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A B S T R A C T

This study was conducted to understand the behaviour of ten rice genotypes for different water deficit stress
levels. The spectroscopic hyperspectral reflectance data in the range of 350–2500 nm was recorded and relative
water content (RWC) of plants was measured at different stress levels. The optimal wavebands were identified
through spectral indices, multivariate techniques and neural network technique, and prediction models were
developed. The new water sensitive spectral indices were developed and existing water band spectral indices
were also evaluated with respect to RWC. These indices based models were efficient in predicting RWC with R2

values ranging from 0.73 to 0.94. The contour plotting using the ratio spectral indices (RSI) and normalized
difference spectral indices (NDSI) was done in all possible combinations within 350–2500 nm and their corre-
lations with RWC were quantified to identify the best index. Spectral reflectance data was also used to develop
partial least squares regression (PLSR) followed by multiple linear regression (MLR) and Artificial Neural
Networks (ANN), support vector machine regression (SVR) and random forest (RF) models to calculate plant
RWC. Among these multivariate models, PLSR-MLR was found to be the best model for prediction of RWC with
R2 as 0.98 and 0.97 for calibration and validation respectively and Root mean square error of prediction
(RMSEP) as 5.06. The results indicate that PLSR is a robust technique for identification of water deficit stress in
the crop. Although the PLSR is robust technique, if PLSR extracted optimum wavebands are fed into MLR, the
results are found to be improved significantly. The ANN model was developed with all spectral reflectance
bands. The 43 developed model didn’t produce satisfactory results. Therefore, the model was developed 44 with
PLSR selected optimum wavebands as independent x variables and PLSR-ANN model 45 was found better than
the ANN model alone. The study successfully conducts a comparative 46 analysis among various modelling
approaches to quantify water deficit stress. The methodology developed would help to identify water deficit
stress more accurately by predicting RWC in the crops.

1. Introduction

Quantification of leaf biochemical and canopy biophysical variables
is a key element for the successful deployment of remote sensing in crop
condition monitoring. Accurate estimation of biophysical parameters
from remote sensing can assist in the determination of vegetation
physiological status (Carter, 1994). Estimation of one of the most im-
portant biochemical constituent, crop water content through remote
sensing has important significances in agriculture and forestry (Zarco-

Tejada et al., 2003; Gao and Goetz, 1995). Determination of plant water
status plays a significant role in assessing drought stress, predicting
susceptibility to wildfire (Ustin et al., 1998; Pyne et al., 1996) and
monitoring the general physiological status of crops (Datt, 1999; Cheng
et al., 2011). The determination of water content in plants is very
crucial for drought assessment because the insufficient amount of water
in crop hampers the production of the food grains negatively. The re-
mote sensing is very widely used for accurate retrieval of leaf water
content (Hunt and Rock, 1989; Peñuelas et al., 1997). The leaf water
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content is commonly expressed as equivalent water thickness (EWT),
gravimetric water content (GWC) and relative water content (RWC)
(Datt, 1999; Cheng et al., 2010). The EWT is mass per unit leaf area (g/
cm2) whereas the GWC expresses leaf water content as the gravimetric
proportions of water relative to other plant material. The RWC can be
expressed as the ratio of the difference between fresh weight and dry
weight to that of the difference of turgid weight and dry weight. The
RWC serves as a key leaf parameter to determine leaf water content
(Ullah et al., 2014; Das et al., 2017). Although the remote sensing
technique is widely used for timely detection of variations in the
spectral response of plants to changing levels of plant water status over
large areas (Peñuelas et al., 1997; Ustin et al., 1998; Pu et al., 2003;
Stimson et al., 2005; Eitel et al., 2006), The multispectral satellite re-
mote sensors exhibit serious limitations to accurately detect changes in
plant water status due to coarse spectral resolution and larger revisit
time. Therefore, the need of high spectral and spatial resolution remote
sensing instruments and sensors was experienced. This contributed for
the advent of highly precise spectroradiometers for detection of spectral
changes. The field spectroradiometers and hyperspectral sensors has the
capability to detect the electromagnetic spectrum in very narrow con-
tiguous bands which allows the development of spectral indices using
minor fluctuations of wavelengths due to change in water status (Horler
et al., 1983; Gao, 1996; Peñuelas et al., 1993; Eitel et al., 2006).

Several previous studies have demonstrated the utilization of spec-
tral reflectance in 350–2500 nm range to assess water content in plants
through spectral indices, regression analysis and radiative transfer
modeling (Féret et al., 2011; Zarco-Tejada et al., 2003). In the earlier
studies, the primary and secondary effects of water content on the
spectral response of leaf were evaluated by Carter (1994) and it was
concluded that 1450 nm, 1940 nm, and 2500 nm are the most optimal
wavebands showing sensitivity to water content. The wavelength
400 nm and 700 nm (red edge position) were also found to be sensitive
to plant water content (Filella and Peñuelas, 1994). Roberts et al., 1997
reported the NDVI as a water content sensitive index. Several studies
demonstrated a good relationship between spectral indices developed
through NIR region (700–1300 nm) and plant water content (Peñuelas
et al., 1997; Serrano et al., 2000; Ceccato et al., 2002; Asner et al.,
2003; Imanishi et al., 2004; Stimson et al., 2005). Few studies have also
indicated that NIR region is the less sensitive region of the spectrum
compared to SWIR (1300–2500 nm) to establish a relationship between
indices and water content (Danson et al.,1992; Ceccato et al., 2002;
Eitel et al., 2006). Most of the indices are two band simple ratio indices,
utilizing two spectral wavebands. Mostly one of the wavelengths is
found within strong absorption region of water and another is found
outside the absorption region of water (Sims and Gamon, 2003; Eitel
et al., 2006).

