection) incorporates all
available marker information simultaneously into a model
to predict the genetic value of the candidate for selec-
tion (Meuwissen, Hayes, & Goddard, 2001) and popula-
tion advancement through RC-GS based on genetically
estimated breeding values (GEBVs) without phenotyping
in each cycle (Massman, Jung, & Bernardo, 2013). RC-
GS increases the genetic gain by reducing the length of

Core Ideas

∙ Rapid cycle genomic selection (RC-GS) to
improve combined abiotic stress tolerance in
tropical maize is relatively new.

∙ Genomic estimated breeding value (GEBV)-
based selection of superior phenotypes for tar-
geted stresses leads to rapid genetic gains.

∙ Multi-parent populations involving trait donors
and elite lines to implement RC-GS resulted in
gains across stressed and non-stressed environ-
ments.

∙ Populations may not be equally amenable, thus
determining constituents in the base population
and its constitution is a critical factor to GS.

the selection cycle, as has been exemplified in maize,
where rapid cycling recombination was successfully used
for improving biparental populations for drought toler-
ance (Beyene et al., 2015; Vivek et al., 2017) and multi-
parent populations for grain yield under optimal mois-
ture conditions (Zhang et al., 2017). For RC-GS within
biparental populations, prediction accuracy is achieved
(Crossa et al., 2014; Zhang et al., 2015). However, predic-
tions across biparental populations will be poor if unre-
lated biparental populations with different allelic diversity
are used as the training population (Zhang et al., 2017).
The limited allelic diversity in one genetic background
that occurs in biparental populations can be overcome by
using multi-parent populations with greater allelic diver-
sity and from different genetic backgrounds (Verhoeven,
Jannink, & McIntyre, 2006), along with increased poly-
morphism and recombination of biparental populations
(Ahfock, Wood, Stephen, Cavanagh, & Huang, 2014).
Theoretical and simulation results show that genomic-

enabled prediction accuracy of multi-parent populations
is higher than the accuracy achieved within a single
population (Hoffstetter, Cabrera, Huang, & Sneller, 2016;
Lehermeier et al., 2014). RC-GSwas implemented inmulti-
parent populations derived from 18 elite tropical maize
inbred lines and improved for four selection cycles, includ-
ing a first cycle based on phenotypic selection across loca-
tions under optimal growing conditions and three cycles
based on GEBVs without phenotyping (Zhang et al., 2017).
Results indicated that the realized gain in grain yield
from C1 to C4 was 0.100 ton ha−1 yr−1. Integrated appli-
cation of RC-GS in a breeding pipeline provided a pow-
erful combination to fast-track the development of stress
resilient maize for stress-prone agroecologies by reduc-
ing the length of breeding cycles as well as saving on the
cost of phenotyping in each cycle. The present study was



DAS et al. 3 of 10The Plant Genome

Selected inbred lines (8-10) for constitution of multi-parent populations

First intermating using half-diallel mating design (P1 × P2, P1 × P3……...)

Second intermating using sib-mating (F1 × F1)

Harvested ~2000 F2s per population and made a balanced bulk to constitute Cycle 0 (C0)

Planted population bulk and self-pollinated to derive ~500 S2 families   

Test crossed (TC) S2 families to two opposite heterotic group testers
(Simultaneously genotyped S2 families using GBS platform)

TC evaluated under managed drought, waterlogging and optimal moisture
(Estimate marker effects using genotyping and phenotyping data)

Intermated the selected top 5% S2 families based on 
phenotyping data across moisture regimes to constitute Cycle 1 (C1)

Advanced for next two cycles (C2 and C3) based on genomic estimated 
breeding values (GEBVs), without phenotyping 

F IGURE 1 Steps in the breeding scheme used for the constitution of base populations and their advancement using rapid-cycle genomic
selection (RC-GS)

initiated in the rainy season of 2011. Ten selected tropi-
cal maize inbred lines from each of the two major CIM-
MYT heterotic groups (HG) were intermated twice within
HG to constitute two multi-parent yellow synthetic (MYS)
populations. The cycle 0 (C0) training set for the two
populations was constituted by bulking equal numbers of
seeds from each cob harvested after the second intermat-
ing. A total of 500 ear-to-row S2 families derived from C0
were genotyped with SNP markers using a genotyping-by-
sequencing (GBS) platform. Their test crosses were pheno-
typed across locations in the Asian tropics under managed
drought, managed waterlogging stress and optimal mois-
ture conditions. One cycle of phenotypic selection (C0–C1)
and two cycles of RC-GS (C1–C3)were carried out, and test-
cross progenies from each selection cycle were evaluated
across moisture regimes. The main objectives of this study
were: (1) to assess the realized genetic gains under differ-
ent moisture regimes after two cycles of rapid cycling of
multi-parent populations using GS, and (2) to investigate
the changes in genetic diversity of the populations sub-
jected to two cycles of RC-GS.

