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जब परीक्षण इकाइयों में पररवर्तन के दो ऐसे श्रोर् हों र्ो रो-कॉलम अभिकल्पना ऐसी प्रायोभिक भथिभर् के भलए उपयोिी होरे् हैं। इन 

भिजाइनों का उपयोि क्षेत्र और पश ुप्रयोिों में पररवर्तनशीलर्ा को भनयंभत्रर् करने के भलए भकया जार्ा ह।ै साभहत्य में भवकभसर् 

अभिकांश रो-कॉलम अभिकल्पना में प्रत्येक पंभि और थरं्ि के प्रभर्च्छेदन के अनरुूप एक इकाई होर्ी ह।ै हालांभक, उदाहरणों के 

भलए जब सीभमर् प्रायोभिक संसािनों के साि उपचार की संख्या बडी ह,ै र्ो सामान्यीकृत रो-कॉलम अभिकल्पनाओ ंका उपयोि 

भकया जार्ा ह ैजहां प्रत्येक पंभि-थरं्ि प्रभर्त्छेदन में एक से अभिक इकाई होर्ी ह।ै सामान्यीकृत रो-कॉलम अभिकल्पनाओ ंमें  p 

पंभियों और q कॉलम में वी ट्रीटमेंट की एक व्यवथिा ह,ै जैसे भक प्रत्येक पंभि और थरं्ि (सेल) के प्रभर्च्छेदन में एक से अभिक 

यभूनट होरे् हैं। 

आदशत भथिभर् संिालने वाले भवभिन्न परैामीभट्रक संयोजनों के भलए साभहत्य में सामान्यीकृत रो-कॉलम अभिकल्पना भवकभसर् भकए 

िए हैं। हालांभक, प्रयोि के दौरान आउटलेयर की उपभथिभर्, िेटा में िमु भटप्पभणयों, प्रयोिात्मक इकाइयों में एक व्यवभथिर् प्रवभृि 

की उपभथिभर्, उपचार के आदान-प्रदान आभद हो सकरे् हैं। इन िडबभडयों से प्रयोि में आजमाए िए उपचारों की र्लुना में कम 

सटीक र्ुलना हो सकर्ी ह।ै ऐसी भथिभर्यों को दरू करन ेके भलए, इन िडबभडयों के भिलाफ असंवेदनशील या मजबरू् होन ेवाले 

भिजाइनों की आवश्यकर्ा होर्ी ह।ै इस अध्ययन में, दक्षर्ा मानदिंों के अनसुार एक सेल के िीर्र एक या एक से अभिक भटप्पभणयों 

के लापर्ा होन ेके भिलाफ जीआरसी भिजाइनों के भवभिन्न विों के प्रबलर्ा की जांच की िई ह।ै मजबरू् सामान्यीकृत रो-कॉलम 

अभिकल्पना की एक सचूी न ेमापदिंों और भिजाइनों की दक्षर्ा को रै्यार भकया ह।ै 

सामान्यीकृत रो-कॉलम अभिकल्पना में, चूंभक एक सेल में अभिक संख्या में इकाइयााँ होर्ी हैं, इसभलए यह संिावना ह ैभक एक 

प्रायोभिक इकाई पर लिाया िया उपचार एक ही सेल में पडोसी इकाई की प्रभर्भिया को प्रिाभवर् कर सकर्ा है, यभद इकाइयों को 

िोलाकार प्रिाव दने ेके भलए रैभिक रूप से आसन्न रिा जार्ा ह ै। इस अध्ययन में, इन थिाभनक प्रिावों के भलए संर्ुभलर् जीआरसी 

भिजाइनों की श्रृिंला भवकभसर् की िई ह।ै कुशल भिजाइनों की एक सचूी रै्यार की िई ह।ै राष्ट्ट्रीय कृभि अनसंुिान और भशक्षा 

प्रणाली (NARES) के र्हर् अभंर्म उपयोिकर्ातओ ंको एक रेिीमेि समािान प्रदान करन ेके भलए, एक SAS मैिो भवकभसर् भकया 

िया ह ैजो भिजाइनों के लेआउट को उत्पन्न करर्ा ह।ै 

WebGRC नामक एक वेब सॉल्यशून को सामान्यीकृत रो-कॉलम अभिकल्पना की पीढी के भलए भवकभसर् भकया िया ह ैजो भक 

प्रयोिकर्ातओ ंके भलए अत्यभिक उपयोिी होिा। वेबपेज उपचार की दी िई संख्या के भलए यादृभच्छक लेआउट के साि लेआउट 

योजनाओ ंको प्रदभशतर् करर्ा ह।ै जीआरसी भिजाइनों का एक ऑनलाइन कैटलॉि िी रै्यार भकया िया ह ैऔर सॉफ्टवेयर में शाभमल 

भकया िया ह ैभजसमें उपयोिकर्ात सिी मापदिंों को दिेकर भिजाइन का चयन कर सकर्ा ह ैऔर भफर यादृभच्छक लेआउट प्राप्त कर 

सकर्ा ह।ै 



मेभटंि प्लान (आंभशक िायलेल िॉस, आंभशक ट्रायल समानांर्र िॉस) के भनमातण के भलए सामान्यीकृत रो-कॉलम अभिकल्पना के 

एक आवेदन पर िी चचात की िई ह।ै ब्रीिसत आाँकडों में आरामदायक ज्ञान के साि छोटे और कुशल िायलेल और समानांर्र िॉस 

प्लान प्राप्त कर सकरे् हैं। 

lHkh ys[kd] funs'kd ¼dk-½] Hkk-d`-vuq-i-&Hkk-d`-lka-v-la- dks muds leFkZu ,oa vuqla/kku dk;Z dks lQyrkiwoZd 

djus ds fy, lHkh vko';d lqfo/kk,a miyC/k djkus ds fy, gkfnZd /kU;okn vfHkO;Dr djrs gSaA Hkk-d`-vuq-i-

&Hkk-d`-lka-v-la-] ijh{k.k vfHkdYiuk izHkkx ds v/;{k ¼dk-½] oSKkfud] rduhdh ,oa izHkkx ds vU; deZpkfj;ksa 

ds lg;ksx dk /kU;okn lfgr vkHkkj O;Dr djrs gSA  ge lHkh ys[kd] Hkkjrh; lkaf[;dh laLFkku] dksydkrk 

ds lsok fuo`r izk/;kid fodkl dqekj flUgk ds izfr Hkh muls mi;ksxh ppkZ djus ds fy, d`rK gSaA ge 

vkUrfjd fu.kkZ;d dk Hkh /kU;okn O;Dr djrs gSa] ftuds lq>koksa us bl izfrosnu dh fo"k; oLrq lq/kkjus ,oa 

izLrqrhdj.k esa lgk;rk dhA 
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PREFACE 
 

When there is cross classified variation in the experimental unit then Row-Column (RC) 

designs are useful for such experimental situation. These designs are used to control variability 

in field and animal experiments. Most of the row-column designs developed in the literature 

have one unit corresponding to the intersection of each row and column. However, for the 

instances when the number of treatments is large with limited experimental resources, 

Generalized Row-Column (GRC) designs are used where there is more than one unit in each 

row-column intersection. GRC design is an arrangement of v treatments in p rows and q 

columns such that the intersection of each row and column (cell) consists of more than one 

unit.  

GRC designs have been developed in the literature for different parametric combinations 

assuming ideal situation. However, there may be presence of outliers, missing observations in 

the data, presence of a systematic trend in the experimental units, exchange or interchange of 

treatments etc. during the experimentation. These disturbances may lead to less precise 

comparisons among treatments tried in the experiment. In order to overcome such situations, 

designs which was insensitive or robust against these disturbances are required. In this study, 

Robustness of different classes of GRC designs against missing of one or more observations 

within a cell as per the efficiency criteria has been investigated. A list of robust GRC designs 

has prepared giving the parameters and the efficiency of the designs. 

In GRC designs, since there are more number of units in a cell, it is likely that the treatment 

applied to one experimental unit may affect the response of the neighbouring unit in the same 

cell if the units are placed linearly adjacent giving rise to spatial effects. In this study, series of 

GRC designs balanced for these spatial effects have been developed. A list of efficient designs 

has been prepared. For providing a readymade solution to the end users under National 

Agricultural Research and Education Systems (NARES), a SAS macro has been developed that 

generates the layout of the designs.  

 



A web solution named WebGRC has been developed for the generation of GRC designs that 

would be highly useful to the experimenters. The webpage displays the layout plans along with 

the randomized layout for given number of treatments. An online catalogue of the GRC 

designs is also prepared and included in the software wherein the user can select the design by 

seeing all the parameters and then can get the randomized layout.  

An application of GRC designs for construction of mating plan (partial diallel cross, partial 

triallel cross) has also been discussed. Breeders can obtain small and efficient diallel and 

triallel cross plans with comfortable knowledge in statistics. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

When the heterogeneity present in the experimental material is from two sources, then two-

dimensional blocking or double blocking of the experimental units is recommended for control 

or reduction of experimental error. The two blocking systems are referred to generally as row 

blocking and column blocking and the resulting designs are termed as Row-Column (RC) 

designs. These designs are used to control variability in field and animal experiments. For 

example, in a greenhouse experiment on tobacco mosaic virus, the experimental unit is a single 

leaf. The plant and the position of the leaf on the plant may affect the number of lesions 

produced per leaf by rubbing the leaf with a solution, which contain the virus. Thus, here 

individual plant is one source of variability and represents rows and the position of the leaf 

from top to bottom on each plant represent columns (Youden, 1937). Another situation is in 

case of a laboratory trial to compare the percentage of protein in various grains, rows may be 

the different analysts and columns may be the occasions. Further, in an irrigation experiment in 

horticultural research, rows may be represented by channels and columns by the positions 

along the channels.  

 

Latin square design is the simplest row-column design. In a Latin square design, v treatments 

are arranged in v rows and v columns in such a way that each treatment occurs once in each 

row and once in each column e.g. an animal experiment is conducted to compare the effects of 

four feeds eliminating the variation due to four breeds and four age groups of calves. Data is on 

growth rate of calves during a certain period. Here, rows represent age groups and columns 

represent different breeds. Following is the arrangement of a Latin square design for this 

situation with rows and columns complete. 

 

Rows 

(Age Groups) 

Columns (Breeds) 

I II III IV 

I 1 2 3 4 
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II 2 3 4 1 

III 3 4 1 2 

IV 4 1 2 3 

 

Latin squares have the restriction that the rows and columns must be equal in number to one 

another and to the number of treatments. In practical experiments Latin squares are very useful 

where the number of treatments is small. The available range of designs is generally restricted 

to sizes from about 4 × 4 to about 7 × 7. The upper end of the size range can be extended by 

using incomplete Latin squares of size (n-1) × n or size n × (n-1) obtained by deleting one 

complete row or one complete column from a Latin square of size n × n (Yates, 1936) whereas 

the lower end of the scale can be extended by using augmented Latin squares of size (n + 1) × 

n or of size n × (n + 1) obtained by repeating a complete row or a complete column of a Latin 

square of size n × n (Pearce, 1952). So when experimental units are in rectangular array then 

these designs are useful. Various types of row-column designs and their properties are 

discussed in Hinkelmann and Kempthorne (2005). 

 

1.2 Genesis and Rationale of the Project  

Most of the row-column designs developed in the literature have one unit corresponding to the 

intersection of each row and column. However, for the instances when the number of 

treatments is large with limited experimental resources, Generalized Row-Column (GRC) 

designs are used where there is more than one unit in each row-column intersection. GRC 

design is an arrangement of v treatments in p rows and q columns such that the intersection of 

each row and column consists of more than one unit. Following are some examples: 

 To compare a number of dietary treatments on mice, different breeds and different age 

groups constitute the two sources of variability. The cages available with the experimenter 

have two partitions accommodating two mice of same parity, one in each partition. Hence, 

corresponding to each breed-age combination there are two mice, each receiving one 

distinct treatment. 

 In an experiment to compare twelve pest control treatments on apple trees, four long 

replicate rows, each one tree wide, are used with twelve plots per row. Each row is 
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subdivided into four blocks or cells of three plots and the four adjacent blocks at any one 

position along the four rows formed a replicate column of twelve plots. 

 

Some more experimental situations are described below along with designs appropriate for 

such situations.  

 
Experimental Situation 1 (Bailey and Monod, 2001): An experiment was conducted on 

tobacco plants at Rothamsted Experimental Station to check whether a mechanism to inhibit 

tobacco mosaic virus had been carried over to following generations. Each treatment was a 

solution made from an extract of one of the offspring plants. The solution was rubbed onto 

several half-leaves of normal tobacco plants. The number of lesions per half leaf was measured 

and the logarithm of this number analyzed by ANOVA. There are eight plants and pair of half 

leaves at four heights. A row-column design which has less number of rows than columns is 

useful in such situations as the number of plants available for the experiment is typically more 

than the number of usable leaves and their positions per plant. The experimenter is interested to 

compare more than two treatments in c plants each with leaves at r heights, where typically r < 

c. Generally, the two half leaves of each of the rc leaves form the plots. So here leaf heights 

represent rows and the plants as columns and two plots in the intersection of each row and 

column. For such situations the following GRC designs is useful: 

 

Heights 
Plants 

I II III IV V VI VII VIII 

I 5  6 6  7 7  8 8  1 1 2 2 3 3 4 4  5 

II 2  8 3  1 4  2 5 3 6  4 7  5 8  6 1  7 

III 1  4 2  5 3  6 4  7 5  8 6  1 7 2 8  3 

IV 3 7 4  8 5  1 6  2 7  3 8  4 1  5 2  6 

 

Experimental Situation 2 (Bailey, 1992): Consider a food sensory experiment where 6 food 

items are to be compared. The experiment is conducted in 3 sessions. There are 6 panelists and 

each of them will taste 2 food items at each session. In this case, a GRC design with 3 rows, 6 

columns with each row-column intersection having cell of size 2 can be used. Following is the 

arrangement of such a design: 
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Sessions 
Panelists 

I II III IV V VI 

I 1  4 2  6 2  5 3  5 6  3 4  1 

II 2  3 1  5 4  6 6  1 4  5 3  2 

III 6  5 4  3 3  1 2  4 1  2 6  5 

 

Experimental Situation 3 (Edmondson, 1998): An experiment was conducted to compare the 

colour intensities of apple sauce. The treatments consist of all combinations of 12 blends of 

apple sauce with 4 concentrations of cinnamon. Treatments could be stored for 4 different 

lengths of time. A GRC design was used in which rows, columns and symbols represented 

cinnamon concentrations, storage times and blend respectively as shown below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This arrangement ensures that each of the 12 treatments occurred once and that both treatment 

factors were orthogonal to storage times. Part of the interaction between blends and 

concentrations was totally confounded with storage times. 

In usual practice, these trials are conducted under controlled conditions and it is assumed that 

there are no disturbances that occur while conducting or measuring the observations. The 

presence of missing observations, outliers in the data, etc. are some of the disturbances that 

 

Rows 

(Cinnamon  

Concentrations) 

  

Columns 

(Storage Time) 

I II III IV 

I 1 5 9 2 6 10 3 7 11 4 8 12 

II 2 7 10 1 8 9 4 5 12 3 6 11 

III 3 8 12 4 7 11 1 6 10 2 5 9 

IV 4 6 11 3 5 12 2 8 9 1 7 10 
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may occur during experimentation. These disturbances may lead to wrong interpretation of 

results or less precise comparisons among treatments tried in the experiment. In order to 

overcome such situations, designs which are insensitive or robust against missing observations/ 

outliers were required. 

In case of a generalized row-column design there are more number of units in a plot and the 

treatment applied to one experimental unit in a plot may affect the response on neighbouring 

unit in the same plot. Experiments conducted in field may show neighbour effects (spatial 

indirect effects), like when treatments are varieties, neighbour effects may be due to 

differences in height, root vigour, or germination date, especially on small plots. Treatments 

such as fertilizer, irrigation, or pesticide may spread to adjacent unit of the same plots causing 

neighbour effects. Such experiments exhibit neighbour effects, because the effect of having no 

treatment as a neighbour is different from the neighbour effects of any treatment. Thus, 

neighbour effects resulting in competition or interference between neighbouring units may 

contribute to variability in experimental results and lead to substantial losses in efficiency. In 

order to compare the effects of treatments in this situation, it is important to ensure that no 

treatment is unduly disadvantaged by its neighbour. Neighbour balance is considered a 

desirable property for an experiment to possess in situations where neighbour effects from the 

treatments applied in adjacent experimental units are known to exist. Thus, neighbour-balanced 

designs or designs balanced for spatial indirect effects, wherein the allocation of treatments is 

such that every treatment occurs equally often with every other treatment as neighbour(s), are 

used for these situations. These designs permit the estimation of direct and neighbour effect(s) 

of treatments. So GRC designs balanced for spatial indirect effects were required to be 

developed.  

