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Abstract: Over the last decade, gene set analysis has become the first choice for gaining insights into
underlying complex biology of diseases through gene expression and gene association studies. It also
reduces the complexity of statistical analysis and enhances the explanatory power of the obtained
results. Although gene set analysis approaches are extensively used in gene expression and genome
wide association data analysis, the statistical structure and steps common to these approaches have
not yet been comprehensively discussed, which limits their utility. In this article, we provide a
comprehensive overview, statistical structure and steps of gene set analysis approaches used for
microarrays, RNA-sequencing and genome wide association data analysis. Further, we also classify the
gene set analysis approaches and tools by the type of genomic study, null hypothesis, sampling model
and nature of the test statistic, etc. Rather than reviewing the gene set analysis approaches individually,
we provide the generation-wise evolution of such approaches for microarrays, RNA-sequencing
and genome wide association studies and discuss their relative merits and limitations. Here, we
identify the key biological and statistical challenges in current gene set analysis, which will be
addressed by statisticians and biologists collectively in order to develop the next generation of gene
set analysis approaches. Further, this study will serve as a catalog and provide guidelines to genome
researchers and experimental biologists for choosing the proper gene set analysis approach based on
several factors.

Keywords: gene set analysis; microarrays; RNA-sequencing; genome wide association study;
competitive; self-contained; sampling model; null hypothesis

1. Background

The advancement in genome sequencing technologies has led to the generation of tremendous
volume of high-throughput and high-dimensional biological data [1]. Further, exploiting these data
and drawing valid biological insights has posed a great challenge to researchers across the globe.
For instance, in a gene expression (GE) study, the expression levels of several thousand(s) of genes
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are measured in a single experiment and further used for identifying the groups of genes which
are relevant to the condition/trait under study [2–4]. Earlier, biologists considered this differential
expression (DE) study as the end of their analysis [5]. However, such analysis is the starting point
of a complex process of drawing valid biological insights into high-throughput genomic data [6].
Further, the DE analysis produces a list of associated genes ranked by the ascending or descending
order of the magnitude of computed test statistic(s)/p-values (e.g., Z-score, fold change, t-test, etc.) [3–5].
This is a crucial step undertaken by the experimental biologists and genome researchers to select the
informative genes as well as to obtain a global view of expression changes. Further, to put the long list
of gene-level results into a broader biological context and to further reduce the complexity of analysis,
secondary analytical approaches have been developed by grouping the long list of genes into smaller
sets of related genes. One such approach is gene set analysis (GSA), and one of its popular forms is
called as pathway analysis [7].

In the last decade, GSA has completely shifted the focus in GE and association data analysis
from individual gene to gene set level [7–11]. Further, GSA has been extensively used in complex
disease biology due to the polygenic nature of these disorders. GSA involves testing for association
of sets of functionally related variants/genes, and can provide biological context for multiple genetic
risk factors [12]. Recently, GSA was able to provide biological insights into mechanisms and possible
treatment targets for complex diseases, including schizophrenia [13], bipolar disorder [14], Crohn’s
disease [15], rheumatoid arthritis [16], breast cancer [17], and obesity [18]. Moreover, GSA has also
been applied in plant biology to understand the abiotic stress response mechanisms in Arabidopsis
thaliana, Oryza sativa, Zea mays, and Gossypium raimondii [9,10]. The GSA applications have led to
novel biological hypotheses about the diseases/stress responses, and have suggested new avenues for
molecular drug designing/crop breeding intervention [6,7,10,19–22].

Numerous statistical approaches and tools for GSA are now available for analysis of
high-throughput genomic datasets. This includes GE data from microarrays and RNA-sequencing
(RNA-seq) studies and single nucleotide polymorphism (SNP) data from genome wide association
studies (GWAS). However, many researchers have tried to review the available GSA approaches in
different times, but these are limited to only specific genomic studies. There is no comprehensive review
of GSA approaches and tools meant for these broad spectra of datasets. Further, without sufficient
understanding of the underlying statistical principles of GSA approaches, we may risk drawing
erroneous biological interpretations and statistical conclusions. Moreover, there are minimal studies on
grouping the available GSA approaches. Therefore, in this article, we aim to provide a comprehensive
overview, statistical structure and steps concerning GSA approaches used for high-throughput genomic
data analysis. Further, we classify the GSA approaches and tools based on the type of genomic
study, null hypothesis, sampling model, nature of test statistic(s), etc. We also provide an overview
of the evolution of GSA approaches in terms of different generations rather than reviewing them
individually, along with their relative merits and demerits. Here, we address the key biological and
statistical challenges in current GSA, which need to be addressed to develop the next generation of
GSA approaches and tools.

2. Structure of Gene Set Analysis

The term GSA refers to an analysis of set of genes and does not specifically mean modelling of the
relations among genes in the gene set. Formally, GSA is defined as a secondary statistical approach
used to test the involvement/enrichment of the gene sets with any biological process or pre-existing
bio-knowledge base or quantitative trait. In other words, genes are aggregated to gene sets based
on shared biological or functional properties or any pre-existing bio-knowledge base or quantitative
trait [6]. These bio-knowledge bases include databases of molecular knowledge, i.e., molecular
interactions, regulation, molecular product(s), and even phenotype associations or quantitative traits.
A list of available bio-knowledge bases is given in Supplementary Table S1. In other words, GE and
SNP datasets are used as input for GSA (in the presence of a annotation database) to provide valid
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biological insights into various complex diseases (Figure 1 and Figure S1) [7,23]. In fact, GSA has the
potential to be used for all genomic data analysis, where the output is a long list of genes or transcripts.
For instance, that long list of genes can even come from any upstream analysis including signatures of
co-expressed genes from weighted gene co-expression network analysis [4].
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2.1. Units of Gene Set Analysis

The functional unit of GSA is the gene set, which can be defined as any group of genes that share a
particular property, i.e., involvement in a common biological process or any pre-existing bio-knowledge
base [7,12]. Through GSA, a gene set that shares a common property is tested for its association
with the trait or phenotype under study [24]. For this purpose, a wide range of GSA approaches
and tools are available for high-throughput sequencing studies. These tools have differences in
underlying statistical principles and practices, but there are similarities among the available tools
in terms of statistical structure. For instance, GSA for GE studies has a two-tier structure [12,25]:
(a) computation of gene level statistic(s); and (b) bi-variate statistical testing to compute the test statistic
or p-value for the gene set. However, GSA for GWAS has a three-tier structure: (a) computation of SNP
level statistics; (b) associating SNPs to genes and computing gene-level statistics from SNP statistics;
and (c) computation of enrichment statistic or p-value or False Discovery Rate (FDR) for the gene set.