2 MATERIALS ANDMETHODS

2.1 Constitution of training
populations, cycle 0 (C0)

The RC-GS experiment was designed and implemented in
2011. The steps in the breeding scheme used for RC-GS are

shown in Figure 1. A total of 10 advanced stage tropical
maize inbred lines from each heterotic group (HG-A and
HG-B), including four each of drought and waterlogging
tolerant lines and two elite high yielding lines (Table 1)
were intermated twice. The drought trait donor lines were
derived from the 9th cycle of the CIMMYT drought tol-
erant yellow (DTY) populations, which were constituted
during the mid-1980s using 25 putative drought tolerant
sources, including Tuxpeno Sequia C8, Latente, Michoa-
can 21, Suwan-1, crosses of CIMMYT populations 22, 32,
62, 64 and 66, landraces, Corn Belt hybrids, and germplasm
from Thailand, Brazil and South Africa (Edmeades &
Deutsch, 1994). Waterlogging tolerant lines were derived
from a waterlogging synthetic variety developed during
2005–2006 at the CIMMYT-Asia Maize Program involv-
ing three lines from the population Suwan-1, five CIM-
MYT maize lines (CMLs) and three CIMMYT Asia (CA)
lines identified from line evaluation trials under managed
waterlogging (Zaidi, Rafique, Singh, & Srinivasan, 2002).
The first intermating was done using half-diallel mating
among selected inbred lines within each group. In the sec-
ond intermating, an equal number of seeds was pooled
from each harvested cob from a half-diallel nursery of two
populations to form a balanced bulk. Using seed from bal-
anced bulk, 50 rows 5.0 m long were planted separately
for each population. Intermating was done using bulk sib-
bingmethods by dividing each populationnursery into two
equal halves (of 25 rows each) and pollinating the first half
with bulk pollen collected from the second half and vice-
versa. After two rounds of intermating, cycle 0 (C0) of the
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TABLE 1 Inbred lines involved in the constitution of two
heterotic multi-parent, yellow synthetic (MYS) populations

Inbred lines
Heterotic
group Key traits

Multi-parent yellow synthetic population-1 (MYS-1)
CAL146 A Drought tolerant
VL108871 A Drought tolerant
VL108851 A Drought tolerant
ZL11884 A Drought tolerant
VL1010090 A Waterlogging tolerant
CAL14101 A Waterlogging tolerant
ZL11447 A Waterlogging tolerant
VL1018820 A Waterlogging tolerant
CIL12102 A High-yielding elite line
ZL11959 A High-yielding elite line
Multi-parent yellow synthetic population-2 (MYS-2)
CAL157 B Drought tolerant
VL062623 B Drought tolerant
VL109086 B Drought tolerant
CAL1733 B Drought and waterlogging

tolerant
VL109138 B Waterlogging tolerant
ZL182115 B Waterlogging tolerant
ZL182116 B Waterlogging tolerant
CAL1436 B Waterlogging tolerant
ZL182117 B High-yielding elite line
CIL12180 B High-yielding elite line

twomulti-parent yellow synthetic (MYS) populationswere
formed by bulking an equal number of seed from the har-
vested cobs, and designated as MYS-1 and MYS-2.

2.2 Formation of cycle 1 (C1)

Each population was planted in 50 rows measuring 5.0 m
and self-pollinated to derive S2 families. The S2 fami-
lies (about 510 from each population) were test-crossed
with opposite heterotic tester lines: CML 286 (HG-A)
and CML 451 (HG-B). The test crosses (TCs) were evalu-
ated across locations under managed drought and water-
logging stresses, and under optimal moisture conditions
using standard phenotyping protocols (Zaidi, Vinayan, &
Seetharam, 2016b; Zaman-Allah et al., 2016). Data on key
agronomic traits were recorded at each location, includ-
ing plant height (PH), ear height (EH), root lodging (RL),
stem lodging (SL), senescence (SN), anthesis date (AD),
silking date (SD), ears per plant (EPP) and grain yield
(GY) based on cob weight and moisture content (MOI)
at harvest in all the trials. Data on brace roots (BR) were

recorded only inwaterlogging trial locations. Using across-
location analysis within each type of environment, the top-
ranking entries under optimal moisture and drought and
waterlogging stresseswere identified. This was followed by
across-environment selection, where the top 5% of the pro-
genies across moisture regimes were identified (Table 2).
Their female parents (S2 families) were planted using rem-
nant seeds and intermated to constitute C1 for the two
populations.

