

एक बेहतर हाइिāड डी-नोवो पणूª जीनोम अस¤बलर का िवकास

D e v e l o p m e n t o f a n I m p r o v e d H y b r i d
D e - n o v o W h o l e G e n o m e A s s e m b l e r

शिश भूषण लाल Shashi Bhushan Lal

अनु शमाª Anu Sharma

संजीव कुमार Sanjeev Kumar

िĬजेश चÆþ िम® Dwijesh Chandra Mishra

नीरज बुढ़लाकोिट Neeraj Budhlakoti

आमुख

ifj¸kkstuk fjiksVZ
P R O J E C T R E P O R T

d`f"k tSolwpuk dsUnz
C E N T R E O F A G R I C U L T U R A L B I O I N F O R M A T I C S

Hkk d` vuq i &Hkkjrh; d`f"k lkaf[;dh vuqla/kku laLFkku
ykbcszjh ,osU;w] iwlk uÃ fnYyh&110012

ICAR-Indian Agricultural Statistics Research Institute
Library Avenue, Pusa, New Delhi – 110012

2019

आई. ए. एस. आर. आई./पी. आर. -11/2019
I.A.S.R.I./P.R.-11/2019

Institute Project Code: AGENIASRISIL201700087
सÖंथान पåरयोजना कोड: AGENIASRISIL201700087

AGENIASRISIL201700100087

 2

आमुख

कंÈयटूर िव²ान म¤ उÆनित ने भारी कÌÈयटेूशनल कायŎ को आसान और तेज करना संभव बना िदया ह।ै जैिवक

शोधकताªओ ंने पाया है िक आधिुनक उ¸च कÌÈयटेूशनल ±मता िवĴेषण और ÿसंÖकरण को तेज करती ह।ै जैिवक

डेटा का आकार तेजी स ेबढ़ रहा ह ैजो उ¸च-ÿदशªन कंÈयिूटंग कì आवÔयकता को अिधक स ेअिधक बढ़ाता ह।ै जीवŌ

कì जीनोम अस¤बली ÿिøया जिटल संगणना के िनषेध के कारण एक बहòत ही जिटल कÌÈयटेूशनल कायª हो गया ह।ै

अस¤बली के िलए उपलÊध िविवध ÈलेटफामŎ कì अपनी खिूबया ंऔर अवगणु ह§। ये अनुøमण मंच एक उ¸च खंिडत

पåरणाम उÂपÆन करते ह§। डी-नोवो जीनोम अस¤बली म¤ सैकड़Ō गीगाबाइट मेमोरी और लाखŌ सीपीय ूघंटे कì आवÔयकता

होती ह।ै

अिधकांश उपलÊध जीनोम अस¤बलर शॉटª-रीड्स के िलए डी-āजून úाफ (डीबीजी) और लंबी रीिडंग के िलए ओवरलपै

लेआउट कंस¤सस (ओएलसी) पर आधाåरत ह§। यह सवªिविदत ह ैिक शॉटª रीड अस¤बली म¤ कम ýिुटया ंह§ लेिकन भारी

कÌÈयटेूशनल ह§, हालांिक, ओवरलैप लेआउट सवªसÌमित (ओएलसी) िविध महंगा ह ैऔर इसम¤ 30% तक ýिुटया ं

होती ह§। कई मामलŌ म¤ जीनोम अस¤बलर िविभÆन अंतिनªिहत जैिवक और कÌÈयटेूशनल मĥुŌ के कारण उ¸च गुणव°ा

वाले इकęे जीनोम का उÂपादन करन ेम¤ िवफल होते ह§। ये अस¤बलर ºयादातर Èलेटफॉमª पर िनभªर करते ह§, और िविभÆन

सी³व¤िसंग Èलेटफॉमª स ेआन ेवाल ेडेटा के संयोजन को संभालन ेम¤ असमथª होते ह§। िविभÆन उ¸च Ňपूुट अनøुमण

ÈलेटफामŎ स ेआने वाल ेहाइिāड डेटा को संभालना इस पåरिÖथित को और कÌÈयटेूशनल जिटलता को कई गुना बढ़ा

दतेा ह।ै अगर इÆह¤ संयĉु łप स ेÿयĉु िकया जा सके तो, तो य ेअनøुमण मंच बहòत उपयोगी हो सकते ह§।

एक मॉड्यूलर एवं कÌÈयटेूशनल łप स ेकुशल हाइिāड डी-नोवो पणूª जीनोम अस¤बलर, पåरणाम के łप म¤ बेहतर जीनोम

का उÂपादन करने के िलए, डीबीजी और ओएलसी दोनŌ तरीकŌ के गुणŌ का लाभ उठा सकते ह§। अस¤बली का एक

हाइिāड तरीका ह,ै िजसम¤ लंबी रीिडंग पर छोटे रीड्स को संरेिखत करके लंबी रीिडंग पर ýिुटयŌ को ठीक िकया जा

सकता ह,ै जो जीनोम अस¤बली के िलए उपयोगी हो सकता ह।ै एक बेहतर डी-नोवो जीनोम अस¤बलर øॉस Èलेटफॉमª स े

आने वाले डेटा को कुशलतापूवªक और सटीक łप स ेइकęा करता ह।ै लोकल एåरया नेटवकª पर उपयोग के िलए एक

वेब-आधाåरत सॉÉटवेयर जो िक Öटेप वाइज ÿिøया जैस े- अनøुमŌ का पवूª ÿसंÖकरण, लंबी रीिडंग पर ýिुट सधुार के

िलए संरेखण, सही लंबी रीिडंग कì अस¤बली और Öकैफ़ोिÐडंग कर सकता ह,ै िवकिसत िकया गया ह।ै यह सॉÉटवेयर

जैव सचूना िव²ािनयŌ के िलए उपयोगी होने कì सÌभावना ह।ै

लेखकगण

 3

PREFACE

The advancement in the computer science has made it possible to perform heavy computational

tasks easier and quicker. Biological researchers have found that modern high computational

capability makes the analysis and processing very fast. Biological data size is growing

exponentially which enhances the need of high-performance computing more and more. Genome

assembly of organisms is a very complex computational task because of inhibition of complex

computation in the process. Varied platforms available for assembly have their own merits and

demerits. These sequencing platforms produce a highly fragmented result. De-novo genome

assembly requires hundreds of gigabytes of memory and millions of CPU hours.

Most of the available genome assemblers are based on de-Bruijn Graph (DBG) for short reads and

Overlap Layout Consensus (OLC) for long reads. It is well known that short read assembly has

less errors but heavily computational, however, overlap layout consensus (OLC) method is costlier

and having errors up to 30%. Genome assemblers in many cases fail to produce high quality

assembled genome due to various inherent biological and computational issues. These assemblers

are mostly platform dependent, but unable to handle combination of data coming from various

sequencing platforms. Handling hybrid data coming from various high throughput sequencing

platforms further exacerbate this situation and increase computational complexity manifolds. If

combined, these sequencing platforms can be very useful.