2.2. Hypotheses in Gene Set Analysis

The available statistical approaches for GSA greatly vary with respect to underlying statistical
tests and hence depend on the formulation of the null hypothesis [6,11,23]. These null hypotheses can
be grouped as self-contained and competitive [26]. In the usual set up of GE studies (or GWAS), genes
(or SNPs) that are significantly associated with a trait/phenotype are identified and then evaluated,
whether the significantly associated genes (or SNPs) tend to cluster in predefined gene sets or not.
For instance, the self-contained null hypothesis can be framed as, H0: genes/SNPs in predefined
gene sets are not associated with the underlying trait (phenotype) against alternate H1: genes/SNPs
in predefined gene sets are associated with the trait (phenotype). The statistical approaches with a
self-contained null hypothesis are called as self-contained approaches of GSA and they only consider
the genes (SNPs) in the predefined gene sets. Statistical tests of GSA with a competitive null hypothesis
are known as competitive GSA approaches, and the underlying null hypothesis can be expressed
as, H0: genes/SNPs in predefined gene sets are associated with the underlying trait (phenotype) as
much as are genes/SNPs outside the predefined gene set, against H1: genes/SNPs in predefined gene
sets are more associated with the trait (phenotype) than genes outside predefined gene set. Here,
the competitive GSA approaches consider genes (SNPs) from both the predefined gene set and the
outside gene set [6,10]. The self-contained null hypothesis is invariably more restrictive than the
competitive null hypothesis.
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2.3. Sampling Models in Gene Set Analysis

The enrichment significance of a gene set is assessed through p-value or adjusted p-value or FDR
after multiple testing correction (i.e., lower values indicate more enrichment and vice-versa) computed
from a statistical test. Further, these statistical tests are commonly based on experimental designs
having subjects/genes as units. On such statistical designs, different sampling procedures are rigorously
used to obtain the distribution of the test statistic(s). Here, two types of sampling models are used in
GSA: (i) subject sampling model; and (ii) gene sampling model.

2.3.1. Subject Sampling Model

Classical statistical tests are based on an experimental design having microarray/RNA-seq samples
as subjects, where each subject has the same set of (GE) measurements [6,10,24]. In the usual supervised
setting, the sampling model consists of M independent realizations (for M subjects) of (X1, y1), (X2, y2),
. . . , (Xs, ys), . . . , (XM, yM), where, Xs represents the N-dimensional vector (N: total number of genes)
of the GE levels for s-th subject and ys is the corresponding class label (e.g., case: +1 vs. control: −1),
s = 1, 2, . . . , M. Therefore, M expression levels of different subjects are assumed to be independently
and identically distributed (iid), but expression levels of genes within the same subject may be
correlated for a given condition. Usually, resampling procedures like bootstrap and permutation
procedures are used on such models for gene [4,27] as well as gene set testing [6,28]. The statistical
combination of subject sampling model and a self-contained null hypothesis provides a reliable
platform for valid computation of p-values with easy interpretation and close relation(s) with single
gene (or SNP) testing [29].

2.3.2. Gene Sampling Model

In GSA, 2 × 2 tables are extensively used to statistically fit a Hypergeometric distribution [6,30].
The underlying model of a 2 × 2 table is a gene sampling model. Further, each cell of such a table
is filled with a sample of genes, each of which is drawn at random from the gene space (i.e., set of
genes in the data). Here, in this sampling model, each sampling unit (i.e., gene) can be subjected to
two fixed set of indicator measurements, i.e., (A, B), where, (i) A (1 or 0) indicates whether the gene
is a part of the predefined gene set or not and (ii) B (1 or 0) indicates whether that gene is in the
list of differentially expressed genes or not [6,10]. Further, the gene space can be formalized into a
population having N units (for N genes) and shown as: (A1, B1), (A2, B2), . . . , (Ai, Bi), . . . , (AN, BN).
The competitive null hypothesis is popular and easy to formulate in a gene-sampling model setup [23].
Here, the gene sampling model may be considered as a mirror image of classical subject sampling
model [27]. The gene sampling model considers the sampling units as iid, which assumes that genes
are independent. Such assumptions are highly unrealistic, and the p-values computed using such
models are statistically invalid for further interpretations. Hence, gene sampling models are quite
complex and delicate as compared to a subject sampling model and need the utmost care while using.

3. GSA Approaches for High-Throughput Genomic Studies

The GSA approaches can be grouped based on different high-throughput genomic studies,
as the underlying nature and distributions of the datasets are different (Supplementary Table S2).
A classification of GSA approaches with respect to their application to genomic studies is shown
in Figure 1. Initially, the GSA approaches were developed for microarrays (i.e., microarrays
GSA) and subsequently extended to RNA-seq and GWAS data analysis (Figure 1). For instance,
gene set enrichment analysis (GSEA) was originally developed for microarrays, and subsequent
extensions of GSEA, i.e., SeqGSEA and GSEA-SNP were introduced to analyze RNA-seq and SNP
datasets respectively.
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3.1. Microarrays GSA

Huge amounts of GE data from microarrays are available in public domain databases
(Supplementary Table S3), which need to be analyzed for drawing valid biological insights into
such datasets. Therefore, several GSA methodologies have been developed for this purpose.
The classification of GSA microarrays is shown in Figure 2, which illustrates the evolution of GSA
approaches over time in terms of the requirement of annotation information, sampling model, various
null hypotheses under statistical tests. Moreover, the work on GSA started with the immediate
need for functional analysis of microarray data based on gene ontology (GO) that gave rise to over
representation analysis (ORA), which evaluates the statistical significance of gene sets in a particular
pathway/functional category [21]. It is also referred to as a 2 × 2 table method [6], due to the fact that
ORA approaches are mostly based on 2× 2 tables and gene sampling models. The most commonly used
statistical tests in ORA approaches/tools are hypergeometric, chi-square or binomial tests [20,31,32]
(Supplementary Document S1). However, despite the extreme popularity and ease of execution,
the ORA approaches also suffer from limitations, as listed in Table 1. The ORA form of analysis of gene
sets can also be labelled as first generation of microarrays GSA.
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Figure 2. Classification of gene set analysis approaches and tools available for microarrays. Schematic
representation of the breakup of GSA methods available for microarrays data analysis based on
statistical tests (i.e., null hypothesis, test statistic(s)) and requirement of annotation databases. G: Gene
set; * Tools require normalization of data prior to application.