A number of GRC designs are developed in the literature. For easy accessibility and quick 

reference of GRC designs by the experimenters, a web solution for cataloging and generation 

of GRC designs is to be developed. A number of web solutions have been developed by 

IASRI, viz., Design Resource Server, web generation of experimental designs balanced for 

indirect effects of treatments, online analysis of block designs / row-column designs, web 

service for Analysis of Augmented Designs, web solutions for PBIB designs, statistical 

package for factorial experiments. A web solution for GRC designs, on similar lines, would be 

helpful. 
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Keeping the above in view, the following objectives have been formulated: 

 

Objectives 

 To identify robust GRC designs in the presence of missing observation(s)/ outlier(s) 

 To obtain methods for constructing GRC designs balanced for spatial/temporal indirect 

effects 

 To develop a web solution for the cataloguing and generation of GRC designs 

 

1.3 Critical Review of the Technology at National and International Levels  
 

National  

GRC designs are studied in the literature in different names such as Semi-Latin square in 

which there are n rows, n columns and intersection of each row and column contains a cell of  

k units , Trojan square Semi-latin rectangles, Generalized incomplete Trojan-type designs and 

Row-column designs with multiple units per cell. Some work related to GRC designs are given 

here. SahaRay (2001) studied designs with unequal row and column sizes. Chigbu (2003) 

obtained the best of the three optimal (4  4)/4 semi-Latin squares by finding and comparing 

the variances of elementary contrasts of treatments for the squares. Parsad (2006) discussed a 

method of constructing semi-Latin square with v = 2n treatments in n rows, n columns and cell 

size k = 2 by developing initial column. Varghese and Jaggi (2011) obtained generalized row-

column designs with unequal cell sizes. Datta et al. (2014) obtained some methods of 

constructing row-column designs with multiple units per cell that are structurally incomplete. 

Datta et al. (2015) developed methods of constructing row-column designs with multiple units 

per cell with equal/ unequal cell sizes that are structurally complete, i.e. all the cells 

corresponding to the intersection of row and column receive at least two treatments.  

There is some work done related to the study of robustness of RC designs in national level. 

Lal et al. (2003) investigated the robustness of Youden square and Latin square designs 

against the loss of any t (≥ l) observations in a column/row and for the loss of any two 

observations in the design as per connectedness criterion. Bhar (2014) defined E-efficiency 

criterion and obtained lower bound of this criterion for the loss of any t observations in binary 

variance balanced block design.  

Online generation of experimental designs provides an easy accessibility to the users. In this 
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direction a lot of work has been done at IASRI. Taksande et al. (2012) developed software 

solution for the generation of partial diallel crosses. Many other open sources and commercial 

packages are also available for generation of readymade layouts of designs based on different 

situations [for example AgroPlotter (2002), Design resource server (2007), webPD (2015), 

etc.]  

 

International  

Trojan squares were first discussed by Harshbarger and Davis (1952) but then it was named as 

Latinized Near Balanced Rectangular Lattices having k = n-1. Later, Darby and Gilbert (1958) 

discussed the general case for k < n and introduced the name Trojan square designs where k > 

2. However, all designs of the Latinized Rectangular Lattice type are now commonly described 

as Trojan squares for any 1 < k < n. Williams (1986) generalized the notion and called semi-

Latin squares as Latinized incomplete-block designs. Andersen and Hilton (1980) called semi-

Latin squares as (1, 1, k) Latin rectangles. Preece and Freeman (1983) discussed the 

combinatorial properties of semi-Latin squares and related designs. Bailey (1988) discussed 

further construction for a range of semi-Latin and Trojan square designs. Bailey (1992) gave 

methods of constructing a range of semi-Latin and Trojan square designs, studied their 

efficiencies and showed that the Trojan squares are the optimal choice of semi-Latin squares 

for pair-wise comparisons of treatment means. These are particularly suitable for crop research 

experiments either in field or in the glasshouse. Trojan squares are normally the best choice of 

semi-Latin squares for crop research (Edmondson, 1998)). Bedford and Whitaker (2001) have 

given several methods of construction of semi-Latin squares. Dharmalingam (2002) gave an 

application of Trojan square designs and used it to obtain partial triallel crosses. Jaggi et al. 

(2010) defined generalized incomplete Trojan-Type designs to be a row-column design in 

which each cell, corresponding to the intersection of row and column, contains more than one 

treatment and the rows are incomplete. A method of constructing generalized incomplete 

Trojan-Type design was developed and some properties of this class of designs are discussed. 

The contrasts properties of the optimal semi-Latin squares with side six and block size two was 

investigated by Uto and Ekpenyong (2014) with a view to discriminating amongst them. Some 

reference of semi-Latin squares and Trojan squares can be found in Dean et al. (2015). It is 

seen in the literature that most of the work on designs with neighbour effects is concentrated 

under block design set up. There are few work related to neighbour effect under row-column 
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set up. Jaggi et al. (2016) obtained another series of generalized incomplete Trojan-type 

designs for number of treatments v= sm+1. 

It seems that some work related to study of robustness of RC designs in international level. 

Singh et al. (1987) studied robustness of designs eliminating heterogeneity in two directions to 

outliers. Varghese et al. (2002) showed that Williams square change-over designs are robust 

against missing of last α [≤ v -1: v being the number of period in the design for v treatments] 

observations from an experimental unit.  

There is some work done related to study of RC designs incorporating spatial indirect in 

international level. Freeman (1979) has given some row-column designs balanced for 

neighbours with and without border plots. Federer and Basford (1991) have given three 

methods of constructing balanced nearest neighbour row-column or competition effect 

designs. Chan and Eccleston (2003) have given an algorithm which generates neighbour 

balanced row–column Designs. However, the designs obtained are found to be only 

combinatorially balanced. Varghese et al.(2014) obtained row-column designs incorporating 

directional neighbour effects. 

Sharma et al. (2013) developed web solution for generating partially balanced incomplete 

block designs. Jaggi et al. (2015) developed web-enabled software for generation of 

experimental designs balanced for indirect effects of treatments. 

 

1.4 Scope of Present Study 

Robustness of different classes of GRC designs against missing of one or more observations 

has been investigated and the efficiency of the residual designs have been reported and 

summarized. Neighbour Balanced Generalized Row-Column (NBP-GRC) designs have been 

defined. Methods of constructing series of NBGRC have been described. Construction of 

Generalized Row-Column design involves theoretical understanding and it may not be easy for 

the experimenters to understand. So, a readily available web solution named webGRC along 

with online catalogue has been developed. This would provide a readymade solution to the 

experimenters which will ultimately reduce the effort of the experimenter. Further SAS macros 

have also been developed which would help experimenters under NARES to get readymade 

layout plans. An application of GRC designs for construction of mating designs has been 

discussed. 

 



CHAPTER 2 

ROBUSTNESS OF GRC DESIGNS AGAINST  

MISSING OBSERVATION(S) 
 

2.1 Introduction 

The presence of missing observations, outliers in the data, etc. are some of the disturbances that 

may occur during experimentation. These disturbances may lead to less precise comparisons 

among treatments tried in the experiment. A lot of work has been done on robustness of designs 

in block set up or row-column set up. 

A GRC design is robust against loss of observations, if the loss of efficiency of the residual design 

as compared to the original design is small. If Cd is the information matrix for estimating the 

treatment effects of GRC design d and Cd* is that of the residual design d* after the observations 

are lost, then the efficiency E of the residual design relative to the original design is given by 
 

d*

d

Harmonic mean of non-zero eigen values of C
E =

Harmonic mean of non-zero eigen values of C
  

 

A GRC design is said to be robust if the efficiency of the resulting design after loss of information 

is more than 90%. 

A list of robust GRC design has prepared giving the parameters and the efficiency of the designs. 

A SAS code (given in the Annexure I) has been written in PROC IML to calculate the harmonic 

mean of non-zero eigen-values of information matrix of original design and the residual design 

under the following three-way model for GRC design. 

A GRC design is considered here with v treatments arranged in p rows, q columns and in each 

row-column intersection (i.e. cells) there are k units or plots resulting in total n= pqk experimental 

units or observations. The following three-way classified model with treatments, rows and 

columns is considered: 
 

Yl(ij) =  + l(ij) + αi + j + el(ij);               ...(2.1)         

   i =1,2,…,p; j = 1,2,…,q; l = 1,2,…,k 
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where Yl(ij) is the response from the lth unit corresponding to the intersection of ith row and jth 

column.  is the general mean, l(ij) is the effect of the treatment appearing in the lth unit 

corresponding to the intersection of ith row and jth column, αi is the ith row effect and j is the jth 

column effect. el(ij) is the error term identically and independently distributed and following normal 

distribution with mean zero and constant variance.  

 

2.2  Robustness of GRC Designs Against Missing Observation(s) 

Here in this section, the robustness of different classes of GRC designs (Bailey, 1992; Jaggi et al., 

2010; Datta et al. 2012; Datta et al., 2015) against missing of one or more observations within a 

cell as per the efficiency criteria,  has been investigated. We consider a design be highly robust 

against missing observation(s) if the loss in efficiency of the residual design is not more than 5% 

and robust if the loss in efficiency of the residual design is between 5% to 10%. 

Series I: Bailey (1992) defined semi-Latin square (n × n / k) as an arrangement of v = nk treatments 

in n rows and n columns and intersection of each row and column containing k units each. These 

semi-Latin squares are constructed by superimposing k number of Latin squares of order n and 

symbols of each Latin square are represented by different symbols. 

 

Example I.1: Following is a semi-Latin square for v = 10 treatments arranged in 5 rows, 5 columns 

and intersection of each row-column having 2 units: 

  

 

 

 

 

 

 

 

 

Rows 
 Columns 

 I II III IV V 

I 1 6 2 7 3 8 4 9 5 10 

II 2 8 3 9 4 10 5 6 1 7 

III 3 10 4 6 5 7 1 8 2 9 

IV 4 7 5 8 1 9 2 10 3 6 

V 5 9 1 10 2 6 3 7 4 8 
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Example I.2: Following is a semi-Latin square for v = 12 treatments arranged in 4 rows, 4 columns 

and intersection of each row-column having 3 units: 

 

Rows 
 Columns  

I II III IV 

I 1 5 9 2 8 11 3 6 12 4 7 10 

II 2 6 10 1 7 12 4 5 11 3 8 9 

III 3 7 11 4 6 9 1 8 10 2 5 12 

IV 4 8 12 3 5 10 2 7 9 1 6 11 

 

The robustness of this class of designs has been investigated against missing of some/ all 

observations of last column. Without loss of generality, the observations from units of last column 

are assumed to be missing as the columns can always be interchanged. Table 2.1 gives the 

parameters of the designs considered i.e., number of treatments (v ≤ 25), number of rows (p), 

number of columns (q), replication (r), cell size (k) and the number of observation(s) missing with 

the unit/ cell number of the last column from which the observation(s) are missing along with the 

efficiency (E) of the residual design relative to the original design. The efficiency has been 

obtained by taking the ratio of harmonic means (HM) of information matrix Cd for treatment 

effects of original design with all observations to that of residual design Cd* with missing 

observations. 

Table 2.1: Parameters and efficiency of the residual design for Series I 

S. 

No 

v p q r k No. of 

observations 

missing 

Unit/ Cell No. HM 

(Cd) 

 

HM 

(Cd*) 

 

E 

1 6 3 3 3 2 1 last unit in last 

cell 

3.00 2.67 0.89 

2 6 3 3 3 2 2 both units in last 

cell 

3.00 2.31 0.77 
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3 6 3 3 3 2 2 any two units 

from different 

cells 

3.00 2.33 0.78 

4 6 3 3 3 2 3 any three units 

from different 

cells 

3.00 2.07 0.69 

5 6 3 3 3 2 4 last two units 

from different 

cells and last cell 

total 

3.00 2.07 0.69 

6 8 4 4 4 2 1 last unit in last 

cell 

3.87 3.49 0.90 

7 8 4 4 4 2 2 last cell total 3.87 3.31 0.86 

8 8 4 4 4 2 2 any two  

observations 

from last units of 

last column 

3.87 3.29 0.85 

9 8 4 4 4 2 3 any three  

observations 

from last unit of 

last column 

3.87 3.00 0.78 

10 8 4 4 4 2 4 last two units 

from different 

cells and last cell 

total  

3.87 2.80 0.72 

11 8 4 4 4 2 5 last three units 

from different 

cells and last cell 

total 

3.87 2.68 0.69 

12 12 4 4 4 3 1 last unit in last 

cell 

4.00 3.87 0.97 

13 12 4 4 4 3 2 last any two units 

from last cell 

4.00 3.74 0.94 

14 12 4 4 4 3 3 last cell total 4.00 3.62 0.90 

15 12 4 4 4 3 2 any two  

observations 

from last unit of 

last column 

4.00 3.73 0.93 
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16 12 4 4 4 3 3 any three  

observations 

from last unit of 

last column 

4.00 3.59 0.90 

17 12 4 4 4 3 4 last unit from 

other cell and 

last cell total 

4.00 3.46 0.86 

18 12 4 4 4 3 6 last three units 

from different 

cells and last cell 

total 

4.00 3.25 0.81 

19 10 5 5 5 2 1 last unit in last 

cell 

5.00 4.85 0.97 

20 10 5 5 5 2 2 last cell total 5.00 4.70 0.94 

21 10 5 5 5 2 2 any two  

observations 

from last unit of 

last column 

5.00 4.68 0.94 

22 10 5 5 5 2 3 any three  

observations 

from last unit of 

last column 

5.00 4.49 0.90 

23 10 5 5 5 2 4 any four  

observations 

from last unit of 

last column 

5.00 4.28 0.86 

24 10 5 5 5 2 5 last unit of each 

cell last column 

5.00 4.06 0.81 

25 10 5 5 5 2 6 last unit of last 

cell last column 

last cell total 

5.00 3.94 0.79 

26 15 5 5 5 3 1 last unit in last 

cell 

5.00 4.91 0.98 

27 15 5 5 5 3 2 any two 

observations 

from last cell 

5.00 4.81 0.96 

28 15 5 5 5 3 3 last cell total 5.00 4.72 0.94 
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29 15 5 5 5 3 2 any two  

observations 

from last unit of 

last column 

5.00 4.81 0.96 

30 15 5 5 5 3 3 any three  

observations 

from last unit of 

last column 

5.00 4.70 0.94 

31 15 5 5 5 3 4 any four  

observations 

from last unit of 

last column 

5.00 4.58 0.92 

32 15 5 5 5 3 5 last unit of last 

cell last column 

5.00 4.46 0.89 

33 15 5 5 5 3 7 last unit of last 

cell last column 

last cell total 

5.00 4.46 0.89 

34 14 7 7 7 2 1 last unit in last 

cell 

7.00 6.90 0.99 

35 14 7 7 7 2 2 last cell total 7.00 6.81 0.97 

36 14 7 7 7 2 2 any two  

observations 

from last unit of 

last column 

7.00 6.80 0.97 

37 14 7 7 7 2 3 any three  

observations 

from last unit of 

last column 

7.00 6.80 0.97 

38 14 7 7 7 2 4 any four  

observations 

from last unit of 

last column 

7.00 6.56 0.94 

39 14 7 7 7 2 5 any five  

observations 

from last unit of 

last column 

7.00 6.44 0.92 

40 14 7 7 7 2 6 any six  

observations 

7.00 6.30 0.90 
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from last unit of 

last column 

41 14 7 7 7 2 7 last unit of last 

cell last column 

7.00 6.17 0.88 

42 14 7 7 7 2 8 last unit of last 

cell last column 

last cell total 

7.00 6.17 0.88 

43 21 7 7 7 3 1 last unit in last 

cell 

7.00 6.94 0.99 

44 21 7 7 7 3 2 any two 

observations 

from last cell 

7.00 6.94 0.99 

45 21 7 7 7 3 3 last cell total 7.00 6.82 0.97 

46 21 7 7 7 3 2 any two  

observations 

from last unit of 

last column 

7.00 6.87 0.98 

47 21 7 7 7 3 3 any three  

observations 

from last unit of 

last column 

7.00 6.81 0.97 

48 21 7 7 7 3 4 any four  

observations 

from last unit of 

last column 

7.00 6.73 0.96 

49 21 7 7 7 3 5 any five  

observations 

from last unit of 

last column 

7.00 6.65 0.95 

50 21 7 7 7 3 6 any six  

observations 

from last unit of 

last column 

7.00 6.58 0.94 

51 21 7 7 7 3 7 last unit of last 

cell last column 

7.00 6.50 0.93 

52 21 7 7 7 3 9 last unit of last 

cell last column 

last cell total 

7.00 6.39 0.91 
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The efficiency of the designs obtained above in Table 2.1 has been summarized in Table 2.2. It is 

seen that the efficiency of the resultant design is quite high for most of the designs.  