To extract larger information on crop water status, investigation of
entire spectrum is essential. Use of multivariate regression techniques,
machine learning methods, and artificial neural network approach can
utilize the entire spectrum for detection of crop water stress. However
the high dimensionality and contiguity of hyperspectral data is a pro-
blem (Vaiphasa et al., 2005) when utilizing entire spectrum
(350–2500 nm range). The reason is that the regression techniques like
multiple linear regression (MLR) may suffer from multi-collinearity and
are often prone to over-fitting as numbers of observations could be
equal or lesser than the predictors (Curran, 1989). Contrary to MLR, the
partial least square regression technique (PLSR) is a robust technique
for development of prediction models. The PLSR is a combination of
principal component analysis (PCA) & MLR techniques. The concept
behind PLS is to find a few eigenvectors of spectral matrices that will
produce score values that both summarize the variance of spectral re-
flectance well and are highly correlated with response variables (Li
et al., 2007). Several researches indicate that PLSR can effectively de-
crease complexity and the multi-collinearity of spectral responses by
performing simple projection operations in a vector space (Araújo et al.,
2001; Galvão et al., 2001, 2008; Mahmood et al., 2012) consequently

reducing the over-fitting. The PLSR combines the most useful in-
formation from hundreds of contiguous spectral bands into several
principal components to develop a calibration model. Several studies
have highlighted that PLSR is a robust prediction model development
technique and researchers have used PLSR successfully to establish a
relationship between spectral reflectance and leaf biochemical and
biophysical properties under varying canopy structures (Asner and
Martin, 2008). The PLS regression has been successfully used with
spectral data to predict chlorophyll content (Zhao et al., 2016; Ji et al.,
2012), estimation of carotenoid content (Zhao et al., 2015), estimation
of relative water content (Ullah et al., 2014), estimation of protein,
lignin and cellulose (Thulin et al., 2014),estimation of leaf nitrogen
content (Ecarnot et al., 2013), estimation of leaf area index and
chlorophyll content (Darvishzadeh et al., 2008), estimation of soil or-
ganic carbon (Peng et al., 2014), prediction of soil properties
(Mahmood et al.,2012) and retrieval of leaf fuel moisture content (Li
et al., 2007). Though PLSR is the most robust technique for prediction
model development, few researchers have reported that there is a
possibility of over-fitting that would lead to inaccurate results when
testing the developed model on a very different dataset to the calibra-
tion one (Féret et al., 2011). Therefore, optimum wavebands extracted
from PLSR were fed into MLR and ANN techniques separately to check
whether the outcome of the combined models is better or not. Neural
networks technique has also been evaluated for development of water
content prediction models. Dawson et al. (1998) developed the ANN
model for prediction of leaf water content and reported a satisfactory
coefficient of determination as 0.86 with low RMSE (1.3%).There are
several researches which evaluate multivariate techniques for estima-
tion of crop biochemical and biophysical parameters using spectral
reflectance data but very few studies have demonstrated the compar-
ison among efficiency and accuracy of various multivariate models to
estimate water content of crop from hyperspectral observations. This
study bridges this gap by comparing models developed from PLSR,
MLR, RF and SVR multivariate techniques and ANN too. The present
investigation was done with the following objectives (i) Evaluation of
existing water bands indices as well as development of new efficacious
water band indices (ii) Identification of the most optimum wavebands
sensitive to predict RWC in crops (iii) Development of various RWC
prediction models using multivariate techniques and neural networks,
and their comparison with each other. (iv) Evaluation of PLSR-MLR
model to test its efficacy over model developed through only PLS re-
gression.

2. Materials and methods

2.1. Study area

The study of the research study was ICAR-Indian Agricultural
Research Institute (IARI), New Delhi research farms (28°38′28.59″N,
77° 9′28.09″E). This study area was selected to conduct the research
study because it has all the ideal conditions required for the experiment
and the adjoining labs have plentiful facilities. The study area has an
average elevation of 230m above sea level. The soil is mostly well-
drained sandy loam. The minimum temperature is recorded between
0 °C to 7 °C during the winter season and the maximum temperature
ranged between 41 °C to 46 °C. The average annual rainfall is about
750mm. The relative humidity (RH) is found to be the highest during
the monsoon season. In the summer months, the RH is observed be-
tween 40 to 45%. Ten rice genotypes were grown in the farms of the
division of plant pathology, ICAR-IARI, New Delhi. Five genotypes were
Drought Sensitive - MTU 1010, Patchaiperumal, Pusa Basmati-1, Pusa
Sugandha-5, IR 64 and five were Drought Tolerant - Sahbhagidhan, CR-
143, Nerica L44, Moroberekan, APO.
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2.2. Data used

Four leaves sample per genotype for above mentioned 10 genotypes
were collected from the field experiment site. The plots were in ran-
domized block design and were well irrigated. Leaves were quickly
placed in plastic bags in an airtight container and immediately trans-
ferred to the laboratory for spectroscopic measurements at pre-
determined time intervals. In the laboratory, the spectroscopic data of
above mentioned 10 genotypes were collected using an ASD Field Spec
3 spectroradiometer. This instrument collects data into 350 to 2500 nm
wavelength at resampled wavelength interval of 1 nm. Approximately
3 g of fresh leaves for each genotype were put into capped glass tubes
filled with distilled water and kept at room temperature to attain full
turgidity.