In most of the cases, the gene annotation information is either incomplete or totally unavailable;
therefore, another class of GSA approach was developed. These approaches include the Enrichment
Score (ES) form of GSA [33], starting with the landmark work on enrichment analysis of gene sets
(i.e., GSEA) [8,24]. Subsequently, several other statistical approaches, algorithms and tools were
developed for assessing the significance of gene sets in interpreting the high-throughput microarray
data. The ES based GSA approaches greatly vary among themselves with respect to underlying
statistical tests and sampling models. However, there are also commonalities among these ES based
approaches in terms of execution, which is given in Supplementary Figures S1 and S2. The major
steps for such approaches include initial computation of the gene-level statistic(s) using GE data under
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two contrasting conditions (Figures S1 and S2). For instance, correlation of expression measurements
with phenotypes/traits [34], ANOVA [35], Q-statistic [26], signal-to-noise ratio [24], t-statistic [3], fold
change [36], Z-score [37], etc., are implemented in contemporary ES based tools. There is a wider
choice for gene-level statistic(s), ranging from parametric to non-parametric, for GSA. However,
the selection of a gene-level statistic has a negligible effect on identification of significantly enriched
gene sets [30]. When there are few biological replicates available, a regularized statistic may be
preferred [30]. The second step is aggregation of gene-level statistic(s) for all genes in a gene set into a
single gene-set level statistic (Figure 3). This includes the computation of gene-set level statistic using
multivariate or univariate techniques (Figure 2). The former accounts for interdependencies among
genes, while the latter disregards the same among genes distributed across the gene set. The currently
available ES based GSA approaches/tools include Kolmogorov-Smirnov (KS) statistic, weighted KS
statistic [24,33], sum, mean, or median of gene-level statistic [38], Wilcoxon rank sum [39], Max-mean
statistic [8], etc. under univariate category. Moreover, multivariate category includes global test,
ANCOVA, etc. for computing gene-set level statistic [26]. Interestingly, multivariate statistic(s) are
expected to have higher statistical power, but univariate statistic(s) actually show more power at a
higher level of significance (e.g., 0.1%) in real biological data, and equal power as the former at lower
level of significance (e.g., 5%) [40].
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Table 1. Generation-wise evolution of GSA approaches for microarray studies.

Approach Methodology Advantages Limitations Tools/Algorithms

Over Representation
Analysis
(First generation
microarrays GSA)

Hypergeometric
distribution/Fisher’s test
Binomial distribution,
Chi-square distribution, etc.

• Easiness in execution.
• Assigns easily interpretable

measure like p-values to the
whole gene set.

• Highly dependent on threshold/cutoff value,
which is at user’s discretion and hard
to determine.

• Test statistic independent of genes differential
expression score.

• Uses only most significant genes based on
hard threshold and discards others, lead to
information loss.

• Assumes each gene contribute equally to
phenotype/trait.

• Assumes each gene as independent and
ignores the correlation or redundancy among
genes in gene set.

• Assumes that each predefined gene set is
independent of others, which is erroneous.

DAVID [41], AgriGO [32], Onto-Express [21],
GenMAPP [42], GoMiner [43], FatiGO [44],
GOstat [20], FuncAssociate [19], GOToolBox [45],
GeneMerge [46], GOEAST [47], ClueGO [48],
FunSpec [49], GARBAN [50], GO:TermFinder [22],
WebGestalt [51], GOFFA [52], WEGO [53],
GOTM [54], EASE, GSAQ [10], Pathview [55],
Wholepathwayscope [56], ShinnyGO

Enrichment Statistic
Analysis
(Second generation
microarrays GSA)

Wilcoxon signed rank test, Sum,
Mean, or Median of gene-level
statistic(s), Wilcoxon signed
rank sum, Max-Mean Statistic

• Do not require a threshold/ cutoff
value for dividing gene space into
selected and non-selected part.

• Considers dependence among
genes in gene set.

• Test statistic is based on the
differential GE score of genes in
gene set.

• Analyzes each gene set independently.
• Considers only the number of genes in a gene

set (pathway) for performing GSA but
ignores the additional information available
from the bio-knowledge bases.

• Assumes the predefined gene sets mutually
exclusive, but in biology, these gene sets
are overlapping.

• Most ESA methods use differential GE to
rank genes/compute test statistic but discard
this information from further analysis.

GSEA [24], SAFE [39], GSA [8], Random set [57],
sigPathway, Category, GlobalTest [26], PCOT2 [58],
SAM-GS [59], LIMMA [60], Catmap [61],
T-profiler [62], FunCluster [63], GeneTrail [64],
Gazer [65], GSAQ [10], ANCOVA test,
CAMERA [66], PAGE [37], GAGE [67], SGSE [68],
GSNCA [69], GSA-SDR [70], GenePattern [71],
plantGSEA [9], GSAR [29]

Topology Analysis
(Third generation
microarrays GSA)

Graph/network theory • Considers both genes relation
/dependency with other genes as
well as experimental
condition changes.

• Considers the topology of the
pathways/gene sets in modeling.

• Dependent on the type of
• cell due to cell-specific GE profiles and

condition being studied, which is
rarely available.

• Not so popular as require more rarely
available information and
computationally intensive.

• Unable to consider interactions between gene
sets (pathways).

• Heavily dependent on annotations.

