SATE. T, TH. AR HATE/H. AR -11/2019
LASRI./PR.-11/2019
Institute Project Code: AGENIASRISIT201700087

GEAT IRFISHT i€ AGENIASRISIT201700087

gRAST Rare

PROJECT REPORT

U SIg e BT5(5TS SI-AIE Ul S STeier i fashe

Development of an Improved Hybrid
De-novo Whole Genome Assembler

Agrésearch with a uman fouch

Shashi Bhushan Lal

Anu Sharma

Sanjeev Kumar
Dwijesh Chandra Mishra
Neeraj Budhlakoti

A\ AN
EARBSERCRINE
CENTRE OF AGRICULTURAL BIOINFORMATICS

- qT @ I U —9RAY BN FiRIP! e HA
C\\ﬁ% TSR Yy, g1 g faeeii—110012

208 NVIONI @ a5

ICAR-Indian Agricultural Statistics Research Institute
Library Avenue, Pusa, New Delhi — 110012

ICAR 2019

M INstiTuTE @ AT

o Q
Yrurat stamisTics RESE®

AHE

N

Fe o™ o ST T W FRRE FET B A SR O HAT W9 a4 21 Sifo
STeERATed! § IR 2 foh STy Sou FEgdRer ST s dur S SEERT 1 ds L 2l S
ST HT ST TSI H oG LT & S Ioa1-axH H[T hl STERAHAT i (U ¥ Ao TGTm ol et
I S et Tfshar STfeet SorHT o e o T U 98d & e HERSNS HE al T
3Tt o foTg Sucred fafae e i 1ot Wiemt ST STaoT 21 3 STIERAT He T I=a Gied
oI Ieq XA €| S-A1aT S et H Hepg THTeTse AR ST ARl Hde w5 3t STk
=l 2l

HTHIIT U ST IR ITe-LeH o fTT -5t 7T (Shefisit) SR it AfT o feru stawety
TIATIE HHEE (STAHT) T HATETNG &) I FataIiad o foh M e ety § 7 JfeA & oAl TR
FEMA &, TR, HIGAT TTTIE Tawrf (uere) fafer wem 2 ot o 30% oo Ffext
2eft 1 S TTHa § S Teeer fafie sfafifed Sifae ot Srepeeme qei o hor 3=t Turart
AT Fohg AT T SITE i T el Bid 8| 3 STHT SATETA TAHH T 4T e &, R fafre
HFS T Tehd & ST FTeT T % TAISH h1 HTe | remed g 8 fafie e e stk
TICHH! & HT ATt BTI5S ST 3l HWTTHT 30 TifEerf il 3T Frageeet STt i s THT siqT
AT 8| SR 376 YT 9 § T (AT ST 8eh L, AT A STIHA0T el S5 STAN & Hehel o

T AISIT Ud FHFSIT &9 ¥ FI1C TTE151S SI-ATaT 0T S e, TR o &9 H Sga S
T IeTET T o TG, SFefisi 3K AT ST adieh o 0T T AT 33T Hehd &l STEaT 1 Th
gT3hore Aot 2, o st fém w Bt fgw 1 wiRad ek wieft T w Aot it St foram s
GohdT ©, ST S STHSAT oh [T ST 81 TehaT 2] Ush Sgal SI-A1al S STHE b8 TehH o
AT Tl 22T T FRIAAYEH S AN T H 3T HLAT ol ATt TAT Hearsh T YA 6 g Toh
S-S AFIT S Toh €T SATEST STRAT SIH - STTSRHT oh T STEERLT, el TS ou Ffe gam =
T deaur, TEt ol feT T ST i ThBifceT =t gear 2, faeiaa fomm T) 9% dideawr
Star g foria o fore Suaitt 8 <t wrrar 2

TERITUT

PREFACE

The advancement in the computer science has made it possible to perform heavy computational
tasks easier and quicker. Biological researchers have found that modern high computational
capability makes the analysis and processing very fast. Biological data size is growing
exponentially which enhances the need of high-performance computing more and more. Genome
assembly of organisms is a very complex computational task because of inhibition of complex
computation in the process. Varied platforms available for assembly have their own merits and
demerits. These sequencing platforms produce a highly fragmented result. De-novo genome

assembly requires hundreds of gigabytes of memory and millions of CPU hours.

Most of the available genome assemblers are based on de-Bruijn Graph (DBG) for short reads and
Overlap Layout Consensus (OLC) for long reads. It is well known that short read assembly has
less errors but heavily computational, however, overlap layout consensus (OLC) method is costlier
and having errors up to 30%. Genome assemblers in many cases fail to produce high quality
assembled genome due to various inherent biological and computational issues. These assemblers
are mostly platform dependent, but unable to handle combination of data coming from various
sequencing platforms. Handling hybrid data coming from various high throughput sequencing
platforms further exacerbate this situation and increase computational complexity manifolds. If

combined, these sequencing platforms can be very useful.

A modular, computationally efficient hybrid de-novo whole genome assembler can take advantage
of merits of both DBG and OLC based methods to produce better genome as result. A hybrid
method of assembly that can correct errors on long reads by aligning short reads over long reads
can be useful for genome assembly. An improved de-novo genome assembler can efficiently and
accurately assemble the data coming from cross platforms. A web-based software for use on LAN
that can do the stepwise process namely — pre-processing of sequences, alignment for error
correction on long reads, assembling corrected long reads and scaffolding have been developed.

This software is expected to be very useful for bioinformaticians.

AUTHORS

Table of Contents

Topic

Chapter I: Introduction

Motivation and Objectives

Plan of Report

Chapter II: Review of Literature

Chapter III: Software Architecture and Design

Software Architecture

Three-Tier Architecture of Assembler Software

Technologies Used for Development

Structured Query Language (SQL)

Java Server Pages (JSP)

Features of JSP

Software Design

Java Secured Channel

Message Passing Interface

Chapter IV: Methodology

Pre-processing

Read Alignment and Correction

Assembling Corrected Long Reads

Scaffolding

Quality Assessment of results

Chapter V: Software Description

Client interface

Data Management

Cluster Connectivity

Pre-processing

Alignment

Assembling Long Reads

Scaffolding

Help

Chapter VI: Conclusions

HARIIT/ Summary

References

LIST OF FIGURES

. No. | Fig No. Description Page No.
1. | Fig. 3.1 Three Tier Architecture of software 17
2. | Fig.3.2 Design of the Assembler Software 24
3. | Fig. 4.1 Workflow of the developed assembler 27
4. | Fig4d.?2 Showing pre-processed files 29
5. | Fig43 Showing FASTQ Quality Report 29
6. | Fig44 Corrected long read sequences 31
7. | Fig4.4 QUAST tool web page 35
8. | Figure 5.1 Home page of Assembler Software 37
9. | Figure 5.2 Upload file on Assembler Software 38
10. | Figure 5.3 Delete file from Assembler Software 38
11. | Figure 5.4 Contact Us page of Assembler Software 38
12. | Figure 5.5 Sign Up page of Assembler Software 39
13. | Figure 5.6 Options for Assembly Process 41
14. | Figure 5.7 Pre-processing of Input Data 41
15. | Figure 5.8 Result of Pre-processing 42
16. | Figure 5.9 Aligning Short over Long Reads 42
17. | Figure 5.10 | Assembling Short over Long Reads 43
18. | Figure 5.11 | Content of a corrected sequence file 43
19. | Figure 5.12 | Assembling Short over Long Reads 44
20. | Figure 5.13 | Result of Assembly 44
21. | Figure 5.14 | Assembling Short over Long Reads 44
22. | Figure 5.15 | Assembling Short over Long Reads 45
23. | Figure 5.16 | Scaffolding 46
24. | Figure 5.17 | Result of Scaffolding 46
25. | Figure 5.18 | Content of Scaffolded file 46

LIST OF TABLES

S. No. | Table No. Description Page No.
1. Table 1.1 | Description of the available sequencing platforms 10
2. Table 3.1 | Identification of modules for computation 24
3. Table 3.2 | Database table and its fields for storing profile details of 25
the users
4. Table 4.1 | Quality Assessment result from QUAST 35
LIST OF LISTINGS
S. No. | Listing No. Description Page No.
1. | Listing 4.1 Source code for pre-processing of sequences 29
2. | Listing 4.2 Source code for alignment of long read sequences 31
3. | Listing 4.3 MIRA Code and manifest file 32
4. | Listing 4.4 Steps and codes to be executed for scaffolding process 34

ABBREVIATIONS

—

API Application Program Interface
2. APL Application Layer
3. ASHOKA Advanced Super Hub for Omics Knowledge in Agriculture
4. ASP Active Server Pages
3. BAM Binary Alignment Map
6. bp Base pair
7. BSD Berkeley Software Distribution
8. CpPU Central Processing Unit
9. CSS Cascading Style Sheet
10. | cubpa Compute Unified Device Architecture
Il. I DBG de-Bruijn Graph
12. | DBL Database Layer
13. | pDL Data Definition Language
14. | pML Data Manipulation Language
I5. | pNA Deoxy Ribonucleic Acid
16. | GB Giga Byte
17. ' HPC High Performance Computing
18. | HTML Hyper Text Markup Language
19. | HTTP Hyper Text Transfer Protocol
20. | IDE Integrated Development Environment
21. | [EEE Institute of Electrical and Electronics Engineers
22. | IDBC Java Database Connectivity
23. |jr Just-in-Time
24. | JSp Java Server Pages
25. | JjvM Java Virtual Machine
26. | KB Kilo Byte
27. | LAN Local Area Network

28.

MPI Message Passing Interface
29. | oLcC Overlap Layout Consensus
30. | pcr Polymerase Chain Reaction
31 I pop Post Office Protocol
32. | RAM Random Access Memory
33. | sAM Sequence Alignment Map
34. | SIMD Single instruction, multiple data
35. | smp Symmetric Multiprocessing
36. | SMRT Single Molecule Real-Time
37. | SMTP Simple Mail Transfer Protocol
38. SQL Structured Query Language
39. | ssH Secure SHell
40. | sSL Secure Socket Layer
41. | TCp/IP Transmission Control Protocol/Internet Protocol
42. | UL User Interface Layer
43. | XML Extensible Markup Language

CHAPTER1

INTRODUCTION

De-novo genome assembly of any sequenced organism is very important for researchers but this task is
very complex because of inhibition of heavy computation required in the process. There are varied
platforms available for de-novo assembly with their own merits and demerits. These sequencing platforms
produce highly fragmented result. Table 1 shows the most popular sequencing platforms with respect to
their read lengths, accuracy, advantages and disadvantages. But none of the available sequencing platforms
ensure all these parameters. Assembling any genome requires proper combination of high coverage, long

read length, and good read quality.