2.3 Estimation of marker effects and
genomic estimated breeding values

For each parental line, DNA was extracted by bulking
equal amounts of leaf tissue from 20 individual plants. All
the parents of both the populations were genotyped using
1256 SNPs at LGC Genomics, London. A total of 342 and
312 polymorphic markers for MYS-1 and MYS-2, respec-
tively, were identified with maximum polymorphism
information and used for genotyping the S2 families to
estimate marker effects. Marker effects were estimated
based on genotypic and phenotypic data for S2 families
using the ridge regression best linear unbiased prediction
(RR-BLUP) method in R-software (Crossa et al., 2010;
Zhang et al., 2017). The Genomic Best Linear Unbiased
Prediction (G-BLUP) model in the BGLR package (Van-
Raden, 2008) was used to estimate GEBVs in C1 and C2 for
advancement to the next cycle without phenotyping.

2.4 Formation of cycle 2 and cycle 3
using rapid cycling GS

Twenty rows measuring 5.0 m each were planted using
bulk seeds of C1 of the two MYS populations, and each
plant in the twopopulationswas genotypedusing 300 poly-
morphic SNP markers. The GEBV of each plant was esti-
mated using GBLUP (genomic best linear unbiased predic-
tion) using the BGLR package (VanRaden, 2008). The top
5% of individuals with high GEBVs for grain yield under
drought and waterlogging stress in each population was
identified, tagged and intermated using the bulk-sibbing
method. At harvest, an equal number of seed from the cob
of each selected plant was bulked to constitute cycle 2 (C2).
In the next season, 20 rows of C2 bulk seeds for each pop-
ulation were planted separately and each plant was geno-
typed using 300 polymorphic SNP markers for MYS-1 and
MYS-2. GEBVs for each plant were estimated and the top
5% of progenies with high GEBVs for grain yield under
stress were selected and intermated using the same proce-
dure as above. After harvest, a balanced bulk was formed
to constitute cycle 3 (C3).
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TABLE 2 Across-location grain yield (t ha−1) of S2 family test crosses under optimal moisture (GY-Opt), managed drought (GY-DT) and
waterlogging stress (GY-WL), and performance of selected families relative to trial means in each environment

Mean GY of the trial
Mean GY of selected fractions (top 5% families)
and checks

Entries GY-DT GY-WL GY-Opt GY-DT GY-WL GY-Opt
t ha−1

MYS-1 3.11 2.65 6.37 4.11 3.33 7.11
MYS-2 3.09 2.71 6.18 3.69 3.26 6.73
Checks 3.29 2.43 7.52

Performance (% increase in GY) of selected fractions
Over trial mean Over check mean

%
MYS-1 32.2 25.7 11.6 24.92 37.04 −5.45
MYS-2 19.4 20.3 8.9 12.16 34.16 −10.51

TABLE 3 Phenotyping locations in different stress-prone ago-ecologies

Number Trial code Entries Reps Rows/Plot Locations GPS coordinates
Managed drought stress
1 MYS-TC-Loc1 25 3 2 Godhara 22.77◦ N, 73.61◦ E
2 MYS-TC-Loc2 25 3 2 Aurangabad 19.76◦ N, 75.28◦ E
3 MYS-TC-Loc3 25 3 2 Hyderabad 17.51◦ N, 78.27◦ E
Managed waterlogging stress
1 MYS-TC-Loc1 25 2 2 Begusarai 25.4◦ N, 86.12◦ E
2 MYS-TC-Loc2 25 2 2 Varanasi 25.26◦ N, 82.99◦ E
Optimal moisture
1 MYS-TC-Loc1 25 2 2 Daulatabad 17.71◦ N, 78.20◦ E
2 MYS-TC-Loc2 25 2 2 Ludhiana 30.54◦ N, 75.50◦ E
3 MYS-TC-Loc3 25 2 2 Hyderabad 17.51◦ N, 78.27◦ E

2.5 Assessing genetic gains with
selection cycles along with benchmark
check hybrids

Seeds of all selection cycles (C1, C2 and C3) were increased
and, in the next season, test-crossed with heterotic tester
lines. The test-crosses were evaluated along with five
check hybrids, including two internal checks (stress tol-
erant hybrids from CIMMYT-Asia) and three commercial
hybrids. Multi-location evaluation trials were conducted
across moisture regimes, including optimal moisture,
managed drought and waterlogging at carefully selected
locations (Table 3) where the desired level of stress was
applied at the targeted crop growth stage at the desired
level of intensity. All the field phenotyping trials were
constituted using an alpha (0,1) lattice design with two
replications using Field-book software (Vivek, Kasango,
Chisoro, & Magorokosho, 2007). Entries were planted in
two-row plots 4.0 m in length and spacing of 0.75 m by
0.2 m. Plots were over-sown and later thinned to achieve a

plant population of 66,666 plants ha−1. Optimal moisture
trials were planted in a well-drained field during the rainy
season and supported with supplemental irrigation during
the intermittent dry spell. The recommended package
of practices for maize was followed at each location to
keep the crop free from any nutrient deficiency/toxicity
and biotic pressure (disease, insects or weeds). Man-
aged drought stress trials were conducted during the
dry season, when drought stress was imposed at the
reproductive stage by managing the irrigation schedule
(Zaman-Allah et al., 2016). Managed waterlogging stress
trials were conducted during the rainy season, when
the stress treatment was applied by flooding the field at
knee high level (at the V5-V6 growth stage) and the water
level was maintained stagnant at a depth of 10 ± 0.5 cm
continuously for seven days by supplying water through
need-based supplemental irrigation at a rate that exceeded
infiltration and evaporation. After the stress treatment,
the field was completely drained and irrigation resumed as
per crop needs (Zaidi et al., 2016b). Data were recorded on
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primary and secondary traits in the trials conducted under
various moisture regimes using standard phenotyping
protocols (Zaidi et al., 2016b; Zaman-Allah et al., 2016).