PathwayExpress [72], ScorePAGE [73], SPIA [74],
NetGSA [75], TopoGSA [76], CliPPER [77]
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The third step is computation of statistical significance (p-value) or adjusted p-value or FDR
to assess the enrichment of gene sets (for gene-set level statistic) (Figure S1). This step requires
the formulation, as well as testing of the null hypothesis against alternate one. Based on the null
hypothesis, the ES-based GSA approaches can be broadly divided into: (i) competitive approaches
and (ii) self-contained approaches (Figure 2). Moreover, the competitive approaches can be further
subdivided into two categories based on the available outcome information of class: (i) supervised
approaches and (ii) unsupervised approaches (Figure 2). Mostly, the supervised competitive approaches
use the subject sampling model to randomly sample the class labels of each sample and compare
the genes in the gene set with those of its complement. Here, it may be noted that the supervised
term is used as the class labels are known and these approaches use these class labels for sampling
purposes. However, unsupervised competitive approaches used the gene sampling model to compute
the p-value through comparing genes in gene set with the genes outside gene set. But self-contained
ES-based GSA approaches use the permutation procedure to compute the p-values by permuting the
class labels for each sample and comparing the genes in the gene set with itself, while ignoring the
genes outside gene set. Here, it is evident that competitive ES-based GSA approaches have more
statistical power as compared to self-contained approaches [8]. This may be due to the fact that
competitive approaches require information on both genes in the gene set as well as genes not in the
gene set [6]. Furthermore, the ES form of analysis of gene sets may constitute the second generation
of microarrays GSA (Table 1). The background methodologies for the various generations of GSA is
given in Supplementary Document S1.

3.2. RNA-seq GSA

Recently, transcriptome deep sequencing i.e., RNA-Seq has surpassed microarrays by providing
better quantification of GE for very high and low expressed genes (in terms of read counts), and higher
levels of accuracy and reproducibility [11,78,79]. Hence, it is highly pertinent to adapt the existing
microarrays GSA to RNA-seq data with the help of data transformation along with new approaches
being developed (Figure 1B). The first approach of GSA for RNA-seq data (i.e., RNA-seq GSA),
i.e., GOseq was suggested by Young et al. a decade ago [80]. It performs over-representation of GO
categories enriched with a long list of highly expressed genes in RNA-Seq data. Further, an easy-to-use
web application, integrated differential expression and pathway (iDEP) analysis was developed
for in-depth analysis of RNA-seq data [81]. Detailed descriptions of the available RNA-seq GSA
approaches, background methodologies, execution tools, and their features are listed in Table 2 and
Supplementary Document S1. Moreover, the ORA-based RNA-seq GSA may be considered as the first
generation of RNA-seq GSA.

To tackle the limitations of ORA approaches (Table 2), ES-based RNA-seq GSA approaches are
developed, which constitute the second generation of RNA-seq GSA. Further, the major steps for
RNA-seq GSA approaches are shown in Figures S1 and S3. Here, the read counts are given as input for
computation of different test statistic(s) for GSA, which depend on the nature and distribution of the
data. For instance, microarrays GSA (i.e., ES-based GSA) deal with continuous data expected to follow
a Gaussian distribution (Supplementary Table S2) [78]. However, RNA-seq involves measurements
that are non-negative counts ranging from zero to millions and are expected to follow negative
binomial distribution (Supplementary Table S2) [11,79]. Therefore, microarrays GSA approaches may
not be directly applicable to RNA-Seq data. Hence, some authors suggested normalization of the
count data prior to the use of microarrays GSA [11]. For instance, VOOM-normalization is used for
normalizing the read counts for sequence-depths, then microarrays GSA are applied on the normalized
RNA-seq data [82]. The Goeman and Buhlmann formulation can be applied to classify the ES-based
RNA-seq GSA approaches into either competitive or self-contained [6], based on the underlying null
hypotheses (Figure 3). Further, a competitive GSA approach, i.e., gene set variation analysis (GSVA),
was developed and demonstrated highly correlated results between microarrays and RNA-Seq sets for
samples of lympho-blastoids cell lines [83]. This high correlation may be due to the fact that GSVA as
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a non-parametric approach does not depend on the distributional nature of data obtained from the
studies. Fridley et al. proposed a GSA approach, i.e., gamma method (GM), with a soft truncation
threshold to determine the significant gene set, while a generalized linear model is used to assess
significance [84]. Subsequently, GSEA, the first ever competitive approach of RNA-seq GSA, was used
for RNA-seq data analysis after normalization of the count data [84]. Thereafter, several modifications
were made in GSEA by integrating both DE and differential splicing (DS) information in the analyses
to develop SeqGSEA and has better performance over GSEA [28].

Table 2. Generation-wise evolution of GSA approaches for RNA-sequencing studies.

Approach Methodology Advantages Limitations Tools

Over Representation
Analysis
(First generation
RNA-seq GSA)

Hypergeometric
distribution,
Fisher’s exact test

• Simple to use.
• Assigns easily

interpretable measure
like p-value to the
whole gene set.

• Less time consuming to
interpret huge
RNA-seq data.

• Use hard threshold approach
to select gene sets.

• Assumes each transcript as
independent and ignores the
correlation or
gene-gene interaction.

• Mostly dependent on
annotation bases, but
RNA-seq transcripts are not
well annotated.

GoSeq [80],
iDEP [81]

GS Enrichment
Analysis
(Second generation of
RNA-seq GSA)

Wilcoxon signed
rank test,
Max-Mean Statistic
(with count
normalization
technique)

• Do not require a
threshold for dividing
gene space into selected
and non-selected part.

• Considers dependence
among genes in
gene set.

• Use normalization technique
to get microarray like data,
hence, loss of the count
nature of RNA-seq data

• Through data
transformation, dispersion
and other inherent nature of
RNA-seq data are lost

• ES based tools/algorithms
use differential score to
prepare ranked transcript list
but ignore this information
for gene set testing.

• GSEA based tools like
seqGSEA are
computationally intensive,
time consuming and and
only offers the single gene
set-level statistic.

• GSVA is not designed for
gene set-based differential
expression analysis

• between two phenotypically
distinct sample groups.

• ES based GSA approaches do
not consider the inherent
zero inflation in the
RNA-seq data.