Table 1.1: Description of the available sequencing platforms

Platform | Read length Accuracy (single Advantages Disadvantages
(bp) read not
consensus)
Pacific > 20kb 85% single-read | Longest read Low sequence yield
Biosciences accuracy length High error rate (15%)
Faster run time Very expensive
Ion up to 400 bp 98% Less expensive Homopolymer errors
Torrent Faster run time Moderate error rate
454/Roche 700 bp 99.9% Long read size Runs are expensive
Low sequence Homopolymer errors
error.
Low PCR
duplication
Ilumina 50-500 bp 99.9% (Phred30) | Potential for high High percentage of
sequence yield PCR duplication
Low cost per base | More run time
SOLiD 50+35 or 99.9% Low cost per base | Slower than other
50+50 bp methods Has issues
sequencing palindromic
sequences

Assembly can be successful if an appropriate algorithm and an efficient software is available. Combining
the data coming from various sequencing platforms can produce improved results. At present, available
assemblers are mostly platform dependent and are unable to handle combination of data coming from across
platforms. De-novo genome assembly is highly computationally intensive and requires hundreds of
gigabytes of memory and millions of CPU hours. Handling hybrid data coming from various high
throughput sequencing platforms further exacerbate this situation and increase computational complexity
manifolds. Most of the available genome assemblers are based on de-Bruijn Graph (DBG) for short reads

and Overlap Layout Consensus (OLC) for long reads. It is well known that short read assembly has less

10

errors but requires huge computational resources. However, Overlap Layout Consensus (OLC) method is
costlier with errors up to 30%. Therefore, there is an urgent need for a modular, computationally efficient
and hybrid de-novo whole genome assembler which can take advantage of merits of both the methods to
produce better genome as result. In this project, we proposed to build an improved de-novo genome
assembler that can efficiently and accurately assemble the data coming from cross platforms. It’s modular

design will also allow user intervention at appropriate stages of sequence assembly.

1.1 Motivation and Objectives

There are many platforms available for genome sequencing. Genome assemblers in many cases fail to
produce high quality assembled genome due to various inherent biological and computational issues. These
assemblers are mostly platform dependent. But these assemblers are unable to handle combination of data
coming from various sequencing platforms. The combination of various sequencing platforms’ data can be
very useful. In terms of computational complexity, its handling increases manifold. So, there was need to
develop computationally efficient method for hybrid de-novo whole genome assembly. In view of the

above, the following objectives have been formulated for this study.

Objectives

i. To develop an alternate algorithm for hybrid de-novo whole genome assembly
ii. To design and develop a hybrid de-novo assembler
iii. To evaluate the performance of developed hybrid de-novo assembler

1.2 Plan of Report

This report presents the work done under a research project for development of a genome
assembler program. The web-based software was developed using JSP and other open source tools.
This report is divided into five chapters. Chapter-I of this report presents a brief introduction to
the problem and objective of the study. Chapter-II deals with review of literature on the various
latest work on hybrid assembler. Software Architecture and Design is given in Chapter-III.
Chapter—IV deals with the stepwise assembly process that includes pre-processing of input
sequences, alignment for error correction on long reads, assembling long reads, and scaffolding.

At last, the references are mentioned that have been referred during the investigation.

11

CHAPTER 11

REVIEW OF LITERATURE

The genome assembly from sequence reads is an algorithm-driven automated process. DNA-
sequence-assembly programs have utilized sequence overlaps for sequence assembly in correct
order. The computational aspect of assembly algorithms become important while actually an
assembler is to be developed to get the results in reasonable amount of time. There are two major
classes of assembly algorithms: Overlap Layout Consensus and de-Bruijn Graph, from how they
match the Lander—Waterman model, to the required sequencing depth and reads length. The
computational efficiency of each class of algorithm, the influence of repeats and heterozygosity
and points of note in the subsequent scaffold linkage and gap closure steps. Given below are few
reviews of various algorithm variants for developing hybrid assemblers. These are the recent years
findings by the researchers to assemble genome in a specific way to efficiently produce assembled

genome.

1. A new strategy for assembling genomic shotgun and EST sequence data was developed by
Chevreux (2005). It combines novel enhancements like repeat detection and on-the-fly
automatic editing with strengths of existing assemblers. The strategy also provides the
assembler with the ability to use and - more importantly - to acquire by itself additional
knowledge present in the assembly data. Furthermore, the knowledge acquisition was
combined with the ability to resolve potential conflicts - like long term repeats in genome
sequencing projects or different mRNA transcripts in EST projects - during the assembly by

falling back to trace signal analysis routines.

2. Korenetal., 2012 have developed a method for hybrid error correction and de-novo assembly
of single-molecule sequencing reads. De-novo assemblers use the long-read sequencing data
with considerable error rate. This approach compliments with shorter, high-identity
sequences resulting in long contigs, accurate transcripts and improved assemblies. Because
the average contig size produced by this approach correlates with read length, assembly

results are expected to improve as the read lengths of the technology improve.

12

Liuetal.,2012 have developed CUSHAW: a Compute Unified Device Architecture (CUDA)
compatible short read aligner to large genomes based on the Burrows-Wheeler Transform
(BWT). It exploits CUDA-compatible graphics hardware as accelerators to achieve fast
speed. Algorithm uses a quality-aware bounded search approach based on the BWT and the

Ferragina-Manzini Index to reduce the search space and achieve high alignment quality.

. Wang et al., 2012 have developed a pipeline for hybrid assembly consisting of primary and
secondary assembly steps. In primary assembly, the 454, GAIIx, or SOLiD reads were
assembled into contigs with Newbler 2.0.01.14, Velvetl.1.04, or Denove2.2, respectively. In
secondary assembly, contigs from primary assembly step were merged into consensus

genome draft with Phrap.

Lee et al., 2014 have developed a novel hybrid error correction algorithm for long PacBio

sequencing reads that uses pre-assembled Illumina sequences for the error correction.

Salmela and Rivals, 2014 have developed LoRDEC, a hybrid error correction method that
builds a succinct DBG representing the short reads, and seeks a corrective sequence for each
erroneous region in the long reads by traversing chosen paths in the graph. LoORDEC is
claimed to be six times faster and requires at least 93% less memory or disk space than

available tools, while achieving comparable accuracy.

. Utturkar et al., 2014 have developed a method of hybrid assembly of Illumina and Roche
454 data. 454-1llumina hybrid assembly approach involved merging the 454-only assembly
with Illumina reads by PHRAP. They have also developed a method of hybrid assembly of
Illumina, 454 and PacBio data.

Li et al., 2015 have presented a new mapper, minimap, and a de-novo assembler, miniasm,
for efficiently mapping and assembling Single Molecule Real-Time (SMRT) sequencing
technology and Oxford Nanopore Technologies (ONT) reads without an error correction

stage.

13

10.

11.

12.

13.

14.

Lin and Liao, 2015 have developed a hybrid assembly approach, in which microbial genomes
were realized by correcting PacBio long reads using ECTools and subsequently assembling,

de-novo, the corrected long reads.

H. Backman and Girke, 2016 developed R/Bioconductor package systemPipeR. It is an
extensible environment for both building and running end-to-end analysis workflows with
automated report generation for a wide range of NGS applications. Its unique features include
a uniform workflow interface across different NGS applications, automated report
generation, and support for running both R and command-line software on local computers
and computer clusters. A flexible sample annotation infrastructure efficiently handles
complex sample sets and experimental designs. To simplify the analysis of widely used NGS
applications, the package provides pre-configured workflows and reporting templates for

RNA-Seq, ChIP-Seq, VAR-Seq and Ribo-Seq.

Miclotte et al., 2016 have developed Jabba, in which hybrid method is used to correct long
third generation reads by mapping them on a corrected DBG that was constructed from
second generation data. It uses pseudo alignment approach with a seed-and-extend

methodology, using maximal exact matches seeds.

Vaser et al., 2016 have developed a fast and accurate de-novo genome assembly from long
uncorrected reads. Here high-quality consensus sequences were generated without additional
error correction steps, efficiently with a Single Instruction Multiple Data (SIMD)

accelerated, partial order alignment based stand-alone consensus module called Racon.

Yeo et al., 2017 developed ARCS, an application that utilizes the barcoding information
contained in linked reads to further organize draft genomes into highly contiguous
assemblies. It has been shown that how the contiguity of an ABySS H.sapiens genome

assembly can be increased over six-fold, using moderate coverage (25-fold) Chromium data.

Wang et al., 2018 developed a novel method leveraging a multi-string Burrows-Wheeler
Transform with auxiliary FM-index to correct errors in long read sequences using a set of

complementary short reads. We demonstrate that our method efficiently produces

14

significantly more high quality corrected sequence than existing hybrid error-correction
methods. This method produces more contiguous assemblies, in many cases, than existing

state-of-the-art hybrid and long-read only de-novo assembly methods.

Ye et al., 2016 have developed DBG2OLC, an efficient assembly of large genomes using
long erroneous reads of the third-generation sequencing technologies. This approach first
maps DBG contigs to the long reads. Each long read is converted into an ordered list of
contigs, termed compressed reads. Then it calculates overlaps between the compressed reads.
The alignment is calculated using the anchors. Contained reads are removed and the reads
are chained together in the best-overlap fashion, then it constructs the assembly backbone
from the best overlaps. Further align all related reads to the backbone and calculate the most

likely sequence as the consensus output.

Zimin et al., 2016 have developed a method of hybrid assembly of the large and highly
repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the mega-reads
algorithm. It exploits the mega-reads algorithm. In this approach Low-error rate Illumina
reads are used to build longer super-reads, which in turn are used to construct a database of
all 15-mers in those reads. PacBio reads and super-reads are then aligned, using the 15-mer
database. Inconsistent super-reads are discarded and the remaining super-reads are merged,
using the PacBio read as a template, to produce pre-mega-reads. These are further merged to

produce the final mega-reads and to generate linking mates across gaps.

15

CHAPTER III

SOFTWARE ARCHTECTURE AND DESIGN

The Software for hybrid assembly of genome sequences has been developed that can be used
currently on LAN for convenience of the users. The programming language used for the
development of web interface are Java Server Pages (JSP), Cascading Style Sheets (CSS) and Java.
It has been developed on Intel Xeon based 64-bit computer with 3.20 GHz-clock speed, Microsoft
Windows 7 Operating System and 16.0 GB RAM. NetBeans 8.0 Integrated Development
Environment (IDE) with java development kit 1.8 has been used as a platform for development of

the software.

3.1 Software Architecture

The web application has been developed using client-server architecture. It is broken into logical
chunks called "tiers", where every tier is assigned a role. Traditional applications consist of single
tier, which resides on the client machine, but web applications lend themselves to an n-tiered
approach. In its most common form, the three tiers are presentation, application and database
layers. A web browser is the first tier (presentation), an engine using dynamic web content
technology (such as ASP, JSP) is the middle tier (application logic), and a database is the third tier
(storage). The web browser sends requests to the middle tier, which services them by making
queries and updates against the database and generates a user interface. The advantage of web
application over windows-based application is that it is platform independent and doesn’t need to
be installed on individual machine. In this software, heavy computations are carried out over high-
end Symmetric Multiprocessing (SMP) server or Advanced Supercomputing Hub for OMICS
Knowledge in Agriculture (ASHOKA) cluster to get the computation faster and achieve the results
in least possible amount of time. Data size of the input files are very big and they need to be

uploaded separately to divide the process in separate activities.

3.2 Three-Tier Architecture of Assembler Software
This software is implemented as a layered structure with each layer corresponding to a different
functionality. The three-tier architecture of the software is given in Fig. 3.1.