A modular, computationally efficient hybrid de-novo whole genome assembler can take advantage

of merits of both DBG and OLC based methods to produce better genome as result. A hybrid

method of assembly that can correct errors on long reads by aligning short reads over long reads

can be useful for genome assembly. An improved de-novo genome assembler can efficiently and

accurately assemble the data coming from cross platforms. A web-based software for use on LAN

that can do the stepwise process namely – pre-processing of sequences, alignment for error

correction on long reads, assembling corrected long reads and scaffolding have been developed.

This software is expected to be very useful for bioinformaticians.

 AUTHORS

 4

Table of Contents

Sl. No. Topic Page

1 Chapter I: Introduction 10-11

1.1 Motivation and Objectives 11

1.2 Plan of Report 11

2 Chapter II: Review of Literature 12-15

3 Chapter III: Software Architecture and Design 16-26

3.1 Software Architecture 16

3.2 Three-Tier Architecture of Assembler Software 16

3.3 Technologies Used for Development 18

3.4 Structured Query Language (SQL) 21

3.5 Java Server Pages (JSP) 22

3.6 Features of JSP 22

3.7 Software Design 24

3.8 Java Secured Channel 26

3.9 Message Passing Interface 26

4 Chapter IV: Methodology 27-36

4.1 Pre-processing 27

4.2 Read Alignment and Correction 30

4.3 Assembling Corrected Long Reads 32

 5

4.4 Scaffolding 33

4.5 Quality Assessment of results 35

5 Chapter V: Software Description 37-46

5.1 Client interface 37

5.2 Data Management 39

5.3 Cluster Connectivity 40

5.4 Pre-processing 41

5.5 Alignment 42

5.6 Assembling Long Reads 43

5.7 Scaffolding 45

5.8 Help 46

6 Chapter VI: Conclusions 47

 सारांश / Summary 48-49

 References 50-51

 6

LIST OF FIGURES

S. No. Fig No. Description Page No.

1. Fig. 3.1 Three Tier Architecture of software 17

2. Fig. 3.2 Design of the Assembler Software 24

3. Fig. 4.1 Workflow of the developed assembler 27

4. Fig 4.2 Showing pre-processed files 29

5. Fig 4.3 Showing FASTQ Quality Report 29

6. Fig 4.4 Corrected long read sequences 31

7. Fig 4.4 QUAST tool web page 35

8. Figure 5.1 Home page of Assembler Software 37

9. Figure 5.2 Upload file on Assembler Software 38

10. Figure 5.3 Delete file from Assembler Software 38

11. Figure 5.4 Contact Us page of Assembler Software 38

12. Figure 5.5 Sign Up page of Assembler Software 39

13. Figure 5.6 Options for Assembly Process 41

14. Figure 5.7 Pre-processing of Input Data 41

15. Figure 5.8 Result of Pre-processing 42

16. Figure 5.9 Aligning Short over Long Reads 42

17. Figure 5.10 Assembling Short over Long Reads 43

18. Figure 5.11 Content of a corrected sequence file 43

19. Figure 5.12 Assembling Short over Long Reads 44

20. Figure 5.13 Result of Assembly 44

21. Figure 5.14 Assembling Short over Long Reads 44

22. Figure 5.15 Assembling Short over Long Reads 45

23. Figure 5.16 Scaffolding 46

24. Figure 5.17 Result of Scaffolding 46

25. Figure 5.18 Content of Scaffolded file 46

 7

LIST OF TABLES

S. No. Table No. Description Page No.

1. Table 1.1 Description of the available sequencing platforms 10

2. Table 3.1 Identification of modules for computation 24

3. Table 3.2 Database table and its fields for storing profile details of
the users

25

4. Table 4.1 Quality Assessment result from QUAST 35

LIST OF LISTINGS

S. No. Listing No. Description Page No.

1. Listing 4.1 Source code for pre-processing of sequences 29

2. Listing 4.2 Source code for alignment of long read sequences 31

3. Listing 4.3 MIRA Code and manifest file 32

4. Listing 4.4 Steps and codes to be executed for scaffolding process 34

 8

ABBREVIATIONS

1. API Application Program Interface

2. APL Application Layer

3. ASHOKA Advanced Super Hub for Omics Knowledge in Agriculture

4. ASP Active Server Pages

5. BAM Binary Alignment Map

6. bp Base pair

7. BSD Berkeley Software Distribution

8. CPU Central Processing Unit

9. CSS Cascading Style Sheet

10. CUDA Compute Unified Device Architecture

11. DBG de-Bruijn Graph

12. DBL Database Layer

13. DDL Data Definition Language

14. DML Data Manipulation Language

15. DNA Deoxy Ribonucleic Acid

16. GB Giga Byte

17. HPC High Performance Computing

18. HTML Hyper Text Markup Language

19. HTTP Hyper Text Transfer Protocol

20. IDE Integrated Development Environment

21. IEEE Institute of Electrical and Electronics Engineers

22. JDBC Java Database Connectivity

23. JIT Just-in-Time

24. JSP Java Server Pages

25. JVM Java Virtual Machine

26. KB Kilo Byte

27. LAN Local Area Network

 9

28. MPI Message Passing Interface

29. OLC Overlap Layout Consensus

30. PCR Polymerase Chain Reaction

31. POP Post Office Protocol

32. RAM Random Access Memory

33. SAM Sequence Alignment Map

34. SIMD Single instruction, multiple data

35. SMP Symmetric Multiprocessing

36. SMRT Single Molecule Real-Time

37. SMTP Simple Mail Transfer Protocol

38. SQL Structured Query Language

39. SSH Secure SHell

40. SSL Secure Socket Layer

41. TCP/ IP Transmission Control Protocol/Internet Protocol

42. UIL User Interface Layer

43. XML Extensible Markup Language

 10

CHAPTER I

 INTRODUCTION

De-novo genome assembly of any sequenced organism is very important for researchers but this task is

very complex because of inhibition of heavy computation required in the process. There are varied

platforms available for de-novo assembly with their own merits and demerits. These sequencing platforms

produce highly fragmented result. Table 1 shows the most popular sequencing platforms with respect to

their read lengths, accuracy, advantages and disadvantages. But none of the available sequencing platforms

ensure all these parameters. Assembling any genome requires proper combination of high coverage, long

read length, and good read quality.