2.3. Collection of spectroscopic data from leaves

The spectral measurements of fresh leaves were recorded in the lab
immediately. After first spectral reading leaves were allowed to dry at
room temperature and spectral measurements were again recorded
after 2, 3, 4, 5, 6, 8 and 10 h from the time of first spectral observation
collection. For all 10 genotypes, 8 spectral observations were recorded.
For each genotype four spectral observations were recorded for above
mentioned hours, therefore, total 320 spectral observations (10 geno-
types x4 replication in observations x8 different hours) were recorded.
The spectral observations were recorded in a dark room having± 25 °C
by using an ASD contact probe (Analytical Spectral Devices, Boulder,
CO). This contact probe touches the surface of the leaf and has its own
constant light source inside it for illumination; a black surface has been
given which comes underside of the leaf while collecting spectra to
minimise the electromagnetic radiation transmitted through the leaf.
This contact probe is calibrated using a spectralon. This contact probe is
an accessory of ASD Field Spec 3 spectroradiometer which records
spectral reflectance in the 350 to 2500 nm range at sampling intervals
of 1.4 nm in the 350–1050 nm range and of 2 nm in the 1000–2500 nm
and It provides data after resampling at the 1 nm interval. The spectral
observations were taken from leaf sample consisted of an overlapping
pile of 3–4 leaves to eliminate the background effect.

2.4. Relative water content (RWC) computation

The water content in the leaves was analyzed using RWC compu-
tation. For RWC computation, the Fresh Weight (FW), Turgid Weight
(TW) and Dry Weight (DW) were determined for all genotypes. Turgid
weight was determined after placing the leaves in deionised water for
2 h. To obtain dry weight, leaves were oven dried at 70 °C temperature
for 3 days until constant weight was obtained. The RWC was calculated
using following equation –

RWC FW DW
TW DW

(%) ( )
( )

100= ×

2.5. Spectral indices computation

The plant water status spectral indices utilize simple ratios between
the reflectance of a wavelength located within an range of the elec-
tromagnetic spectrum strongly absorption by water, described as water
absorption bands, and another wavelength located outside the water
absorption band typically used as a control (Sims and Gamon, 2003;
Eitel et al., 2006). In this study indices related to plant water status only
were evaluated. Spectral indices evaluated are given in Table 1.

2.6. Correlation analysis between narrow band indices and RWC through
contour plotting

Two narrow band indices were computed and the correlation be-
tween computed indices with RWC was determined. The coefficient of
determination (R2) was plotted with wavelengths by a predefined ma-
trix scheme. This plotting (the contour plotting - lambda versus lambda
plotting approach) exhibits a specific pattern where highest R2 can be
seen as hot spots. Many studies have reported this plotting as the best
approach for identification of wavelength having maximum R2 (Sahoo
et al., 2015). The highest R2 value was extracted from the hot spot area.
The optimal indices were selected by choosing the wavelength combi-
nation that portrayed the highest R2 value in the contour plot. For the
implementation of contour plotting, a program was written in Matlab.

2.7. Multivariate analysis

To perform multivariate analysis, the data was split into the training
set and the test set for calibration and validation respectively. The
training set of data was 2/3 sample and test data was 1/3 sample of the
whole dataset. The overall performance and robustness of the models
were appraised by the coefficient of determination (R2), root mean
square error of cross-validation (RMSECV), root mean square error of
prediction (RMSEP), and ratio of prediction deviation (RPD) and upper
& lower confidence intervals of regression at 95% confidence level. The
RPD is computed as the ratio between standard deviation and RMSE.
Excellent calibrations were those with R2 > 0.95, RPD > 4
(Nduwamungu et al., 2009b). The ratio of prediction deviation (RPD) is
considered as a parameter of strength for the prediction model. A model
having RPD value 0–2.3 is considered as very poor, 2.4–3.0 is con-
sidered as poor, 3.1–4.9 is considered as fair and prediction are con-
sidered as reliable, 5.0–6.4 is considered as good, 6.5–8.0 is considered
as very good with very reliable predictions and model with RPD above
8.1 is considered as excellent for prediction (Williams and Sobering,
1993). The detailed schematic diagram of methodology is given in
Fig. 1.

2.7.1. Multivariate techniques evaluated
Support vector regression (SVR), Artificial neural networks (ANN),

random forest (RF) and the partial least square regression (PLSR), PLSR
followed by multiple linear regression (MLR) and PLSR followed by
ANN were evaluated to determine the best suitable multivariate model

Table 1
Spectral indices related to water status and their respective definition.

Spectral Indices related to
water status

Definition (Wavelengths in nm) References

Water Band Index (WBI) R900/R970 Peñuelas et al. (1997)
Moisture Stress Index (MSI) R1600/R820 Hunt and Rock (1989)
Hyperspectral Normalized Difference Vegetation Index (hNDVI) (R900−R685)/ (R900+R685) Rouse et al. (1974)
Normalized Difference Water Index (NDWI) (R820−R1240)/ (R820+R1240) Gao (1996)
Normalized Difference Infrared Index (NDII) (R820−R1649)/ (R820+R1649) Hardisky et al. (1983)
Maximum Difference Water Index (MDWI) (Rmax1500−1750)-(Rmin1500−1750)/(Rmax1500−1750)+(Rmin1500-1750) Eitel et al. (2006)
Ratio Index (R1650/R2220) Elvidge and Lyon (1985)
Simple Ratio Water Index (SRWI) R800/R1200 Zarco-Tejada and Ustin (2001)
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for regression between spectral reflectance and RWC.