2.6 Statistical analysis of field trial data

Phenotypic data were collected in all the trials and loca-
tions for agronomic traits, including PH, EH, RL, SL, SN,
AD, SD, EPP, GY and MOI at harvest, whereas BR was
recorded only in waterlogging trials. Phenotypic data for
each sitewere analyzed using the residualmaximum likeli-
hood (REML) procedure in Field-book (Vivek et al., 2007).
Grain yield was estimated by adjusting grainmoisture con-
tent to 12.5%. Best linear unbiased estimators (BLUEs)
were calculated for each entry within each site. Across-site
analysis was also done using Field-Book software, where
genotype was treated as random and site as a fixed effect.
Regression analysis of selection cyclemeans for grain yield
over selection cycles (C1, C2 and C3) was used to assess the
genetic gain responses with RC-GS.

2.7 Genetic diversity analysis

Based on genomic data, we computed two genetic diver-
sity indices between the families of the different selection
cycles as well as the parents (Zhang et al., 2017). Shannon’s
Diversity Index was calculated for each selection cycle as

1
AΣAa = 1P̂aIn

(P̂a)

where P̂a is the frequency of the major allele in the ath
marker over the entire sample, andA is the total number of
markers. The expected proportion of heterozygous loci per
individual was computed as themean of heterozygosity for
each marker as

0 ≤ 1
LΣLl = 1

(1 − Σnia = 1P̂2la
)
≤ 1

where P̂la is the frequency of the major allele in the ath
marker of the lth individual, and L is the number of indi-
viduals. A graphic representation of genetic diversity was
achieved by measuring the distance between genotypes
by the DMATCH distance in PROC DISTANCE capabil-
ity of SAS software. The distance matrix was dimension-
ally reduced using multidimensional scaling (PROC MDS
capability in SAS software) and the two first dimensions
were plotted (SAS/GRAPH capability) to compare cycle
genome composition (SAS Institute Inc., 2017).
The diversity between the three cycles of selection and

the parents (groups in Table 6) and within them was ana-

lyzed by molecular analysis of variance. We selected this
method instead of other available methods because it does
not assume Mendelian gene frequencies. Analyses were
performed inR package using the capabilities of the library
poppr (R Core Team, 2019). Variance components were
estimated using ade4, and 1000 permutations were done
in order to estimate significance values.

3 RESULTS

3.1 Heritability of GY and response of
selected and non-selected traits

Test-cross progenies from three selection cycles (C1, C2 and
C3) of two populations (MYS-1 andMYS-2) along with five
check hybrids including two of CIMMYT’s stress resilient
hybrids as internal genetic gain checks and three popular
commercial hybrids in rainfed ecologieswere used for eval-
uation across locations under different moisture regimes
(Table 3). The heritability of GY under managed drought
stress ranged from 0.58 at Godhara to 0.96 at Aurangabad
(Table 4). The heritability of GY was relatively low under
waterlogging, ranging from 0.53 at Begusarai to 0.84 at
Varanasi, but was relatively high under optimal moisture,
ranging from 0.63 at Ludhiana to 0.82 at Hyderabad. Data
from locations with poor heritability (< 0.40 for drought or
waterlogging and < 0.50 for optimal moisture trials) were
rejected and not used in further analyses.
There was no significant change in PH, AD, ASI or

EPP from C1 to C3. However, PH increased significantly in
both the populations in C3 under optimal moisture con-
ditions (Table 5). In general, there was significant geno-
typic variability among test entries for all the traits, except
AD and ASI under optimal moisture (Table 5). Days to
anthesis were maintained at 64.9 ± 0.67 and 66.2 ± 0.74
inMYS-1 andMYS-2, respectively, under optimal moisture
after two cycles of selection with good synchrony between
male and female flowering (< 3.0 days). A similar trend of
non-significant change in days to anthesis was maintained
under drought andwaterlogging stresses as well. However,
ASI fell significantly from C1 to C3 in MYS-1 under both
drought and waterlogging, and under drought in the case
of MYS-2. There was no significant change in EPP under
optimal moisture; however, it increased significantly in C3
in comparison to C1 in both populations under drought as
well as waterlogging stress.
Of the two stresses, the effect of waterlogging was rel-

atively much more severe compared to drought, which
was reflected in the lowest mean yield of the trial under
waterlogging. The advanced GS cycle showed significant
improvement in grain yield under both drought andwater-
logging stress in comparison to commercial checks as well