Table 1.1: Description of the available sequencing platforms

Platform Read length
(bp)

Accuracy (single
read not

consensus)

Advantages Disadvantages

 Pacific
Biosciences

> 20kb 85% single-read
accuracy

Longest read
length
Faster run time

Low sequence yield
High error rate (15%)
Very expensive

 Ion
Torrent

up to 400 bp 98% Less expensive
Faster run time

Homopolymer errors
Moderate error rate

454/Roche 700 bp 99.9% Long read size
Low sequence
error.
Low PCR
duplication

Runs are expensive
Homopolymer errors

 Illumina 50-500 bp 99.9% (Phred30) Potential for high
sequence yield
Low cost per base

High percentage of
PCR duplication
More run time

SOLiD 50+35 or
50+50 bp

99.9% Low cost per base Slower than other
methods Has issues
sequencing palindromic
sequences

Assembly can be successful if an appropriate algorithm and an efficient software is available. Combining

the data coming from various sequencing platforms can produce improved results. At present, available

assemblers are mostly platform dependent and are unable to handle combination of data coming from across

platforms. De-novo genome assembly is highly computationally intensive and requires hundreds of

gigabytes of memory and millions of CPU hours. Handling hybrid data coming from various high

throughput sequencing platforms further exacerbate this situation and increase computational complexity

manifolds. Most of the available genome assemblers are based on de-Bruijn Graph (DBG) for short reads

and Overlap Layout Consensus (OLC) for long reads. It is well known that short read assembly has less

 11

errors but requires huge computational resources. However, Overlap Layout Consensus (OLC) method is

costlier with errors up to 30%. Therefore, there is an urgent need for a modular, computationally efficient

and hybrid de-novo whole genome assembler which can take advantage of merits of both the methods to

produce better genome as result. In this project, we proposed to build an improved de-novo genome

assembler that can efficiently and accurately assemble the data coming from cross platforms. It’s modular

design will also allow user intervention at appropriate stages of sequence assembly.

1.1 Motivation and Objectives

There are many platforms available for genome sequencing. Genome assemblers in many cases fail to

produce high quality assembled genome due to various inherent biological and computational issues. These

assemblers are mostly platform dependent. But these assemblers are unable to handle combination of data

coming from various sequencing platforms. The combination of various sequencing platforms’ data can be

very useful. In terms of computational complexity, its handling increases manifold. So, there was need to

develop computationally efficient method for hybrid de-novo whole genome assembly. In view of the

above, the following objectives have been formulated for this study.

Objectives

i. To develop an alternate algorithm for hybrid de-novo whole genome assembly
ii. To design and develop a hybrid de-novo assembler

iii. To evaluate the performance of developed hybrid de-novo assembler

1.2 Plan of Report

This report presents the work done under a research project for development of a genome

assembler program. The web-based software was developed using JSP and other open source tools.

This report is divided into five chapters. Chapter-I of this report presents a brief introduction to

the problem and objective of the study. Chapter-II deals with review of literature on the various

latest work on hybrid assembler. Software Architecture and Design is given in Chapter-III.

Chapter–IV deals with the stepwise assembly process that includes pre-processing of input

sequences, alignment for error correction on long reads, assembling long reads, and scaffolding.

At last, the references are mentioned that have been referred during the investigation.

 12

CHAPTER II

REVIEW OF LITERATURE

The genome assembly from sequence reads is an algorithm-driven automated process. DNA-

sequence-assembly programs have utilized sequence overlaps for sequence assembly in correct

order. The computational aspect of assembly algorithms become important while actually an

assembler is to be developed to get the results in reasonable amount of time. There are two major

classes of assembly algorithms: Overlap Layout Consensus and de-Bruijn Graph, from how they

match the Lander–Waterman model, to the required sequencing depth and reads length. The

computational efficiency of each class of algorithm, the influence of repeats and heterozygosity

and points of note in the subsequent scaffold linkage and gap closure steps. Given below are few

reviews of various algorithm variants for developing hybrid assemblers. These are the recent years

findings by the researchers to assemble genome in a specific way to efficiently produce assembled

genome.

1. A new strategy for assembling genomic shotgun and EST sequence data was developed by

Chevreux (2005). It combines novel enhancements like repeat detection and on-the-fly

automatic editing with strengths of existing assemblers. The strategy also provides the

assembler with the ability to use and - more importantly - to acquire by itself additional

knowledge present in the assembly data. Furthermore, the knowledge acquisition was

combined with the ability to resolve potential conflicts - like long term repeats in genome

sequencing projects or different mRNA transcripts in EST projects - during the assembly by

falling back to trace signal analysis routines.

2. Koren et al., 2012 have developed a method for hybrid error correction and de-novo assembly

of single-molecule sequencing reads. De-novo assemblers use the long-read sequencing data

with considerable error rate. This approach compliments with shorter, high-identity

sequences resulting in long contigs, accurate transcripts and improved assemblies. Because

the average contig size produced by this approach correlates with read length, assembly

results are expected to improve as the read lengths of the technology improve.

 13

3. Liu et al., 2012 have developed CUSHAW: a Compute Unified Device Architecture (CUDA)

compatible short read aligner to large genomes based on the Burrows-Wheeler Transform

(BWT). It exploits CUDA-compatible graphics hardware as accelerators to achieve fast

speed. Algorithm uses a quality-aware bounded search approach based on the BWT and the

Ferragina-Manzini Index to reduce the search space and achieve high alignment quality.

4. Wang et al., 2012 have developed a pipeline for hybrid assembly consisting of primary and

secondary assembly steps. In primary assembly, the 454, GAIIx, or SOLiD reads were

assembled into contigs with Newbler 2.0.01.14, Velvet1.1.04, or Denove2.2, respectively. In

secondary assembly, contigs from primary assembly step were merged into consensus

genome draft with Phrap.

5. Lee et al., 2014 have developed a novel hybrid error correction algorithm for long PacBio

sequencing reads that uses pre-assembled Illumina sequences for the error correction.

6. Salmela and Rivals, 2014 have developed LoRDEC, a hybrid error correction method that

builds a succinct DBG representing the short reads, and seeks a corrective sequence for each

erroneous region in the long reads by traversing chosen paths in the graph. LoRDEC is

claimed to be six times faster and requires at least 93% less memory or disk space than

available tools, while achieving comparable accuracy.

7. Utturkar et al., 2014 have developed a method of hybrid assembly of Illumina and Roche

454 data. 454-Illumina hybrid assembly approach involved merging the 454-only assembly

with Illumina reads by PHRAP. They have also developed a method of hybrid assembly of

Illumina, 454 and PacBio data.