 

Table 2.2: Summary of efficiency 

S. No. Efficiency No. of Designs 

1 < 0.70 3 

2 0.70 - 0.80 5 

3 0.80 - 0.85 2 

4 0.85 - 0.90 9 

5 0.90 - 0.95 17 

6  0.95 16 

 

Out of 52 designs investigated, 16 designs have efficiency more than and equal to 95% and are 

highly robust where as there are 17 designs that have efficiency between 0.90 - 0.95 and are thus 

robust. There is a decreasing trend in efficiency with increase in number of missing observations. 

In fact, the intensity or the consequences depends upon the size of the design. It is seen that smaller 

designs are more affected by the missing observations. 

 

Series II: Jaggi et al. (2010) developed a series of generalized incomplete Trojan-type design for 

v = sm (s 2, m distinct group), cells of size k with p =m rows and q columns. 

Example II.1: Following is a generalized incomplete Trojan-type design for v = 16 treatments 

arranged in 8 rows, 2 columns and intersection of each row-column having k= 4 units: 

Rows   Columns   

 I II 

I 1 2 3 4 5 6 7 8 

II 3 4 5 6 7 8 9 10 

III 5 6 7 8 9 10 11 12 
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IV 7 8 9 10 11 12 13 14 

V 9 10 11 12 13 14 15 16 

VI 11 12 13 14 15 16 1 2 

VII 13 14 15 16 1 2 3 4 

VIII 15 16 1 2 3 4 5 6 

 

The robustness of this class of designs has been investigated against missing of some/ all of 

observations pertaining to last column. Table 2.3 gives the parameters and efficiency of the 

residual design for this series of GRC designs. 

  

Table 2.3: Parameters and efficiency of the residual design for Series II 

S. 

No. 
v p q r k 

No of 

Observations 

Missing 

Cell/ Unit 

No 

HM 

(Cd) 

 

HM 

(Cd*) 

 

E 

1 16 8 2 4 4 1 
last unit in 

last cell 
3.60 3.51 0.97 

2 16 8 2 4 4 2 
any two unit 

from last cell 
3.60 3.40 0.94 

3 16 8 2 4 4 3 

any three 

unit from last 

cell 

3.60 3.32 0.92 

4 16 8 2 4 4 4 total last cell 3.60 3.22 0.89 

5 16 8 2 4 4 2 

any two  

observation 

from last unit 

of last 

column 

3.60 3.22 0.89 

6 16 8 2 4 4 3 

any three  

observation 

from last unit 

of last 

column 

3.60 3.20 0.89 

7 16 8 2 4 4 4 
any four  

observation 
3.60 2.99 0.83 
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from last unit 

of last 

column 

8 16 8 2 4 4 5 

any five  

observation 

from last unit 

of last 

column 

3.60 2.99 0.83 

9 16 8 2 4 4 6 

any six  

observation 

from last unit 

of last 

column 

3.60 2.60 0.72 

10 16 8 2 4 4 7 

any seven  

observation 

from last unit 

of last 

column 

3.60 2.52 0.70 

11 16 8 2 4 4 8 

last unit of 

last cell last 

column 

3.60 2.49 0.69 

12 16 8 2 4 4 11 

last unit of 

last cell last 

column last 

cell total 

3.60 2.26 0.63 

13 16 8 3 6 4 1 last 5.86 5.78 0.99 

14 16 8 3 6 4 2 

any two 

observation 

from last cell 

5.86 5.70 0.97 

15 16 8 3 6 4 3 

any three 

observation 

from last cell 

5.86 5.62 0.96 

16 16 8 3 6 4 4 total last cell 5.86 5.54 0.94 

17 16 8 3 6 4 2 

any two  

observation 

from last unit 

of last 

column 

5.86 5.54 0.94 

18 16 8 3 6 4 3 
any three  

observation 
5.86 5.58 0.95 
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from last unit 

of last 

column 

19 16 8 3 6 4 4 

any four  

observation 

from last unit 

of last 

column 

5.86 5.46 0.93 

20 16 8 3 6 4 5 

any five  

observation 

from last unit 

of last 

column 

5.86 5.34 0.91 

21 16 8 3 6 4 6 

any six  

observation 

from last unit 

of last 

column 

5.86 5.34 0.91 

22 16 8 3 6 4 7 

any seven  

observation 

from last unit 

of last 

column 

5.86 5.08 0.87 

23 16 8 3 6 4 8 

last unit of 

last cell last 

column 

5.86 4.95 0.84 

24 16 8 3 6 4 11 

last unit of 

last cell last 

column last 

cell total 

5.86 4.73 0.81 

25 6 6 2 4 2 1 last 3.57 3.28 0.92 

26 6 6 2 4 2 2 total last cell 3.57 3.01 0.84 

27 6 6 2 4 2 2 

any two  

observation 

from last unit 

of last 

column 

3.57 2.83 0.79 

28 6 6 2 4 2 3 

any three  

observation 

from last unit 

3.57 2.13 0.60 
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of last 

column 

29 6 6 2 4 2 4 

any four  

observation 

from last unit 

of last 

column 

3.57 2.19 0.61 

30 6 6 2 4 2 5 

any five  

observation 

from last unit 

of last 

column 

3.57 2.00 0.56 

31 6 6 2 4 2 6 

last unit of 

last cell last 

column 

3.57 1.58 0.44 

32 6 6 2 4 2 7 

last unit of 

last cell last 

column last 

cell total 

3.57 1.41 0.40 

33 6 7 2 6 3 1 
last unit in 

last cell 
5.83 5.63 0.97 

34 6 7 2 6 3 2 

any three 

units in last 

cell 

5.83 5.63 0.97 

35 6 7 2 6 3 3 
all the units 

in last cell 
5.83 5.25 0.90 

36 6 7 2 6 3 2 

any two  

observation 

from last unit 

of last 

column 

5.83 5.38 0.92 

37 6 7 2 6 3 3 

any three  

observation 

from last unit 

of last 

column 

5.83 5.38 0.92 

38 6 7 2 6 3 4 

any four  

observation 

from last unit 

5.83 4.70 0.81 
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of last 

column 

39 6 7 2 6 3 5 

any five  

observation 

from last unit 

of last 

column 

5.83 4.40 0.75 

40 6 7 2 6 3 6 

any six  

observation 

from last unit 

of last 

column 

5.83 4.40 0.75 

41 6 7 2 6 3 7 

last unit of 

last cell last 

column 

5.83 4.28 0.73 

42 6 7 2 6 3 9 

last unit of 

last cell last 

column last 

cell total 

5.83 3.83 0.66 

 

It is seen from Table 2.3 that out of 42 design, 7 designs have efficiency more than and equal to 

0.95 and are highly robust where as there are 11 designs that have efficiency between 90% to 95% 

and are thus robust. Here also there is a decreasing trend in efficiency with increase in number of 

missing observations. Smaller designs, in terms of the total number of units, are more affected by 

the missing observations. 

 

Series III: Datta et al.(2016) developed a series of GRC designs for v = 2t + 1 (t > 1) and cells of 

size two with p = t rows of size 2(2t+1), q = (2t+1) columns of size 2t, r = 2t and k = 2 by developing 

the following initial columns mod (2t + 1): 

 

1 2t + 1 

2 2t 

3 2t – 1 

. . 
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. . 

. . 

t 2t - (t - 2) 

 

Example III.1: For t = 3, v = 7 and the contents of the initial column are as follows: 

 

1 7 

2 6 

3 5 

 

Developing these columns mod 7 results in the following GRC design in three rows of size 14, 7 

columns of size 6 with 2 units per cell and replication of each treatment being 6: 

 

Rows 
Columns 

I II III IV V VI VII 

I 1 7 2 1 3 2 4 3 5 4 6 5 7 6 

II 2 6 3 7 4 1 5 2 6 3 7 4 1 5 

III 3 5 4 6 5 7 6 1 7 2 1 3 2 4 

 

The robustness of this class of designs has been investigated against missing of some/ all of 

observations pertaining to last column. Table 2.4 gives the parameters and efficiency of the 

residual design for this series of GRC designs.  

 

Table 2.4: Parameters and efficiency of the residual design for Series III 

S. 

No. 

v p q r k No. of 

observations 

missing 

Unit/ Cell 

No. 

HM 

(Cd) 

 

HM 

(Cd*) 

 

E 

1 5 2 4 4 2 1 last unit in 

last cell 

3.75 3.41 0.91 
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2 5 2 4 4 2 2 both units in 

last cell 

3.75 3.08 0.82 

3 5 2 4 4 2 2 any two units 

from different 

cells 

3.75 3.07 0.82 

4 5 2 4 4 2 3 any three 

units from 

different cells 

3.75 2.79 0.74 

5 7 3 7 6 2 1 last unit in 

last cell 

5.83 5.63 0.96 

6 7 3 7 6 2 2 both units in 

last cell 

5.83 5.42 0.93 

7 7 3 7 6 2 3 any three 

units from 

different cells 

5.83 5.21 0.89 

8 9 4 9 8 2 1 last unit in 

last cell 

7.88 7.73 0.98 

9 9 4 9 8 2 2 both units in 

last cell 

7.88 7.58 0.96 

10 9 4 9 8 2 4 any four  

observations 

from last unit 

of last column 

7.88 7.23 0.92 

11 9 4 9 8 2 5 any three  

observations 

from last unit 

and last cell 

total 

7.88 7.09 0.90 

12 11 5 11 10 2 1 last unit in 

last cell 

9.90 9.78 0.99 

13 11 5 11 10 2 2 both units in 

last cell 

9.90 9.67 0.98 

14 11 5 11 10 2 5 last unit of the 

cells 

9.90 9.29 0.94 

15 11 5 11 10 2 6 any four  

observations 

from last unit 

9.90 9.18 0.93 
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and last cell 

total 

16 13 6 13 12 2 1 last unit in 

last cell 

11.92 11.82 0.99 

17 13 6 13 12 2 2 both units in 

last cell 

11.92 11.73 0.98 

18 13 6 13 12 2 6 last units of 

the cells  

11.92 11.31 0.95 

19 13 6 13 12 2 7 any five  

observations 

from last unit 

and last cell 

total 

11.92 11.22 0.94 

20 15 7 15 14 2 1 last unit in 

last cell 

  13.93 13.85 0.99 

21 15 7 15 14 2 2 both units in 

last cell 

13.93 13.77 0.99 

22 15 7 15 14 2 7 last units of 

the cells  

13.93 13.34 0.96 

23 15 7 15 14 2 8 any six  

observations 

from last unit 

and last cell 

total 

13.93 13.27 0.95 

 

It is seen from Table 2.4 that the efficiency of the resultant design is quite high for most of the 

designs. Out of 23 design, 11 designs have efficiency more than and equal to 0.95 and are highly 

robust where as there are 7 designs that have efficiency between 90% to 95% and are thus robust. 

Here also there is a decreasing trend in efficiency with increase in number of missing observations. 

Smaller designs, in terms of the total number of units, are more affected by the missing 

observations. 
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Series IV: Datta et al. (2016) developed GRC designs with parameters v (even), p = (v-1) rows of 

size v, q = 
v

2
 columns of size 2(v-1), r = (v-1) and k = 2 by developing following initial columns 

mod v: 

 

1 v 

v 2 

2 v-1 

v-1 3 

. . 

. . 

. . 

v - (
v

2
-2) v - 

v

2
 

v

2
 

v

2
+ 1 

Example IV.1: For v = 8, following is a GRC design with cells containing 2 units in 7 rows of 

size 8 each and 4 columns of size 14 each:  

 

Rows 
Columns 

I II III IV 

I 1 8 2 1 3 2 4 3 

II 8 2 1 3 2 4 3 5 

III 2 7 3 8 4 1 5 2 

IV 7 3 8 4 1 5 2 6 

V 3 6 4 7 5 8 6 1 

VI 6 4 7 5 8 6 1 7 
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VII 4 5 5 6 6 7 7 8 

 

The efficiency of this class of design has been worked out against missing of some/ all of 

observations of last cell/ column. Table 2.5 contains the parameters (v ≤ 12) and efficiency of the 

residual design for this series. 

 

Table 2.5 Parameters and efficiency of the residual design for Series IV 

S. 

No. 

v p q r k No. of 

observations 

missing 

Unit/ Cell No. HM 

(Cd) 

 

HM 

(Cd*) 

 

E 

1 6 5 3 5 2 1 last unit in last 

cell 

4.41 4.06 0.92 

2 6 5 3 5 2 2 both units in 

last cell 

4.41 3.92 0.89 

3 6 5 3 5 2 2 any two units 

from different 

cells 

4.41 3.75 0.85 

4 6 5 3 5 2 3 any three units 

from different 

cells 

4.41 3.29 0.75 

5 6 5 3 5 2 4 any four  

observations 

from last unit  

4.41 2.53 0.57 

6 6 5 3 5 2 5 last unit in 

each cell of 

last column 

4.41 3.03 0.69 

7 6 5 3 5 2 6 last unit in 

each cell of 

last column 

and total last 

cell 

4.41 3.03 0.69 

8 8 7 4 7 2 1 last unit in last 

cell 

6.37 6.15 0.97 

9 8 7 4 7 2 2 both units in 

last cell 

6.37 6.04 0.95 



Robustness of GRC Designs Against Missing Observation(s) 