AbsFilterGSEA
[85],
GSAAseqSP [86],
seqGSEA [87],
ssGSEA, EGSEA
[88], GSVA [83],
GSEPD [89],
RNA-Enrich [90]

The self-contained GSA approaches can be divided into (a) univariate or gene-level;
and (b) multivariate or gene set-level based on the distributional nature of the test statistic (Figure 3).
The gene-level GSA approaches test a null hypothesis that the gene-set associated score does not
differ between phenotypes/traits. Further, the univariate approaches are executed in two steps:
(i) computation of gene level statistic(s) from the count data; and (ii) combining gene-level statistics
to compute gene set level statistic or p-value or adjusted p-value. For the former case, the gene-level
test statistic(s) of microarrays GSA were used in a recent study for RNA-seq GSA [84], which is quite
straight forward and easy to implement. For the latter step, the gene-level statistic(s) can be combined
into a single gene set statistic/p-value through Fisher’s method, Stoufer’s method, Meanp, logit method,
etc. [10]. Moreover, the self-contained multivariate GSA approaches jointly model the genes to compute
the gene set-level statistic(s) (Figure 3). These tests include multivariate generalization of the KS
statistic [24,33], N-statistic [78], ROAST [82], etc. Further, the application of these tests requires
the normalization of the RNA-seq data over varying sequencing depths [82]. Moreover, statistical
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significance is computed by comparing the observed statistics of gene sets with its null distribution,
obtained by permuting the sample labels. Then, the enrichment significance of the gene set is assessed
through the computed p-value or adjusted p-value or FDR after multiple testing correction.

3.3. GWAS GSA

GWAS has been successfully applied to identify many novel loci for complex traits, which
are quantitative (polygenic) in nature [17–22,41]. Therefore, to understand the underlying genetic
architecture, GSA approaches have been used that place GWAS results in a broader biological context [91].
Initially, GSA methods for GWAS (i.e., GWAS GSA) were borrowed from microarrays [24,33] and
subsequent new approaches were developed exclusively for GWAS (Figure 1). The classification of
GWAS GSA approaches is shown in Figure 4. The first step for classification of GWAS GSA approaches
can be their source of origin, including: (i) GSA microarrays adapted to GWAS; and (ii) those
developed exclusively for GWAS (Figures 1 and 4. Further, based on the requirement of annotation
libraries, the GWAS GSA approaches can also be classified as: (a) GSA requiring pre-defined gene sets;
or (b) GSA which does not require pre-defined gene sets. These approaches are based on the principle
of over-representation of genes in those predefined gene sets obtained from different bio-knowledge
bases (Table S1). Moreover, such ORA approaches constitute the first generation of GWAS GSA.
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Due to the limitations of ORA-based GWAS GSA approaches, ES-based GWAS GSA approaches
came into use, which we may call the second generation of GSA in GWAS. Their operational procedures
and major analytical steps are given in Supplementary Figures S1 and S4. Further, the second generation
of GWAS GSA starts with the enrichment analysis of gene sets for SNP data, i.e., GSEA-SNP [25,92]
using weighted KS statistics [93]. Later approaches, based on other tests, viz. weighted-sum test [94],
simple-sum test [95], collapsing test in combined multivariate and collapsing method [96] and sequence
kernel association test [97], are used for computation of the gene-set enrichment score. Moreover,
varieties of ES-based methods with similar ideas have been developed, such as the gene set based
testing of polymorphism [98], GSA-SNP [92], SNP-ratio test [99], etc.

A class of GWAS GSA approaches have been developed by considering the topology of the gene
sets/pathways, and this constitutes the third generation of GWAS GSA. This includes methods to
parse the internal information of the pathway (e.g., signaling pathway impact analysis (SPIA) [74]
and CliPPER [77]). Further, the second and third generation GWAS GSA methods focus on statistical
results such as p-values or ES, as input rather than original data. Thus, the fourth generation of GWAS
GSA approaches are developed by providing original data as input. Further, the underlying principle
of these approaches is testing of the multivariate distribution of the multi-loci data or extracting the
principal components from the original data. This includes linear combination test [100], supervised
principal component analysis (SPCA) [100], Smoothed functional PCA [101], etc. Other model-based
methods include LRpath [102], a logistic regression-based method, and MAGMA [103], linear model
based method. Recently, the Generalized Berk-Jones (GBJ) statistic, a permutation-free parametric
framework, was used for GSA [103], and this incorporates information from multiple signals in
the same gene. The descriptions of the available GWAS GSA approaches, tools, their background
methodologies pertaining to various generations are listed in Table 3 and Supplementary Document S1.
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Table 3. Generation-wise evolution of GWAS GSA approaches for SNP data analysis.

Approach Methodology Advantages Limitations Tools/Algorithm

Over Representation
Analysis
(First generation
GWAS GSA)

Hypergeometric distribution,
Fisher’s exact test, Binomial test

• Simple to use and easy to interpret
• Assigns statistically convincing measure like p-value

for SNP set, which is biologically meaningful
• Computationally not so expensive

• Hard threshold (arbitrary) divides the SNP list into
selected and not selected SNP set. For instance, if
threshold value for p-value is 0.05, means SNP with
value 0.051 is not included in SNP list

• Uses only most significant SNP and discards others,
lead to information loss

• Test statistic is independent of SNP data (based on only
SNP count), and ignores the strength of association

• Considers each SNP independent and ignores the
linkage disequilibrium

• Assumes each SNP contribute equally, which is not
true as there are common and rare variants

• Dependent on pre-defined bio-knowledge base, which
is mostly incomplete or unavailable

SNPtoGO [104], ALIGATOR [105],
ATRP [106], MetaCore [107],
PARIS [108], SET SCREEN test
[109], SNP ratio test [99], GLOSSI,
GeSBAP [98], INRICH [110],
GeneSetDB [111], MAGENTA [112],
KGG-HYST [113], PLINK [114],
JAG [115], FORGE [116]

Enrichment Statistic(s)
Analysis
(Second generation
GWAS GSA)

Wilcoxon signed rank test,
Sum test, Weighted Sum test
(Enrichment score like statistic)

• Do not require hard threshold for dividing SNP list
into selected and non-selected part

• Jointly consider multiple contributing factors in the
same gene set, might complement the most-significant
SNPs/genes approach

• Test statistic is computed from the SNP data
considering linkage disequilibrium

• Analyzes each gene set independently.
• Only considers data for selecting SNPs and after

ignores the data from gene-set testing.
• Treat all genes in a gene set independently and do not

account for the relationships between genes.