2.7.2. The partial least square regression (PLSR)
The PLSR multivariate analysis was performed on spectral re-

flectance data and RWC. Other multivariate regression models based on
hyperspectral data shows a high degree of collinearity especially when
the numbers of predictors are equal or higher in number than sample
observations and the input data lead to a high R2 (Curran, 1989). The
PLSR has proved as the robust technique which can handle high di-
mensionality of hyperspectral data. Many researchers have successfully
used PLSR for estimation of various leaf biochemicals (Asner and
Martin, 2008; Huang et al., 2004; Ramoelo et al., 2011) and leaf water
status (Ullah et al., 2014). PLSR is very popular and has been ex-
tensively used in Remote Sensing (Asner and Martin, 2008;
Darvishzadeh et al., 2008; Li et al., 2007; Ramoelo et al., 2011). The
reason behind its extensive use is the fact that PLSR has the capability
to process multi-collinear hyperspectral data by inputting all spectral
bands simultaneously and select uncorrelated variables from a matrix of
explanatory variables (Geladi and Kowalski, 1986). The PLSR analysis
was implemented through a program written using ‘pls’ library (Mevik
and Wehrens, 2007) in R studio. The PLSR analysis selected 30 op-
timum wavebands which were highly sensitive to water deficit stress.
The selected wavebands were then fed into multiple linear regression
(MLR) model.

2.7.3. The multiple linear regression (MLR)
Multiple linear regression attempts to model the relationship be-

tween two or more explanatory variables and a response variable by
fitting a linear equation to observed data and every value of the in-
dependent variable x is associated with a value of the dependent vari-
able y (Lattin et al., 2003; Krishna et al., 2014). The Multiple Linear
Regression (MLR) model was used to account for the relationship be-
tween Rice crops’ reflectance and RWC data. The band used as input
were retrieved from PLSR selected optimum wavebands. This approach
of using PLSR selected optimum wavebands was applied because pre-
vious studies show that MLR has several shortcomings such as leading
to negative and extremely large estimates (Zhu et al., 2017).

2.7.4. The support vector regression (SVR)
Support Vector Regression system is based on Support Vector

Machines (Cortes and Vapnik, 1995) that is derived from statistical
learning theory. SVM separates the classes with a decision surface that
maximizes the margin between the classes. The surface is called the
optimal hyperplane, and the data points closest to the hyperplane are
called support vectors. Among the separating hyperplanes, the one for
which the distance to the closest point is maximal is called optimal
separating hyperplane (Chapelle et al., 1999). The support vectors are
the critical elements of the training set. The key idea of using SVM is
map points with a mapping function to a space of sufficiently high

Fig. 1. The schematic diagram of the methodology.
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dimension so that they will be separable by a hyperplane. SVR is the
implementation of the SVM method for regression and function ap-
proximation (Smola and Schölkopf, 2004; Das et al., 2017). In this
study, the SVM regression was performed using package ‘e1071′ (Meyer
et al., 2015) in R language.

2.7.5. The artificial neural networks (ANN)
The neural networks are based on backpropagation algorithm and

structure is inspired by the brain. The backpropagation is a fast algo-
rithm and at the heart of backpropagation is an expression for the
partial derivative ∂C/∂w of the cost function C with respect to any
weight w (or bias b) in the network (Nielsen, 2015). For predicting
nonlinear system problems, a nonlinear neural network with additional
intermediate or hidden processing layers is very much useful to handle
the nonlinearity and complexity problems (Subasi and Erçelebi, 2005).
A model with very few nodes would be incapable of differentiating
between complex patterns while too many nodes may lead to over
parameterization. The determination of hidden intermediate layers is
by trial and error. Too many hidden layers make the process very much
time-consuming. The neural network regression was performed in R
language with ‘neuralnet’ package (Fritsch and Guenther, 2016), using
the ‘neuralnet’ function.

2.7.6. The random forest (RF)
The random forest regression technique is an addition to the bag-

ging (Breiman, 1994) of classification trees. The classification using
bagging is different from the boosting because in bagging, successive
trees do not depend on earlier trees and each is independently con-
structed using a bootstrap sample of the data set (Liaw and Wiener,
2002). The final result is predicted using a simple majority vote. In the
process of random forest, each node is split using the best among a
subset of predictors randomly chosen at that node. This process of
somewhat immoderate splitting of node provides very good results
compared to other regression and classification techniques like support
vector regression, discriminant analysis, and neural networks, and is
robust against overfitting (Breiman, 2001). This regression technique
was implemented using ‘randomForest’ (Breiman, 2001) package of R
language.