8. Li et al., 2015 have presented a new mapper, minimap, and a de-novo assembler, miniasm,

for efficiently mapping and assembling Single Molecule Real-Time (SMRT) sequencing

technology and Oxford Nanopore Technologies (ONT) reads without an error correction

stage.

 14

9. Lin and Liao, 2015 have developed a hybrid assembly approach, in which microbial genomes

were realized by correcting PacBio long reads using ECTools and subsequently assembling,

de-novo, the corrected long reads.

10. H. Backman and Girke, 2016 developed R/Bioconductor package systemPipeR. It is an

extensible environment for both building and running end-to-end analysis workflows with

automated report generation for a wide range of NGS applications. Its unique features include

a uniform workflow interface across different NGS applications, automated report

generation, and support for running both R and command-line software on local computers

and computer clusters. A flexible sample annotation infrastructure efficiently handles

complex sample sets and experimental designs. To simplify the analysis of widely used NGS

applications, the package provides pre-configured workflows and reporting templates for

RNA-Seq, ChIP-Seq, VAR-Seq and Ribo-Seq.

11. Miclotte et al., 2016 have developed Jabba, in which hybrid method is used to correct long

third generation reads by mapping them on a corrected DBG that was constructed from

second generation data. It uses pseudo alignment approach with a seed-and-extend

methodology, using maximal exact matches seeds.

12. Vaser et al., 2016 have developed a fast and accurate de-novo genome assembly from long

uncorrected reads. Here high-quality consensus sequences were generated without additional

error correction steps, efficiently with a Single Instruction Multiple Data (SIMD)

accelerated, partial order alignment based stand-alone consensus module called Racon.

13. Yeo et al., 2017 developed ARCS, an application that utilizes the barcoding information

contained in linked reads to further organize draft genomes into highly contiguous

assemblies. It has been shown that how the contiguity of an ABySS H.sapiens genome

assembly can be increased over six-fold, using moderate coverage (25-fold) Chromium data.

14. Wang et al., 2018 developed a novel method leveraging a multi-string Burrows-Wheeler

Transform with auxiliary FM-index to correct errors in long read sequences using a set of

complementary short reads. We demonstrate that our method efficiently produces

 15

significantly more high quality corrected sequence than existing hybrid error-correction

methods. This method produces more contiguous assemblies, in many cases, than existing

state-of-the-art hybrid and long-read only de-novo assembly methods.

1. Ye et al., 2016 have developed DBG2OLC, an efficient assembly of large genomes using

long erroneous reads of the third-generation sequencing technologies. This approach first

maps DBG contigs to the long reads. Each long read is converted into an ordered list of

contigs, termed compressed reads. Then it calculates overlaps between the compressed reads.

The alignment is calculated using the anchors. Contained reads are removed and the reads

are chained together in the best-overlap fashion, then it constructs the assembly backbone

from the best overlaps. Further align all related reads to the backbone and calculate the most

likely sequence as the consensus output.

2. Zimin et al., 2016 have developed a method of hybrid assembly of the large and highly

repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the mega-reads

algorithm. It exploits the mega-reads algorithm. In this approach Low-error rate Illumina

reads are used to build longer super-reads, which in turn are used to construct a database of

all 15-mers in those reads. PacBio reads and super-reads are then aligned, using the 15-mer

database. Inconsistent super-reads are discarded and the remaining super-reads are merged,

using the PacBio read as a template, to produce pre-mega-reads. These are further merged to

produce the final mega-reads and to generate linking mates across gaps.

 16

CHAPTER III

SOFTWARE ARCHTECTURE AND DESIGN

The Software for hybrid assembly of genome sequences has been developed that can be used

currently on LAN for convenience of the users. The programming language used for the

development of web interface are Java Server Pages (JSP), Cascading Style Sheets (CSS) and Java.

It has been developed on Intel Xeon based 64-bit computer with 3.20 GHz-clock speed, Microsoft

Windows 7 Operating System and 16.0 GB RAM. NetBeans 8.0 Integrated Development

Environment (IDE) with java development kit 1.8 has been used as a platform for development of

the software.

3.1 Software Architecture

The web application has been developed using client-server architecture. It is broken into logical

chunks called "tiers", where every tier is assigned a role. Traditional applications consist of single

tier, which resides on the client machine, but web applications lend themselves to an n-tiered

approach. In its most common form, the three tiers are presentation, application and database

layers. A web browser is the first tier (presentation), an engine using dynamic web content

technology (such as ASP, JSP) is the middle tier (application logic), and a database is the third tier

(storage). The web browser sends requests to the middle tier, which services them by making

queries and updates against the database and generates a user interface. The advantage of web

application over windows-based application is that it is platform independent and doesn’t need to

be installed on individual machine. In this software, heavy computations are carried out over high-

end Symmetric Multiprocessing (SMP) server or Advanced Supercomputing Hub for OMICS

Knowledge in Agriculture (ASHOKA) cluster to get the computation faster and achieve the results

in least possible amount of time. Data size of the input files are very big and they need to be

uploaded separately to divide the process in separate activities.

3.2 Three-Tier Architecture of Assembler Software

This software is implemented as a layered structure with each layer corresponding to a different

functionality. The three-tier architecture of the software is given in Fig. 3.1.

 User Interface Layer (UIL)

 17

 Application Layer (APL)

 Database Layer (DBL)

Fig. 3.1 Three Tier Architecture of software

User Interface layer (UIL)

The User Interface Layer has been implemented using Hyper Text Markup Language (HTML) and

JavaScript. The UIL consists of forms for accepting information from the user and validating those

forms using JavaScript.

Application Layer

Server-Side Application Layer has been implemented using Java Server Pages (JSP). JSP technology is

the Java platform technology for delivering dynamic content to web clients in a portable, secure and

well-defined way. The JSP specification extends the Java Servlet Application Programming Interface

(API) to provide web application developers with a robust framework for creating dynamic web content

on the server using HTML, and Extensible Markup Language (XML) templates, and Java code, which

 18

is secure, fast, and independent of server platforms. JSP has been built on top of the Servlet API and

utilizes Servlet semantics. JSP has become the preferred request handler and response mechanism.

Database Layer (DBL)

Database Layer has been implemented using MySQL. It is used for designing the tables for storing

set of preferred codons for some organisms and users’ profiles. The relational database approach

has been used to design the database. The fundamentals of normalization theory have been used

to normalize the different tables of the database. All tables have proper interaction among

themselves via primary key - foreign key relationship.

3.3 Technologies Used for Development

3.3.1 Java Technology

Initially the language java was called as “oak” but it was renamed as “Java” in 1995. The primary

motivation of this language was the need for a platform-independent language that could be used

to create software to be embedded in various consumer electronic devices:

 Java is a programmer’s language.

 Java is cohesive and consistent.