GSA-SNP [92], GSA-SNP2,
GSEA-SNP [117], GSEA-P [118]
GenGen [15], ICSNPathway [119],
i-GSEA4GWAS [120],
i-GSEA4GWAS2 [121]

Topology Analysis
(Third generation
GWAS GSA)

Graph/Network theory • Relationships between genes are used to assign
different levels of “importance” to genes in the set

• Helps in integrate gene set membership information
with interaction data from a separate source

• Difficult to generalize
• True topology is dependent on the type of cell and

experimental condition, which are rarely available
• Cannot model the dynamicity of the cellular system
• Heavily dependent on annotations, which is either

missing or incomplete

dmGWAS [122], Ingenuity Pathway
Analysis (IPA) [123], PINBPA [124],
PathVisio [125], Cytoscape [126]

Multivariate/Model/
Regression Analysis
(Fourth generation
GWAS GSA)

Linear regression Model, Ridge
regression, Logistic regression,
Linear models

• Consider both SNP and gene set information
simultaneously in same model

• Jointly consider linkage disequilibrium and gene-gene
interaction in gene set for modeling

• Future behavior of the system can be predicted
• Dynamicity of the biological system can also be

modeled and studied

• Computationally intensive
• High dimensionality of genomic data raises

serious concerns
• Ignores the non-linear interactions

among biomolecules

LRpath [102], SPCA [100],
SFPCA [101], MAGMA [127],
GRASS, GeneralizedBerk-Jones
statistic [103],
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The formulations based on underlying statistical tests [6] can also be used for classifying GSA
GWAS, i.e., self-contained and competitive approaches (Figure 4). Self-contained GWAS GSA considers
only the SNPs in the gene set and tests the null hypothesis that none of those SNPs are associated with
the phenotype. Competitive GSA considers all SNPs in the data and tests the null hypothesis that
the genes in the gene set are no more strongly associated with the phenotype than other genes [128].
Further, the competitive GWAS GSA approaches can be divided into: (i) two-step approach(s), in which
SNPs (in each gene) are first used to evaluate association with the gene, then gene-level statistic(s)
are aggregated to gene-set level enrichment value to test its association with the phenotype; and (ii) a
one-step approach, in which all SNPs in a gene set are simultaneously considered in the analysis
without consideration of gene-level effects (e.g., MAGMA) (Figure 4). For the former categories the
univariate statistical approaches are used, while multivariate techniques such as joint modelling are
used for latter. Moreover, the self-contained GWAS GSA approaches can also be grouped based on
the type of gene-set test statistic used for testing (Figure 4). This can be broadly subdivided into
three classes: (i) mean-based, (i.e., mean or sum of the gene-association scores); (ii) count-based,
(i.e., classifying genes as ‘significant’ or ‘not significant’ by applying a threshold to the gene-association
scores and using the number of ‘significant’ genes in the gene set as a test statistic); and; (iii) rank-based,
first ranking the genes according to their gene-association score and computing overrepresentation of
the gene-set genes at the top of that ranking.

4. Limitations and Future Challenges of GSA

Here, we report the existing limitations as well as the key challenges observed in the available
GSA approaches that should be kept in mind while using them. These existing limitations and
challenges can be divided into two broad categories: (i) biological annotation challenges and
(ii) methodological challenges.

4.1. Biological Annotation Challenges

The classification of GSA approaches for high-throughput genomic studies (Figures 2–4) shows
that GSA approaches require annotation information for analyzing gene sets. It is expected that
the next generation GSA will require improvement of the existing annotations as well as new
high-throughput annotation information [30,58]. Therefore, it is important to create accurate, high
resolution bio-knowledge bases with specific emphasis on cell dynamics and condition, along with
tissue information to annotate genes studied in an experiment. These knowledge bases will allow
us to model the inherent organism’s response to any extraneous condition as a dynamic system and
will help in predicting the system’s behavior at different times as well as in relation to various factors
(e.g., mutation, disease, environmental conditions, etc.).

Limited annotation information: The contemporary GSA approaches mostly use GO and pathways
information for analyzing gene sets [9,20,32,41,43,44,80,104,105], but there is enough other annotation
information available or will soon be available in public domain databases that can be effectively used
for GSA to gain biological insights into the etiology of complex diseases in humans as well as other
organisms. A list of alternate annotation information along with possible hypotheses are listed in
Supplementary Table S4. For instance, Das et al. used the quantitative trait loci (QTL) data as annotation
information to develop a GSA approach to analyze the gene sets obtained from microarrays [10]. This
approach has immense use for performing trait/QTL enrichment analysis of gene sets and further, QTL
enriched gene sets can be used for molecular breeding programs for biotic/abiotic stress engineering
in plants. Moreover, this annotation information can also be used in the future for developing new
generation GSA approaches for analysis of RNA-seq and GWAS data. Such advances in GSA will open
new avenues to understand the molecular complexity behind complex diseases in humans and other
organisms including crop plants.

Low resolution knowledge bases: Recent advancement in genomics and proteomics leads to a
paradigm shift in data generation, with unprecedented high resolution. At the same time, there is a
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demand for high resolution annotation bio-knowledge bases to perform GSA. For instance, during
the early period of GE genomics, microarrays were the key experiment to obtain a global view
of GE in the human genome. To perform GSA, GO [129] and KEGG [130] annotation bases were
developed in parallel and implemented in several web tools. Further, such databases specify which
genes (in terms of probe id/Enetrez id) are active in each GO category/pathway/any predefined gene
sets. However, microarray technology has been replaced with RNA-seq and single cell RNA-seq
(scRNA-seq) technologies. Hence, the current annotation databases need to be updated with respect
to these high-resolution techniques. It is essential that they also begin specifying other information,
such as transcripts (or scRNA-seq transcript) and SNPs that are active in each predefined pathway,
GO category, etc.