¢ User Interface Layer (UIL)

16

¢ Application Layer (APL)
¢ Database Layer (DBL)

HTTP Client HTTP HTTP Server
(Browser) (over TCP/IP) (hostname: port)

L

T R tM
Client-side t Eies eses - HTML pages,

= Programs Forms, Applets
il | le ’
‘ =S Response Message —— atalnga
e | Server-side ¢ T
— Programs
= Q@:‘P E - &
——————— TCP/IP Network — foplicalions
Application HTTP
Presentation SSL
Session
Transport TCP Multiplexing (Port), Re-transmission
Network IP Addressing (IP Address), Routing
Data Link |EEE 802.11x
Physical

Fig. 3.1 Three Tier Architecture of software

User Interface layer (UIL)
The User Interface Layer has been implemented using Hyper Text Markup Language (HTML) and
JavaScript. The UIL consists of forms for accepting information from the user and validating those

forms using JavaScript.

Application Layer

Server-Side Application Layer has been implemented using Java Server Pages (JSP). JSP technology is
the Java platform technology for delivering dynamic content to web clients in a portable, secure and
well-defined way. The JSP specification extends the Java Servlet Application Programming Interface
(API) to provide web application developers with a robust framework for creating dynamic web content

on the server using HTML, and Extensible Markup Language (XML) templates, and Java code, which

17

is secure, fast, and independent of server platforms. JSP has been built on top of the Servlet API and

utilizes Servlet semantics. JSP has become the preferred request handler and response mechanism.

Database Layer (DBL)

Database Layer has been implemented using MySQL. It is used for designing the tables for storing
set of preferred codons for some organisms and users’ profiles. The relational database approach
has been used to design the database. The fundamentals of normalization theory have been used
to normalize the different tables of the database. All tables have proper interaction among

themselves via primary key - foreign key relationship.

3.3 Technologies Used for Development

3.3.1 Java Technology
Initially the language java was called as “oak” but it was renamed as “Java” in 1995. The primary
motivation of this language was the need for a platform-independent language that could be used
to create software to be embedded in various consumer electronic devices:

e Javais a programmer’s language.

e Java is cohesive and consistent.

e Except for those constraints imposed by the Internet environment, Java gives the

programmer, full control.

e Finally, Java is for Internet programming whereas C was for system programming.

3.3.1.1 Importance of Java to the Internet Platform

Java has had a profound effect on the Internet. This is because; Java expands the universe of objects
that can move about freely in Cyberspace. In a network, two categories of objects are transmitted
between the Server and the Personal computer. They are: Passive information and Dynamic active
programs. The Dynamic, Self-executing programs cause serious problems in the areas of Security

and probability.

Applications and Applets: An application is a program that runs on our computer under the

operating system of that computer. It is more or less like one creating using C or C++. Java’s

18

ability to create Applets makes it important. An Applet is an application designed to be transmitted

over the Internet and executed by a Java —compatible web browser.

3.3.1.2 Security

Every time you that you download a “normal” program, you are risking a viral infection. Prior to
Java, most users did not download executable programs frequently, and those who did scan them
for viruses prior to execution. Most users still worried about the possibility of infecting their
systems with a virus. In addition, another type of malicious program exists that must be guarded

against.

3.3.1.3 Portability

For programs to be dynamically downloaded to all the various types of platforms connected to the
Internet, some means of generating portable executable code is needed. As we can see, the same
mechanism that helps ensure security also helps create portability. Indeed, Java’s solution to these

two problems is both elegant and efficient.

3.3.1.4 The Byte Code

The key that allows the Java to solve the security and portability problems is that the output of
Java compiler is Byte code. Byte code is a highly optimized set of instructions designed to be
executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is, in
its standard form, the JVM is an interpreter for byte code. Although Java was designed for
interpretation, there is technically nothing about Java that prevents on-the-fly compilation of byte
code into native code. Sun has just completed its Just in Time (JIT) compiler for byte code. When
the JIT compiler is a part of JVM, it compiles byte code into executable code in real time, on a
piece-by piece, demand basis. It is not possible to compile an entire Java program into executable
code all at once, because Java performs various run-time checks that can be done only at run time.

The JIT compiles code, as it is needed, during execution.

19

3.3.1.5 Java Virtual Machine (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual machine is an important
element of the Java technology. The virtual machine can be embedded within a web browser or an
operating system. Once a piece of Java code is loaded onto a machine, it is verified. As part of the
loading process, a class loader is invoked and does byte code verification makes sure that the code
that’s has been generated by the compiler will not corrupt the machine that it’s loaded on. Byte
code verification takes place at the end of the compilation process to make sure that is all accurate

and correct. So, byte code verification is integral to the compiling and executing of Java code.

3.3.1.6 Java Architecture

Java architecture provides a portable, robust, high performing environment for development. Java
provides portability by compiling the byte codes for the Java Virtual

Machine, which is then interpreted on each platform by the run-time environment. Java is a
dynamic system, able to load code when needed from a machine in the same room or across the

planet.

3.3.1.7 Compilation of Code

When you compile the code, the Java compiler creates machine code (called byte code) for a
hypothetical machine called Java Virtual Machine (JVM). The JVM is supposed to execute the
byte code. The JVM is created for overcoming the issue of portability. The code is written and
compiled for one machine and interpreted on all machines. This machine is called Java Virtual

Machine.

3.3.1.8 Simple

Java was designed to be easy for the Professional programmer to learn and to use effectively. If
you are an experienced C++ programmer, learning Java will be even easier. Because Java inherits

the C/C++ syntax and many of the object-oriented features of C++.

20

3.3.1.9 Object-Oriented

Java was not designed to be source-code compatible with any other language. This allowed the
Java team the freedom to design with a blank slate. One outcome of this was a clean usable,
pragmatic approach to objects. The object model in Java is simple and easy to extend, while simple

types, such as integers, are kept as high-performance non-objects.

3.3.1.10 Robust

The multi-platform environment of the Web places extraordinary demands on a program, because
the program must execute reliably in a variety of systems. The ability to create robust programs
was given a high priority in the design of Java. Java is strictly typed language; it checks your code

at compile time and run time.

3.3.1.11 Java Database Connectivity

JDBC is a Java API for executing SQL statements. (As a point of interest, JDBC is a trade-marked
name and is not an acronym; nevertheless, JDBC is often thought of as standing for Java Database
Connectivity. It consists of a set of classes and interfaces written in the Java programming
language. JDBC provides a standard API for tool/database developers and makes it possible to
write database applications using a pure Java API. Simply put, JDBC makes it possible to do three
things:

e FEstablish a connection with a database.
e Send SQL statements.

e Process the results.

3.4 Structured Query Language (SQL)

Structured Query Language (SQL) is the language used to manipulate relational databases. SQL
is tied very closely with the relational model. In the relational model, data is stored in structures

called relations or tables. SQL statements are issued for the purpose of:

Data Definition: Defining tables and structures in the database (DDL used to create, alter and

drop schema objects such as tables and indexes).

21

Data Manipulation: Used to manipulate the data within those schema objects (DML Inserting,
Updating, Deleting the data, and Querying the Database).

3.4.1 Data Definition
Defining tables and structures in the database (DDL used to create, alter and drop schema objects

such as tables and indexes).

3.4.2 Data Manipulation

Used to manipulate the data within those schema objects (DML Inserting, Updating,
Deleting the data, and Querying the Database). A schema is a collection of database objects that

can include: tables, views, indexes and sequences.

3.5 Java Server Pages (JSP)

Java server Pages is a simple, yet powerful technology for creating and maintaining dynamic-
content web pages. Based on the Java programming language, Java Server Pages offers proven
portability, open standards, and a mature re-usable component model. The Java Server Pages
architecture enables the separation of content generation from content presentation. This
separation not eases maintenance headaches; it also allows web team members to focus on their
areas of expertise. Now, web page designer can concentrate on layout, and web application

designers on programming, with minimal concern about impacting each other’s work.

3.6 Features of JSP

3.6.1 Portability

Java Server Pages files can be run on any web server or web-enabled application server that
provides support for them. Dubbed the JSP engine, this support involves recognition, translation,

and management of the Java Server Page lifecycle and its interaction components.

22

3.6.2 Components
It was mentioned earlier that the Java Server Pages architecture can include reusable Java
components. The architecture also allows for the embedding of a scripting language directly into

the Java Server Pages file. The components current supported include Java Beans, and Servlets.

3.6.3 Processing

A Java Server Pages file is essentially an HTML document with JSP scripting or tags. The Java
Server Pages file has a JSP extension to the server as a Java Server Pages file. Before the page is
served, the Java Server Pages syntax is parsed and processed into a Servlet on the server side. The

Servlet that is generated outputs real content in straight HTML for responding to the client.

3.6.3 Access Models

A Java Server Pages file may be accessed in at least two different ways. A client’s request comes
directly into a Java Server Page. In this scenario, suppose the page accesses reusable Java Bean
components that perform particular well-defined computations like accessing a database. The
result of the Beans computations, called result sets is stored within the Bean as properties. The

page uses such Beans to generate dynamic content and present it back to the client.

Steps in the execution of a JSP Application:

e The client sends a request to the web server for a JSP file by giving the name of the JSP
file within the form tag of a HTML page.

e This request is transferred to the Java Webserver. At the server-side Java Webserver
receives the request and if it is a request for a jsp file server gives this request to the JSP
engine.

e JSP engine is program which can under stands the tags of the jsp and then it converts those
tags into a Servlet program and it is stored at the server side. This Servlet is loaded in the
memory and then it is executed and the result is given back to the Java Webserver and then
it 1s transferred back to the result is given back to the Java Webserver and then it is

transferred back to the

23

3.7 Software Design

The design of the assembler software has been shown in the Fig. 3.2 that schematically shows the
modules developed under the software. This software has four modules for file and user
management, Pre-processing of input sequence data, alignment for error correction, assembly of

corrected sequence and Scaffolding generation.

A separate library has been developed for connectivity to the ASHOKA supercomputing platform
and the computations thereon. Reference of the library has been added in the main application for
subsequent usage. These are developed as reusable components that can be utilized in other Java

based applications of various types like windows, web application and web services.

User & File Management

—
User Interfaces IPits st
— Error Cotrrection
ASHOKA Compute
Connect intensive
—> Assembly methods
—> Scaffolding

Fig. 3.2: Design of the Assembler Software

Table 3.1: Identification of modules for computation

Module Name Description

Login Provide facility of login to users

24

Assembler The main module, which provide Assembler (including
dependent variables and independent variables)

Help Provide online help about software

Contact Us Contact details of developer team

Sample Data Download | Download sample data to understand format of input
data.

Signup Provide facility of sign up to new user

Changed Password An option for change of password

3.7.1 User Profile

The user of the system is divided into two categories:

1) Registered users: All register users can access the results of codon usage indices and

correspondence analysis.

2) Administrator: - Administrator has rights to make any change in data base and other access

polices.

3.7.2 Database Design

Database for the system is maintained using MySQL at server level. Database contains

independent table namely login table. The schema design for table is presented in Table 3.2.

Table 3.2: Database table and its fields for storing profile details of the users

Attribute Name Constraint Attribute Type
uname Primary Key Varchar(30)
pass Not Null Varchar(30)
address None Varchar(100)
desig None Varchar(45)
deptt None Varchar(45)
org None Varchar(45)
city None Varchar(45)
state None Varchar(45)
country None Varchar(45)
phone None Varchar(15)
email Not Null Varchar(45)
name Not Null Varchar(45)
sex Not Null Varchar(6)

25

3.8 Java Secured Channel: JSch is a pure Java implementation of SSH2. JSch allows to
connect to an sshd server and use port forwarding, X11 forwarding, file transfer, etc., and you can
integrate its functionality into your own Java programs. JSch is licensed under BSD style license.
Motive to develop was to allow users of pure java X servers, WiredX, to enable secure X sessions.
So, our efforts had mostly targeted to implement the SSH2 protocol for X11 forwarding. Of course,
however, we have also added other functionality like port forward, file transfer, terminal
emulation, etc.