 Except for those constraints imposed by the Internet environment, Java gives the

programmer, full control.

 Finally, Java is for Internet programming whereas C was for system programming.

3.3.1.1 Importance of Java to the Internet Platform

Java has had a profound effect on the Internet. This is because; Java expands the universe of objects

that can move about freely in Cyberspace. In a network, two categories of objects are transmitted

between the Server and the Personal computer. They are: Passive information and Dynamic active

programs. The Dynamic, Self-executing programs cause serious problems in the areas of Security

and probability.

Applications and Applets: An application is a program that runs on our computer under the

operating system of that computer. It is more or less like one creating using C or C++. Java’s

 19

ability to create Applets makes it important. An Applet is an application designed to be transmitted

over the Internet and executed by a Java –compatible web browser.

3.3.1.2 Security

Every time you that you download a “normal” program, you are risking a viral infection. Prior to

Java, most users did not download executable programs frequently, and those who did scan them

for viruses prior to execution. Most users still worried about the possibility of infecting their

systems with a virus. In addition, another type of malicious program exists that must be guarded

against.

3.3.1.3 Portability

For programs to be dynamically downloaded to all the various types of platforms connected to the

Internet, some means of generating portable executable code is needed. As we can see, the same

mechanism that helps ensure security also helps create portability. Indeed, Java’s solution to these

two problems is both elegant and efficient.

3.3.1.4 The Byte Code

The key that allows the Java to solve the security and portability problems is that the output of

Java compiler is Byte code. Byte code is a highly optimized set of instructions designed to be

executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is, in

its standard form, the JVM is an interpreter for byte code. Although Java was designed for

interpretation, there is technically nothing about Java that prevents on-the-fly compilation of byte

code into native code. Sun has just completed its Just in Time (JIT) compiler for byte code. When

the JIT compiler is a part of JVM, it compiles byte code into executable code in real time, on a

piece-by piece, demand basis. It is not possible to compile an entire Java program into executable

code all at once, because Java performs various run-time checks that can be done only at run time.

The JIT compiles code, as it is needed, during execution.

 20

3.3.1.5 Java Virtual Machine (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual machine is an important

element of the Java technology. The virtual machine can be embedded within a web browser or an

operating system. Once a piece of Java code is loaded onto a machine, it is verified. As part of the

loading process, a class loader is invoked and does byte code verification makes sure that the code

that’s has been generated by the compiler will not corrupt the machine that it’s loaded on. Byte

code verification takes place at the end of the compilation process to make sure that is all accurate

and correct. So, byte code verification is integral to the compiling and executing of Java code.

3.3.1.6 Java Architecture

Java architecture provides a portable, robust, high performing environment for development. Java

provides portability by compiling the byte codes for the Java Virtual

Machine, which is then interpreted on each platform by the run-time environment. Java is a

dynamic system, able to load code when needed from a machine in the same room or across the

planet.

3.3.1.7 Compilation of Code

When you compile the code, the Java compiler creates machine code (called byte code) for a

hypothetical machine called Java Virtual Machine (JVM). The JVM is supposed to execute the

byte code. The JVM is created for overcoming the issue of portability. The code is written and

compiled for one machine and interpreted on all machines. This machine is called Java Virtual

Machine.

3.3.1.8 Simple

Java was designed to be easy for the Professional programmer to learn and to use effectively. If

you are an experienced C++ programmer, learning Java will be even easier. Because Java inherits

the C/C++ syntax and many of the object-oriented features of C++.

 21

3.3.1.9 Object-Oriented

Java was not designed to be source-code compatible with any other language. This allowed the

Java team the freedom to design with a blank slate. One outcome of this was a clean usable,

pragmatic approach to objects. The object model in Java is simple and easy to extend, while simple

types, such as integers, are kept as high-performance non-objects.

3.3.1.10 Robust

The multi-platform environment of the Web places extraordinary demands on a program, because

the program must execute reliably in a variety of systems. The ability to create robust programs

was given a high priority in the design of Java. Java is strictly typed language; it checks your code

at compile time and run time.

3.3.1.11 Java Database Connectivity

JDBC is a Java API for executing SQL statements. (As a point of interest, JDBC is a trade-marked

name and is not an acronym; nevertheless, JDBC is often thought of as standing for Java Database

Connectivity. It consists of a set of classes and interfaces written in the Java programming

language. JDBC provides a standard API for tool/database developers and makes it possible to

write database applications using a pure Java API. Simply put, JDBC makes it possible to do three

things:

 Establish a connection with a database.

 Send SQL statements.

 Process the results.

3.4 Structured Query Language (SQL)

Structured Query Language (SQL) is the language used to manipulate relational databases. SQL

is tied very closely with the relational model. In the relational model, data is stored in structures

called relations or tables. SQL statements are issued for the purpose of:

Data Definition: Defining tables and structures in the database (DDL used to create, alter and

drop schema objects such as tables and indexes).

 22

Data Manipulation: Used to manipulate the data within those schema objects (DML Inserting,

Updating, Deleting the data, and Querying the Database).

3.4.1 Data Definition

Defining tables and structures in the database (DDL used to create, alter and drop schema objects

such as tables and indexes).

3.4.2 Data Manipulation

Used to manipulate the data within those schema objects (DML Inserting, Updating,

Deleting the data, and Querying the Database). A schema is a collection of database objects that

can include: tables, views, indexes and sequences.

3.5 Java Server Pages (JSP)

Java server Pages is a simple, yet powerful technology for creating and maintaining dynamic-

content web pages. Based on the Java programming language, Java Server Pages offers proven

portability, open standards, and a mature re-usable component model. The Java Server Pages

architecture enables the separation of content generation from content presentation. This

separation not eases maintenance headaches; it also allows web team members to focus on their

areas of expertise. Now, web page designer can concentrate on layout, and web application

designers on programming, with minimal concern about impacting each other’s work.

3.6 Features of JSP

3.6.1 Portability

Java Server Pages files can be run on any web server or web-enabled application server that

provides support for them. Dubbed the JSP engine, this support involves recognition, translation,

and management of the Java Server Page lifecycle and its interaction components.

 23

3.6.2 Components

It was mentioned earlier that the Java Server Pages architecture can include reusable Java

components. The architecture also allows for the embedding of a scripting language directly into

the Java Server Pages file. The components current supported include Java Beans, and Servlets.

3.6.3 Processing

A Java Server Pages file is essentially an HTML document with JSP scripting or tags. The Java

Server Pages file has a JSP extension to the server as a Java Server Pages file. Before the page is

served, the Java Server Pages syntax is parsed and processed into a Servlet on the server side. The

Servlet that is generated outputs real content in straight HTML for responding to the client.