Missing or incomplete annotation: Although enormous annotation bases are available in the public
domain, some annotations are either missing or incomplete for certain genes. For instance, the current
release of GO contained entries for 19,649 human genes annotated with at least one GO term. Many of
these genes are hypothetical, predicted or pseudogenes. For example, the number of protein-coding
genes in the human genome is estimated to be 20,000–25,000 [52], which shows that annotation
information of hundred(s) of genes is still missing, and this may have a crucial role in various diseases.
In addition to the missing annotations, most of the current databases have lower resolution (i.e., lesser
information on transcript and SNP) [30,131], which leads to biased results from GSA. Further, current
knowledge bases are built by curating experiments performed in different cell types at different time
points under different conditions/locations. However, these details are typically not available in these
knowledge bases. Thus, these databases need to be updated for future dynamic or cell specific GSA.

4.2. Methodological Challenges

Lack of benchmark/gold standard: In simulation, it is expected that multivariate approaches
outperform the univariate counterparts, as the former considers inter-variable correlations. However,
in biology, it is observed that univariate statistic(s) are equal to or better than multivariate statistic(s) [40].
This observation raises several questions about the performance assessment of GSA approaches using
simulated datasets as a benchmark. It is likely that biology is more complicated than simulated
scenarios and is influenced by factors such as the absence of exclusive division into classes, presence
of outliers, experimental or technical hidden factors, environmental influence(s), random errors, etc.
Therefore, one way to handle such a situation is to use benchmark/gold standard datasets with a
valid biological basis. For instance, Ballard et al. (2010) compared two GSA methods based on
their applications to three Crohn’s disease benchmark GWAS datasets with well-known biological
basis [12,15,23]. Further, a combination of both benchmark biological datasets with statistically strong
criteria can provide a suitable platform for comparative performance analysis of GSA approaches.

Criteria for comparing GSA approaches: When the performance of a GSA approach is assessed, it is
expected to have certain proportions of false positives from the test. The ES-based GSA approaches
compare the observed ES statistic with its null distribution as generated by random sampling/permuting
the sample labels/disease outcomes or permuting genes/genotypes information [7,103]. Usually, through
permutation, p-values are computed for assessing the enrichment significance of gene sets [6,26].
Then, −log10(p-value) and power of the statistical tests are used to assess the performance of GSA
approaches [10]. However, alternate measures may also be used for comparative performance analysis
of GSA approaches. In one such measure, the above computed p-values may be used to plot the
histogram for the null gene sets, and that is expected to follow a uniform distribution. This phenomenon
may be used to compute type-I error rates for GSA approaches, which can then be used as an efficient
criterion for performance analysis of GSA approaches along with statistical power and FDR. In other
words, GSA approaches with lower type-I error rates will be considered as better and vice-versa. These
criteria can be computed on benchmark/gold standard datasets, which will provide a suitable platform
to compare GSA approaches.
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Improvement in terms of statistical power: In ORA-based GSA approaches, the test statistic(s)
are computed by treating each gene equally. But in biology, some genes contribute more toward
the disease/trait development. Treating all genes as equal in computing the test statistic reduces
the statistical power of the GSA approach. Hence, one powerful strategy may be to consider the
DE scores of genes [24,33,132,133] or ranks of the genes in a gene list while constructing the test
statistic(s). This mechanism will attribute more statistical power to GSA approaches as compared
to the existing ones. This approach needs to be well studied on benchmark data in future to assess
its rigor and reproducibility. Further, other a priori biological information, viz. eQTL, network
topology, co-expression scores, etc., can be used as auxiliary information in GSA approaches to improve
their performance.

Selection of null hypotheses: The competitive GSA approaches use a gene sampling model to compute
the p-values for gene sets [6,26]. In gene sampling model, it is assumed that genes are iid, which is
highly unrealistic from a biological standpoint. Hence, the test statistic computed based on such
assumptions from the gene sampling model leads to biased and misleading results. Therefore, methods,
such as GSEA [24,33] and SAFE [39] use a hybrid concept, i.e., compute their test statistic(s) based on a
gene-sampling model but calculate their p-values using the subject sampling model. The discrepancy
between these two models makes the statistical properties of the test unclear and its interpretation
very difficult. These problems are unavoidable, as the definition of the competitive null hypothesis
is intimately tied to the gene-sampling model, whereas valid p-values are easily available for subject
sampling only. This type of problem may provide impetus to future research in GSA.

Inability to model and analyze a dynamic response: It is well known that biological systems are
dynamic. There has been a long debate about the feasibility of using static models to model the inherent
dynamics of biological systems. However, in GSA, only static approaches (linear, gamma, generalized
linear and regression models) [80,98,99] have been used so far. This raises a serious concern for the
use of GSA approach in assessing living systems. The lack of methods that analyze gene sets as
a dynamic system is partly due to the limitations of current molecular measurement technologies.
These technologies can only quantify a snapshot of a biological system because they are unable to:
(i) determine the protein states in a high-throughput fashion, or are severely restricted in this regard;
and (ii) detect signals that propagate without affecting GE. Therefore, we encourage researchers in the
future to use dynamic models such as time-series models, auto-regressive models, dynamic Bayesian
models, etc. for GSA from time-dependent GE or association data.

Redundancy among genes in gene sets: In GE data analysis, redundancy among genes (i.e., genes
may not be related to a case/disease but ranked in the top due to high correlation with other top ranked
genes) is a serious issue [27]. During the process of ranked gene list preparation, redundant genes may
be included and further, do not give valid p-values for the gene set testing, as genes in gene lists are
correlated. In other words, p-values may easily be falsely significant when the genes in the gene set
are correlated, even when none of the genes is truly significant. One strategy may be to use such a
GE data analysis approach, (i.e., MRMR, Boot-MRMR [27]) which minimizes the redundancy among
genes during the gene ranked list preparation. Other approaches may include avoiding the use of
gene-sampling models in gene set testing for p-value computation. For this purpose, Goeman and
Buhlman developed a subject-sampling 2 × 2 table method alternate to the gene sampling model to
compute valid p-values for gene sets [6].

Develop threshold-free approach(s): ORA based GSA approaches are mostly threshold dependent [25].
Further, other GSA methods like mGSZ (based on Gene Set Z-scoring function) requires a threshold
value for DE score to divide the ranked gene list into member genes and non-member genes (i.e., two
gene groups) [132]. Gene set testing (e.g., Z-test) is then performed on these gene groups [15,24,33,132].
The determination of an optimal threshold is often a cumbersome task. Therefore, the obtained
analytical results from such approach are unstable and irreproducible [24,25,93]. Hence, researchers
use a set of threshold values to compute enrichment significance of gene sets and then select the
threshold that gives the most significant results [6,134]. This approach seems inelegant. A more
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comprehensive and computationally intensive approach for choosing a threshold will be a reasonable
compromise among power, type I error and reproducibility of results, using a cross validation technique.
Another strategy may be development of threshold-free GSA approaches to improve the stability
of results.