3. Results and discussions

3.1. Changes in spectral reflectance pattern due to water deficit stress

Normally the plants of a particular crop show a similar pattern of
reflectance spectra. But water deficit stress conditions bring noticeable
changes in reflectance spectra. The study shows the reflectance patterns
of plants with different water deficit stress conditions i.e. decline in
relative water content. The water content varies from 96.5% to 0.7%.
The reflectance of the fresh plant was less whereas the reflectance of the
dry plant was high. The reflectance in SWIR region increases as the
RWC decreases from the highest to lowest. The reason behind the in-
crease in reflectance is weakening of the water absorption features at
1400 nm and 1900 nmA similar pattern of increasing reflectance with a
decrease in water content was observed at 350 to 700 nm wavelength
region. The spectrum in the blue and red region (chlorophyll a & b
absorption ranges) was showing a trend of higher reflectance with de-
creasing water content due to loss of chlorophyll. A shift of
1400–1925 nm wavelength range towards shorter wavelengths was
observed with the drying of leaves and increase in spectral reflectance
is also visible. With the decrease in relative water content, the ab-
sorption features in 1400 to 1500 nm and 1850 to 1900 nm were seen as
becoming shallow. The reason behind the decrease in absorption is
weakening of water absorption features due to the decrease in water
content. The scattering in spongy mesophyll at 810 to 1350 nm was also
reflected a similar trend of increasing reflectance with the decrease in
water content. In addition, absorption at the middle infrared
(1100–2500 nm) is also a zone of strong absorption, primarily by water
in a fresh leaf and secondarily by dry matter (e.g., protein, lignin and
cellulose) when the leaf wilts (Jacquemoud and Ustin, 2001), become
more visible with decrease in RWC.

3.2. Change in relative water content (RWC)

The genotypes showed a significant variation over time in RWC. The
calibration data shows variation of RWC between 95.4% to 1.0%
whereas validation subset data shows 97.0%–2.0%. The standard de-
viation for calibration subset was 27.5% whereas 29.8%. The MTU
1010 (Fig. 2) genotype showed the highest variation and

Fig. 2. Representative mean spectral reflectance observations of the genotypes with decreasing RWC (%) in leaves of rice, showing percentage of RWC and cor-
responding spectra at different time intervals.
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Petchaperumal showed the least variation in RWC. The boxplots show
the distribution of measured RWC where median values are depicted by
horizontal dark lines (Fig. 3). The length of boxes indicates spread of
water content and corresponds to interquartile range (Q3(75%) –
Q1(25%)). The lines attached to the dotted line and situated above &
below boxes represent the upper and lower limit of RWC for a particular
genotype (Fig. 2). The points indicate the mean values.

The relationship between conventional water band indices with
RWC was evaluated (Table 2). The MDWI exhibits the strongest cor-
relation with R2 as 0.92 for both calibration and validation sets (Fig. 4).
The Moisture Stress Index (MSI) and Normalized Difference Infra Red
Index (NDII) also showed a strong correlation. The MDWI is computed
using the maximum reflectance value from max1500–1750 nm and
minimum reflectance value from min1500–1750 nm located at the atmo-
spheric window between 1500 and 1750 nm. Both MSI and NDII per-
formed the correlation with R2 as 0.89 and 0.92 for correlation and

validation respectively. The lowest correlation was observed for simple
ratio index with R2 as 0.73 (calibration) and 0.80 (validation). The
MDWI performed well because it allows the best combination of nu-
merator and denominator from 1500 and 1750 nm wavelength range.
This dynamism of choosing better absorption feature, under varying
plant water-deficit stress conditions provides better results ((Eitel et al.,
2006; Peñuelas et al., 1997).

3.3. Contour mapping approach for exploring new useful water band
spectral indices

The contour mapping approach has the advantage of providing an
efficient selection of the optimal combination of wavebands for devel-
opment of the effective spectral indices. The contour maps of R2 values
from linear regression between RWC and all possible combinations of
RSI (Ratio Spectral Index -ratio approach) and NDSI (Normalized

Fig. 3. Boxplots showing the means and spreads of relative water content (RWC) in different Rice genotypes.

Table 2
Relationships between Relative Water Content and Spectral Indices.

Index Model equation R2 Cal. R2 Val. RMSEP RPD

WBI (Water Band Index) 11,709.54x2 − 24,484.34x + 12,785.86 0.88 0.90 6.59 4.35
MSI (Moisture Stress Index) 384.09x2 − 815.07x + 420.02 0.89 0.92 5.51 5.21
hNDVI (Hyperspectral NDVI) 2675.03x2 − 3526.23x + 1163.95 0.85 0.89 7.67 3.74
NDWI (Normalized Difference Water Index)

(R820 & R1240 nm)
5703.28x2 + 857.87x + 17.08 0.86 0.89 7.06 4.06

NDWI (Normalized Difference Water Index)
(R820 & R1640)

598.54x2 + 240.64x − 13.93 0.89 0.89 9.93 2.89

NDII (Normalized Difference Infra Red Index)
(R820 & R1649 nm)

618.39x2 + 243.26x − 13.91 0.89 0.92 5.48 5.23

NDII (Normalized Difference Infra Red Index)
(R819 & R1600 nm)

484.87x2 + 220.29x − 16.31 0.89 0.92 5.44 5.27

MDWI (Max Difference Water Index) −149.08x2 + 473.70x − 21.27 0.92 0.92 5.23 5.49
Ratio Index (R1650/R2220 nm) −61.97x2 + 376.51x − 411.61 0.88 0.89 6.84 4.19
SRWI (Simple Ratio Water Index)