3.6.3 Access Models

A Java Server Pages file may be accessed in at least two different ways. A client’s request comes

directly into a Java Server Page. In this scenario, suppose the page accesses reusable Java Bean

components that perform particular well-defined computations like accessing a database. The

result of the Beans computations, called result sets is stored within the Bean as properties. The

page uses such Beans to generate dynamic content and present it back to the client.

Steps in the execution of a JSP Application:

 The client sends a request to the web server for a JSP file by giving the name of the JSP

file within the form tag of a HTML page.

 This request is transferred to the Java Webserver. At the server-side Java Webserver

receives the request and if it is a request for a jsp file server gives this request to the JSP

engine.

 JSP engine is program which can under stands the tags of the jsp and then it converts those

tags into a Servlet program and it is stored at the server side. This Servlet is loaded in the

memory and then it is executed and the result is given back to the Java Webserver and then

it is transferred back to the result is given back to the Java Webserver and then it is

transferred back to the

 24

3.7 Software Design

The design of the assembler software has been shown in the Fig. 3.2 that schematically shows the

modules developed under the software. This software has four modules for file and user

management, Pre-processing of input sequence data, alignment for error correction, assembly of

corrected sequence and Scaffolding generation.

A separate library has been developed for connectivity to the ASHOKA supercomputing platform

and the computations thereon. Reference of the library has been added in the main application for

subsequent usage. These are developed as reusable components that can be utilized in other Java

based applications of various types like windows, web application and web services.

Fig. 3.2: Design of the Assembler Software

Table 3.1: Identification of modules for computation

Module Name Description

Login Provide facility of login to users

User Interfaces

User & File Management

Pre-processing

Error Correction

Assembly

ASHOKA
Connect

Compute
intensive
methods

Scaffolding

 25

Assembler The main module, which provide Assembler (including

dependent variables and independent variables)

Help Provide online help about software

Contact Us Contact details of developer team

Sample Data Download Download sample data to understand format of input

data.

Signup Provide facility of sign up to new user

Changed Password An option for change of password

3.7.1 User Profile

The user of the system is divided into two categories:

1) Registered users: All register users can access the results of codon usage indices and

correspondence analysis.

2) Administrator: - Administrator has rights to make any change in data base and other access

polices.

3.7.2 Database Design

Database for the system is maintained using MySQL at server level. Database contains

independent table namely login table. The schema design for table is presented in Table 3.2.

Table 3.2: Database table and its fields for storing profile details of the users

Attribute Name Constraint Attribute Type
uname Primary Key Varchar(30)
pass Not Null Varchar(30)
address None Varchar(100)
desig None Varchar(45)
deptt None Varchar(45)
org None Varchar(45)
city None Varchar(45)
state None Varchar(45)
country None Varchar(45)
phone None Varchar(15)
email Not Null Varchar(45)
name Not Null Varchar(45)
sex Not Null Varchar(6)

 26

3.8 Java Secured Channel: JSch is a pure Java implementation of SSH2. JSch allows to

connect to an sshd server and use port forwarding, X11 forwarding, file transfer, etc., and you can

integrate its functionality into your own Java programs. JSch is licensed under BSD style license.

Motive to develop was to allow users of pure java X servers, WiredX, to enable secure X sessions.

So, our efforts had mostly targeted to implement the SSH2 protocol for X11 forwarding. Of course,

however, we have also added other functionality like port forward, file transfer, terminal

emulation, etc.

This is a utility to connect to remote linux server through an authorized login and password. This

can be utilized run an application on the remote server and get the result back. It is a secured

channel to connect to any high end linux server. The utility was found useful for connecting to

ASHOKA supercomputing system.

3.9 Message Passing Interface: MPI is a specification for the developers and users of

message passing libraries. By itself, it is not a library - but rather the specification of what such a

library should be. MPI primarily addresses the message-passing parallel programming model: data

is moved from the address space of one process to that of another process through cooperative

operations on each process. Simply stated, the goal of the Message Passing Interface is to provide

a widely used standard for writing message passing programs. The interface attempts to be:

 practical

 portable

 efficient

 flexible

The MPI standard has gone through a number of revisions, with the most recent version being

MPI-3. Interface specifications have been defined for C and Fortran90 language bindings:

 C++ bindings from MPI-1 are removed in MPI-3

 MPI-3 also provides support for Fortran 2003 and 2008 features

Actual MPI library implementations differ in which version and features of the MPI standard

they support.

This chapter mainly explained the various web application development technologies, three-tier

architecture of the software and MPI libraries.

 27

CHAPTER –IV

METHODOLOGY

The assembly process includes many steps to carry out as mentioned in Fig 4.1. In the first step,

the sequence data received from any sequencing platform needs to be pre-processed. The long read

pre-processed sequence data are aligned using short read sequences for correcting errors. These

corrected long read sequences are then assembled using an assembly program. Finally, these

assembled sequences are combined together to form scaffolds using another available program.

The following Fig. 4.1 describes the whole process. These processes have also been described one

by one in detail.

Fig 4.1: Workflow of the developed assembler

4.1 Pre-processing: Pre-processing of next generation sequencing data is carried out for

quality checking. The following activities are carried out for quality checking.

 Import of data from BAM, SAM or FastQ files (any variant)

 Providing a quick overview to tell the areas where there may be problems

 28

 Summary graphs and tables to quickly assessment data

 Export of results to an HTML based permanent report

 Offline operation to allow automated generation of reports without running the

interactive application

A variety of useful trimming tasks for paired-end and single ended data are also carried out.
The selection of trimming steps and their associated parameters are supplied on the command
line. The trimming steps are given below:

 Cut adapter and other platform-specific sequences from the read.

 Perform a sliding window trimming, cutting once the average quality within the window

falls below a threshold.

 Cut bases off the start of a read, if below a threshold quality

 Cut bases off the end of a read, if below a threshold quality

 Cut the read to a specified length

 Cut the specified number of bases from the start of the read

 Drop the read if it is below a specified length

 Convert quality scores to Phred-33

 Convert quality scores to Phred-64

It uses the FastqStreamer function from ShortRead package to stream through large FASTQ

files in a memory efficient manner. It performs adapter trimming with the trimLRPatterns

function from the Biostrings package of R. After the trimming step, a new targets file is

generated (targets_trim.txt) containing the paths to the trimmed FASTQ files.

Read quality filtering and trimming: The function preprocessReads allows to apply

predefined or custom read pre-processing functions to all FASTQ files referenced in a SYSargs

container, such as quality filtering or adaptor trimming routines. Fig 4.2 and 4.3 show the files

received after pre-processing of reads and FASTQ Quality Report respectively.

Source Code: The following source code (Listing 4.1) has been used for running the pre-

processing of sequence data.