Proper permutation procedure: Current GSA approaches mostly use permutation procedures that
compute p-values by comparing the observed test statistic with its null distribution generated from the
permuted datasets [6,8,73,134]. It is expected to reflect chance-based confounding effects, including
biases introduced by the gene set. However, the permutation procedures (if not designed properly) can
produce misleading results and introduce bias in the resulting inference. For instance, permutation of
SNPs, which is often used in p-value based approaches, may disrupt the linkage disequilibrium pattern
and may not generate the correct null distribution. For gene-based approaches, permutation of sample
labels may not generate the correct null distribution, as the samples are generated from tissues of same
or related individuals [23,135]. Moreover, when the SNPs or genes or phenotypes are being permuted,
the sampling units are assumed to be iid, which may not be the case; SNPs may be correlated due
to linkage disequilibrium or gene-gene interactions. Therefore, proper care should be taken before
choosing the permutation procedure for computing the p-values for gene sets.

GSA approach(s) for alternate annotations: The existing ORA-based GSA approaches have mostly
focused on whether the selected gene sets are over-represented by known pathways or GO
terms [9,20,32,41,43,44,80,104,105]. However, in plant and complex disease biology, such approaches
may not able to establish any formal relation between the underlying genotypes and the trait/phenotype,
as most of the traits are quantitative in nature and controlled by polygenes [10,12–14]. For this purpose,
a statistical approach and R package of GSA with QTL has recently been developed [10], which is
useful for obtaining QTL-enriched gene sets. Moreover, like QTL, there is a lot of genomic annotation
information (Supplementary Table S4) available in public domain databases which can be used to
develop new and innovative GSA approaches and tools.

Stability of gene set testing results: The statistical power and FDR are used for performance analysis
of GSA approaches [7,8,11,78]. It is well known that different samples (on which the test is based)
would give different results due to sampling errors. One way to deal with such a problem is to draw
different sub-samples from a relative homogenous population, and the approach with small variance
and uniform results over sub-samples can be termed as stable approach [16]. This principle can be
applied to GSA, i.e., first, sub-samples can be taken from all samples, and then GSA can be applied on
each sub-sample to compute the p-value for the gene sets. Finally, one can evaluate the stability of the
approach by comparing a change in ranks over different sub-samples. The approach with the least
change in ranks can be termed as the stable approach and can be easily implemented in simulation
analysis. In biology, several factors may be responsible for causing instabilities to the results; these
include, gene-gene correlations, genetic heterogeneity, and patient-to-patient variability. To address
this problem, several researchers have hypothesized that testing gene sets rather than individual
gene/marker will be more stable across different samples [8,136,137]. More relevant and specialized
studies and methodologies are needed to validate such claims.

5. Discussion

In the last 15 years since its inception, GSA has become an extremely popular approach for
secondary analysis of genome wide expression as well as association data. It has been successfully used
to gain biological insights into the etiology of various complex diseases in humans as well as model
organisms, including mammals, and other cellular organisms [9,10,13,14,138]. GSA has immense
benefits in terms of biological interpretation of results, as well as numerous computational advantages
over single gene studies [57]. It also enhances biologically meaningful interpretation of results and
reproducibility of important gene lists yielded by independent studies, etc. [7–11]. In other words,
the cumulative effects of the genetic variants (SNPs) or genes distributed in a gene set is considered in a
single analysis and has more statistical power as compared to the univariate counterparts [8]. Despite
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of their usefulness, there are limited number of studies found in the literature, which consider the wider
gamut of high throughput genomic studies from the GSA perspective. Hence, we have summarized
the commonalities of GSA approaches used in three key genomic studies in terms of their execution,
underlying null hypotheses, nature of test statistic, sampling models, etc. Further, the structure and
key analytical steps common to most of the GSA approaches are discussed in this study.

Over the past few years, a diverse set of methods for performing GSA has been proposed for
microarrays, RNA-seq and GWAS data analysis and the increased application of these methods
has exposed several factors that affect the interpretations of GSA results. These factors include the
null hypothesis being tested, the underlying sampling/permutation procedure, and the nature and
distribution of test statistic(s). All of these factors play a significant role for choosing proper GSA for
the data analysis. Researchers have also identified a variety of circumstances that can lead to faulty
findings; hence, proper care is suggested to avoid misleading results. Several individual studies have
been conducted over time to summarize GSA approaches for each type of genomic study [5–123]. Here,
we summarize a comprehensive review of GSA approaches in terms of statistical structure, execution
and classification for three different high-throughput genomic studies. Several approaches and tools
have evolved over time, individually for each type of genomic study. Thus, instead of individually
reviewing them, we present the classification of GSA approaches for microarrays, RNA-seq and GWAS
into different generations along with underlying statistical methodologies/tests and special features.
Many earlier reviews of GSA are data independent studies [6,11,23], but our study is data dependent
and comprehensive.

This study will serve as a catalogue and provide guidelines to genome researchers and experimental
biologists for choosing the proper GSA based on several factors. In this study, we reported several
challenges which need to be addressed by statisticians and biologists collectively to develop the
next generation of GSA approaches. These new approaches will be able to analyze high-throughput
genomic data more efficiently in order to better understand the biological systems and to increase the
specificity, sensitivity, utility, and relevance of GSA.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/4/427/s1,
Document S1: Background methodologies of GSA approaches and tools for different generation, Figure S1:
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Figure S2: Analytical steps of GSA for microarray data analysis, Figure S3: Analytical steps of GSA for RNA-seq
data analysis. Figure S4. Analytical steps of GSA for SNP (GWAS) data analysis. Table S1: List of available
bio-knowledge bases used for Gene Set Analysis, Table S2: Nature and distribution of genomic datasets, Table S3:
Available microarray datasets in NCBI, Table S4: Alternate annotation information for possible gene set analysis.
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