DAS et al. 7 of 10The Plant Genome

TABLE 4 Descriptive statistics of grain yield (t ha−1) of MYS test crosses evaluated across-location under managed drought,
waterlogging and optimal moisture

Drought Waterlogging Optimal moisture
GODa AUR HYD BGS VAR DLB LUD HYD

Mean 2.69 2.61 2.60 1.77 1.93 6.66 6.52 6.68
Min 1.96 2.02 2.63 0.51 0.47 5.16 4.21 4.42
Max 3.13 3.01 3.66 2.19 2.82 7.4 8.07 8.19
MSe 0.42 0.47 0.32 0.26 0.55 0.62 1.83 0.51
p-sig ** *** *** ** *** * ** **

H2 0.58 0.96 0.82 0.53 0.84 0.71 0.82 0.63
aGOD = Godhara, AUR = Aurangabad, HYD = Hyderabad, BGS = Begusarai, VAR = Varanasi, DLB = Daulatabad and LUD = Ludhiana; *, **, and *** indicate
statistical significance at .05, .01, and .001, respectively.

as internal genetic gain checks. In general, the perfor-
mance of GS cycle TCs was better than the performance
of both internal and commercial hybrid checks, under
drought as well as under waterlogging stress. Though
under optimal moisture, two check hybrids (internal
check-1 and commercial check-3) were significantly supe-
rior to all test entries, other check hybrids were on a par
with GS cycle test crosses. Rapid cycling recombination
of GS for combined drought and waterlogging tolerance
did not affect the performance of both the populations
under optimalmoisture, as therewas no significant change
in grain yield under optimal moisture with two cycles
of selection.

3.2 Realized genetic gains from
recombination of GS for grain yield

An assessment of relative grain yields of population test
crosses derived from different GS recombination cycles
showed varied responses under different moisture regimes
(Table 4). Under drought stress, MYS-1 showed an 8.4%
gain in grain yield per cycle, whereas MYS-2 had a 9.7%
gain per cycle. The gain was almost linear from C1 to C3;
however, both populations showed relatively more gain
between C2 to C3 (9.0 and 14.1%) in comparison to C1 to
C2 (7.2 and 4.4%), respectively. In the case of waterlog-
ging stress, the genetic gain per GS cycle was low with
MYS-1 (3.6%), whereasMYS-2 showed relatively high gains
(11.3%). MYS-1 responded relatively better from C1 to C2
with a gain of 10.95%, but from C2 to C3 there was a slight
yield loss (−3.4%). MYS-2 responded differently under
waterlogging with a relatively smaller gain (1.5%) from C1
to C2 and high gain (20.7%) from C2 to C3. Assessment
of mean grain yields of population TCs for different GS
cycles under optimalmoisture showed that in both popula-
tions, the gains fromC1 to C3 were nominal (0.55 and 0.74%
for MYS-1 and MYS-2, respectively). Rapid cycling recom-
bination of GS in C2 and C3 was based on simultaneous

selection for drought andwaterlogging tolerance; however,
yields in advanced cycles of both populations were main-
tained under optimalmoisture after two cycles of GS-based
recombination. While comparing the performance of GS
cycles test-crosses with commercial checks, the yield in C1
(constituted based on phenotypic selection) was on a par
or slightly better than that of the best check hybrid, and
was further improved with rapid cycling recombination of
GS, as the mean grain yield in advanced cycles was signif-
icantly higher than that of all the checks used in the trials
under managed drought or waterlogging stresses. Under
optimal moisture there was not much change with GS, as
the checks were superior to all the GS cycle test crosses of
both populations.
Regression analysis of mean grain yields over number of

selection cycles across locations in different cycles showed
that under drought stress, both populations responded
alike to rapid cycle recombination of GS and the per cycle
gain from C1 to C3 was largest under drought stress, i.e.,
219 kg cycle−1 and 268 kg cycle−1 in MYS-1 and MYS-2,
respectively (Figure 2). Under waterlogging stress, MYS-
1 did not show significant improvement, as per cycle gain
was only 75 kg cycle−1 due to yield loss between C2 and
C3. However, MYS-2 showed significant gain with RC-GS
at 225 kg gain cycle−1. Under optimal moisture, both popu-
lations showed no significant gain or loss due to combined
GS for the two stresses.