This is a utility to connect to remote linux server through an authorized login and password. This
can be utilized run an application on the remote server and get the result back. It is a secured
channel to connect to any high end linux server. The utility was found useful for connecting to

ASHOKA supercomputing system.

3.9 Message Passing Interface: MPI is a specification for the developers and users of
message passing libraries. By itself, it is not a library - but rather the specification of what such a
library should be. MPI primarily addresses the message-passing parallel programming model: data
is moved from the address space of one process to that of another process through cooperative
operations on each process. Simply stated, the goal of the Message Passing Interface is to provide
a widely used standard for writing message passing programs. The interface attempts to be:

e practical

e portable

o efficient

o flexible
The MPI standard has gone through a number of revisions, with the most recent version being
MPI-3. Interface specifications have been defined for C and Fortran90 language bindings:

e (C++ bindings from MPI-1 are removed in MPI-3

e MPI-3 also provides support for Fortran 2003 and 2008 features
Actual MPI library implementations differ in which version and features of the MPI standard
they support.

This chapter mainly explained the various web application development technologies, three-tier

architecture of the software and MPI libraries.

26

CHAPTER -1V
METHODOLOGY

The assembly process includes many steps to carry out as mentioned in Fig 4.1. In the first step,
the sequence data received from any sequencing platform needs to be pre-processed. The long read
pre-processed sequence data are aligned using short read sequences for correcting errors. These
corrected long read sequences are then assembled using an assembly program. Finally, these
assembled sequences are combined together to form scaffolds using another available program.
The following Fig. 4.1 describes the whole process. These processes have also been described one

by one in detail.

Process Description

Tasks Tools or Library

U | g

Preprocessing of . A « R Library -
e Sequence Cleaning » SystemP)i,peR
Alignment for Error Aligning Short Reads over ~ EMLRC
Correction Long Reads for correction

Assembly of Long ' » OLC based Long
=t | Assembly of Long Reads » ﬁ;ﬁ Assembly -

| Scaffolding | Scaffolding i » » Contig Formation
using ARCS

Fig 4.1: Workflow of the developed assembler

4.1 Pre-processing: Pre-processing of next generation sequencing data is carried out for
quality checking. The following activities are carried out for quality checking.
e Import of data from BAM, SAM or FastQ files (any variant)

e Providing a quick overview to tell the areas where there may be problems

27

Summary graphs and tables to quickly assessment data
Export of results to an HTML based permanent report
Offline operation to allow automated generation of reports without running the

interactive application

A variety of useful trimming tasks for paired-end and single ended data are also carried out.
The selection of trimming steps and their associated parameters are supplied on the command

line. The trimming steps are given below:

Cut adapter and other platform-specific sequences from the read.

Perform a sliding window trimming, cutting once the average quality within the window
falls below a threshold.

Cut bases off the start of a read, if below a threshold quality

Cut bases off the end of a read, if below a threshold quality

Cut the read to a specified length

Cut the specified number of bases from the start of the read

Drop the read if it is below a specified length

Convert quality scores to Phred-33

Convert quality scores to Phred-64

It uses the FastqStreamer function from ShortRead package to stream through large FASTQ

files in a memory efficient manner. It performs adapter trimming with the trimLRPatterns

function from the Biostrings package of R. After the trimming step, a new targets file is

generated (targets_trim.txt) containing the paths to the trimmed FASTQ files.

Read quality filtering and trimming: The function preprocessReads allows to apply

predefined or custom read pre-processing functions to all FASTQ files referenced in a SY Sargs

container, such as quality filtering or adaptor trimming routines. Fig 4.2 and 4.3 show the files

received after pre-processing of reads and FASTQ Quality Report respectively.

Source Code: The following source code (Listing 4.1) has been used for running the pre-

processing of sequence data.

28

Listing 4.1: Source code for pre-processing of sequences

#Library Requirement

library(systemPipeRdatal)

liorary(systemPipeR)

#Experiment definition provided by targets file

targetspath <- system.file("extdata”, "targets.txt", package="systemPipeR")

targets <- read.delim(targetspath, comment.char = "#")[,1:4]

#Read pre-processing

#Read quadlity filtering and frimming

args <- systemArgs(sysma="param/trim.param", mytargets="targets.txt")

writeTargetsout(x=args, file="targets_trim.txt", overwrite=TRUE)

#FASTQ quality report

pdf("./results/fastgReport.pdf’, height=18, width=4*ength(fqlist))

seeFastgPlot(fglist)
dev.off()

Name

@ fastqReport.pdf

= fastqReport.png

BB SRR446027_1.fastq_trim.gz
BB SRR446028_1.fastq_trim.gz
BB SRR446029_1.fastq_trim.gz
BB SRR446030_1.fastq_trim.gz
BB SRR446031_1.fastq_trim.gz
BB SRR446032_1.fastq_trim.gz
BB SRR446033_1.fastq_trim.gz
g

2019 10:21 AM
2019 10:15 AM
/2019 10:16 AM
2019 10:16 AM
2019 10:16 AM
2019 10:16 AM
019 10:16 AM
2019 10:16 AM
7/23/2019 10:16 AM

N

~

Type

Adobe Acrobat D...

PNG File

WinRAR archiv
WinRAR archiv
WinRAR archiv
WinRAR archiv
WinRAR archiv
WinRAR archiv
WinRAR archiv

n N NN

Size

241 KB

506 KB
4,775 KB
6,559 KB
4,798 KB
6,154 KB
5,045 KB
6,344 KB
4,797 KB

Tags

Fig 4.2: Showing pre-processed files

FASTQ quality report (Zoomed)

Shotos- osesortprc
+ adtto

0]

Quality

) 0 40 S
Cycle

Base BANCHGAT

Proportion

Proportion

Proportion

Quality

M1B

Quaiity

0 X 0 9 6
Cycle

Base BANCHGHT

Quality

Quality

Quaiity

Cw;e v

Base NANCHGHT

Proportion

Quality

Fig 4.3: Showing FASTQ Quality Report

29

4.2 Read Alignment and Correction

Long read sequencing is changing the landscape of genomic research, especially de-novo
assembly. Despite the high error rate inherent to long read technologies, increased read lengths
dramatically improve the continuity and accuracy of genome assemblies. However, the cost and
throughput of these technologies limit their application to complex genomes. One solution is to
decrease the cost and time to assemble novel genomes by leveraging “hybrid” assemblies that use
long reads for scaffolding and short reads for accuracy. Alignment of short reads over long reads
has been carried out using a computer program called FMLRC for correcting errors present in long

reads.

FMLRC: A novel method has been adopted leveraging a multi-string Burrows-Wheeler
Transform with auxiliary FM-index to correct errors in long read sequences using a set of
complementary short reads (Wang et al., 2018). This method efficiently produces significantly
more high-quality corrected sequence. It produces more contiguous assemblies, in many cases,
than existing state-of-the-art hybrid and long-read only de-novo assembly methods. This method
accurately corrects long read sequence data using complementary short reads and has improved
throughput and computational efficiency. The FM-index enables arbitrary length k-mer searches
through the dataset, allowing for FMLRC to retrieve k-mer frequencies from the short-read dataset.
FMLRC uses the FM-index to implicitly represent all de Bruijn graphs of the short-read
sequencing dataset. These de Bruijn graphs are then used to correct regions in the long reads that

are not supported by the short-read sequencing dataset.
The Listing 4.2 shows the stepwise commands to be executed for long read sequence alignment.

Listing 4.2: Source code for alignment of long read sequences

Step 1 - Get Short Reads

wget http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc/s_é_1.fastq.gz

OR

wget hitp://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc/s_6_2.fastq.gz

Step 2- Get Long Reads

wget http://files.pacb.com/datasets/secondary-analysis/e-coli-k 12-de-
novo/1.3.0/Ecoli_MG1655_pacBioToCA.tgz

tar -xvzf Ecoli_MG1655_pacBioToCA.tgz

30

oawk 'NR%4==1| |[NR%4==2'" ./PacBioCLR/PacBio_10kb_CLR.fastq | ftr "@" ™" >
./PacBioCLR/PacBio_10kb_CLR.fasta

Step 3 - build the bwt

gunzip -c s_6_l.fostq.gz | awk "NR % 4 == 2" | sort -T .Jtemp | tr NT TN |
Jopt/software/ropebwi2/bin/ropebwt2 -LR | fr NTTN | msbwt convert ./ecoli_mc_msbwt

Step 4 - run fmirc

NUM_PROCS=4
/opt/software/fmirc-0.1.2-h2d50403_0/bin/fmirc -p $NUM_PROCS -V
.Jecoli_mc_msbwt/comp_msbwt.npy ./PacBioCLR/PacBio_10kb_CLR.fasta

.Jcorrected_final.fa

Corrected Sequence

The following Fig 4.4 shows the corrected long read sequence file.

7y T s . z 3

>m120114_ 011938 42177 c100247042550000001523002504251220_s1
_p0/7/1848_5421
CGATGAAATGGACATTGGTATTGATATCGATTTATGGATGGACGAAGAAC
CCGTGCCGATGAATAAGGAGCTGGTCGCCACCCTGACAGAATTGTGTGAA
AGAGAAAAACTGAATTACCGGGTGATGCACAGTGGTGCCGGGCACGACGC
GCAAATTTTCGCGCCTCGCGTACCAACCTGCATGATTTTTATCCCCAGCA
TCAACGGGATCAGCCATAACCCGGCGGAACGCACCAATATTACCGACCTT
GCCGAAGGGGTCAAAACGTTGGCACTCATGCTTTATCAACTTGCCTGGCA
GAAATAAGGAGTCATAAATGGGATATTTAAATAACGTCACCGGTTACCGC
GAAGATTTACTGGCTAACCGTGCGATTGTTAAACACGGTAATTTCGCACT
GTTAACCCCGGATGGTCTGGTAAAAAATATTATTCCGGGCTTTGAAAATT
GTGACGCGACAATCCTCTCCACGCCAAAGCTGGGTGCCTCTTTTGTTGAT
TATCTGGTCACACTGCATCAAAACGGTGGCAACCAACAGGGCTTCGGTGG
CGAAGGCATTGAAACGTTCCTGTATGTGATCTCTGGAAATATCACTGCCA
AAGCCGAAGGCAAAACATTTGCCTTAAGCGAAGGTGGCTATCTTTATTGC
CCGCCAGGCTCCTTAATGACGTTTGTTAACGCCCAGGCCGAAGACAGCCA
AATCTTTTTATATAAGCGCCGCTATGTTCCGGTAGAAGGCTATGCACCGT
GGCTGGTTTCTGGCAATGCCAGCGAACTGGAACGCATTCATTATGAAGGC

R ABD o 2

Fig 4.4: Corrected long read sequences
4.3 Assembling Corrected Long Reads

Long read sequencing is changing the landscape of genomic research, especially de-novo
assembly. Despite the high error rate inherent to long read technologies, increased read lengths
dramatically improve the continuity and accuracy of genome assemblies. However, the cost and

throughput of these technologies limit their application to complex genomes. One solution is to

31

decrease the cost and time to assemble novel genomes by leveraging “hybrid” assemblies that use

long reads for scaffolding and short reads for accuracy.