(R820/R1200 nm)
876.84x2 − 1388.30x + 525.01 0.87 0.89 7.07 4.06

Normalized Multi Band Drought Index 61.44x2 − 316.61x + 380.50 0.86 0.85 9.36 3.06
WBI/NDVI 573.96x2 − 1746.51x + 1329.82 0.87 0.91 6.62 4.33
Simple ratio (R895/R675) 0.29x2 + 4.32x − 31.30 0.73 0.80 7.90 3.63
Proposed Ratio Index (R1233/R1305 nm) 5213.38x2 − 8594.07x + 3408.03 0.94 0.93 4.27 6.99
Proposed Normalized Difference Ration index
(R1233−R1305)/(R1233+R1305 nm)

24455x2 + 3671.2x + 27.356 0.94 0.93 4.28 6.98
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Difference Spectral Index -normalized difference approach) reveal
hotspot positions that have high correlation values (Fig. 5). The contour
mapping was performed at 1 nm interval and all of the hotspots were
analyzed. Consequently, one highest R2 value each for RSI and NDSI
was extracted from the hotspots which were found at 1233 and
1305 nm combination. Therefore, on the basis of highest R2, the best
combinations selected were Ratio Index (R1233, R1305) and Normalized
Difference Ratio Index (R1233, R1305) for RWC. The linear, polynomial,
exponential and logarithmic regression functions were evaluated for
establishing regression equation between RWC- Ratio Index and RWC-

Normalized Difference Ratio Index (Table 3). The 2nd order polynomial
equation was found to be the best in predicting RWC with both Ratio
Index and Normalized Difference Ratio Index (R2Cal= 0.94, RMSEP=
4.27; R2 Cal= 0.94, RMSEP=4.28, respectively) (Figs. 6 and 7).

3.4. Validation of the RSI and NDSI models

The validation results of regression models from Ratio Index and
Normalized Difference Ratio Index to predicted RWC exhibit the R2 as
0.93 for both indices. The RMSEP was 4.27 and 4.28 for Ratio Index and

Fig. 4. The Calibration model developed through the relationship between MDWI and Measured RWC (%) and its validation. (Calibration −N=55 & validation
−N=25). The solid black line is regression line and dotted line is 1:1 line.

Fig. 5. The Contour plot (lambda by lambda) showing different combinations of RSI (Ratio Spectral Index -ratio approach) and NDSI (Normalized Difference Spectral
Index -normalized difference approach). The arrow indicates the wavelength where max R2 was observed.
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Normalized Difference Ratio Index respectively. The newly proposed
indices yield better results compared to previous conventional indices.
The RMSEP was found low compared to RMSEP of other indices. Thus
the newly proposed indices can be reliably used for accurate estimation
of changes in RWC caused by water deficit stress in plants. The RPD
values of both the proposed indices were found significantly reliable
compared to existing indices.

3.5. Multivariate models

3.5.1. The PLSR
The PLSR model provides reasonable explanations for independent

variables using fewer latent variables compared to principal component
regression. PLS regression was computed considering independent X
variables as spectral reflectance observations and relative water content
as dependent y variable. Increasing the number of latent variables (LV)
in the PLS regression model tended to decrease the RMSE. However, the
inclusion of too many latent variables led to over-fitting (Ecarnot et al.,
2013). Therefore, the model with 3 components was considered as
optimum. The number of components was determined using percent
variation explained by components and cross-validated RMSECV. The
component one explained 94.4% variation; second component ex-
plained 2.7% whereas component 3 explained 0.2% variation. The
optimum wavebands were selected from the peaks and troughs of
loading weight values (latent variables) in the spectral region
350–2500 nm. These optimum wavebands were: 357, 415, 511, 549,
691, 713, 766, 770, 815, 960, 1053, 1057, 1154, 1155, 1244, 1255,
1402, 1404, 1690, 1705, 1870, 1885, 1930, 1996, 2042, 2219, 2222,
2261, 2267 and 2411 nm (Fig. 8).

The model was both cross validated and validated with separate set
of test data. The cross validation was performed with ‘LOO’ (leave one
out) method. In the calibration model, the R2 was 0.96 with RMSE as
5.63 and RPD as 4.89 and in the validation, the R2 was 0.96 with RMSE
as 5.37 and RPD as 5.55 (Fig. 9).

Table 3
The regression equations and related statistics of model for proposed indices
(Ratio Index and Normalized Difference Ratio Index).

Spectral Index Regression Equation R2 RMSEP RPD

Proposed Ratio Index
(R1233, R1305)

y= 1899.5x − 1871.2 0.941
y= 1911ln(x) + 28.475 0.941
y= 2E-33e77.826x 0.756
y= 15.62x78.5 0.760
y= 5213.4x2 − 8594.1x
+ 3408

0.942 4.27 6.99

Proposed Normalized
Difference Index
(R1233, R1305)

y= 3822.18x + 28.48 0.941
y= 24,454.84x2 +
3671.22x + 27.36

0.942

y= 15.62e157.01 0.760 4.28 6.98

Note: Power and Logarithmic regression equation were not computed for
Proposed Normalized Difference Index because there were negative values in it.

Fig. 6. The proposed Ratio Index (R1233–R1305) for prediction of RWC. (Calibration −N=55 & validation −N=25). The solid black line is regression line and dotted
line is 1:1 line.