 29

Listing 4.1: Source code for pre-processing of sequences

#Library Requirement

library(systemPipeRdata)

library(systemPipeR)

#Experiment definition provided by targets file

targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")

targets <- read.delim(targetspath, comment.char = "#")[,1:4]

#Read pre-processing

#Read quality filtering and trimming

args <- systemArgs(sysma="param/trim.param", mytargets="targets.txt")

writeTargetsout(x=args, file="targets_trim.txt", overwrite=TRUE)

#FASTQ quality report

pdf("./results/fastqReport.pdf", height=18, width=4*length(fqlist))

seeFastqPlot(fqlist)

dev.off()

Fig 4.2: Showing pre-processed files

FASTQ quality report (Zoomed)

Fig 4.3: Showing FASTQ Quality Report

 30

4.2 Read Alignment and Correction

Long read sequencing is changing the landscape of genomic research, especially de-novo

assembly. Despite the high error rate inherent to long read technologies, increased read lengths

dramatically improve the continuity and accuracy of genome assemblies. However, the cost and

throughput of these technologies limit their application to complex genomes. One solution is to

decrease the cost and time to assemble novel genomes by leveraging “hybrid” assemblies that use

long reads for scaffolding and short reads for accuracy. Alignment of short reads over long reads

has been carried out using a computer program called FMLRC for correcting errors present in long

reads.

FMLRC: A novel method has been adopted leveraging a multi-string Burrows-Wheeler

Transform with auxiliary FM-index to correct errors in long read sequences using a set of

complementary short reads (Wang et al., 2018). This method efficiently produces significantly

more high-quality corrected sequence. It produces more contiguous assemblies, in many cases,

than existing state-of-the-art hybrid and long-read only de-novo assembly methods. This method

accurately corrects long read sequence data using complementary short reads and has improved

throughput and computational efficiency. The FM-index enables arbitrary length k-mer searches

through the dataset, allowing for FMLRC to retrieve k-mer frequencies from the short-read dataset.

FMLRC uses the FM-index to implicitly represent all de Bruijn graphs of the short-read

sequencing dataset. These de Bruijn graphs are then used to correct regions in the long reads that

are not supported by the short-read sequencing dataset.

The Listing 4.2 shows the stepwise commands to be executed for long read sequence alignment.

Listing 4.2: Source code for alignment of long read sequences

Step 1 – Get Short Reads

wget http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc/s_6_1.fastq.gz

OR

wget http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc/s_6_2.fastq.gz

Step 2- Get Long Reads

wget http://files.pacb.com/datasets/secondary-analysis/e-coli-k12-de-

novo/1.3.0/Ecoli_MG1655_pacBioToCA.tgz

tar -xvzf Ecoli_MG1655_pacBioToCA.tgz

 31

awk 'NR%4==1||NR%4==2' ./PacBioCLR/PacBio_10kb_CLR.fastq | tr "@" ">" >

./PacBioCLR/PacBio_10kb_CLR.fasta

Step 3 - build the bwt

gunzip -c s_6_1.fastq.gz | awk "NR % 4 == 2" | sort -T ./temp | tr NT TN |

/opt/software/ropebwt2/bin/ropebwt2 -LR | tr NT TN | msbwt convert ./ecoli_mc_msbwt

Step 4 - run fmlrc

NUM_PROCS=4

/opt/software/fmlrc-0.1.2-h2d50403_0/bin/fmlrc -p $NUM_PROCS -V

./ecoli_mc_msbwt/comp_msbwt.npy ./PacBioCLR/PacBio_10kb_CLR.fasta

./corrected_final.fa

Corrected Sequence

The following Fig 4.4 shows the corrected long read sequence file.

Fig 4.4: Corrected long read sequences

4.3 Assembling Corrected Long Reads

Long read sequencing is changing the landscape of genomic research, especially de-novo

assembly. Despite the high error rate inherent to long read technologies, increased read lengths

dramatically improve the continuity and accuracy of genome assemblies. However, the cost and

throughput of these technologies limit their application to complex genomes. One solution is to

 32

decrease the cost and time to assemble novel genomes by leveraging “hybrid” assemblies that use

long reads for scaffolding and short reads for accuracy.

MIRA - Mimicking Intelligent Read Assembly - A multi-pass DNA sequence data

assembler/mapper for whole genome were used. It assembles/maps reads into contiguous

sequences (called contigs) gained by the following:

 electrophoresis sequencing (aka Sanger sequencing)

 454 pyro-sequencing (GS20, FLX or Titanium)

 Ion Torrent

 Solexa (Illumina) sequencing

 (in development) Pacific Biosciences sequencing

The MIRA code snippet for assembly and manifest file has been shown in Listing 4.3:

Listing 4.3: MIRA Code and manifest file

Code Snippet

String cmdline = "mira manifest.conf";

Cmdline = RLT.Execute_CommandOn_HPC(pscpFolderPlusPathOnServer,

FileNameWithPath, ASHOKALogin1_IP, ASHOKA_L1_ID, ASHOKA_L1_PW, cmdline);

Manifest File

project=SBLal

job=genome, denovo, accurate

parameters= -GE:not=4

readgroup=SomeReads

data=/home/sblall/PacBio1.fastq

technology=pcbiohq

 33

4.4 Scaffolding

A scaffold is a portion of the genome sequence reconstructed from end-sequenced whole-genome

shotgun clones. Scaffolds are composed of contigs and gaps. A contig is a contiguous length of

genomic sequence in which the order of bases is known to a high confidence level. Gaps occur

where reads from the two sequenced ends of at least one fragment overlap with other reads in two

different contigs (as long as the arrangement is otherwise consistent with the contigs being

adjacent). Since the lengths of the fragments are roughly known, the number of bases between

contigs can be estimated.

The goal of whole-genome shotgun assembly is to represent each genomic sequence in one

scaffold; however, this is not always possible. One chromosome may be represented by many

scaffolds (e.g., Chlamydomonas reinhardtii) or just a single scaffold (e.g., Human chromosome

19), depending on how completely the genome can be reconstructed, or assembled, from the

available reads. The relative locations of scaffolds in the genome are unknown.

Scaffolds are normally numbered approximately from largest to smallest. Some scaffolds may

ultimately be filtered out of the assembly, resulting in skipped scaffold numbers.

In some cases, scaffolds can overlap. For example, in polymorphic genomes, regions with a high

density of allelic differences between haplotypes may be split into separate sets of scaffolds, each

representing one allele. Thus, a sequence that exists in only one location in the genome may appear

on more than one scaffold.