MIRA - Mimicking Intelligent Read Assembly - A multi-pass DNA sequence data
assembler/mapper for whole genome were used. It assembles/maps reads into contiguous

sequences (called contigs) gained by the following:

= electrophoresis sequencing (aka Sanger sequencing)
= 454 pyro-sequencing (GS20, FLX or Titanium)
= Jon Torrent

= Solexa (Illumina) sequencing

®" (in development) Pacific Biosciences sequencing

The MIRA code snippet for assembly and manifest file has been shown in Listing 4.3:
Listing 4.3: MIRA Code and manifest file
Code Snippet

String cmdline = "mira manifest.conf”;
Cmdline = RLT.Execute_CommandOn_HPC(pscpFolderPlusPathOnServer,
FileNameWithPath, ASHOKALogin1_IP, ASHOKA_L1_ID, ASHOKA_L1_PW, cmdline);

Manifest File

project=SBLal

job=genome, denovo, accurate
parameters= -GE:not=4
readgroup=SomeReads
data=/home/sblall/PacBiol.fastg
technology=pcbiohq

32

4.4 Scaffolding

A scaffold is a portion of the genome sequence reconstructed from end-sequenced whole-genome
shotgun clones. Scaffolds are composed of contigs and gaps. A contig is a contiguous length of
genomic sequence in which the order of bases is known to a high confidence level. Gaps occur
where reads from the two sequenced ends of at least one fragment overlap with other reads in two
different contigs (as long as the arrangement is otherwise consistent with the contigs being
adjacent). Since the lengths of the fragments are roughly known, the number of bases between

contigs can be estimated.

The goal of whole-genome shotgun assembly is to represent each genomic sequence in one
scaffold; however, this is not always possible. One chromosome may be represented by many
scaffolds (e.g., Chlamydomonas reinhardtii) or just a single scaffold (e.g., Human chromosome
19), depending on how completely the genome can be reconstructed, or assembled, from the

available reads. The relative locations of scaffolds in the genome are unknown.

Scaffolds are normally numbered approximately from largest to smallest. Some scaffolds may

ultimately be filtered out of the assembly, resulting in skipped scaffold numbers.

In some cases, scaffolds can overlap. For example, in polymorphic genomes, regions with a high
density of allelic differences between haplotypes may be split into separate sets of scaffolds, each
representing one allele. Thus, a sequence that exists in only one location in the genome may appear

on more than one scaffold.

ARCS - Scaffolding genome drafts with linked read

It is an application that utilizes the barcoding information contained in linked reads to further
organize draft genomes into highly contiguous assemblies. It harnesses the barcoding information
contained in linked read data for connecting high-quality sequences in genome assembly drafts.
For layout building, ARCS’ gv file is converted to a tab-separated value (tsv) file listing all
possible oriented sequence pairs, the number of supporting barcodes with gap sizes arbitrarily set

at 10 bp. This is facilitated by the supplied python script (makeTSVfile.py).

33

Listing 4.4: Steps and codes to be executed for scaffolding process

1. Downloading sample Chromium read alignment .bam file

wget
http://www.bcgsc.ca/downloads/supplementary/ARCS/testdata/NA24143_genom
e_phased_namesorted.baml.sorted.bam

wget hitp://www.bcgsc.ca/downloads/supplementary/ARCS/testdata/hsapiens-
8reformat.fa

2. Running ARCS

/Backup/arcs/Arcs/arcs -f hsapiens-8reformat.fa -a alignments.fof -s 98 -c 5-10-d 0 -
r 0.05 -e 30000 -m 20-10000 > ARCSlog_c5r0.05e30000.txt

3. Converting graph for LINKS

/Backup/arcs/Examples/makeTSVfile.py hsapiens-
8reformat.fa.scaff_s98_c5_10_d0_e30000_r0.05.dist.gv test_checkpoint.tsv hsapiens-
8reformat.fa

4. Running LINKS

/opt/links_v1.8.6/LINKS -f hsapiens-8reformatfa -s emptyfof -k 20 -b
links_c5r0.05e30000-15-a0.9 -1 5 -t 2 -0 0.9 -x 1

Since positional information of reads within the molecule of origin is not known, estimation of

gap sizes is not a straightforward problem, and would require more sophisticated approaches.

ARCS first pairs sequences within a draft assembly, then lays out the pairing information for
scaffolding. Input alignments in BAM format are processed for sets of read pairs from the same
barcode that align to different sequences. A link between the two sequences is formed. Each link

represents evidence that one barcode/molecule connects the sequences.

34

4.5 Quality Assessment of results

The quality assessment of the generated results from the developed assembler was done using
QUAST tool available. The following figures show the available web page of the tool and the
result generated after running this tool respectively. Table 4.1 shows the result of QUAST tool.

<« C Y @ Notsecure | bicinf.spbau.ru/gquast “w & ® BH Q| &

Algorithmic Biology Lab

St. Petersburg Academic University of the e il —
IS

roteogenomics Publications Members HS Lectures Rosalind

QUAST: Quality Assessment Toel for Genome Assemblies

Dear users! Our website moved to quast.sf.net! New QUAST page is here.

QUAST evaluates genome assemblies. For metagenome assembly evaluation, see MetaQUAST project. For contig alignment
visualization, see lcarus project.
QUAST works both with and without a reference genome.

The tool accepts multiple assemblies, thus is suitable for comparison

| Download |

Source code
Manual

QUAST web interface

Paper at Bioinformatics journal
Paper at PubMed

Poster at RECOMB-2013 (PDF)

Citation:
Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi and Glenn Tesler,
QUAST: assessment teel for genome assemblies,

Biainfor: (2013) 29 (8): 1072-1075. -

Fig 4.4: QUAST tool web page

All statistics are based on contigs of size >= 500 bp, unless otherwise noted (e.g., "# contigs (>=

0 bp)" and "Total length (>= 0 bp)" include all contigs).

Table 4.1: Quality Assessment result from QUAST

Statistics without reference Assembly_out.padded
contigs 32

contigs (>= 0 bp) 36

contigs (>= 1000 bp) 27

contigs (>= 5000 bp) 10

contigs (>= 10000 bp) 4

contigs (>= 25000 bp) 0

contigs (>= 50000 bp) 0
Largest contig 38230
Total length 138701
Total length (>= 0 bp) 8066
Total length (>= 1000 bp) 3241
Total length (>= 5000 bp) 439

35

Total length (>= 10000 bp) 688
Total length (>= 25000 bp) 0
Total length (>= 50000 bp) 0

N50 18531
N75 14452
L50 7

L75 12

GC (%) 48.73
Mismatches

#N's 0

N's per 100 kbp 0

36

CHAPTER -V
SOFTWARE DESCRIPTION

The Software for genome assembly has been developed for web platform and programming has
been done with the Java Server Pages (JSP), Cascading Style Sheets (CSS) and Java programming
language. It has been developed on Intel Xeon based 64 bit computer with 3.20 GHz-clock speed,
Microsoft Windows 7 Operating System and 16.0 GB RAM. NetBeans 8.0 Integrated
Development Environment (IDE) with java development kit 1.8 has been used as a platform for

development of the software.

5.1 Client interface

This web-based assembler software that is freely accessible for LAN users. User authentication is
needed to ensure security. It is accessible only after entering valid user name and password. For
getting user name and password, any user may signup by clicking on appropriate link on home

page. The home page (Fig 5.1) of the software presents the user with a brief welcome note on the

software.

yme Assembly Program

FILE HANDLING GENOMEASSEMBLY | HELP | FEEDBACK | CONTAGTUS

[Mon Aug 26 2019 12.52:12 GMT+0530 (India Standard Time) Login: No login

Genome Assembly Program

= =
es out the data

s are corrected

cond step are
assembled using OLC based assembly program

- Scaffolding - Finally, scaffolding takes place

« This software carries out the computations on the super-
computing facility available at ICAR-IASRI for getting
results faster.

- The user of this system needs to register first to carry out

assembly.

, Fax : 91-11-25841564

Figure 5.1: Home page of Assembler Software

The home page has links in the form of horizontal menu bar which has links for “Home”, “About”,
“File Handling”, “Genome Assembly”, “Help”, “Feedback’ and “Contact Us”. The links “About”,
“File Handling” and “Genome Assembly” have submenus too. “About” has link for CABin
(Centre for Agricultural Bioinformatics). File Handling has links for “View My Files”, “Upload
File”, “Upload File to HPC”, Delete File”, “My Files”, “Download Files” and “Data Download”.

37

As the name suggests the functionalities for upload or download a data file to or from the server,
deleting a file from the server, viewing the files uploaded by the logged in user are facilities
provided (Figure 5.2 and 5.3). “Data Download” provides facility to download sample input files
for three workflows provided in the software. “Contact Us” page provides the details of the primary
contact and project team. “Help” gives the user the detailed description of how to use this software.

Figure 5.4 shows the “Contact Us” page of the software.

GENOME ASSEMBLY
‘Genome Assembly Program

‘GENOME ASSEMBLY

GENOME ASSEMBLY HELP

i aagmnesn

UPLOAD FILE

Choose il o vploas:

Submit

TCAR-Indian 3

- 2 one 91
Library Avema i

¥ Delhi 110 012
Phene 9111 35347121 21 BN, Eax : 9111 35511560

Figure 5.2: Upload file on Assembler Software

& C (O localhost8084/GA-Web/UploadFilejsp " &9 0 M

GENOME ASSEMBLY
Genome Assembly Program

ABOUT FILE HANDLING GENOME ASSEMBLY HELP FEEDBACK

Lopm wsn | Logout

Figure 5.3: Delete file from Assembler Software

* &SRO W

GENOME ASSEMBLY
Genome Assembly Program

FILE HANDLING GEN MBLY HELP. FEEDBACK

Wed Oct 23 2019 15:57:42 GMT+0530 (India Standard Time)

CONTACT US

Contact Persons

Dr.L. M Bhar
Dir
dire

nnnnnnnn

Figure 5.4: Contact Us page of Assembler Software

38

5.1.1 User management
User management module of the software provides the following facilities to the users:
Creating a new user

For a new user registration, clicking on the “New User Sign Up” link takes the user to the
registration page (Figure 5.5) where the username and password can be set by filling in all the

required details for registration process.

€« C (O localhost8084/G - % A © o &

GENOME ASSEMBLY
Genome Assembly Program

FILEHANDLING | GENOMEASSEMBLY | HELP | FEEDBACK CONTACT US

andard Time}

Login ID* iasri
Full Name®
Sex Male v

Password® =
zswor

* Indieates mandatory fields

| Reset | | Submit |

earch Instiute
Thi-110 012 =5

»

Figure 5.5: Sign Up page of Assembler Software

After entering the details user can click on “Submit” button for submitting the information into the
user table of the database. After authentication of username and password in login page. Logged

in users have access to all facilities of the software with a Graphical User Interface (GUI).

Changing and retrieving user password
Options are also provided to change the existing user password and to retrieve the password in the

situations when user forgets the password.