3.3 Heterozygosity and genetic diversity
of the rapid cycle recombination of GS

The genetic diversity structure of 10 parents involved
in the constitution of each population along with three
selection cycles are presented in Figures 3a–c and Figure
4a–c. The member of each cycle was well-spread along
the two dimensions. The spread of parents along the two
dimensions shows that parents involved in MYS-2 were
relatively more diverse than those involved in MYS-1.
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F IGURE 2 Regression of mean grain yield of selection cycles over number of selection cycles (C1, C2 and C3) (indicating genetic gains
under (a) drought stress, (b) waterlogging stress and (c) optimal moisture conditions with genomic selection in two multiparent populations
(MYS-1 and MYS-2). Open dots indicate the performance of check hybrids evaluated along with selection cycles under different moisture
regimes

The dispersal along the two axes clearly shows that new
progenies were largely new recombinants compared to
the parents (Figure 3a). A few C1 families are located
between dimensions 1 and 2, close to the original parents
located in this region in Figure 3a. The 10 parents of MYS-1
along with the C2 families are shown in Figure 3b. The C2

families and the parents are located between dimensions
1 and 2, clearly heading in the direction of two different
axes, showing comparatively less similarity than the C1
progenies. Figure 3c, which includes the 10 parents of
MYS-1 and the C3 families, shows that C3 families and the
parents are concentrated around their own dimension,
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F IGURE 3 Changes in population structurewith selections inMYS-1 (Pa= parents, C1, C2 andC3= cycle-1, 2 and 3, respectively). Pairwise
Phi statistics: Pa-C1: 0, Pa-C2: 0, Pa-C3: 0.019, C1-C2: 0.009, C1-C3: 0.034, and C2-C3: 0.019

revealing that C3 is more diverse than C1 and C2. However,
a comparison of different populations (C1–C3) may be
confounded by variation in population size and level of
inbreeding in the different selection cycles (Figure 3d–f).
Figure 3d and 3f represent the immediate cycles of C1, C2,
and of C2, C3, respectively. Immediate cycles are intermin-
gled in the two dimensions showing there is relatively low
diversity in the immediate cycles, whereas in Figure 3e, C1
and C3 are separated in well-defined dimensions, showing
that they are more diverse compared to immediate cycles.
A similar analysis of the MYS-2 population is presented in
Figure 4a–f. The spread of parents along the two dimen-
sions, especially dimension 1, shows that parents involved
in MYS-2 were relatively more diverse than those in MYS-
1. The dispersal of progenies along two axes clearly shows
that progenies are new recombinants largely diverse from
the parents. Rapid cycle recombinants of GS added further
diversity in C2 as well as in C3 (Figure 4b,c). A comparison
of the progenies dispersal along two axes in three cycles
shows similar trends as in MYS-1, where immediate cycles
(Figure 4d,f) were relatively less diverse, while diversity
was relative more visible between C1 and C3 (Figure 4e).
Shannon’s Diversity Index and expected and observed

heterozygosity of the 10 founders of MYS-1, MYS-2, C1, C2
and C3 are presented in Figure 5. There was a significant
increase in diversity values in C1 constituents in compar-
ison to the parents, which indicates the formation of new

recombinants with two rounds of intermating. Trends in
Shannon’s Diversity Index and heterozygosity show that
diversity did not decline in the next advanced cycles (C2)
with rapid cycling recombination of GS. However, there
was a nominal decrease in diversity in C3. Diversity anal-
ysis using Shannon’s Diversity Index indicated that diver-
sity was maintained even after two cycles of GS (Figure 5).
Shannon’s Diversity Index of C3 for both populations was
more than 0.26, above the threshold value of 0.20 which
is considered good diversity. The results clearly show that
despite the significant genetic gains with genomic selec-
tion, the genetic diversity of the advanced population was
maintained.
The molecular analysis of variance confirmed the dif-

ferentiation between cycles and parental populations
(Table 6). Even though the differentiation between pop-
ulations explains only 1.78% (p-value = .001) and 2.14%
(p-value = .001) for MYS1 and MYS2, respectively, there is
a significant effect.

4 DISCUSSION

The expected gain from GS per unit time is defined as
ΔG = irσA/y, where i is the selection intensity, r is the
selection accuracy, σA is the square root of the additive
genetic variance, and y is the time needed to complete one
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F IGURE 4 Changes in population structure with selections in MYS-2. (Pa = parents, C1, C2 and C3 = cycle-1, 2 and 3, respectively).
Pairwise Phi statistics: Pa-C1: 0, Pa-C2: 0.003, Pa-C3: 0.034, C1-C2: 0.011, C1-C3: 0.043, and C2-C3: 0.017
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F IGURE 5 Expected and observed heterozygosity and Shan-
non’sDiversity Index in parents, C1, C2 andC3 of the twomulti-parent
yellow synthetics (MYS) populations

selection cycle (Falconer &Mackay, 1996). Assuming equal
selection intensities and genetic variance for both GS and
phenotypic selection, greater gain per unit time is expected
by reducing the duration of the selection cycle using GS.
In this study, gains were not consistent between cycles