27 
 

10 8 7 4 7 2 2 any two units 

from different 

cells 

6.37 5.98 0.94 

11 8 7 4 7 2 3 any three units 

from different 

cells 

6.37 5.73 0.90 

12 8 7 4 7 2 4 any four  

observations 

from last unit 

of last column 

6.37 5.28 0.83 

13 8 7 4 7 2 5 any five  

observations 

from last unit 

of last column 

6.37 5.25 0.83 

14 8 7 4 7 2 6 any six  

observations 

from last unit 

of last column 

6.37 4.83 0.76 

15 8 7 4 7 2 7 last unit in 

each cell of 

last column 

6.37 5.11 0.80 

16 8 7 4 7 2 8 last unit in 

each cell of 

last column 

and total last 

cell 

6.37 5.11 0.80 

17 10 9 5 9 2 1 last unit in last 

cell 

8.34 8.19 0.98 

18 10 9 5 9 2 2 both units in 

last cell 

8.34 8.09 0.97 

19 10 9 5 9 2 2 any two units 

from different 

cells 

8.34 8.06 0.97 

20 10 9 5 9 2 3 any three units 

from different 

cells 

8.34 7.89 0.95 

21 10 9 5 9 2 4 any four  

observations 

8.34 7.67 0.92 
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from last unit 

of last column 

22 10 9 5 9 2 5 any five  

observations 

from last unit 

of last column 

8.34 7.50 0.90 

23 10 9 5 9 2 6 any six  

observations 

from last unit 

of last column 

8.34 7.24 0.87 

24 10 9 5 9 2 7 any seven  

observations 

from last unit 

of last column 

8.34 7.21 0.86 

25 10 9 5 9 2 8 any eight  

observations 

from last unit 

of last column 

8.34 6.96 0.83 

26 10 9 5 9 2 9 last unit in 

each cell of 

last column 

8.34 7.11 0.85 

27 10 9 5 9 2 10 last unit in 

each cell of 

last column 

and total last 

cell 

8.34 7.11 0.85 

28 12 11 6 11 2 1 last unit in last 

cell 

10.3

2 

10.21 0.99 

29 12 11 6 11 2 2 total last cell 10.3

2 

10.12 0.98 

30 12 11 6 11 2 2 any two  

observations 

from last unit 

of last column 

10.3

2 

10.09 0.98 

31 12 11 6 11 2 3 any three  

observations 

from last unit 

of last column 

10.3

2 

9.99 0.97 
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32 12 11 6 11 2 4 any four  

observations 

from last unit 

of last column 

10.3

2 

9.99 0.97 

33 12 11 6 11 2 5 any five  

observations 

from last unit 

of last column 

10.3

2 

9.73 0.94 

34 12 11 6 11 2 6 any six  

observations 

from last unit 

of last column 

10.3

2 

9.54 0.92 

35 12 11 6 11 2 7 any seven  

observations 

from last unit 

of last column 

10.3

2 

9.49 0.92 

36 12 11 6 11 2 8 any eight  

observations 

from last unit 

of last column 

10.3

2 

9.28 0.90 

37 12 11 6 11 2 9 any nine  

observations 

from last unit 

of last column 

10.3

2 

9.27 0.90 

38 12 11 6 11 2 10 any ten  

observations 

from last unit 

of last column 

10.3

2 

9.10 0.88 

39 12 11 6 11 2 11 last unit in 

each cell of 

last column 

10.3

2 

9.10 0.88 

40 12 11 6 11 2 12 last unit in 

each cell of 

last column 

and total last 

cell 

10.3

2 

9.10 0.88 

41 14 13 7 13 2 1 last unit in last 

cell 

12.3

1 

12.31 1.00 
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42 14 13 7 13 2 2 both units in 

last cell 

12.3

1 

12.14 0.99 

43 14 13 7 13 2 2 any two units 

from different 

cells 

12.3

1 

12.12 0.98 

44 14 13 7 13 2 3 any three units 

from different 

cells 

12.3

1 

12.04 0.98 

45 14 13 7 13 2 4 any four  

observations 

from last unit 

of last column 

12.3

1 

12.04 0.98 

46 14 13 7 13 2 5 any five  

observations 

from last unit 

of last column 

12.3

1 

11.82 0.96 

47 14 13 7 13 2 6 any six  

observations 

from last unit 

of last column 

12.3

1 

11.70 0.95 

48 14 13 7 13 2 7 any seven  

observations 

from last unit 

of last column 

12.3

1 

11.60 0.94 

49 14 13 7 13 2 8 any eight  

observations 

from last unit 

of last column 

12.3

1 

11.45 0.93 

50 14 13 7 13 2 9 any nine  

observations 

from last unit 

of last column 

12.3

1 

11.41 0.93 

51 14 13 7 13 2 10 any ten  

observations 

from last unit 

of last column 

12.3

1 

11.27 0.92 

52 14 13 7 13 2 11 any eleven  

observations 

12.3

1 

11.26 0.91 
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from last unit 

of last column 

53 14 13 7 13 2 12 any twelve  

observations 

from last unit 

of last column 

12.3

1 

11.13 0.90 

54 14 13 7 13 2 13 last unit in 

each cell of 

last column 

12.3

1 

11.12 0.90 

55 14 13 7 13 2 14 last unit in 

each cell of 

last column 

and total last 

cell 

12.3

1 

11.12 0.90 

 

It is seen from the Table 2.5 that the efficiency of the resultant design is quite high for most of the 

designs. Out of 55 designs, 36 designs have efficiency more than 90% and are thus robust. 

 

Series V: Datta et al. (2015) developed a method of constructing GRC designs with v (prime) 

treatments in p = 2 rows of size 
kv(v-1)

2
, q = 

v(v-1)

2
columns of  size 2k and each cell of size k.   

 

Example V.1: Following is a  GRC design with v = 5 treatments  in 2 rows of size 20 each and 10 

columns of size 4 each and cells containing 2 units:  

 

Rows 
Columns 

I II III IV V VI VII VIII IX X 

I 1 2 2 3 3 4 4 5 5 1 1 3 2 4 3 5 4 1 5 2 

II 2 3 3 4 4 5 5 1 1 2 3 5 4 1 5 2 1 3 2 4 

 

Example V.2: For v = 5, a GRC design with cell size 3 is obtained in 2 rows of size 30 each and 

10 columns of size 6 each as follows: 
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Rows 
Columns 

I II III IV V VI VII VIII IX X 

I 1 2 3 2 3 4 3 4 5 4 5 1 5 1 2 1 3 5 2 4 1 3 5 2 4 1 3 5 2 4 

II 2 3 4 3 4 5 4 5 1 5 1 2 1 2 3 3 5 2 4 1 3 5 2 4 1 3 5 2 4 1 

 

The robustness of this class of designs is investigated against missing of observations of last cell/ 

column. Table 2.6 lists the parameters and efficiency of the residual design for this series. 

 

Table 2.6: Parameters and efficiency of the residual design for Series V 

S. 

No. 

v p q r k No. of 

observations 

missing 

Unit/ Cell 

No. 

HM 

(Cd) 

 

HM 

(Cd*) 

 

E 

1 5 2 10 8 2 1 last unit in 

last cell 

6.25 5.90 0.94 

2 5 2 10 8 2 2 both units in 

last cell 

6.25 5.82 0.93 

3 5 2 10 8 2 2 any two units 

from 

different cells 

6.25 5.82 0.93 

4 5 2 10 8 2 3 any three 

units from 

different cells 

6.25 5.52 0.88 

5 5 2 10 12 3 1 last unit in 

last cell 

10.83 10.52 0.97 

6 5 2 10 12 3 2 any two 

observations 

from last cell 

10.83 10.21 0.94 

7 5 2 10 12 3 3 total last cell 10.83 10.22 0.94 

8 5 2 10 12 3 2 last column 

each cell last 

unit 

10.83 10.33 0.95 

9 5 2 10 12 3 4 last column 

each cell last 

10.83 9.93 0.92 
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unit and last 

cell total 

10 5 2 10 16 4 1 last unit in 

last cell 

15.63 15.33 0.98 

11 5 2 10 16 4 2 any two 

observations 

from last cell 

15.63 15.12 0.97 

12 5 2 10 16 4 3 any three 

observations 

from last cell 

15.63 14.94 0.96 

13 5 2 10 16 4 4 total last cell 15.63 14.80 0.95 

14 5 2 10 16 4 2 last unit in 

each cell of 

last column  

15.63 15.12 0.97 

15 5 2 10 16 4 5 last unit in 

each cell of 

last column 

and last cell 

total 

15.63 14.52 0.93 

16 7 2 21 12 2 1 last unit in 

last cell 

8.75 8.53 0.97 

17 7 2 21 12 2 2 two 

observations 

from last cell 

8.75 8.47 0.97 

18 7 2 21 12 2 2 last column 

each cell last 

unit 

8.75 8.47 0.97 

19 7 2 21 12 2 3 last column 

each cell last 

unit and last 

cell total 

8.75 8.28 0.95 

20 7 2 21 18 3 1 last unit in 

last cell 

15.17 14.96 0.99 

21 7 2 21 18 3 2 any two 

observations 

from last cell 

15.17 14.84 0.98 
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22 7 2 21 18 3 3 total last cell 15.17 14.76 0.97 

23 7 2 21 18 3 2 last column 

each cell last 

unit 

15.17 14.84 0.98 

24 7 2 21 18 3 4 last column 

each cell last 

unit and last 

cell total 

15.17 14.56 0.96 

25 7 2 21 24 4 1 last unit in 

last cell 

21.88 21.68 0.99 

26 7 2 21 24 4 2 any two 

observations 

from last cell 

21.88 21.54 0.98 

27 7 2 21 24 4 3 any three 

observations 

from last cell 

21.88 21.42 0.98 

28 7 2 21 24 4 4 total last cell 21.88 21.32 0.97 

29 7 2 21 24 4 2 last column 

each cell last 

unit 

21.88 21.54 0.98 

30 7 2 21 24 4 5 last column 

each cell last 

unit and last 

cell total 

21.88 21.14 0.97 

31 7 2 21 30 5 1 last unit in 

last cell 

28.70 28.51 0.99 

32 7 2 21 30 5 2 any two 

observations 

from last cell 

28.70 28.37 0.99 

33 7 2 21 30 5 3 any three 

observations 

from last cell 

28.70 28.23 0.98 

34 7 2 21 30 5 4 any four 

observations 

from last cell 

28.70 28.10 0.98 

35 7 2 21 30 5 5 total last cell 28.70 27.99 0.98 
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36 7 2 21 30 5 2 each cell in 

last unit of 

last column  

28.70 28.36 0.99 

37 7 2 21 30 5 6 last unit  in 

each cell of 

last column 

and total last 

cell  

28.70 27.81 0.97 

38 11 2 55 20 2 1 last unit in 

last cell 

13.75 13.62 0.99 

39 11 2 55 20 2 2 total last cell 13.75 13.59 0.99 

40 11 2 55 20 2 2 each cell in 

last unit of 

last column  

13.75 13.59 0.99 

41 11 2 55 20 2 3 each cell in 

last unit of 

last column 

and total last 

cell  

13.75 13.48 0.98 

42 11 2 55 30 3 1 last unit in 

last cell 

23.83 23.71 1.00 

43 11 2 55 30 3 2 any two 

observations 

from last cell 

23.83 23.64 0.99 

44 11 2 55 30 3 3 total last cell 23.83 23.59 0.99 

45 11 2 55 30 3 2 last unit in 

each cell of 

last column  

23.83 23.64 0.99 

46 11 2 55 30 3 4 last unit in 

each cell of 

last column 

and last cell 

total 

23.83 23.48 0.99 

47 11 2 55 40 4 1 last unit in 

last cell 

34.35 34.24 1.00 
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48 11 2 55 40 4 2 any two 

observations 

from last cell 

34.35 34.16 0.99 

49 11 2 55 40 4 3 any three 

observations 

from last cell 

34.35 34.08 0.99 

50 11 2 55 40 4 4 total last cell 34.35 34.02 0.99 

51 11 2 55 40 4 2 last unit in 

each cell of 

last column  

34.35 34.16 0.99 

52 11 2 55 40 4 5 last unit in 

each cell of 

last column 

and last cell 

total 

34.35 33.92 0.99 

53 11 2 55 50 5 1 last unit in 

last cell 

45.04 44.93 1.00 

54 11 2 55 50 5 2 any two 

observations 

from last cell 

45.04 44.85 1.00 

55 11 2 55 50 5 3 any three 

observations 

from last cell 

45.04 44.77 0.99 

56 11 2 55 50 5 4 any four 

observations 

from last cell 

45.04 44.69 0.99 

57 11 2 55 50 5 5 total last cell 45.04 44.63 0.99 

58 11 2 55 50 5 2 last unit  in 

each cell of 

last column  

45.04 44.85 1.00 

59 11 2 55 50 5 6 last unit in 

each cell of 

last column 

and last cell 

total 

45.04 44.53 0.99 
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It is seen from the Table 2.6 that the efficiency of the resultant design is quite high for most of the 

designs. Out of 59 designs, 51 designs have efficiency more than and equal to 0.95 and are highly 

robust where as there are 7 designs that have efficiency 0.90-0.95 and are thus robust. There are 

few designs with no loss of efficiency.  

 

Series VI: Datta et al. (2015) developed this series of GRC design for unequal cell sizes. This 

design is developed by using a BIB design with parameters v*, b* (even), r*, k*, λ*.  The resulting 

design have parameters v = v*, p = 2 rows of size 
v*b*

2
, q = b* columns of size v*, r = b*, k1 = 

k*, and k2 = v*- k*.   

 

Example VI.1: Consider a BIB design with parameters v* = 5, b* = 10, r* = 4, k* = 2, λ* = 1. 

The following is a GRC design with parameters v = 5, p = 2 of size 25 each and q = 10 columns 

of size 5, r = 10, k1 = 2 and k2 = 3. 

 

 

 

The following Table 2.7 the parameter of the GRC designs developed by Series V along with 

number of observation missing and the cell number from which the observations are missing, 

harmonic mean of non-zero eigen values of information matrix of original design and the residual 

design under the three-way model and The efficiency (E ) of the residual design relative to the 

original design. 

 

 

 

Rows 
Columns 

I II III IV V VI VII VIII IX X 

I 1  2 1  3 1  4 1  5 2  3 3 4 5 2 4 5 2 3 5 2 3 4 1 4 5 

II 1 3 5 1 3 4 1 2 5 1 2 4 1 2 3 2  4 2  5 3  4 3  5 4  5 
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Table 2.7: Parameters and efficiency of the residual design for Series VI 

S. 

No. 

v p q r k No. of 

observation 

missing 

Unit/ Cell 

No. 

HM 

(Cd) 

 

HM 

(Cd*) 

 

E 

1 5 2 10 10 2    3 1 last unit in 

last cell 

8.50 8.29 0.98 

2 5 2 10 10 3    3 2 last any two 

units from 

last cell 

8.50 8.17 0.96 

3 5 2 10 10 4    3 3 last cell 

total 

8.50 7.93 0.93 

4 5 2 10 10 5    3 2 last unit of 

each cell of 

last column 

8.50 8.01 0.94 

5 5 2 10 10 6    3 5 last unit of 

each cell of 

last column 

and last cell 

total 

8.50 7.69 0.91 

6 9 2 12 12 3    6 1 last unit 12.00 11.86 0.99 

7 9 2 12 12 4    6 2 last any two 

units from 

last cell 

12.00 11.72 0.98 

8 9 2 12 12 5    6 3 last any 

three units 

from last 

cell 

12.00 11.59 0.97 

9 9 2 12 12 6    6 4 last any four 

units from 

last cell 

12.00 11.47 0.96 

10 9 2 12 12 7    6 5 last any five 

units from 

last cell 

12.00 11.34 0.94 

11 9 2 12 12 8    6 6 total last 

cell 

12.00 11.21 0.93 
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12 9 2 12 12 9    6 2 last unit of 

each cell of 

last column 

12.00 11.73 0.98 

13 9 2 12 12 10    6 9 last unit of 

each cell of 

last column 

and last cell 

total 

12.00 11.09 0.92 

14 9 2 18 8 4    5 1 last unit 18.00 17.86 0.99 

15 9 2 18 8 5    5 2 last any two 

units from 

last cell 

18.00 17.73 0.99 

16 9 2 18 8 6    5 3 any three 

units from 

last cell 

18.00 17.60 0.98 

17 9 2 18 8 7    5 4 last four 

units from 

last cell 

18.00 17.47 0.97 

18 9 2 18 8 8    5 5 total last 

cell 

18.00 17.34 0.96 

19 9 2 18 8 9    5 2 last unit of 

each cell of 

last column 

18.00 17.73 0.99 

20 9 2 18 8 10    5 9 last unit of 

each cell of 

last column 

and last cell 

total 

18.00 17.35 0.96 

21 10 2 30 30 3    7 1 last unit in 

last cell 

29.76 29.64 1.00 

22 10 2 30 30 4    7 2 last two 

units from 

last cell 

29.76 29.52 0.99 

23 10 2 30 30 5    7 3 last any 

three units 

from last 

cell 

29.76 29.40 0.99 
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24 10 2 30 30 6    7 4 last any four 

units from 

last cell 

29.76 29.29 0.98 

25 10 2 30 30 7    7 5 last any five 

units from 

last cell 

29.76 29.19 0.98 

26 10 2 30 30 8    7 6 last any six 

units from 

last cell 

29.76 29.09 0.98 

27 10 2 30 30 9    7 7 last cell 

total 

29.76 28.95 0.97 

28 10 2 30 30 10    7 2 last unit of 

each cell of 

last column 

29.76 29.53 0.99 

29 10 2 30 30 11    7 8 last unit of 

each cell of 

last column 

and last cell 

total 

29.76 28.84 0.97 

 

It is seen from the Table 2.7 that the efficiency of the resultant design is quite high for most of the 

designs. Out of 28 designs, 23 design have efficiency more than and equal to 95% and are highly 

robust and 5 designs are robust. 

Thus all the series of GRC designs investigated are found to be robust against loss of observations.  