5.2 Data Management
v’ Registration: User profile is stored in MYSQL database, Email notification

v" Folder Management: User’s folder created with signup

39

v’ File Management: Separate module for upload file, file viewer, file download, file delete and

sample data download
Input selection: Select file from user’s own folder
Output:
v Can be viewed on browser
v Can be downloaded on user’s disk

v Copied to the user’s own folder

Input data handling

Short Read or Long Read sequences are nucleic acid separated by at least one header line. A header
line is defined as any line whose first character is a right-angled bracket “>’. There may be any
number of header lines but they must precede each sequence, and the second or subsequent header
lines are ignored. Those lines whose first character is not >’ are considered to be sequence data.
Sequences must be in the correct reading frame, and should not contain untranslated 5° or 3’
sequence. The format of each line of sequence data is relaxed; sequences can be either upper- or

lower-case characters. Input lines may be any width and contain spaces and/or numbers.

Input data handling module has been designed and developed for reading data for computation on
the assembler software. Client is required to upload the input data in ‘fasta’ or ‘fastq’ format in

each section.

5.3 Cluster Connectivity

During the process of assembly, programs installed on ASHOKA HPC have been used for faster
results. The JSP based web application connects to the HPC through available java library called
“JSch”. It needs user credentials to login to the HPC. File management and folder creation are
done using different methods developed in java. Command line arguments are passed to the java
method to copy input file and run program on HPC (cluster). The output files generated on the
HPC are copied back to web server the same way. The files generated on HPC login are deleted

after the process of computation and file copying is complete.

40

Assembly Options

The options available for assembly process have been shown in the following Fig 5.6.

GENOME ASSEMBLY

Genome Assembly Program

ABOUT | FILEHANDLNG | GENOMEASSEMBLY | HELP | FEEDBACK | CONTACTUS

Tour IP- 0:0:0:0:0:0:0: 1 Mon Aug 26 2019

Input Data Preprocessing
Aligning Short over Long Reads
Assembling Long Reads
Scaffoiding

Preprocessing Results
Alignment Resus

Assembly Resulls

Scaffolding Resu

New
4 (PBX), Fax : 01-11-2584156+4

Phone : 91-11-2584712

Figure 5.6: Options for Assembly Process

5.4 Pre-processing

On the menu of “Genome Assembly” there are many submenu options available. For pre-
processing of input sequences, the “Input Data Pre-processing” needs to be chosen. Clicking on
this option opens the page as given in Fig 5.7. On this page read file needs to be chosen from the
user’s folder shown on a dropdown. We can also mention result file and the folder name for result

file generation.

&« C Y @ localhostB084/GA-Web/Preprocessjsp fr @9 BH QO &

GENOME ASSEMBLY
Genome Assembly Program

| ABOUT | FILEHANDLNG | GENOMEASSEMBLY | | reEDBACK

Your ™. 6:0:£:0:0:0:0:1 [Thu Oct 24 2019 13.03:22 GMT+0530 (India Standard Time} | Logim: 1asr1 | Lugau{|

Preprocessing of Input Data

”S;:npmg # Omit Computing

on:

Seleee

IShort Read || corrected final.fa v
il

ort File|| fastgReport. pdf
ame:
et
e
older
ame:

resulis

| Submit |

Figure 5.7: Pre-processing of Input Data

41

After clicking on submit button, computation starts and after it is finished the following result

page (Fig. 5.8) is shown.

« C (@ iocihastAOBGA Web)Prefrecssmdisiltjs * & 8o [N

GENOME ASSEMBLY
‘Genome Assembly Program
HOME ABOUT FILE HANDLING o ey HELP FEEDBACK CONTACT US

[Your 1P+ 0:0:0:0:0:0:0:1 [Thu ©ct 24 2013 13:96-47 G ndla Standard Time | I Login: iasri | Logaut

Result of Preprocessing

SRRIG027_Tfasia_wim g -
o

Selecrfile: | SRR445036_1 fastq_trim gz ~
Downlosd Selected Flls

TastQ Report
Dowailond File

Guaty

Praoton

Figure 5.8: Result of Pre-processing

5.5 Alignment

The pre-processed long reads sequences are corrected for error using short read sequences by
aligning. The alignment process can be started by choosing submenu “Aligning Short Over Long
Reads” from menu option “GENOME ASSEMBLY”. This opens a new page as given in Fig 5.9.
The user needs to choose short read and long read files in zipped form. After selecting these files

“submit” button is clicked to start the process. The alignment process takes some time to complete.

GENOME ASSEMBLY
Genome Assembly Program

ABOUT FILE HANDLING GENOME ASSEMBLY

‘ Login: iasri| Logout |

| Start Alignment Process |

| Ecoli_MG1655_pacBioToCA gz ¥ |

| Ecoli_ MG1655_pacBioToCA 1gz ¥ |

Figure 5.9: Aligning Short over Long Reads

42

The corrected file is generated on HPC which is then put on the web server for providing a link to
download by the user as given in Fig 5.10. The content of a corrected sequence file has been shown

in Fig 5.11 as an example.

-Web/ShowAlignmentResultjsp w a @ (@] " i

GENOME ASSEMBLY
Genome Assembly Program

FILE HANDLING | GENOME ASSEMBLY | HELP | FEEDBACK

Your IP: 0:0:0:0:0:0:0:1 |Thu Oct 24 2019 15:34:25 GMT+0530 (India Standard Time)

Alignment Result

Download Corrected Alignment Results
| 1. Corrected File Download

ICAR-Indian Agricultural Statistics Research Institute
Library Avenue, Pusa, New Delhi-110 012
Phone : 91-11-25847121-24,25841254 (PBX), Fax : 91-11-25841564

Figure 5.10: Assembling Short over Long Reads

B Asi 10KA Logind (sblall) = ><
Terminal Sessions View X server Tools Games Settings MMacros Help
= RS =% < = == e = o ol [D
Secsion Servers Toals Games Sessions fr— — MultExes Tumnelng Packages Settings X server St
Quick connect... - .z asHOoMe NS asHOe =N s saez =5 -4
[sblall@login®@l —~1% more corrected final. fa [
> = ml20114 ©011938 42177 <clOoO024704255000000152300250425
2 CGATGAAATGGACAT TGGTATTGATATCGATT TATGGATGGACGAAGAAC
;’; CCGTGCCGATGAATAAGGAGUCTGGTCGCCACCCTGACAGAAT I IGTGTGGAA

AGAGAAAAACTGAAT TACCGGGTGATGCACAGTGGTGCCGGGCACGACGC
GCAAATTTTCGCGCCTCGCGTACCAACCTGCATGATTTTTATCCCCAGCA
TCAACGGGATCAGCCATAACCCGGCGGAACGCACCAATATTACCGACCTT
GCCGAAGGGGTCAAAACGT TGGCACTCATGCTTTATCAACTTGCCTGGCA
GAAATAAGGAGTCATAAATGGGATATITAAATAACGTCACCGGTTACCGC
GAAGATT TACTGGC TAACCGTGCGATITIGTTAAACACGGTAATIT TCGCACT
GTTAACCCCGGATGGTCTGGTAAAAAATATTATTICCGGGCTT ITGAAAATT
GTGACGCGACAATCCTCTCCACGCCAAAGCTGEGGGTGCCTCTTTITTGTTGAT
TATCTGGTCACACTGCATCAAAACGGTGGCAACCAACAGGGCTTCGGTGG
CGAAGGCATTGAAACGTTCCTGTATGTGATCTCTGGAAATATCACTGCCA
AAGCCGAAGGCAAAACATIITGCCTTAAGCGAAGGTGGCTATCTITTATITGC
CCGCCAGGCTCCTTAATGACGTTTGT TAACGCCCAGGCCGAAGACAGCCA
AATCTTTTTATATAAGCGCCGCTATGTTCCGGTAGAAGGCTATGCACCGT
GGCTGGTTTCTGGCAATGCCAGCGAACTGGAACGCATTCATTATGAAGGC
ATGGACGATGT TATTCTGCTGGAT T T ICTGCCCAAAGAGT TAGGTTTTGA
TATGAACATGCATATCCTCTCTTT ITGCACCAGGTGCCAGCCACGGTTATA
TCGAAACACACGT TCAGGAACACGGTGCCTATATICTTTCCGGTCAGGGG
GTTTATAACCTCGACAATAACTGGATCCCGGTGAAAAAAMAGGCGATTACAT
CTTTATGGGUGUC TTATITICTT TACAGGCTGGTTATGGTGTAGGGCGTGGTG
AAGCGTTCAGCTATATITITACTCGAAAGATITIGTAACCGCGACGTAGAGATT
TAAGTCATACCACTCGCCTGATTATITIITTAGCTATGTTGGATITTGCCAC
GGTTTATACCGTGGCTTT TTTTGTAACATTGCCTGATGCGCTTCGCTTAT
CAGGCCTACATGATCTCTGCAATATATAGAATTTGCGCGATTITITCAGGAA
GGATATGGTACTCATGCCGCATCCGGCATGAGTACTGCACTCTTATGCGA
TATAAATCGCATCCGCTT TAAAGGTAAGGGT TAGT TTTTAATITICCCTGAC
CTATTTTAATGGCGCAGGCAATAT I ITTCGCGCGCTGT TGAAGAGATITGGTT
TCACCGCTGGCGAGCACT TCGGCTAAAGGTGCCAGACGAGGCAAAATGCT
GAATACCGCGTCAATGCCGTACTGGTGCACCACTTCCACGCCATCACCCA
ATACGCCAGCAATCCCAATCACCGGTACAT TAAACTGCTTCGCCACCTCGAC
GCCACACCCAGCGGCGCTITTACCGCCTGUCCGT TTGCGAGTCGATGCGCCC
TTCCCCGGTAATCACCAGTGC TGCGCCCTGCACTGCCTGCGCAAGATITGA
CCGCATTCAACACAATITITCAATGCCCGGTTTAATATCCGCATITGAGAAAT

08 A s s

UNRCGISTERLD VERSION - FPleose support MobaXterm by subscribing to the professional ediion here: hittps:/fmobasxter

(= R —- i

Figure 5.11: Content of a corrected sence file

robatets net

5.6 Assembling Long Reads

Next step in the genome assembly process is now assembling of corrected sequence using MIRA
program. The menu option to run this program is “Assembling Long Reads”. The following web

page will be shown (Fig 5.12) after choosing this option.

43

GENOME ASSEMBLY
Genome Assembly Program

ABOUT FILE HANDLING GENOME ASSEMBLY FEEDBACK

Your . 6:0:0:0:0:0:0:1

[Thu Oct 24 2019 12:05:04 GMT+0530 (India Standard Time) Login: iasri‘ Logout ‘

Long Read Assembly

¢ Omit Computing

corrected_final fa v

| Submit

Figure 5.12: Assembling Short over Long Reads
This web page asks two parameters — Name of the FastQ file and the name of sequencing
technology. Clicking on “Submit” button below starts the assembly program MIRA installed on
HPC. After the assembly is complete, the result page as given in Fig 5.13 is shown. The fasta file

as shown in Fig 5.14 and quality file as given in Fig 5.15 is generated on the server.