Fig. 7. The proposed Normalized Difference Ratio Index (R1233–R1305)/(R1233+R1305) for prediction of RWC. (Calibration −N=55 & validation −N=25). The solid
black line is regression line and dotted line is 1:1 line.
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Fig. 8. Latent variables extracted from PLS regression model. The peaks and troughs of spectra are the optimum wavebands for RWC prediction. The lower right plot
shows all three latent variables overlaid.

Fig. 9. The PLSR model calibration (N=55), validation (N=25) and cross validation ((N=55) plots with respect to RWC of rice crop. The dotted lines are upper and
lower confidence interval lines at 5% confidence interval; the black line is 1:1 line.
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3.5.2. The MLR
The PLSR is an extension of MLR technique with improved and

robust regression approach but in PLSR equation, every coefficient has
a RMSE associated with it which makes it more susceptible to the de-
viation. Therefore, the optimum wavebands extracted from PLSR were
used as independent x variables in a stepwise MLR model. The MLR
model equation is given below-

y=80.47−351*R357− 241*R511+ 1395*R770− 1791*R815+
2225*R1154− 1447*R1255− 14,612*R1402 + 13,988*R1404+3069*
R1690− 2475*R1705− 367*R1930+472*R1996− 12,005*R2261+
11,584*R2267

This model was evaluated as the best one among all the techniques
evaluated in this study. The developed MLR model demonstrated the
highest R2 values, lower RMSEP values and the highest RPD values for
both calibration and prediction data sets (R2= 0.98, RMSEC=3.19
and RPD=8.62 for calibration and in validation, R2= 0.97,
RMSEP=5.06 and RPD=5.89 (Fig. 10a, b). This combination of two
multivariate techniques proved the best one because the MLR model
used the PLSR selected optimum reflectance wavebands rather than the
whole 2151 spectral reflectance wavebands. Use of optimum wave-
bands as independent variables removed data redundancy and mini-
mized the susceptibility to the deviation, therefore, provided the best
results.

The wavelengths used by MLR model equation are the most pro-
minent wavelengths for prediction of relative water content in plants.
The shorter wavelengths of visible region 356 and 511 nm are related to
chlorophyll and other pigment contents of the plant which exhibits
changes during the water deficit stress condition. The 510 to 530 nm
shows absorption for zeaxanthin pigment which modulates chlorophyll
for photosynthesis (Dall’Osto et al., 2012) and shows changes during
water deficit stress condition. The 770 nm is related to red edge

position. The red edge position starts from 710 nm in healthy plants and
gets shifted towards 800 nm if water stress is prevalent in the plant. The
1154 and 1255 nm are related with cell structure of leaf and canopy
which show higher reflectance if the plant is facing water deficit stress.
The wavelengths 1402, 1404, 1930 and 1996 nm are related to water
absorption in the spectrum and are therefore directly related to water
deficit stress. The selected wavebands in the SWIR region (near
1400 nm and 1600 nm) are related to the absorption features associated
with moisture, cellulose, and starch in plant leaves (Curran, 1989;
Thenkabail et al., 2004; Ullah et al., 2014). The 2261 and 2267 nm are
sensitive to leaf biochemicals, protein, cellulose, lignin, etc which tend
to be in higher proportion in the condition of water deficit stress
(Thulin et al., 2014; Kokaly, 1999; Elvidge, 1990).

3.5.3. The ANN
The ANN model was developed with all spectral reflectance bands.

The developed model didn’t produce satisfactory results; therefore, the
model was developed with PLSR selected optimum wavebands as in-
dependent x variables.

The ANN model with all spectral reflectance bands was developed
with 1 hidden layer. Use of two or more hidden layers produced a large
mean square error (MSE) compared to one hidden layer. In calibration,
R2 was 0.97, RMSEC was 5.62 and RPD was also 5.62 whereas in va-
lidation R2 was 0.85, RMSEP was 13.06 and RPD was 2.28 (Fig. 12e, f).
The ANN model predicted the RWC values poorly compared to other
techniques because the model has a RMSE value associated with every
coefficient which makes it more susceptible to the deviation. Another
reason is that the accuracy of ANN technique is affected by the outliers
in the data set compared to least-squares-based regression methods
(Clrovic, 1997).

The ANN model developed with PLSR selected optimum wavebands
as x variables produced better results compared to above ANN model.

Fig. 10. The PLSR-MLR model calibration & validation plots (a, b), and the PLSR-ANN model calibration & validation plots (c, d) (Calibration −N=55 & validation
−N=25). The dotted lines are upper and lower confidence interval lines at 5% confidence interval; the black line is 1:1 line.
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The architecture of this ANN model is given in Fig. 11. For this model,
two hidden layers were considered as sufficient on the basis of MSE.
This ANN model displayed the R2 as 0.98, RMSEC as 3.19 and RPD as
8.61 for calibration data set whereas in validation, the R2 was 0.96,
RMSEP was 5.67 and RPD was also 5.25 (Fig. 10c, d). This model was
found to be the second best multivariate model as evident from model
accuracy statistics. Use of PLSR selected optimum wavebands as x
variables enabled to use two hidden layers; consequently, the predic-
tion ability of the model was improved. Apart from the use of two
hidden layers, in this ANN model, the data redundancy and outliers
were already removed by PLSR technique. Therefore, the model was
able to perform better.

3.5.4. The SVR
The SVR technique was also evaluated to develop a RWC prediction

model. The model performed well with all independent variables. The
model displayed a strong combination of higher R2 and low RMSEC
with excellent level of RPD (R2=0.98, RMSEC=3.53, RPD=7.79 for
calibration, in validation R2=0.97, RMSEP=5.75 and RPD=5.18)
(Fig. 12a, b).