 

 



CHAPTER 3 

GRC DESIGNS BALANCED FOR SPATIAL INDIRECT 

EFFECTS 
 

3.1 Introduction 

In case of a GRC design, there are more number of units in a cell and the treatment applied to one 

experimental unit in a cell may affect the response on neighbouring units in the same cell. 

Treatments such as fertilizer, irrigation, or pesticide may spread to adjacent units causing 

neighbour effects. Such experiments exhibit spatial effects, because the effect of having no 

treatment as a neighbour is different from the neighbour effects of any treatment. Thus, spatial 

effects resulting in competition between neighbouring units may contribute to variability in 

experimental results and lead to substantial losses in efficiency. In order to compare the effects of 

treatments in this situation, designs balanced for spatial effects are considered where effects from 

the treatments applied in adjacent experimental units are known to exist. Thus, neighbour-balanced 

designs wherein the allocation of treatments is such that every treatment occurs equally often with 

every other treatment as neighbour(s), are used for these situations. These designs permit the 

estimation of direct and neighbour effect(s) of treatments. 

It is seen in the literature that most of the work on designs with neighbour effects is concentrated 

under block design set up. There are a few work done related to study of neighbour balanced RC 

designs. Freeman (1979) has given some row-column designs balanced for neighbours with and 

without border plots. Federer and Basford (1991) have given three methods of constructing 

balanced nearest neighbour row-column or competition effect designs. Chan and Eccleston (2003) 

have given an algorithm which generates neighbour balanced row–column designs. Varghese et 

al. (2014) obtained row-column designs incorporating directional neighbour effects. 

In this study, it is assumed that the effect of a treatment applied to a given unit in a cell is the sum 

of the direct effect due to the treatment applied to the unit, spatial effect from the treatment applied 

to the immediate left-neighbouring unit and spatial effect from the treatment applied to the 

immediate right-neighbouring unit within the cell. It is further assumed that the spatial effects from 

both the adjacent units are same. In this chapter, series of GRC designs balanced for these spatial 

effects have been developed. The general expression for the joint information matrix for estimating 
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contrasts pertaining to direct effect and spatial effect has been derived. The efficiency factor of the 

designs has also been worked out. SAS codes have been written in PROC IML (given in 

ANNEXURE II) to calculate the information matrix (C-matrix) of treatment effects for a GRC 

designs balanced for these spatial effects, study the properties of the designs.  

 

3.2  Model and Experimental Setup 

We consider a GRC design with v treatments arranged in p rows, q columns and in each row-

column intersection (i.e. cells) there are k units resulting in total n= pqk experimental units or 

observations. In order to capture the spatial effect of treatments from neighbouring units, the 

following fixed effect model is considered: 

           ,    …(3.2.1) 

  i =1,2,…,p; j = 1,2,…,q; l = 1,2,…,k  

 

where Yl(ij) is the response from the lth unit corresponding to the intersection of ith row and jth 

column. µ is the general mean, [ , ]l i j  is the effect of the treatment appearing in the lth unit 

corresponding to the intersection of ith row and jth column,  ( -1)[ , ]l i j  is the neighbour effect due to 

the treatment applied in the adjacent left unit,  ( 1)[ , ]l i j   is the neighbour effect due to the treatment 

applied in the adjacent right unit, αi is the ith row effect and βj is the jth column effect. el(ij) is the 

error term identically and independently distributed and following normal distribution with mean 

zero and constant variance. 

The above model can be written in matrix notation as follows: 

   
1 1 2Y=μ1 + Δ τ+ Δ δ+ D α+ D β+ e       …(3.2.2) 

where Y is a n × 1 vector of observations, μ is the grand mean, 1 is the n × 1 vector of ones, Δʹ is 

n × v incidence matrix of observations versus treatments, τ is a v × 1 vector of direct treatment 

effects, 1

Δ  is n × v incidence matrix of observations versus neighbouring treatments 
1
D  is n × p 

incidence matrix of observations versus rows, α is p × 1 vector of row effects, 
2
D  is n × q incidence 

matrix of observations versus columns, β is q × 1 vector of column effects and e is n  1 vector of 

random errors with E(e)=0 and D(e)=σ2In. Further, 1 1 2

   v v p q nΔ 1 = 1 D 1 =D 1 =1Δ .  

 

          ( ) [ , ] ( -1)[ , ] ( 1)[ , ] ( )l ij l i j l i j l i j i j l ijy e           
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The design matrix Xn×(2v+p+q+1) consisting of treatment effects, neighbour effects, row effects, 

column effects and mean can be partitioned into parameters of interest X1 and nuisance parameters 

X2. 

 

       1 1,1 2X Δ Δ X 1 D D  

with 

    

   
         

    
         

1

1

1 1 1

1 2 2

1 2

1 1 1 1 3 4

1

1

1

ΔΔ ΔΔ R M
X X

Δ Δ Δ Δ M G

Δ1 ΔD ΔD r N N
X X

Δ 1 Δ D Δ D r N N

 

and            

        
         
        

1 2

2 2 1 1 1 1 2

2 2 1 2 2

n1 1 1 D 1 D p q

X X D 1 D D D D p K W

D 1 D D D D q W H

 

Here, N1 is an incidence matrix of order v × p of direct treatments vs. rows; N2 is an incidence 

matrix of order v × q of treatments vs. columns; N3 is an incidence matrix of order v × p of 

neighbour treatments vs. rows; N4 is an incidence matrix of order v × q of neighbour treatments 

vs. columns; M is an incidence matrix of order v × v of direct treatments vs. neighbour treatments; 

W is an incidence matrix of order p × q of rows vs. columns; r= (r1,r2,…, rv) is the v × 1 replication 

vector of direct treatments r1= (r11, r12,…,r1v) is the v ×1 replication vector of the treatments as 

neighbour with r1m (m = 1,2,…,v) being the number of times the mth treatment appears as neighbour 

in the design; R = diag(r1, r2,…, rv) is the diagonal matrix of replication of treatments; G = diag(r11, 

r12,…, r1v) is the diagonal matrix of replication of treatments as neighbour; p = (p1, p2,…, pp)  is 

the p × 1 vector of row sizes; q = (q1, q2,…, qq) is the q × 1 vector of column sizes; K = diag(k1, 

k2,…,kp) is the diagonal matrix of row sizes; H = diag(h1, h2,…,hq) is the diagonal matrix of column 

sizes. 

 

The joint information matrix for estimating all the effects (direct and neighbors) can be obtained 

as 

1 1 1 2 2 2 2 1
    -

C X X - X X (X X ) X X  
where 

2 2
 -

(X X ) is the generalized inverse of 
2 2
(X X )  and is obtained using the following result: 
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then
    
   

        

- - -

-

- -

A B A FE F FE
X X

B D E F E  

  

where  -
F A B  and =  E D B A B . 

 

Here, 
-

F=K W  and , -
E=H- W K W  thus

 

2 2

0

( ) 



  
 

    
 
   

- -

-

0 0

X X 0 K FE F FE

0 E F E

 

The joint information matrix for treatment and neighbour effects is 

 

2 
 
 
 

11 1

21 22

C C
C

C C
        …(3.2.3) 

 

where, 

 

11 1 1 1 1 2 1 1 2 2 2

12 1 3 1 3 2 3 1 4 2 4

21 3 1 3 1 3 2 4 1 4 2

22 3 3 3 3 4 3

( )

( E )

( E )

(

       

       

       

  

        

        

        

     

- -

- -

- -

- -

C R N K N N FE F N N E F N N FE N N E N

C M N K N N FE F N N E F N N F N N E N

C M N K N N FE F N N E F N N F N N E N

C G N K N N FE F N N E F N 3 4 4 4 )      N FE N N E N

 

 

The 2v × 2v matrix C is symmetric, non negative definite with zero row and column sums. From 

the above, the information matrices for estimating the direct effects and neighbour effects are 

obtained respectively as 

 
  22τ 11 12 21C C C C C  

 

and 
 δ 22 12 11 21C C C C C  

 

Definition 3.2.1: A GRC design with v treatments in p rows and q columns is said to be balanced 

for spatial effects from neighbouring units if within a cell every treatment has every other treatment 

appearing as neighbour a constant number of times (say  times). These designs are called here as 

Neighbour Balanced GRC (NBGRC) designs. Further, a NBGRC design, permitting the estimation 
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of direct and neighbour effects, is called variance balanced if the variance of any estimated 

elementary contrast among the direct effects is constant. 

 

3.3   NBGRC Design Construction 

Method 3.3.1: Consider v (prime) treatments. Develop the contents of ith (i=1,2,…,v) row (mod v) 

with cell size k = s (3 ≤  s ≤ v-1) as follows: 

i   i+1 …  i+(s-1) i  i+2 …  i+2(s-1) … i  i+(v-1) …  i+(v-1)(s-1) 

 

The design so obtained is a NBGRC design balanced for spatial effects with parameter v (prime), 

p = v, q = v-1, k = s (3 ≤ s ≤ v-1), r = s (v-1) and  = 2(s-1). 

 

The structure of the various incidence matrices as per model (3.2.2) for this class of the designs 

obtained is as follows: 

 

1

1 3

1 2 4

2

2(s -1)[ ]

( - s) (s -1)

s

( - 2s + 2) (2s -3)

2(s -1)

-

v

v

 

s 

 

   

  

   

  

  

1 1

2 2

1

1

ΔΔ =M J I

ΔD N I J

ΔD N J

Δ D N I J

Δ D N J

D D W J

 

 
1 1

1

2

s( -1)

[2( -1)(s -1) - 2(s - 2)] 2(s - 2)

s( -1)

s

v  

v

v

v

 

   

  

  

τ

1

2

ΔΔ = R I

Δ Δ G I J

D D K I

D D H I

 

 

The components of 2v × 2v joint information matrix for estimating the contrast pertaining to direct 

and neighbour effects as in (3.2.3) is obtained as below: 
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2 2

2

( -s) 2( -s)(s-1)+ (s-1)
s( -1) -

s( -1) s( -1)

( -s)( -2s+2) ( -s)(2s-3)+(s-1)( -2s+2)+ (s-1)(2s-3)
2(s-1)+ -2(s-1)

s( -1) s( -1)

( -2s+2)
2( -1)(s-1)-2(s-2)-

s( -1)

v v v
v

v v

v v v v v

v v

v
v

v

 
  
 

   
     

   

 
 


11

12 21

22

C I J

C C I J

C
22( -2s+2)(2s-3)+ (2s-3)

-2(s-2)
s( -1)

v v

v

 
  

  
I J

 

 

The information matrix for estimating the contrast for direct treatment effects is obtained as below: 

 

 

 A B

τ 11 12 22 21C C C C C

I J
 

where, 

 
 
 
 

2 2

2 2

f (2abs+df)
A= (sa- )-

sa sa(2a bs-2acs-d )
 

 
 
 
 

22fb+ b
B= -D

sa

v
 

         

 
 
 

 
 
 

2

2 2 2 2

1 (2de+ e -2sac)[(2sab+df)+ (ef+bd+ be-2abs)]
D= (ef+bd+vbe-2sab)-

2a bs-2acs-d e(3 -4 s+2s)-d -2 d

ef+bd+ be-2sab

sa

v v v

v v v

v
  

 a = (v-1), b = (s-1), c = (s-2), d = (v-2s+2), e = (2s-3) and f = (v-s). 

 

Example 3.3.1.1: For v = 5 and s = 3, following is a NBGRC design with parameters v = 5, p = 

5, q = 4, k = 3, r = 12 and  = 6: 

 

 Columns 

R
o
w

s 

1  2  3 1  3  5 1  4  2 1  5  4 

2  3  4 2  4  1 2  5  3 2  1  5 

3  4  5 3  5  2 3  1  4 3  2  1 

4  5  1 4  1  3 4  2  5 4  3  2 
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5  1  2 5  2  4 5  3  1 5  4  3 

For this design, 

11.66 2.33

4.16 0.83

13.92 2.25

 

  

 

11

12 21

22

C I J

C C I J

C I J

 

The information matrix for estimating direct treatment contrast is   

Ck = 10.42 I - 2.08 J 

 

Similarly, the information matrix for estimating neighbour treatment contrast is   

Cδ = 12.43 I – 1.95J. 

 

Example 3.3.1.2: For v = 5 and s = 4, following is a NBGRC design with parameters v = 5, p = 5, 

q = 4, k = 4, r = 16 and  = 4: 

 

 Columns 

R
o
w

s 

1  2  3  4 1  3  5  2 1  4  2  5 1  5  4  3 

2  3  4  5 2  4  1 3 2  5  3  1 2  1  5  4 

3  4  5  1 3  5  2  4 3  1  4  2 3  2  1  5 

4  5  1  2 4  1  3  5 4  2  5  3 4  3  2  1 

5  1  2  3 5  2  4  1 5  3  1  4 5  4  3  2 

 

Here, 

15.93 3.18

5.94 1.19

19.94 3.19

 

  

 

11

12 21

22

C I J

C C I J

C I J

 

 

The information matrix for estimating direct treatment contrast is   

Ck = 14.17 I - 2.38 J. 
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Similarly, the information matrix for estimating neighbour treatment contrast is   

Cδ = 17.73 I – 2.75J. 

 

Thus, we see that the developed series of NBGRC design is variance balanced for estimating the 

contrast pertaining to direct treatments and also pertaining to neighbour effects. 

Method 3.3.2: Consider a Balanced Incomplete Block (BIB) design with parameters (v*, b*, r*, 

k*, and λ*). Let v* = 4t+3 = xn, where x is a prime and n (≥1) is a positive integer. Consider the 

odd powers of the primitive number of GF(xn) as set 1 and the even powers of the primitive number 

of GF(xn) as set 2. The block contents of set 1 comprises the 1st column of resulting GRC design 

and set 2 comprises the 2nd column of resulting GRC design. The parameters of the developed 

design are v = v*, p = v*, q = 2, k = k*, r = r* and i (i = 1,2,…, 
1

2

v
). Thus, a GRC design with 

neighbour effects obtained through initial blocks of a BIB design is always a partially balanced 

design for estimating elementary direct treatment contrasts following a varying circular association 

scheme. 

 

Example 3.3.2.1: Consider a BIB design with parameters (7,7,3,3,1). Following is a GRC design 

with neighbour effects with parameters v = 7, p = 7, q = 2, r = 6, k = 3, 1 =2, 2 = 1 and 3 = 1: 
 

 

Columns 

R
o
w

s 

1    2    4 3    6    5 

2    3    5 4    7    6 

3    4    6 5    1    7 

4     5    7 6    2    1 

5     6    1 7    3    2 

6     7    2 1    4    3 

7     1    3 2    5    4 

 

The information matrix for estimating direct treatment contrasts is given by  
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τ

4.54 0.52 0.52

0.52 4.54 0.52

0.52 4.54 0.

0.89 0.85 0.85 0.89

0.89 0.85 0.85 0.89

0.89 0.89 0.85 0.8552

0.52 4.54 0.520.85 0.89 0.89 0.85

0.85 0.85 0.89 0.89

0.89 0.85 0.85 0.89

0.52 4.54 0.52

0.52 4.

   

   

   

 

 

 

    





 



  

   

C

0.89 0.85 0.85 0.89

54 0.52

0.52 0.52 4.54

 
 
 
 
 
 
 
 
 
    



 

 

The information matrix for estimating neighbour treatment contrasts is given by  

5.39 0.89 0.89

0.89 5.39 0.89

0.89 5.39 0.

0.47 0.67 0.67 0.47

0.47 0.67 0.67 0.47

0.47 0.47 0.67 0.6789

0.89 5.39 0.890.67 0.47 0.47 0.67

0.67 0.67 0.47 0.47

0.47 0.67 0.

0.89 5.39 0.89

0.89 56 7 .7 0.4



   

   

   

 

 

 

   





 



  

   

C

0.47 0.67 0.67 0.47

39 0.89

0.89 0.89 5.39

 
 
 
 
 
 
 
 
 
    



 

 

It can be seen that treatment number 1 has treatment 2 and 7 as first associates (these treatments 

appear as neighbour twice), treatment 3 and 6 as second associates (these treatments appear as 

neighbour once) and remaining 4 and 5 as third associates (these treatments appear as neighbour 

once). 

 

A SAS code (given in ANNEXURE II) has been written in PROC IML to calculate the information 

matrix (C-matrix) of treatment effects and neighbour effects and to study the properties of the 

designs under the three-way model with spatial effects. 