and under different selection environments. Under
drought stress (Figure 2a), MYS-1 showed linear gains
from C1 to C3, but in the case of MYS-2, the gain was
relatively higher between C2 and C3 (14.4%) than between
C1 and C2 (4.4%). The regression analysis showed that the
gain per cycle was higher in MYS-2 (268 kg ha−1 cycle−1)
compared toMYS-1 (219 kg ha−1 cycle−1). The reason there
were relatively more gains between C2 and C3 in both the
populations may be because C2 was constituted based on
one round of selection of recombinants in C1, and selection
of new recombinants in C2 for constituting C3 might have
increased desirable allele frequency for drought tolerance.
In the case of waterlogging stress (Figure 2b), the trends
in gains in two populations were relatively less consistent.
MYS-1 showed gain from C1 to C2 (10.95%) but there
was nominal loss between C2 and C3 (-3.4%), whereas in
MYS-2 there was nominal gain (1.5%) between C1 and C2
but C2 to C3 showed significant gain (20.7%). The trend
was eventually reflected in the final gain across cycles,
as MYS-2 showed 225 kg ha−1 cycle−1, whereas MYS-1
had only 75 kg ha−1 cycle−1. These findings suggest that
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TABLE 6 Analysis of molecular variance (AMOVA) among three cycles of selection and parents (groups) in two multiparent yellow
synthetic (MYS) populations

MYS-1
Degree of
Freedom

Sum
Square

Mean
Square Sigma % Phi

Alternative
hypothesis P-value

Between groupsa 3 1668 555.9 0.84 1.78 0.0178 greater 0.00100
Between samples
within groups

1390 60261 43.35 0 0 0 greater 1.0000

Within samples 1394 64551 46.31 46.3 98.2 0.0178 less 0.9980
Total 2787 126480 45.38 47.1

MYS-2
Degree of
Freedom

Sum
Square

Mean
Square Sigma % Phi

Alternative
hypothesis P-value

Between groupsa 3 2067 689.1 1.01 2.14 0.0214 greater 0.0010
Between samples
within groups

1436 62723 43.68 0 0 0 greater 1.0000

Within samples 1440 66800 46.39 46.4 97.9 0.0214 less 0.9790
Total 2879 131590 45.71 47.4

agroups represent three selection cycles (C1, C2, and C3) and parents.

response to GS may not be similar in all populations and
may vary with the strength of the trait donors involved
in constituting the base germplasm, as GS was based on
selection of relatively superior individuals within popula-
tions when constituting advanced cycles. Schopp, Müller,
Technow, and Melchinger (2017) carried out a simulation
study by generating synthetic populations with 2 and
32 parents and found that sampling a few parents (2-8)
generates substantial sample linkage disequilibrium (LD)
that carried over into synthetics through co-segregation of
alleles at linked loci, contributing towards higher predic-
tion accuracy. When a larger number of parents are used
in developing synthetics, it is the ancestral LD (between
QTL and markers in the ancestral population of founders)
between the parents that contribute to prediction accuracy,
and hence may be much lower if the parental lines are
highly unrelated. Inconsistency in genetic gains was also
observed by Zhang et al. (2017) under optimal moisture
conditions where a multi-parent population was subjected
to RC-GS. Relatively greater gains under drought stress
can be explained by the fact that CIMMYT’s drought
program is comparatively much stronger, and the donor
lines involved in the constitution of the base population
were derived from nine cycles of recurrent selection for
drought tolerance (Edmeades & Deutsch, 1994).
Comparison of advanced cycle (C3) test-cross perfor-

mance with the best check hybrid (CAH-153, one of the
most stress resilient hybrids from the CIMMYT-Asia pro-
gram) showed that gains were relatively higher under
waterlogging stress (25.3 and 37.3%) compared to drought
stress (18.2 and 29.2%) in MYS-1 and MYS-2, respectively.
It was also observed that even the performance in C1 of
both populations under drought as well as waterlogging
was on a par or better than that of the best check entry

(Figure 2a,b). This suggests that careful constitution of the
base population involving promising trait donors and phe-
notypic selection based on superior test-cross progenies to
constitute C1 helped to bring together desirable alleles for
drought and waterlogging tolerance, and two cycles of GS
followed by intermating further helped in the accumula-
tion of desirable recombinants and increased the genetic
gains across moisture regimes. The performance of differ-
ent GS cycles under optimal moisture conditions (no tar-
geted GS selection environment) indicated that there were
nominal positive gains, 32 kg ha−1 cycle−1 in MYS-1 and
46 kg ha−1 cycle−1 in MYS-2. This may be explained by
the fact that apart from the stress tolerant trait donors,
elite high yielding lines were also involved in constitut-
ing the base populations, and the constitution of the first
cycle (C1) was based on selecting superior test-cross proge-
nies acrossmoisture regimes, including drought, waterlog-
ging and optimalmoisture. These findings suggest that abi-
otic stress tolerancemay not necessarily be associated with
yield penalties under optimal conditions, provided per-
formance under optimal conditions is taken into account
while constituting the base population and doing phe-
notypic selection for constituting C1. Using a trait-based
selection approach, Zaidi et al. (2008) identified maize
inbred lines tolerant to both drought and waterlogging
stresses and suggested that constitutive changeswith selec-
tion and improvement for stress tolerance may result in
improved performance of genotypes under both drought
and excess moisture stresses, without any yield penalty
under optimal moisture. A similar finding was reported in
earlier studies on abiotic stress tolerance breeding using a
conventional breeding approach (Bänziger et al., 2006).
In this study, we implemented two cycles per year,