[Shashi X | X @une X | Mnboxt X | © @Wh x|] Facebe x | [Movin x [Genon X+ - = *

<« cC 0O o /GA-Web/ShowAssemblyResultDirectjsp * & ® o &

GENOME ASSEMBLY

Genome Assembly Program
HOME ABOUT FILE HANDLING GENOME ASSEMBLY | HELP FEEDBACK CONTACT US
Your IP: 0:0:0:0:0:0:0:1 Fri Sep 20 2019 14.51.08 GMT+0530 (India Standard Time)] Logun: sasri | Logout |

Result of Long Read Assembly

Download Assembly Results
1. Result File 1 Download
2. Result File 2 Download

ICAR Indian Agricultural Statistics Research Institute
Library Avenue, Pusa, New Delhi-110 012
Phone : 91-11-25847121-24,25841254 (PBX), Fax ; 911125841564

Figure 5.13: Result of Assembly

= -
[Suick cannect
[sblLall@loginOl x
P ~myFirstAssembly_ =1
#£2 2 51 3 1L 21 2 11T 2221499121
§> 2 35 T2 22 1T L W 228 242 L I3
*1 2 1 6 3 55 4 412352231431
B 2 232 L B AR G2 R D A2 3 AR 2 82
> s a3 21 1125365231322 2
2> 1 4 2 33 2 24 1 2343 223125
g2 44433 3553333 224a857322
E= 2 1 a6 74322 1122432124
w2 2 7 2 2 1 2 1412333352713
B L 23 OE OE 32 32 D3 AR L 52 SR 22
@4 3 2 2 36 7 6 23 29 7 3 123232
> D G D M NP B D M AR B D O a3 B D O MR By 2
=2 2 A 22 2 AL R2 2= 46 2 A E 2 = 2
42 4 23 5, 2 2L B DA 23 L6 D23
2 54 3 2 4 3 6 42 44 3 3 3 3 46 6 10
8 8 35 8 106 9 3 4 6 5 2 2 6 3 4 4 4 7 7
3 4 2 2 11 8 7 11 9 7 9 6 5 4 6 11 3 2 7 3
le 8 4 2 6 1 3 4 5 3 4 4 2 3 2 8 2 4 2 3
5 1 35444122 1 214261 1 1a
S A I 2 X A 3 G SR G2 I 32 L 2 X 23
5 1 2322 6 2 L2 L 2 @d2 L 2 E 2 202
WD B oD @R AL D Th AR 3D LA R S N3 A
2 13312 5312 322332114z
> 2 A A kR B¢ 2 iR B B S I 5 2 05, & M
2 2 423 21422 112283123 3
2 112123238 16 45 6 10 2 4 2 3 5
> 1 21726 1L 1 223 4 245 142 L 23
22 2122 1L 222 2222 24423 3 2
a4 2 1 2 22 2 2 32 2 248 2 2 6 1 1 1
5 2 24 E R 2A 2 L O A= L A 2| X 2 A
2 2522 12441222 1241 1 12
WD I D@ P PR UB A 3 B2 XA 32 36
127222122227 6233 124°5
> 2 S RI2 oA 2L L DD SR AR R A B
NP CTSTERET WERSTON | Mlense spmert Mehaxrerm by 5 haerihing 0 e nrefessions Sinon here: s fmohoc o moharele et
-

Figure 5.14: Assembling Short over Long Reads

44

>myFirstAssembly_rep_cl
aaaaaataaaacaaaacaaaaaaaagaaaaaaaaaaaaaaaaaaaaaaacaaaaaaaaaa
£ aaaaaaaaaacaaaaacaaaaaaaaaaaaagggtatacaaaaaaaaaaacaaaaaaaaaa
i canaaaasasaaaaaatasaasaatataataataaaaaaaaaaacaaaasaaaaaaaaaata
macaaaaaaagcaaaaaaaaaaaaataatcaaatacaaaaaaaaaacaaaacataaataaa
aaaattataaaasaasaaaaaagaaasaaaaataaaaaatasaaaaaaaaaaaaaaaatt
g cttttatataaataaactataataattgtataaatcaaattaaaacaaaaazaaaaaaaa
¥ aaaaaaaaaaaacaaataaaaaataaaaacaaaataaacaaasaaaaaaatacatacaaa
1 daaaaaaaaacaaatgaasaataaaaaacaaataaaatcaaaaaaaacaaaaaaaaaaat
i ctacaacatcaaaaataaaaactaaaaaaattaataaaaaaaaaaacaaaacaataaaaa
aaaaaaaaaaaaaaagasaaagaaaaaaaaaaatasaaaaaaaaacacaaaaacaaaaaa
£ aaaaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaacaaaaaaaaaaatcaaaaaa
@ Caaaaaaacaaagaaggtagtatgttggtaataggtyygggyy99999999999999999
999999999cg999
99
99
99999999999999999999999999999999t999999999999999999999999999
999cggggag
99999999999999999999999999999999999999ggggggaaaagyggyggggagadgdg
9999992999999999999999999999999999999t9999999999999999999999
999ag99g
999999999999999999999c9999999999999999999999999t999999999999
999999999999999999999999999t9999999999999c999999999999999999
999999999999999999999999999c99999999999999999999999999999999
ggaaaaaaaagggggg999cg99999999999999999999999999t999999999999
999999999999999999999tgcgggg99tygy999999999999999999999999999
9999999999999999999999t99999999999999999999999tg999999999999
9999999999999¢999999t99999999999t999ty9999999999999999999tag
99c9999t999999999t99999999999999999999999999999t99999999tygy
99
99
999cggag
99
99
99
99

ols

Figure 5.15: Assembling Short over Long Reads

5.7 Scaffolding

Scaffolding option is chosen to start the scaffolding process. It shows the following page given in
Fig 5.16. The assembled sequence file is chosen from the dropdown menu. The dropdown menu
shows all the files available on user’s specific folder. The chosen sequence file and supplementary
file is needed to be specified to start the scaffolding process. Clicking on “Submit” button starts
the computation on the HPC after copying necessary files on HPC. The generated result file is then

sent to the server. The generated result files are shown in Fig 4.17. These files can be downloaded

on the user’s pc. The content of result file is shown in Fig 5.18.

45

& C 1} @ localhost8084/GA-Web/Scaffoldingjsp * A& 9 @] o

GENOME ASSEMBLY
Genome Assembly Program

HOME FILE HANDLING GENOME ASSEMBLY HELP FEEDBACK CONTACT US

Your IP: 0:0:0:0:0:0:0:1 |Thu Oct 24 2019 16:00:36 GMT+0530 (India Standard Time) Login: iasri| Logout

Scaffolding of Aligned Reads

corrected_final fa v

5 ‘ corrected_final fa v

|. Execute Scaffolding Process |

Figure 5.16: Scaffolding

&« C Y @ localhost:8084/GA-Web/ShowScaffoldingResultjsp % A& ® Q []

GENOME ASSEMBLY
Genome Assembly Program

ABOUT FILE HANDLING | GENOME ASSEMBLY | HELP | FEEDBACK

Your IP: 0:0:0:0:0:0:0:1 |Fri Sep 20 2019 14:59:40 GMT+0530 (India Standard Time) Login: 1asr1| Logout

Result of Scatfolding

Download Scaffolding Results

1. Correspondence File Download

2. Scaffold File Download

3. Fasta File Download
ICAR Indian Agri al istics R h Institute

Library Avenue, Pusa, New Delhi 110 012
Phone : 91-11-25847121-24.25841254 (PBX), Fax : 91-11- 23841564

Figure 5.17: Result of Scaffolding

[@ 2o Lognt Gt
Teminal Sesions View Xsener Tods Games Setings Macros e
B R R K kA ® B Y 28 2 0 X ©

Sesson Severs Tods Games Sesions Vew St Mtbuec Tumeing Padages Settngs He

- o6 x

Tl
Quick connect SN Ty B33 a0k ooz an meae s o
[sblall@login0l ~]$ more links_c5r0.05e30000-15-20.9.scaffolds.fa -
?>scaffoldl ,26692832, f964500726692832
£ CTAATGTCACAGGGCTGTACACCCTGTGATAGTATTCATAATTTCCCAGGGGTCTATACTCCTATTGGAACAGACGATAACACCCTGTGACATTGTTCATAATATTCTAGGGAGATGATACTCCTCATGTCACAGGGGGTGTAC
% ACCCCGTGTTATTATTCTTACTATTCTAGGGGGATGTTACTCCTAATGTCACAGGGATGTACACCCTGTGATATTATTCATAGTGTGCCAGAGGGATATTAGCACTAATGTCACGATGCGTGTACACCTTGTGATATTATTTGT
2 CATATCCTAATGTCACAGGGGGTGTGTTCCGTGTGATAGTCTTCCTAACATCCTAGACGGATATTGCTCCTAACGTCACAGGGTGTGTACACCTTGTCACATCATTCATAATATCCTAAAACTACGTTATTCCTCAGGTCACAG
GGGGTGTTCACCCTGTGATATTTTTCATCATAGTTTTGTGGGATGTTACTGCTAAAGTCACACGGGGTGTACACAGAGTCACACAGTGATATGAGTTGTAATATTCTATAGACATGTTACTTGTAAATCACAGGGGCTGTACCT
§ CCTGTGATATTATTCGTAATATTCTAGGGGAATGTTGTTATTATTGTCACCGGGGTGTACACCCTGTGATATGACTCGTCATATCCCAGTGGGATGTTACTACTAATGTCACAATGCCTGTACACCCTGTGATACTATTTGTAA
TATCCTAAAGAGATGTTACTACTAAGGTCACAATGCATGGACACCCTCTGATATTATTCGTTATATCCTCGGGGGGTGTTATTCCTAATGTCACACGGGGTGTACTCCCGGTCCTATTATTCATAATATCCAAGGGGGATGTTA
& TTTTTAATGTCACCGGGGGTGACATTACACATTAAAAATGCGTATTCAACGCCTGTGATACTATTCCTAATATCCTAGGGGCATGCTCTTCCGAATGTCACATGGGGCGTACACCATGTGTGTACACCTGCTGTGATATTATTT
2 ATAATATCCTAGGGGAATGTTACTCCTGATGACACAGGCGGTGTACACCATGTGTGTACCCCTCCTGTGTTATTATTCACAATATCCTAGGGGGATGTTTCTTTTAATGTCACAAAGTGTGTACAAAACGTCACAGAGGTGTAC
ACGCTGTGACATTATCTGTAATACCCTAGAAGGGTGTTACTCCTAATGTGTCACAGGGGTGTACACGCTTTGATGTTATTTGCAATCTCATAGAGAGATATTACTTCAAATATCACAGTGGATGTACACACATAGTGTATACCC
£ TGTGATAGTATTCTTAATATCCTAGGGAGATACAAATCCTGATATCACAGTGCGTGTACCCCGTGTATGTACACCCTTGATATTAGTCGTAATATCCAGGGTAAATATTACTCCTCATATCACACAGTGTGCACACCCTGTGAT
@ATTTTTCCTCATACATTAGGGAGATATTGCTTCTAATATCACAGTGGGTATACCCCATCTGTGTATACTCTGTGACAGTATATTCTATATCCTAGGGAGTATTACTCCTAATATCACTTTGGGTGTTCGCCCTGTGATATCATT
CTTATTTGACCTTGCTGCCTTTGTTAACCCACACTACAAAAGGAATGGAACAGATAAGAAGATACGGAGATTGGACGGTGCTGCTGTGCGGCCGCCGCAGGACACTTTTAATATGCCTGTTTCTCAGGCTGTAGATGAAGGGGT
TCAGCATGGGGTGATCACCGTGTACATCACTGAGGCCACTGCAGCCTTTCTCGGGGAAGATGACACATCTGAACTGAAGTACCCTCCAACGCCCGTTCCGTAAAATCAGCAAACAACTGACAGGTGAGACCCACAGGTGGAGAA
GGCCTTATACTGCCCACGTGATGATGAAACACTCAGAATGGAGGAAACAATTTTATAGTAAGAGAAAAGGGTCCCAGAGATGGGAAGAAAACCAAATATGACAGCAGGGAAATACATGATTATGTTATTGGTGAAGGTGTCACA
ACATGCAAGATGGGGGAGTTGAGAAGGGTCACAGAAGAAATTAGGAATTTCCGCATCCTGGAAGCAGGTCATTTGTAAGGCAATCAAGTTGTGCAACTGGGCGTCTAAAACACTGAGAAAAAAAAAAAAGGCGGGAACTGAGAG

Figure 5.18: Content of Scaffolded file

5.8 Help

Finally, online help facility is provided to the users upon going to the “Help” menu option. It
includes the details on how to use the software for signup, data management and using the process

of assembly. User can click on the help option provided on the horizontal menu provided on each

page of the software.