3.4   Analysis  

Consider the NBGRC design given in Example 3.3.1.1. The layout along with hypothetical data 

(within parenthesis) is as given below.  

 

1 2 3 1 3 5 1 4 2 1 5 4 

(27.84) (23.20) (34.03) (21.27) (14.18) (16.07) (40.22) (15.68) (67.03) (65.74) (17.53) (55.52 

2 3 4 2 4 1 2 5 3 2 1 5 

(46.41) (37.13) (23.51) (45.70) (21.38) (27.42) (95.63) (30.60) (70.13) (42.19) (50.63) (19.13) 

3 4 5 3 5 2 3 1 4 3 2 1 

(43.57) (25.47) (26.93) (47.48) (18.99) (64.75) (26.81) (40.22) (18.53) (67.03) (83.79) (54.84) 

4 5 1 4 1 3 4 2 5 4 3 2 
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(42.39) (29.01) (50.20) (12.47) (31.99) (18.05) (39.90) (85.31) (35.70) (45.72) (78.20) (90.23) 

5 1 2 5 2 4 5 3 1 5 4 3 

(14.34) (53.79) (31.64) (23.91) (74.71) (26.72) (35.06) (87.66) (46.41) (51.80) (75.70) (83.79) 

 

The data was analysed as per the model defined in 3.2.1 and using SAS 9.3 (The code for analysis 

is given in ANNEXURE III). The Analysis of Variance is shown in Table 3.1. 

 

Table 3.1: Analysis of Variance of NBGRC design for v = 5 

Sources of 

Variation 

DF Sum of 

Squares 

Mean Squares F-Value Pr > F 

Rows   4 1180.51 295.13 10.06 <.0001 

Columns   3 7658.68 2552.89 87.03 <.0001 

Treatments   4 8013.43 2003.36 68.30 <.0001 

Neighbours   4 9027.17 2256.79 76.94 <.0001 

Error 44 1290.66 29.33   

Total 59 30535.15    

 

It is seen that all the effects including neighbour effects are significant. This shows that neighbour 

effects has an important role and must be incorporated in the model for better precision.  

 

3.5 Efficiency of NBGRC Designs 

The canonical efficiency of the NBGRC designs is obtained as follows:  

H
E =

r
,  

1
-1

-1

i

i=1

1
H=

-1

v

v




 
 
 

 ,  

where θi are the eigen-values of C- matrix (obtained for direct treatment effects and neighbour 

treatment effects). Here, r is the number of replications of the treatments and is assumed to be same 

for the developed design and the orthogonal design to which it is compared. 

The parameters of NBGRC designs obtained using Method 3.3.1.1 described above have been 

listed in Table 6.1. The list contains number of treatments (v ≤ 13), cell sizes (k), number of rows 

(p), number of columns (q) and replications (r). The canonical efficiency of the developed designs 

for direct treatment effects and neighbour treatment effects are also reported in the Table 3.2.  
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Table 3.2: Parameters and efficiency factor of NBGRC designs 

S. No. v k p q λ 

 

 

Efficiency Factor 

(direct treatment 

effects) 

Efficiency Factor 

(neighbour 

treatment effects) 

1 5 3 5 4 4 0.86 0.45 

2 5 4 5 4 6 0.88 0.45 

3 7 3 7 6 4 0.89 0.53 

4 7 4 7 6 6 0.82 0.49 

5 7 5 7 6 8 0.94 0.50 

6 7 6 7 6 10 0.95 0.49 

7 11 3 11 10 4 0.89 0.62 

8 11 4 11 10 6 0.94 0.63 

9 11 5 11 10 8 0.94 0.61 

10 11 6 11 10 10 0.94 0.59 

11 11 7 11 10 12 0.95 0.57 

12 11 8 11 10 14 0.96 0.57 

13 11 9 11 10 16 0.96 0.58 

14 11 10 11 10 18 0.97 0.58 

 

It is seen that the efficiency of direct treatment effects of NBGRC designs constructed is more as 

compared to neighbour treatment effects. The efficiency factor increases with increase in cell size 

for a given number of treatments. 

3.6 SAS Macro for Generation of Neighbour Balanced GRC Designs 

A SAS macro (given in ANNEXURE IV)  has been developed to generate NBGRC designs for 

parameter v (prime), p = v, q = v-1, k = s (3 ≤ s ≤ v-1), r = s(v-1) and =2(s-1). Here, user need to 

enter the number of treatment as v (prime) and the number of units per cell as k (2). If user run 

the macro after entering any prime number as the value of v and also as the value of k, then the 

SAS Macro will generate a particular NBGRC designs corresponding to the value of v and k under 

the heading Neighbour Balanced Generalized Row Column (GRC) Design. Once user run the 

macro, every time the SAS macro would also generate a word file containing the output. User can 

then save the word file. 
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3.7 Discussion 

Two series of GRC designs balanced for spatial effects have been developed. One series is variance 

balanced for estimating the contrasts pertaining to direct treatment effects and also for estimating 

the contrasts pertaining to neighbour treatment effects. The second series is partially balanced for 

estimating elementary treatment contrasts for direct and neighbour treatment effects following 

circular association scheme. Further, the efficiency of the NBGRC designs have been worked out 

and are found to be quite high for estimating the direct treatment effects.  



CHAPTER 4 

WEB GENERATION OF GENERALIZED ROW-COLUMN 

DESIGNS (webGRC) 

 

4.1 Introduction 

A large number of experimental designs under different situations have been developed in the 

literature. For ready referencing and potential use of these designs, online software for 

generation of randomized layout of these designs is highly desirable. Online generation of 

designs are very much useful for the experimenters in providing a readymade solution. A large 

number of GRC designs are developed in the literature, construction of which involves a fair 

amount of theoretical understanding. Hence, for easy accessibility and quick reference of these 

designs by the experimenters, compilation and presentation of these designs at one platform is 

desirable. The rapid advancements on the internet technology have resulted in development of 

online software and hence expanding the horizon further. In this study, a web solution for 

generation of GRC designs has been developed which will help the experimenters for an easy 

accessibility and quick reference of these designs like the one developed by Taksande et al. 

(2012) with respect to partial diallel crosses, Sharma et al. (2013) for generating partially 

balanced incomplete block designs and Jaggi et al. (2015) for generating web-enabled software 

for generation of experimental designs balanced for indirect effects of treatments, was required. 

Many other open sources and commercial packages are also available for generation of 

readymade layouts of designs based on different situations [for example AgroPlotter (2002), 

Design-Expert Software (Version 7.0), webPD (2015), webFMC (2016) etc.].  

The software webGRC generates both structurally complete and structurally incomplete GRC 

designs for different parametric combinations. Online catalogues for quick references of end 

users have also been developed for specific parametric combinations and integrated with 

webGRC.  

 

4.2 Architecture of webGRC 

The web solution for generation of GRC designs has been developed using client–server 

architecture along with an online catalogue of the designs within a permissible range. There are 

three main components i.e. user interface management, input data management and statistical 
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engine for generation of GRC designs. At client side any communication to software from users 

is handled by user interface and input data handling is done by data management module. 

Statistical engine which hold the several procedures required for generation is implemented at 

server side. User interface has been separated from the statistical engine to free software 

developers from interface problem. Hyper Text Markup Language (HTML) and Cascading Style 

Sheets (CCS) have been used to develop the user interface management. ASP.NET has been 

used to develop input data management component. Web generation engine has been consructed 

using C# language. This engine contains the Dynamic Link Libraries (DLL) for generation and 

randomization of designs. Web generation of GRC Design has been developed for web platform 

and programming has been done with the ASP.NET and C# programming language. C# provides 

a complete set of tools for creation of rapid and powerful graphical user interface (GUI) based 

web applications. Microsoft Visual Studio 2010 integrated development environment has been 

used as a platform for development of the software. Fig. 4.1 shows the architecture of the 

software. 

 

Fig. 4.1: Architecture for web generation of GRC design 

4.3 webGRC Design 

Software design of webGRC consists of three major modules namely (i) generation of 

Generalized Row Column designs, (ii) catalogue of Generalized Row- Column designs and 

(iii)about Generalized Row- Column designs. The hierarchical structure chart for the design of 

the software webGRC is shown in Fig. 4.2. 
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     Fig. 4.2: Different module of webGRC 

 

4.4 webGRC: Description 

WebGRC generates design and randomized layout for various classes of GRC designs. It 

generates GRC Design for odd number of treatments (Datta et al., 2016), GRC designs for even 

number of treatments (Datta et al., 2016,; Parsad, 2006), GRC designs for prime number of 

treatments (Datta et al., 2015). It also generates different series of structurally incomplete GRC 

designs developed by Datta et al.(2014).The webpage displays the layout plans along with the 

randomized layout for given number of treatments. It also displays various parameters of the 

generated designs viz. number of treatments, numbers of rows, number of columns and number 

of unit per cell. The output can be saved by the end user in excel sheet. To provide an idea about 

GRC designs a section named About Design has been created in the software which will provide 

the information about GRC designs along with example. The home page of the software is 

shown in Fig. 4.3. 



Web Generation of Generalized Row-Column Designs (webGRC) 

 

56 
 

 

Fig. 4.3: Home page of webGRC 

 

webGRC also consists of online catalogue for different series of GRC designs within a 

permissible range of parametric combinations.  User can also generate designs from this online 

catalogue. To provide an idea about GRC designs a section named About Design has been 

created in the software which will provide the information GRC designs along with example.  

 

4.5 Generation of Generalized Row- Column Designs through webGRC 

In order to provide readymade layout to the end users, webGRC generates Generalized Row- 

Column designs (structurally complete and structurally incomplete) given in Fig 4.4. The 

generation of structurally complete Generalized Row- Column Designs through webGRC has 

been illustrated by Fig. 4.5.  The generation of structurally incomplete GRC through webGRC 

has been illustrated by Fig. 4.6. Various web forms have been designed and developed for 

generation of these designs.  
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Fig. 4.4: Menu page of  webGRC 

 

Fig. 4.5: Menu page of structurally complete webGRC 
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Fig. 4.6: Menu page of structurally incomplete webGRC 

 

4.5.1 Generation of Structurally Complete GRC Designs through webGRC 

To generate Structurally Complete GRC designs through webGRC, the following steps needs to 

be followed by the users:  

In order to generate the design, user has to follow the following steps: 

 Click on ‘Generate Design’ as shown in Fig. 4.5.  

 Select ‘prime number of treatments’ under ‘Generate Design’. 

 Enter the number of treatments (v) = 7 (say) and enter the value of k = 3 (say)as shown in 

Fig. 4.6. 

 Click on ‘Generate Design’ and the generated design along with parameters v = 7, p = 7, q 

= 21, and k =2) will be displayed as shown in Fig. 4.7. 

 Click on ‘Generate Randomized Layout’ to get a randomized layout of the design as shown 

in Fig. 4.7.  

 Output can be exported to MS-Excel spread sheet for further use. 
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Fig. 4.7: Generation of GRC design for prime number of treatment (v=7) 

Similarly for even number of treatments the design for v = 8 along with its randomized layout 

are shown in Fig. 4.8 and Fig. 4.9 respectively. Output can be exported to MS-Excel spread sheet 

for further use as shown in Fig. 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8: Generation of GRC design for v=8 

 



Web Generation of Generalized Row-Column Designs (webGRC) 

 

60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig. 4.9: Randomized layout of design for v = 8 

 

Fig. 4.10: Saving in excel 
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4.5.2. Generation of Structurally Complete GRC Designs through webGRC  

To generate structurally incomplete GRC designs through webFMC, the following steps needs to 

be followed by the users:  

i) Go  to Generate Design. 

ii) Select Structurally incomplete GRC under Generate Design. 

iii) There are 4 series (developed by Datta et al., 2014) under the link 

iv) After entering the value of the parameter, click Generate Design button and the generated 

layout along with different parameters will be displayed. User can save the output in MS-

Excel spread sheet for further use. 

 

 

Fig. 4.11: Series of designs under Structurally incomplete GRC 
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Fig. 4.12: Generation of structurally incomplete GRC for v= s2 (s is a prime number) 

4.6 About Designs 

To provide an idea about generalized row- column designs and to guide the users about the 

online generation of such designs, a section under the option About Design has been created and 

linked with the software. If user wants to have an idea about structurally complete GRC designs, 

Structurally Complete GRC under About Design need to be clicked (Fig. 4.12), whereas 

Structurally Incomplete GRC option (Fig. 4.12) will give an idea about asymmetric factorial 

designs with minimum level changes.  

 

 

Fig. 4.11: About design for Structurally Complete GRC Designs 
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Fig. 4.12: About design for Structurally Incomplete GRC Designs 
 

4.7 Online Catalogue 

Online catalogue for both structurally complete and structurally incomplete GRC designs with a 

specific set of parametric combinations has also been developed and integrated with webGRC. 

User can also generate designs from these catalogues (Fig. 4.13 and Fig. 4.14).  

 

Fig. 4.12: Catalogue and generation of structurally complete GRC Designs  
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Fig. 4.13: Online catalogue of structurally incomplete GRC Designs 

4.8 Discussion 

webGRC is a web based software for generation of a generalized row- column designs. This 

software is menu driven and user-friendly. It will help the researchers for getting a readymade 

solution with respect to experiments involving hard-to-change factors and hence will be of 

immense use to various research experiments in the field of agriculture. Online catalogue will 

serve as a readymade reference to the available design options for easy selection from user point 

of view. Researchers can learn more about these designs and their construction methods through 

about designs menu. 



 

 

CHAPTER 5 

MATING PLANS FOR BREEDING TRIALS USING 

GENERALIZED ROW-COLUMN DESIGNS 

 

5.1 Introduction 

The breeding experiments comprise of two types of designs namely, mating designs and 

environmental designs. Mating design is a procedure of producing the progenies, while 

environmental design is subjecting these progenies to the environmental conditions in a systematic 

manner. Diallel , Partial diallel , Triallel , Partial triallel and Double crosses are some examples of 

mating designs. A judicious choice of a mating design is essential to attain the breeder’s goal. 

Diallel cross is a set of all possible mating between several genotypes which may be clones, 

homozygous lines etc. These crosses are frequently used in plant breeding trials for estimating 

genetic components of total variance of a quantitative character. These are also used in estimating 

general and specific combining abilities of inbred lines involved in the crosses. With exclusion of 

reciprocal crosses and parental inbred, there are 
 1

2

n n 
 possible diallel crosses among a set of n 

lines that increases rapidly with increase in n. With limited facilities available for testing, a diallel 

cross may only be possible for a relatively small number of inbred lines. It may be desirable to 

have a large number of inbred lines but raise only a sample of all possible crosses among them 

giving rise to Partial diallel cross (PDC). A good amount of literature is available which deals with 

different aspect of diallel and partial diallel crosses [for example Hinkelmann (1965), Choi et al. 

(2004), Hsu and Ting (2005), Srivastava et al. (2013), Harun et al. (2016a, 2016b and 2019) etc.] 

The set of all possible three-way hybrids based on n lines will constitute triallel crosses and there 

would be 
  1 2

 
2

T

n n n
N

 
  distinct triallel crosses resulting in distinct three-way hybrids. As 

the number of lines (n) involved increases, the number of crosses also increases manifold and 

becomes unmanageably large for the investigator to handle. An answer to this situation lies in 

taking sample of triallel crosses rather than conducting the experiment with Complete Triallel 

Crosses (CTC). This leads to the adaption of Partial Triallel Crosses (PTC).  
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Let there be n lines denoted by 1,2,…,n. A three-way cross is represented by (i  j)  k, where the 

offspring of the cross i  j is crossed with k and hence i and j are half-parents whereas k is a full-

parent for i  j  k = 1,2,…,n. On the lines of Hinkelmann (1965), a set of mating is said to be a 

PTC if each line occurs exactly rH times as half-parent and rF times as full-parent. Further, each (i 

 j)  k (including the structural symmetricity) either do not occur or occurs exactly once. Since 

each line is equally often represented as half-parent, it follows that rH = 2rF and further, a PTC 

plan has to be connected. 