and it took eight crop seasons (4 years) from the first
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intermating of selected lines to constitute the base popu-
lations and harvest C3 seeds. Computing the yield gains
(t ha−1 yr−1) with GS from C1 to C3 showed that MYS-1
gained 0.110, 0.038 and 0.015 t, while MYS-2 gained
0.135, 0.113 and 0.025 t under drought, waterlogging and
optimal moisture conditions, respectively. Beyene et al.
(2015) reported a gain of 70 kg ha−1 yr−1 with RC-GS for
drought stress tolerance in biparental populations. Our
study showed higher gains under drought stress which
may be due to difference in base population structure, as
we used multi-parent populations, whereas Beyene et al.
(2015) implemented RC-GS using biparental populations.
These findings suggest that a multi-parent population
may be a better choice for GS-based breeding for polygenic
traits such as drought and waterlogging tolerance, where
more than one mechanism may confer stress tolerance
in different situations, and especially for combining such
traits. Zhang et al. (2017) reported a gain of 100 kg ha−1
yr−1 with RC-GS for grain yield under optimal mois-
ture using multi-parent populations, which may not be
comparable to the gains in our study, as we targeted GS
for drought and waterlogging stress tolerance, while the
main trait for GS was grain yield under optimal moisture
in their study. However, there were slight yield gains
under optimal moisture as well as significant gains for
traits targeted for GS, that is, grain yield under drought
and waterlogging stress. In this study, genetic gains per
year for polygenic traits such as tolerance to drought and
waterlogging stresses without any penalty under optimal
moisture, clearly demonstrate the strength of GS-assisted
recombination. In terms of time efficiency, two cycles per
year were completed in GS-based selection, which is more
efficient than conventional recurrent selection and cycle
advancement where at least three seasons (1.5 years under
our conditions) are needed per selection cycle, including
deriving progenies, making test crosses, phenotyping test
crosses, and conducting selection and recombination.
Based on simulation studies, Jannink, Lorenz, and Iwata

(2010) cautioned about the possible decline in genetic vari-
ance due to RC-GS. Genomic selection can also result
in significantly less genetic variance over time largely
because it reduces breeding cycle duration. In short-term
selection programs, rapid loss of genetic variance may not
be an issue, while long-term GS programs experiencing
swifter losses of genetic variance could reduce the rate
of genetic gain and eventually affect the efficiency of the
breeding program. Genetic gains in GS for stem rust in
wheat were reported by Rutkoski et al. (2015), who also
found significant increases in inbreeding after one and two
cycles of GS compared to C0, greater than the expected
value under random genetic drift for all populations. In
our study, genetic diversity measured in terms of Shan-
non’s Diversity Index and heterozygosity showed a signif-

icant increase in C1 compared to the parents, which may
be explained by the formation of new recombinants with
two rounds of intermating. With further advancement of
the populations, there was only a nominal decline in their
genetic diversity after two cycles of GS (Figure 5), which is
in agreement with findings by Zhang et al. (2017), i.e., that
there was no significant change in genetic diversity in the
initial two cycles of GS, and a decrease only during the last
GS cycles (C3 and C4).

5 CONCLUSIONS

Findings of this study are the first of its kind that have
reported RC-GS for simultaneous improvement of drought
and waterlogging tolerance using multi-parent synthetic
populations. Realized genetic gains after two cycles of
rapid cycle recombination of GSwere 0.110 and 0.135 t ha−1
yr−1 under drought, and 0.038 and 0.113 t ha−1 yr−1 under
waterlogging in MYS-1 and MYS-2 populations, respec-
tively. Gains were relatively higher for drought stress than
for waterlogging tolerance, and of the two populations,
MYS-2 responded comparatively better to RC-GS for both
stresses. The differential response of the two populations
to RC-GS suggested that the strength of lines/trait donors
involved in constituting the base population plays a key
role in the genetic gain with GS. Therefore, it would be
more efficient to evaluate the population per se at the ini-
tial stage and move forward with selected potential popu-
lation(s) for rapid cycling using GS to save on genotyping
costs. Simultaneous GS for improved tolerance to two key
abiotic stresses did not show any yield penalty under opti-
mal moisture. The genetic diversity analysis of the parents
and three cycles indicated that it increased from parents
to the first constitution of the first cycle (C1) and narrowed
downonly slightlywith the next two cycles of rapid cycling.
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