46

CHAPTER -VI

CONCLUSIONS

Researchers and developers have been working very hard to address the issue of complexity
involved in the computational process of genome assembly. As presented in Chapter-II of this
report, many algorithms have been developed to reduce the complexity involved in genome
assembly. However, more efforts are needed to be put to address this problem so that genome
assembly process may be simpler, less complex and faster with the available computational

resources.

In this project, the team worked towards this problem to get a faster hybrid genome assembler.
This assembler uses high-end computing resources for correction of errors on long read sequences
by aligning them with short reads and then assemble the long reads using an efficient parallelized

assembly program.

The genome assembler developed under the project carries out the assembly process in the form
of pipeline using fast available algorithms. The pipeline carries out the processes such as
pre-processing of short and long read sequences, correcting the errors in the long reads, assembly
of corrected long reads using a fast and parallelized assembler to form contigs and finally
scaffolding these contigs using a parallelized scaffolding tool. The whole process of computation
can be carried out using a web browser for convenience of the user. The results of every
computational steps are downloaded to the client machine for viewing. The output the of the

developed software was also tested for its quality using a web-based tool.

It is known that new technologies in the computational and hardware resources are emerging very
fast which is making heavy computational task easier. Therefore, the process of assembly may
further be improved with availability of more high-end computational resources. Further, new and
improved algorithms may be developed for error correction on long read sequences. Development
of improved algorithms for assembly of long reads and scaffolding can also provide a better

genome assembler in future.

47

QT

AT S1-ATaT SFTHVSITE Hed 9 8 FAH Tehcl-310] FLHHUT qohri[ohl SR 3= Tisl FH § U ST
ST STIFHATT ST T THTET T & ITART i H TEH & FiToh 300 T&T ®T § HIhl A[C T 2| 39
IS §, FRTet T8 TRoTHET o foTg wer 1K B T YRR o dg@ T STTavshar Bt 2l Teft
A o qfe gom st AT o s AT i diftad Feen sl Afém o qfeat =t w7 Fd 3 32
FHe o T ITRANT A o R T TIT ol gWRT SfERIvT B, ITa-9ed aTct STIsRAT 6 a1
T ShLeh 36 19k ol STANT T 7, TST8eh TIOTTHEeT T, B o1 S siga STEe et ard ol
TN TTE15rS 3fehioT 1 aRoT ohw Ffeat STk Stauat & @rer 3= oradt 1 STEe 7, St S
qCsehToT Shl HET ST SRl SR SR QT 371X 37fereh Wdieh ST Tarsgwur oht weqw shir| Siifirere &
aefl Teeal, fomy ®9 § S{HM THICIH 3R qerTenss StAiHe o g Ssa-qoradn i swee
wEcaul 81 IE T ? foh Seavrem arelt e, ol stafeq TSt o Wy, fowga fawei w
HeRRICH TS STeri]

36 WE, I8 <@T T © foh 3=at qfE X S STeierelt o o Ueh amem et o wehdll 31 TE-UW, ST
{rgd ohi Torell oft qof qefeiieh o |1 TSI CRIT ShT SCATEH il oh ToTq L RS- o6 §TF TS |
FRIAATYS HET [HAT ST EHAT 8, S GH "Teh U, Teh 3h1eT o A& o hilel Uoh e ST ATaT|
FeraTTaT ST 311 SN fiferart, S fo 3T Site, Ue R STash 8 o 5 9ad § 3= TUrerT aret
ST ST T ScaTE hiAT T3 ST 2

St o I 7 g USRI FHHIAE HFASIHR SATET Biel O IR ST6 i % 7T JHTia
FFGRMAA FATE B T TAd & FiTh W FHFAIAT TANNEH IT SHTel 6 SRR M0 8 36
T H, YOS SHhTegerer O TATTU FHTICR SYSHLUT 2T IUNT oSt TROTHI o foTg, feram T ol
ST STHEc T T TR0 T U TEIaTsd 9 A 9 SR § o ST 2| a8 e
Teaet o fafi=T eeent o T Ueh S-3ATeiia |i9eca S & el o |Tef Y& foRT 7T o -
STETET, FfE gur o fore s@or, A1 {1 & Iy steee! SR aeH| S i S ol o, S, T
21 OH Ut SR H TH T T ST e TR foRam TrRIT 21 Ig SiveeRi Smter @t =on o g
UM ST Tk ST AT 81 3 TUMTST i oSt TR IT6 i o6 fIg 31eireht gueehegfe fireed ot
foram SITAT 81 TR STSSR W SwTeRal i feEmg ST & 8 Oee i T e fown W
SIEESICIERISIKCTI R

48

SUMMARY

Current de-novo assemblers are unable to effectively use the long-read sequencing data generated
by present single-molecule sequencing technologies primarily because of the considerable error
rate. In this project, both long and short reads have been required for efficient assembly results.
The error correction on long reads were performed by aligning short reads over long reads to get
reduced errors on the long reads and use them for assembly. Our approach exploits this technology
by complementing it with shorter, high-identity sequences resulting in long, accurate transcripts
and improved assemblies. The result of our hybrid approach is higher quality assemblies with
fewer errors and gaps, which will drive down the expensive cost of genome finishing and enable
more accurate downstream analyses. High-quality assemblies are critical for all aspects of
genomics, especially genome annotation and comparative genomics. It is clear that higher-quality

assemblies, with long unbroken contigs, will have a positive impact on a wide range of disciplines.

This way, it is noticed that high error rates do not become a barrier to genome assembly. High-
error, long reads can be efficiently assembled in combination with complementary short-reads to
produce assemblies not possible with any prior technology, bringing us one step closer to the goal
of “one chromosome, one contig.” The rapid turnaround time possible with PacBio and other
technologies, such as Ion Torrent, can make it possible to produce high-quality genome assemblies

at a fraction of the time once required.

Many tools in bioinformatics run on parallelized computational infrastructure for getting results in
a comparatively less time because of heavy computational algorithms or job sizes involved. In this
work, the parallelized tools installed on supercomputing infrastructure were utilized for faster
results. The genome assembly is carried out in a pipeline form and running tools on HPC
environment. This study was undertaken with the objectives to create a web-based software for
various components of assembly namely — pre-processing, alignment for error correction, long
read assembly and scaffolding. The software has been developed using JSP, Java, HTML and CSS.
This software does a series of computations for all the steps involved. These computations are
done on ASHOKA supercomputing system to get the faster results. The results are shown to the

user on the browser which can also be downloaded to the client’s local hard disk.

49

10.

11.

12.

13.

REFERENCES

. Bushnell Brian. (2014). BBMap: A Fast, Accurate, Splice-Aware Aligner. Berkeley, CA:

Ernest Orlando Lawrence Berkeley National Laboratory.

Chevreux, B. et al. (2004). Using the miraEST assembler for reliable and automated mRNA
transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14, 1147-1159.

H. Backman TW, Girke T. (2016). systemPipeR: NGS workflow and report generation
environment. BMC Bioinformatics 17:388.

Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z.,
Rasko, D.A., McCombie, W.R., Jarvis, E.D., et al. (2012). Hybrid error correction and de-novo
assembly of single-molecule sequencing reads. Nature Biotechnology 30, 693—700.

Lee, H., Gurtowski, J., Yoo, S., Marcus, S., McCombie, W.R., and Schatz, M. (2014). Error
correction and assembly complexity of single molecule sequencing reads. bioRxiv.

Li, H. (2016). Minimap and miniasm: fast mapping and de-novo assembly for noisy long
sequences. Bioinformatics.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., et al.
(2012). Comparison of the two major classes of assembly algorithms: overlap-layout-
consensus and de-bruijn-graph. Briefings in Functional Genomics 11, 25-37.

Lin, H., and Liao, Y. (2015). Evaluation and Validation of Assembling Corrected PacBio Long
Reads for Microbial Genome Completion via Hybrid Approaches. PLOS ONE 10, e0144305.

Liu, Y., Schmidt, B., and Maskell, D.L. (2012). CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 28, 1830-
1837.

Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert, P., and
Fostier, J. (2016). Jabba: hybrid error correction for long sequencing reads. Algorithms for
Molecular Biology 11.

Salmela, L., and Rivals, E. (2014). LoRDEC: accurate and efficient long read error correction.
Bioinformatics 30, 3506-3514.

Utturkar, S.M., Klingeman, D.M., Land, M.L., Schadt, C.W., Doktycz, M.J., Pelletier, D.A.,
and Brown, S.D. (2014). Evaluation and validation of de-novo and hybrid assembly techniques
to derive high-quality genome sequences. Bioinformatics 30, 2709-2716.

Vaser, R., Sovic, 1., Nagarajan, N., and Sikic, M. (2016). Fast and accurate de-novo genome
assembly from long uncorrected reads. bioRxiv.

50

14.

15.

16.

17.

18.

Wang, Y., Yu, Y., Pan, B., Hao, P., Li, Y., Shao, Z., Xu, X., and Li, X. (2012). Optimizing
hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with
highly divergent genome. BMC Systems Biology 6, S21.

Wang JR, Holt J, McMillan L, and Jones CD. (2018). FMLRC: Hybrid long read error
correction using an FM-index. BMC Bioinformatics. 19(1):50. doi: 10.1186/s12859-018-
2051-3. PubMed PMID: 29426289; PubMed Central PMCID: PMC5807796.

Ye, C., Hill, CM., Wu, S., Ruan, J., and Ma, Z. (Sam) (2016). DBG2OLC: Efficient Assembly
of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing
Technologies. Scientific Reports 6, 31900-31906.

Yeo, S., Coombe, L., Chu, J., Warren, R. L. & Birol, I. (2017). ARCS: scaffolding genome
drafts with linked reads. Bioinformatics https://doi.org/10.1093/bioinformatics/btx675.

Zimin, A.V., Puiu, D., Luo, M.-C., Zhu, T., Koren, S., Yorke, J.A., Dvorak, J., and Salzberg,
S. (2016). Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a
progenitor of bread wheat, with the mega-reads algorithm. bioRxiv.

koskok

51