3.5.5. The RF
The ensemble regression technique random forest provided inter-

mediate results with R2=0.97, RMSEC=5.05 and RPD=5.67. For
validation data set the R2 was 0.96, RMSEP=5.26 and RPD was 5.45
(Fig. 12c, d).

The PLSR followed by MLR was proved as the best technique for

RWC prediction model development, out of all multivariate techniques
evaluated through this study. The model equation developed through
PLSR-MLR techniques is also useful in monitoring water content in
plants. All the wavelengths included in the model equation are highly
relevant with respect to water stress prediction. The second best model
developed was the combination of PLSR and ANN. The support vector
regression was also proved to be a useful technique with satisfactory
results. The SVR determines maximum-margin hyperplane; therefore, it
reduces the prediction error. The ANN is vulnerable to outliers, there-
fore when applied on the whole dataset; its prediction was very poor.
The random forest is an ensemble tree classifier and has the goodness of
decision tree system. The RF proved as an intermediate classifier
compared to others. It was proved slightly better over PLSR in this
study. In the PLSR equation, every coefficient has a RMSE error asso-
ciated with it which makes it more susceptible to deviation (Krishna
et al., 2014), therefore PLSR model developed through all of the x
variables produced intermediate results compared to PLSR-MLR com-
bination. The order of performance of the multivariate models with
respect to R2 and RMSEP is as follows: PLSR-MLR > PLSR-ANN >
SVR > RF > PLSR > ANN (Fig. 13). This order of performance is
also supported by the value of RPD for all models.

This study evaluated multivariate techniques and indices based
approach including contour plotting. The comparison of results clearly
reflects that use of multivariate techniques enhances the prediction
capability of models significantly. The multivariate techniques have
many positive approaches compared to conventional indices based
approach like self- identification and removal of outliers, use of

Fig. 11. The Architecture of prediction model developed through ANN technique.
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principal components, ability to deal with multi-collinearity, use of
decision tree approach etc. Multivariate techniques all utilize all the
water absorption related bands which increase model’s accuracy con-
siderably by unveiling improved sensitivity to changes in the RWC
whereas index-based approaches use only two or three prominent water
absorption bands. Several researches in the past have used multivariate
techniques for determination of various plant biochemical contents i.e.
chlorophyll (Schlerf et al., 2010; Daughtry et al., 2000; Atzberger et al.,
2010; Zhao et al., 2016), carotenoids (Zhao et al., 2016) and Nitrogen
(Ecarnot et al., 2013; Schlerf et al., 2010; Atzberger et al., 2010; Ryu
et al., 2011) as well as RWC (Ullah et al., 2014) and leaf EWT (Colombo
et al., 2008). Ullah et al. (2014) utilized various parts of the spectrum
using PLSR to predict RWC. The leaf nitrogen content and leaf mass per
unit area of wheat were also assessed using PLS regression technique
(Ecarnot et al., 2013). Zhang and Zhou (2015), estimated the canopy
water content using indices based approach and successfully developed
a model for estimation of canopy water content and leaf equivalent
water thickness for maize crop. Colombo et al. (2008) evaluated the
performance of different hyperspectral indices for estimation of leaf

equivalent water thickness and leaf water content using the PLSR
model. The PLSR also displayed considerably good results in this study.
This study has successfully applied the MLR and ANN models on PLSR
selected optimum wavebands which increased the accuracy of model
significantly. Use of PLSR selected optimum wavebands as input re-
moved the multi-collinearity problem in MLR, and provided outliers
free x variables to ANN; consequently, improving the efficiency of the
PLSR model.

4. Conclusion

This study successfully evaluates the indices based, multivariate
techniques based and neural networks based approaches to predict re-
lative water content (RWC) under water deficit stress condition of rice
genotypes with significant accuracy. Existing water band indices were
evaluated and new water band indices sensitive to water stress were
proposed. The MDWI was found to be the best index among all con-
ventional existing indices. The newly proposed indices outperformed all
other indices. The multivariate model developed through PLSR and

Fig. 12. The SVR model calibration & validation plots (a, b), the RF model calibration & validation plots (c, d) and the ANN model calibration & validation plots (e, f),
(Calibration −N=55 & validation −N=25). The dotted lines are upper and lower confidence interval lines at 5% confidence interval; the black line is 1:1 line.
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MLR techniques (PLSR-MLR model) proved to be the best ((yielded high
R2 and low RMSEP) followed by the model developed through PLSR
and ANN techniques (PLSR-ANN model) for estimation of RWC in rice
crop. Thus from this study it may be concluded that timely detection of
water deficit stress is quite important for precision agriculture. The
model and indices developed through this study can be effectively used
to detect water deficit induced stress. Measurement of the relative
water content (RWC) at different stages of crop using hyperspectral
reflectance may provide timely detection of the water deficit stress. Use
of hyperspectral images may provide large area coverage and will be
more suitable compared to ground based spectroradiometer data.
Unavailability of hyperspectral images over the study area poses a
limitation to assess water deficit stress at regional scale. Use of air-
borne/satellite-borne hyperspectral data in future studies may con-
siderably enhance the utility of such research studies. The methodology
developed for prediction of RWC would help to identify water deficit
stress more accurately using crop reflectance spectra and may prove
useful in developing drought resistant varieties.
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