There are many crops like maize and corn where three-way crosses are commonly used to develop 

commercial hybrids. Weatherspoon (1970) recommended the use of three-way crosses as they are 

more uniform, high yielding and stable than the single cross hybrids. A series of PTC plans using 

Trojan square design, Generalized incomplete trojan type designs and Mutually orthogonal Latin 

squares have been obtained by Dharmalingam (2002), Varghese and Jaggi (2011) and Sharma et 

al. (2012). In literature, there are mating plans which are developed using block/ row-column 

designs. 

In this chapter, method of constructing PDC plans and PTC plans have been discussed based on 

GRC designs. The characterization properties of such plans have also been investigated. 

5.2  Model and Experimental Setup 

The statistical model underlying the analysis of variance of diallel crosses is given by 

   , 1,2,..., ij i j ijy g g e i j n               ...5.2.1 

with restriction ∑gi = 0 for i = 1, 2, …,(n – 1). yij is the response of crosses, μ is the overall mean, 

gi, gj is the g.c.a. effect of ith  and jth  line and eij is the error term with mean zero and variance σ2. 

The statistical model underlying the analysis of variance of triallel crosses is given by 

𝑦(𝑖𝑗)𝑘 = 𝜇 + ℎ𝑖 + ℎ𝑗 + 𝑔𝑘 + 𝑒(𝑖𝑗)𝑘       ...5.2.2     

  

(i, j, k = 1,2, …, n, i ≠ j ≠ k) where y(ij)k stands for the response of triple cross (i×j)k, µ is the overall 

mean, h is the g.c.a effect of half parents and g is the g.c.a. effect of full parents and e(ij)k are 

considered to be independent random variables with mean zero and variance σ2. 
 

 5.3 Method of Construction of PDC plans using Generalized Row- Column Designs 

Consider a Latin square of order s and another orthogonal Latin square of the same order. 

Renumber the s treatments of the second Latin square by s+1, s+2,...,2s. Superimpose the second 
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Latin square on the first Latin square. This results in a GRC design (Bailey, 1988) with parameter 

v=2s (s>2), p=s, q=s and k= 2. A PDC plan can be obtained by making all possible distinct 2-

way crosses within each cell of the GRC design. The parameters of the developed PDC plan will 

be n (no of lines/genotypes) = v, N (no of crosses)= s2 and f (degree of fractionation) = s/(2s-1) 

which is the ratio of crosses in the given plan to Complete Diallel Crosses (CDC) for the same no 

of lines. In terms of the statistical characterization properties the developed PDC plan is partially 

balanced following a group divisible association scheme which is described below. 

The v=2s lines are arranged in two rows of size s each as shown below. 

1 2 ... s 

s+1 s+2 ... 2s 

 

The lines in the other row are first associates to each other and the lines in the first row are second 

associates. 

The information matrix for PDC plan is  

C= 𝑎0 𝑰𝑣 + 𝑎1 𝑨𝑣 + 𝑎2 𝑩𝑣         ...5.3.1 

where, 

𝑎0 =
(𝑣−𝑘)

2
, 𝑎1 = −1, 𝑎2 = 0, here k= 2 

 𝐴𝑣 = {𝑎𝑖𝑗} = 1, if  𝑖 and 𝑗 are first associates   

                   = 0, otherwise 

𝐵𝑣 = {𝑏𝑖𝑗} = 1, if  𝑖 and 𝑗 are second associate 

                    =0, otherwise 

Example 5.3.1. Let s=5, following is a GRC design with parameters v = 10, p = 5, q = 5 and k = 2  

 Columns 
Rows 

I II III IV V 

I 1  6 2  7 3  8  4  9 5 10 

II 2  8 3  9 4  10 5  6 1  7 

III 3  10 4  6 5  7 1  8 2  9 

IV 4  7 5  8 1  9 2  10 3  6 

V 5  9 1  10 2  6 3  7 4  8 
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Now, considering each treatment as a line in the breeding programme, the following crosses are 

obtained by making crosses within each cell:  

1 × 6 2 ×  7 3 ×  8 4 × 9 5 × 10 

2 ×  8 3  × 9 4 × 10 5 × 6 1 × 7 

3 × 10 4 × 6 5 × 7 1 ×  8 2 ×  9 

4 × 7 5 × 8 1 × 9 2 × 10 3 × 6 

5 × 9 1 × 10 2 × 6 3 × 7 4 × 8 

 

The parameters of this PDC plan are n = 10, N = 25 and f = 5/9. The information matrix for gca 

using PDC plan is  

𝑪 = 4𝑰𝒗 − 1𝑨𝒗 + 0𝑩𝒗 

The 10 lines are arranged as given below: 

1 2 3 4 5 

6 7 8 9 10 

 

The various associates of the lines based on the crosses involved are as follows: 

 Treatments 1st Associate 2nd Associate 

1 6  7  8  9  10 2  3  4  5 

2 6  7  8  9  10 1  3  4  5 

3 6  7  8  9  10 1  2  4  5 

4 6  7  8  9  10 1  2  3  5 

5 6  7  8  9  10 1  2  3  4 

6 1  2  3  4  5 7  8  9  10 

7 1  2  3  4  5 6  8  9  10 

8 1  2  3  4  5 6  7  9  10 

9 1  2  3  4  5 6  7  8  10 

10 1  2  3  4  5 6  7  8  9 
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5.4 Method of Construction of PTC Plans using Generalized Row- Column Designs 

PTC plans can be obtained from the cell contents of appropriate GRC designs with cells of size 3. 

The treatments in the design are to be considered as the lines and then possible distinct 3-way 

crosses in a systematic order are to be made. If the condition of structural symmetry of PTC is not 

met,  

For v (prime) treatments, consider a set of 2 mutually orthogonal Latin square (MOLS) juxtaposing 

one after other horizontally giving rise to an array (A) of dimension v × 2v. The cell contents of 

the first row of the repeat the crosses by changing the role of full-parents and half-parents in 

circular manner. GRC design is formed by taking the first k (3 ≤ k ≤ v-1) rows of the above array 

(A). Similarly, cell contents of the second row are obtained by taking the k consecutive rows 

starting from the 2nd row of the array (A).The resulting design is a GRC design (Datta et al., 2015) 

with v treatments in p = 2, q = 2v and each cell of size k. A PTC plan can be obtained by making 

all possible distinct 3-way crosses within each cell of first or second row in a systematic order. In 

order to meet the condition of a structural symmetry of PTC, distinct crosses of the form (i×j)× k, 

(i×k) × j and (j×k) ×i (i≠j ≠k=1,2,…,v) are taken in a cell. Degree of fractionation (f) for the 

developed plans is 12/(v-1)(v-2). 

Example 5.4.1. To illustrate the method of construction, GRC design with parameters v = 7, p = 

2, q = 14 and k = 3 is given below: 

1 2 3 2 3 4 3 4 5 4 5 6  5 6 7 6 7 1 7 1 2 1 3 5 2 4 6 3 5 7 4 6 1 5 7 2 6 1 3 7 2 4 

2 3 4 3 4 5 4 5 6 5 6 7 6 7 1 7 1 2 1 2 3 3 5 7 4 6 1  5 7 2 6 1 3 7 2 4 1 3 5 2 4 6 

 

Consider the treatments as lines. Form all distinct three-way crosses using each cell contents in a 

particular order, i.e., by considering two lines as half-parents and third one as full parent. There 

are 52 three-way crosses, each of the form (i  j)   k, (ik)  j and (jk)  i.  

(1×2)×3 

(1×3) ×2 

(2×3) ×1 

(6×7)×1 

(6×1) ×7 

(1×7) ×6 

(4×6)×1 

(4×1) ×6 

(1×6) ×4 

(2×3)×4 

(2×4) ×3 

(3×4) ×2 

(7×1)×2 

(7×2) ×1 

(1×2) ×7 

(5×7)×2 

(5×2) ×7 

(2×7) ×5 
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(3×4)×5 

(3×5) ×4 

(4×5) ×3 

(1×3)×5 

(1×5) ×3 

(3×5) ×1 

(6×1)×3 

(6×3) ×1 

(1×3) ×6 

(4×5)×6 

(4×6) ×5 

(5×6) ×4 

(2×4)×6 

(2×6) ×4 

(4×6) ×2 

(7×2)×4 

(7×4) ×2 

(2×4) ×7 

(5×6)×7 

(5×7) ×6 

(6×7) ×5 

(3×5)×7 

(3×7) ×5 

(5×7) ×3 

  

 

Thus, altogether, there are 52 crosses in the final PTC plan and this PTC plan satisfies the structural 

symmetric property. A CTC plan for 7 lines requires 105 three-way crosses. The degree of 

fractionation for the above plan is f = 12/30 = 2/5. 

5.5. Discussion 

It can be deduced from the results that through the suggested methods, breeders can obtain small 

and efficient diallel and triallel cross plans with comfortable knowledge in statistics. The plans 

obtained here using these designs yield smaller degree of fractionation thereby reducing the 

resources and reduce the heterogeneity present in the experimental field, simultaneously. As the 

lines are being selected using diallel or triallel plans, uniformity, yield and stability of the selected 

ones are also ensured. 

 



 सार 

 

खेत एवं पशओु ंसे संबन्धित परीक्षणों में जहााँ परीक्षण इकाइयों में पररवततन के दो ऐसे श्रोत हों जो पररणामी चर को प्रभान्वत करन े

की क्षमता रखते हों तो इस न्थिन्त में रो-कॉलम अन्भकल्पनाओ ंका प्रयोग न्कया जाता ह ै। पठन सामग्री में अभी तक उपलब्ि 

लगभग सभी रो-कॉलम अन्भकल्पनाओ ंमें रो-कॉलम प्रन्तत्छेदन पर केवल एक ही इकाई होती ह ै। ऐसी न्थिन्त में जहााँ ट्रीटमेंट की 

संख्या अन्िक हो और परीक्षण संसािनों की कमी हो तो रो-कॉलम प्रन्तत्छेदन में एक से अन्िक इकाइयां होने पर जनरलाईज्ड रो-

कॉलम (GRC) अन्भकल्पनाओ ंका प्रयोग न्कया जाता ह ै। अभी तक उपलब्ि अन्भकल्पनाओ ंसे ट्रीटमेंटों के सभी संभव यगु्मों 

की तलुनाओ ंका अध्ययन न्कया जाता ह ै। पे्रक्षणों की अनपु्लब्िताए ; ऑउतलायरों का पाया जाना आन्द कुछ ऐसी बातें ह ैजो 

परीक्षण के दौरान सामने आ सकती हैं । इनके कारण ट्रीटमेंटों की परथपर तलुनाओ ंके आकलन की शदु्धता में कमी आ सकती ह ै। 

एक या अन्िक अनपुलब्ि पे्रक्षणों वाली जनरलाईज्ड रो-कॉलम अन्भकल्पनाओ ंके न्वन्भधन वगो की प्रबलता की भी जााँच की 

गयी ह ै । यह दखेने में आया ह ै न्क अन्िकांश अन्भकल्पनाओ ं से अन्िकतम उच्च थतर (>90) की दक्षता पायी गयी ह ैतिा 

अन्भकल्पनयें प्रबल हैं ।  साि ही यह भी दखेा गया ह ैन्क अनपुलब्ि पे्रक्षणों की  संख्या के  बनने के साि साि परीक्षण की दक्षता 

में न्गरावट का ट्रेंड आ जाता ह ै। थिान्नक प्रभावों के लिए संतुलित जीआरसी लिजाइनों की श्रंखिा लवकलसत की गई ह ै। प्रत्यक्ष 

प्रभाव और स्थालनक प्रभाव से संबंलित लवरोिाभासों के आकिन के लिए सचूना मैलिसेस प्राप्त लकया गया ह ै। लवकलसत लकए गए 

अन्भकल्पनाओ ंयह सलुनलित करते हैं लक एक सेि के भीतर हर उपचार में पडोसी के रूप में लिखाई िनेे वािे हर िसूरे उपचार में 

कई बार होता ह।ै इसके अिावा, प्रयोगकतााओ ंको एक रेिीमेि समािान िने ेके लिए एक SAS मैक्रोस लवकलसत लकया गया ह ैजो 

लिजाइनों के िेआउट (layout) को उत्पन्न करता  ह ै। जनरलाईज्ड रो-कॉलम अन्भकल्पनाओ ंकी उपलब्िता को आसान बनान े

के न्लए WebGRC के नाम से एक वेब सोल्यशुन (Web solution) न्वकन्सत न्कया गया ह ै न्जससे इन अन्भकल्पनाओ ंके 

यादृन्छक लेआउट (lay out) ऑनलाइन प्राप्त न्कए जा सकते हैं । इन लिजाइनों का उपयोग आंलिक रूप से िायिेि क्रॉस (PDC) 

या आंलिक लिकोणीय क्रॉस (PTC) योजनाओ ंजैसे लक प्रजनन कायाक्रम में व्यलिगत पैतरक िाइनों के रूप में लवचार करके और 

प्रत्येक सेि के बीच िाइनों के बीच क्रॉस बनाकर लकया जा सकता ह।ै यहां, जीआरसी लिजाइनों के लवलभन्न वगों का उपयोग करके 

PDC और PTC योजनाओ ंको प्राप्त करन ेके तरीकों का वणान लकया गया ह ै। इन लिजाइनों का उपयोग करके प्राप्त की गई योजनाओ ं

से छोटे अिंों का लवभाजन होगा, लजससे संसािनों में कमी आएगी और प्रायोलगक क्षेि में मौजिू लवषमता को कम लकया जा सकेगा 

। 

 

 



ABSTRACT 

 

  

In field and animal experiments, where there are two sources of variation in experimental 

units that may influence the response variable, row-column designs are used. Most of the 

row-column designs developed in the literature have only one unit corresponding to the 

intersection of row and column i.e. in a single cell. However, for the instances when the 

number of treatments is large with limited experimental resources, Generalized Row-

Column (GRC) designs are used where there is more than one unit in each row-column 

intersection. The presence of missing observations, outliers in the data, etc. are some of 

the disturbances that may occur during experimentation. These disturbances may lead to 

less precise comparisons among treatments. Robustness of different classes of GRC 

designs against missing of one or more observations has been investigated. It is found that 

the efficiency is quite high (more than 90%) for most of the designs and the designs are 

robust and there is a decreasing trend in efficiency with increase in number of missing 

observations. Series of GRC designs balanced for spatial effects have been developed. 

The information matrices for estimating the contrasts pertaining to direct effect and 

spatial effect have been derived. The designs developed ensure that within a cell every 

treatment has every other treatment appearing as neighbour a constant number of times. 

Further, in order to give a readymade solution to the experimenters, a SAS macro has 

been developed that generates the layout of the designs. For easy accessibility of GRC 

designs, a web solution named WebGRC has been developed that provides the online 

generation of randomized layout of these designs along with an online catalogue within a 

permissible range.These designs can be advantageously used for obtaining mating plans 

like Partial diallel cross (PDC) or Partial triallel cross (PTC) plans by considering 

treatments in the design as individual parental lines in the breeding programme and by 

making crosses between lines within each cell. Here, methods of obtaining PDC and PTC 

plans using different classes of GRC designs have been described. The plans obtained 

using these designs will yield smaller degree of fractionation thereby reducing the 

resources and reduce the heterogeneity present in the experimental field, simultaneously. 

 

 



SUMMARY 
 
 

Row-column design is used when there are two cross classified sources of variation in 

experimental units that influence the response variable. These designs are used to control 

variability in field and animal experiments. Most of the row-column designs developed in the 

literature have one unit corresponding to the intersection of row and column. However, there may 

be instances when the number of treatments is substantially large with limited number of replicates. 

A more general class of row-column designs is required where there is more than one unit in each 

row-column intersection. These designs may be called as Generalized Row-Column (GRC) 

designs. GRC design is an arrangement of v treatments in p rows and q columns such that the 

intersection of each row and column consist of more than one unit.  

 

In this study, Robustness of different classes of GRC designs against missing of one or more 

observations within a cell as per the efficiency criteria has been investigated. A list of robust GRC 

designs has prepared giving the parameters and the efficiency of the designs. A design is 

considered to be highly robust against missing observation(s) if the loss in efficiency of the residual 

design is not more than 5% and robust if the loss in efficiency of the residual design is between 

5% to 10%. The efficiency of the GRC designs in the absence of one or more observations has 

been studied and the efficiency is found to be quite high for most of the designs and thus the 

designs are robust. There is a decreasing trend in efficiency with increase in number of missing 

observations. It is further seen that smaller designs are more affected by the missing observations. 

 

In GRC designs, since there are more number of units in a cell, it is likely that the treatment applied 

to one experimental unit may affect the response of the neighbouring unit in the same cell if the 

units are placed linearly adjacent giving rise to spatial effects. The study in presence of spatial 

effects from neighbouring units requires construction of an environment or an arrangement in 

which the neighbouring units have to appear in a predetermined pattern. Here, series of GRC 

designs balanced for these spatial effects have been developed. The information matrices for 

estimating the contrasts pertaining to direct effect and spatial effect have been derived. The designs 

developed ensure that within a cell every treatment has every other treatment appearing as 

neighbour a constant number of times. A list of efficient designs has been prepared. It is seen that 
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the efficiency of direct treatment effects of these designs constructed is more as compared to 

neighbour treatment effects. The efficiency factor increases with increase in cell size for a given 

number of treatments. Further, in order to give a readymade solution to the experimenters, a SAS 

macro has been developed that generates the layout of the designs.  

 

A web solution named WebGRC has been developed for the generation of GRC designs that would 

be highly useful to the experimenters. The webpage displays the layout plans along with the 

randomized layout for given number of treatments. The parameters of the design so generated are 

also displayed. An online catalogue of the GRC designs is also prepared and included in the 

software wherein the user can select the design by seeing all the parameters and then can get the 

randomized layout. The details regarding the method of obtaining these designs are also included. 

This software will provide freely available solution for the researchers and students working in 

this area. 

 

Mating plan is a systematic procedure of producing the progenies. Diallel and triallel crosses are 

some examples of mating plans. GRC designs can be advantageously used for obtaining mating 

plans like Partial diallel cross (PDC) or Partial triallel cross (PTC) plans by considering treatments 

in the design as individual parental lines in the breeding programme and by making crosses 

between lines within each cell. Here, methods of obtaining PDC and PTC plans using different 

classes of GRC designs have been described. Breeders can obtain small and efficient diallel and 

triallel cross plans with comfortable knowledge in statistics. The plans obtained here using these 

designs yield smaller degree of fractionation thereby reducing the resources and reduce the 

heterogeneity present in the experimental field, simultaneously. As the lines are being selected 

using diallel or triallel plans, uniformity, yield and stability of the selected ones are also ensured. 

SAS code has been developed to obtain the information matrix for the PDC and PTC plans. 
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ANNEXURE I 

 

 

SAS CODE FOR OBTAINING THE C-MATRIX AND THE HARMONIC MEAN 

OF NON-ZERO EIGEN-VALUES OF C-MATRIX OF ORIGINAL DESIGN AND 

THE RESIDUAL DESIGN FOR GRC DESIGN 

 

proc iml; 

 

/*design [put non-zero values]*/ 

 

a={ 

 

1 6 2 7 3 8 4 9 5 0 , 

2 8 3 9 4 10 5 6 1 0 , 

3 10 4 6 5 7 1 8 2 0 , 

4 7 5 8 1 9 2 10 3 0 , 

5 9 1 10 2 6 3 7 0 0  

 

}; 

 

/*define cell sizes*/ 

 

b={ 

 

2 2 2 2 1 , 

2 2 2 2 1 , 

2 2 2 2 1 , 

2 2 2 2 1 , 

2 2 2 2 0  

 

}; 

 

cc=b[+, ]; 

dd=b[ ,+]; 

bb=j(nrow(b)*ncol(b),1,0); 

k=1; 

do i=1 to nrow(b); 

do j=1 to ncol(b); 

bb[k, ]= b[i,j]; 

k=k+1; 



ii 

 

ii 

 

end; 

end; 

b1=bb[loc(bb>0),]; 

*print b1; 

aa=j(nrow(a)*ncol(a),1,0); 

k=1; 

do i=1 to nrow(a); 

do j=1 to ncol(a); 

aa[k, ]= a[i,j]; 

k=k+1; 

end; 

end; 

m1=j(nrow(a)*ncol(a),1,1);/*mean vector*/ 

dir=j(nrow(a)*ncol(a),max(a),0);/*design matrix 

     obseravation VS treatment*/ 

k=1; 

do i=1 to nrow(a); 

do j=1 to ncol(a); 

if a[i,j]>0 then  

  do; 

  dir[k,a[i,j]]=1; 

  k=k+1; 

  end; 

end; 

end; 

r=j(nrow(a)*ncol(a),nrow(dd),0);/*design matrix observation 

VS row*/ 

k=1; 

do i=1 to nrow(a); 

do j=1 to ncol(a); 

r[k,i]=1; 

k=k+1; 



iii 

 

end; 

end; 

c=j(nrow(a)*ncol(a),ncol(b),0);/*design matrix observation 

VS column*/ 

k=1; 

do i=1 to nrow(b); 

do j=1 to ncol(b); 

do l=1 to b[i,j]; 

c[k,j]=1; 

k=k+1; 

end; 

end; 

end; 

cell=j((nrow(a)*ncol(a)),nrow(b1),0);/*design matrix 

observation VS cell*/ 

kk=1; 

z=0; 

do k=1 to nrow(b1); 

do j=1 to b1[k]; 

if aa[z+j, ]>0 then  

 do; 

 cell[kk,k]=1; 

 kk=kk+1; 

 end; 

end; 

z=z+b1[k]; 

end; 

x=m1||dir||r||c;/*design matrix*/ 

*print x[format=3.0]; 

x1=dir; 

x2=m1||r||c; 

c_mat=(x1`*x1)-(x1`*x2*(ginv(x2`*x2))*x2`*x1)/*C matrix*/; 



iv 

 

iv 

 

print c_mat; 

eig=eigval(c_mat); 

eig1=eig[loc(eig>0.005),];/*positive eigen values*/ 

eig2=1/eig1; 

HM1=nrow(eig2)/sum(eig2); 

print HM1; 

quit; 
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ANNEXURE II 

 

SAS Code PROC IML to calculate the information matrix (C-matrix) of 

direct treatment effects and neighbour treatment effects 
 

proc iml; 

/*design [put non-zero values]*/ 

a={ 

1 2 3 1 3 5 1 4 7 1 5 2 1 6 4 1 7 6, 

2 3 4 2 4 6 2 5 1 2 6 3 2 7 5 2 1 7, 

3 4 5 3 5 7 3 6 2 3 7 4 3 1 6 3 2 1 , 

4 5 6 4 6 1 4 7 3 4 1 5 4 2 7 4 3 2, 

5 6 7 5 7 2 5 1 4 5 2 6 5 3 1 5 4 3, 

6 7 1 6 1 3 6 2 5 6 3 7 6 4 2 6 5 4 , 

7 1 2 7 2 4 7 3 6 7 4 1 7 5 3 7 6 5 

 

}; 

/*define cell sizes*/ 

b={3 3 3 3 3 3 , 

3 3 3 3 3 3 3 

3 3 3 3 3 3 , 

3 3 3 3 3 3, 

3 3 3 3 3 3 , 

3 3 3 3 3 3 , 

3 3 3 3 3 3  

}; 

cc=b[+, ]; 

dd=b[ ,+]; 

bb=j(nrow(b)*ncol(b),1,0); 

k=1; 

do i=1 to nrow(b); 

do j=1 to ncol(b); 

bb[k, ]= b[i,j]; 

k=k+1; 

end; 

end; 

b1=bb[loc(bb>0),]; 

*print b1; 

aa=j(nrow(a)*ncol(a),1,0); 

k=1; 

do i=1 to nrow(a); 

do j=1 to ncol(a); 

aa[k, ]= a[i,j]; 

k=k+1; 

end; 

end; 

*print aa; 

m1=j(nrow(a)*ncol(a),1,1);/*mean vector*/ 

/*print m1;*/ 

dir=j(nrow(a)*ncol(a),max(a),0);/*design matrix -obs VS direct treatment*/ 

k=1; 

do i=1 to nrow(a); 

do j=1 to ncol(a); 

if a[i,j]>0 then  

  do; 
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  dir[k,a[i,j]]=1; 

  k=k+1; 

  end; 

end; 

end; 

print dir; 

r=j(nrow(a)*ncol(a),nrow(dd),0);/*design matrix -obs VS row*/ 

k=1; 

do i=1 to nrow(a); 

do j=1 to ncol(a); 

r[k,i]=1; 

k=k+1; 

end; 

end; 

*print r; 

c=j(nrow(a)*ncol(a),ncol(b),0);/*design matrix -  obs VS column*/ 

k=1; 

do i=1 to nrow(b); 

do j=1 to ncol(b); 

do l=1 to b[i,j]; 

c[k,j]=1; 

k=k+1; 

end; 

end; 

end; 

*print c; 

cell=j((nrow(a)*ncol(a)),nrow(b1),0);/*design matrix -  obs VS cell*/ 

kk=1; 

z=0; 

do k=1 to nrow(b1); 

do j=1 to b1[k]; 

if aa[z+j, ]>0 then  

 do; 

 cell[kk,k]=1; 

 kk=kk+1; 

 end; 

end; 

z=z+b1[k]; 

end; 

*print cell; 

 

l_neig = j(nrow(a)*ncol(a),max(a),0); 

k=2; 

z=0; 

do i = 1 to nrow(b1); 

do j = 1 to b1[i]-1; 

 

 if aa[z+j, ]>0 then l_neig[k,aa[z+j, ]]=l_neig[k,aa[z+j, ]]+1; 

 k=k+1; 

end; 

z=z+b1[i]; 

k=k+1; 

end; 

 

*print l_neig; 

 

r_neig = j(nrow(a)*ncol(a),max(a),0); 
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k=1; 

z=0; 

do i = 1 to nrow(b1); 

do j = 2 to b1[i]; 

 

 if aa[z+j, ]>0 then r_neig[k,aa[z+j, ]]=r_neig[k,aa[z+j, ]]+1; 

 k=k+1; 

end; 

z=z+b1[i]; 

k=k+1; 

end; 

 

*print r_neig; 

 

neigh=l_neig+r_neig; 

x1=dir||neigh; 

x2=m1||r||c; 

c_mat=(x1`*x1)-(x1`*x2*(ginv(x2`*x2))*x2`*x1)/*C matrix*/; 

print c_mat; 

 

 

c11=j(max(a),max(a),0); 

do i=1 to max(a); 

do j=1 to max(a); 

c11[i,j]=c_mat[i,j]; 

end; 

end; 

*print c11; 

 

c12=j(max(a),ncol(c_mat)-max(a),0); 

do i=1 to max(a); 

k=1; 

do j=max(a)+1 to ncol(c_mat); 

c12[i,k]=c_mat[i,j]; 

k=k+1; 

end; 

end; 

*print c12; 

 

c22=j(nrow(c_mat)-max(a),nrow(c_mat)-max(a),0); 

k=1; 

do i=max(a)+1 to nrow(c_mat); 

kk=1; 

do j=max(a)+1 to nrow(c_mat); 

c22[k,kk]=c_mat[i,j]; 

kk=kk+1; 

end; 

k=k+1; 

end; 

*print c22; 

c_dir=c11- c12*ginv(c22)*c12`; 

print c_dir; 

eig=eigval(c_mat); 

*print eig; 

eig1=eig[loc(eig>0.0000001),];/*positive eigen values*/ 

rep=dir`*dir; 

eig2=eig1/(rep[1,1]); 
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eig3=1/eig2; 

CanEffFactor=nrow(eig3)/sum(eig3); 

*print CanEffFactor; 

quit; 
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ANNEXURE III 

 

 

SAS CODE FOR ANALYSIS OF NBGRC DESIGN 
 

Data NBGRC; 

Input row column treatment neighbour Yield; 

Cards;                            

1 1 1 2 27.84 

1 1 2 1 23.20 

1 1 3 2 34.03 

2 1 2 3 46.41 

2 1 3 2 37.13 

2 1 4 3 23.51 

3 1 3 4 43.57 

3 1 4 3 25.47 

3 1 5 4 26.93 

4 1 4 5 42.39 

4 1 5 4 29.01 

4 1 1 5 50.20 

5 1 5 1 14.34 

5 1 1 5 53.79 

5 1 2 1 31.64 

1 2 1 3 21.27 

1 2 3 1 14.18 

1 2 5 3 16.07 

2 2 2 4 45.70 

2 2 4 2 21.38 

2 2 1 4 27.42 

3 2 3 5 47.48 

3 2 5 3 18.99 

3 2 2 5 64.75 

4 2 4 1 12.47 

4 2 1 4 31.99 

4 2 3 1 18.05 

5 2 5 2 23.91 

5 2 2 5 74.71 

5 2 4 2 26.72 

1 3 1 4 40.22 

1 3 4 1 15.68 

1 3 2 4 67.03 

2 3 2 5 95.63 

2 3 5 2 30.60 

2 3 3 5 70.13 

3 3 3 1 26.81 

3 3 1 3 40.22 

3 3 4 1 18.53 

4 3 4 2 39.90 

4 3 2 4 85.31 

4 3 5 2 35.70 



x 
 

5 3 5 3 35.06 

5 3 3 5 87.66 

5 3 1 3 46.41 

1 4 1 5 65.74 

1 4 5 1 17.53 

1 4 4 5 55.52 

2 4 2 1 42.19 

2 4 1 2 50.63 

2 4 5 1 19.13 

3 4 3 2 67.03 

3 4 2 3 83.79 

3 4 1 2 54.84 

4 4 4 3 45.72 

4 4 3 4 78.20 

4 4 2 3 90.23 

5 4 5 4 51.80 

5 4 4 5 75.70 

5 4 3 4 83.79 

 

;  

 

PROC glm data=NBGRC; 

Class row column treatment neighbour; 

Model YIELD = row column treatment neighbour/ss2; 

Run; 
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ANNEXURE IV 

 

SAS MACRO FOR GENERATION OF NEIGHBOUR BALANCED GRC 

DESIGNS AND ITS OUTPUT 
 

%let v=7;/* Enter the number of teatments (Treament number should be odd 

number)*/ 

%let s=3;/*Enter the cell sizes(it varies from 2 to (v-1)*/ 

ods rtf  file= 'output.rtf' startpage=no; 

proc iml; 

TRT1=j(&v,&s*(&v-1),0); 

k=1; 

do i=1 to &s; 

do j=1 to &v; 

TRT1[j,i]=(j+(i-1)); 

if TRT1[j,i]>&v then TRT1[j,i]=TRT1[j,i]-&v; 

end; 

end; 

kk=&s+1; 

do k=1 to &v-1; 

do i=1 to &s; 

do j=1 to &v; 

TRT1[j,kk]=TRT1[j,kk-(&s)]+(i-1); 

if TRT1[j,kk]>&v then do; 

TRT1[j,kk]=TRT1[j,kk]-&v; 

end; 

end; 

kk=kk+1; 

end; 

end; 

varNames2= "Column1":"Column"+strip(char(&v-1)); 

varNames3= "Row1":"Row"+strip(char(&v)); 

do i=1 to (&v-1); 

do j=1 to &s; 

columns=varNames2[ ,i]; 

columns1=columns1||columns; 

end; 

end; 

GRC_Design=char(TRT1,5,0); 

print 'Neighbour Balanced Generalized Row Column (GRC) Design'; 

print GRC_Design[rowname=varNames3 colname=columns1]; 

print 'Number of Rows =' &v; 

print 'Number of Columns ='(&v-1); 

print 'Number of treatments in each Row-Column Intersection is =' &s; 

ods rtf close; 

quit; 
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SAS output for generation of a Neighbour Balance GRC designs for v = 5 and k = 3 
 

The SAS System 

 

Neighbour Balanced Generalized Row Column (GRC) Design 

 

GRC_Design 

 Column1 Column1 Column1 Column2 Column2 Column2 Column3 Column3 Column3 Column4 Column4 Column4 

Row1 1 2 3 1 3 5 1 4 2 1 5 4 

Row2 2 3 4 2 4 1 2 5 3 2 1 5 

Row3 3 4 5 3 5 2 3 1 4 3 2 1 

Row4 4 5 1 4 1 3 4 2 5 4 3 2 

Row5 5 1 2 5 2 4 5 3 1 5 4 3 

 

Number of Rows = 5 

 

Number of Columns = 4 

 

Number of treatments in each Row-Column Intersection 

is = 

3 

 