ARCS - Scaffolding genome drafts with linked read

It is an application that utilizes the barcoding information contained in linked reads to further

organize draft genomes into highly contiguous assemblies. It harnesses the barcoding information

contained in linked read data for connecting high-quality sequences in genome assembly drafts.

For layout building, ARCS’ gv file is converted to a tab-separated value (tsv) file listing all

possible oriented sequence pairs, the number of supporting barcodes with gap sizes arbitrarily set

at 10 bp. This is facilitated by the supplied python script (makeTSVfile.py).

 34

Listing 4.4: Steps and codes to be executed for scaffolding process

1. Downloading sample Chromium read alignment .bam file

wget

http://www.bcgsc.ca/downloads/supplementary/ARCS/testdata/NA24143_genom

e_phased_namesorted.bam1.sorted.bam

wget http://www.bcgsc.ca/downloads/supplementary/ARCS/testdata/hsapiens-

8reformat.fa

2. Running ARCS

/Backup/arcs/Arcs/arcs -f hsapiens-8reformat.fa -a alignments.fof -s 98 -c 5 -l 0 -d 0 -

r 0.05 -e 30000 -m 20-10000 > ARCSlog_c5r0.05e30000.txt

3. Converting graph for LINKS

/Backup/arcs/Examples/makeTSVfile.py hsapiens-

8reformat.fa.scaff_s98_c5_l0_d0_e30000_r0.05.dist.gv test_checkpoint.tsv hsapiens-

8reformat.fa

4. Running LINKS

/opt/links_v1.8.6/LINKS -f hsapiens-8reformat.fa -s empty.fof -k 20 -b

links_c5r0.05e30000-l5-a0.9 -l 5 -t 2 -a 0.9 -x 1

Since positional information of reads within the molecule of origin is not known, estimation of

gap sizes is not a straightforward problem, and would require more sophisticated approaches.

ARCS first pairs sequences within a draft assembly, then lays out the pairing information for

scaffolding. Input alignments in BAM format are processed for sets of read pairs from the same

barcode that align to different sequences. A link between the two sequences is formed. Each link

represents evidence that one barcode/molecule connects the sequences.

 35

4.5 Quality Assessment of results

The quality assessment of the generated results from the developed assembler was done using

QUAST tool available. The following figures show the available web page of the tool and the

result generated after running this tool respectively. Table 4.1 shows the result of QUAST tool.

Fig 4.4: QUAST tool web page

All statistics are based on contigs of size >= 500 bp, unless otherwise noted (e.g., "# contigs (>=

0 bp)" and "Total length (>= 0 bp)" include all contigs).

Table 4.1: Quality Assessment result from QUAST

Statistics without reference Assembly_out.padded
contigs 32
contigs (>= 0 bp) 36
contigs (>= 1000 bp) 27
contigs (>= 5000 bp) 10
contigs (>= 10000 bp) 4
contigs (>= 25000 bp) 0
contigs (>= 50000 bp) 0
Largest contig 38230
Total length 138701
Total length (>= 0 bp) 8066
Total length (>= 1000 bp) 3241
Total length (>= 5000 bp) 439

 36

Total length (>= 10000 bp) 688
Total length (>= 25000 bp) 0
Total length (>= 50000 bp) 0
N50 18531
N75 14452
L50 7
L75 12
GC (%) 48.73
Mismatches
N's 0
N's per 100 kbp 0

 37

CHAPTER –V

SOFTWARE DESCRIPTION

The Software for genome assembly has been developed for web platform and programming has

been done with the Java Server Pages (JSP), Cascading Style Sheets (CSS) and Java programming

language. It has been developed on Intel Xeon based 64 bit computer with 3.20 GHz-clock speed,

Microsoft Windows 7 Operating System and 16.0 GB RAM. NetBeans 8.0 Integrated

Development Environment (IDE) with java development kit 1.8 has been used as a platform for

development of the software.

5.1 Client interface

This web-based assembler software that is freely accessible for LAN users. User authentication is

needed to ensure security. It is accessible only after entering valid user name and password. For

getting user name and password, any user may signup by clicking on appropriate link on home

page. The home page (Fig 5.1) of the software presents the user with a brief welcome note on the

software.

Figure 5.1: Home page of Assembler Software

The home page has links in the form of horizontal menu bar which has links for “Home”, “About”,

“File Handling”, “Genome Assembly”, “Help”, “Feedback” and “Contact Us”. The links “About”,

“File Handling” and “Genome Assembly” have submenus too. “About” has link for CABin

(Centre for Agricultural Bioinformatics). File Handling has links for “View My Files”, “Upload

File”, “Upload File to HPC”, Delete File”, “My Files”, “Download Files” and “Data Download”.

 38

As the name suggests the functionalities for upload or download a data file to or from the server,

deleting a file from the server, viewing the files uploaded by the logged in user are facilities

provided (Figure 5.2 and 5.3). “Data Download” provides facility to download sample input files

for three workflows provided in the software. “Contact Us” page provides the details of the primary

contact and project team. “Help” gives the user the detailed description of how to use this software.

Figure 5.4 shows the “Contact Us” page of the software.

Figure 5.2: Upload file on Assembler Software

Figure 5.3: Delete file from Assembler Software

Figure 5.4: Contact Us page of Assembler Software

 39

5.1.1 User management

User management module of the software provides the following facilities to the users:

Creating a new user

For a new user registration, clicking on the “New User Sign Up” link takes the user to the

registration page (Figure 5.5) where the username and password can be set by filling in all the

required details for registration process.

Figure 5.5: Sign Up page of Assembler Software

After entering the details user can click on “Submit” button for submitting the information into the

user table of the database. After authentication of username and password in login page. Logged

in users have access to all facilities of the software with a Graphical User Interface (GUI).

Changing and retrieving user password

Options are also provided to change the existing user password and to retrieve the password in the

situations when user forgets the password.

5.2 Data Management

 Registration: User profile is stored in MYSQL database, Email notification

 Folder Management: User’s folder created with signup

 40

 File Management: Separate module for upload file, file viewer, file download, file delete and

sample data download

Input selection: Select file from user’s own folder

Output:

 Can be viewed on browser

 Can be downloaded on user’s disk

 Copied to the user’s own folder

Input data handling

Short Read or Long Read sequences are nucleic acid separated by at least one header line. A header

line is defined as any line whose first character is a right-angled bracket ‘>’. There may be any

number of header lines but they must precede each sequence, and the second or subsequent header

lines are ignored. Those lines whose first character is not ‘>’ are considered to be sequence data.

Sequences must be in the correct reading frame, and should not contain untranslated 5’ or 3’

sequence. The format of each line of sequence data is relaxed; sequences can be either upper- or

lower-case characters. Input lines may be any width and contain spaces and/or numbers.

Input data handling module has been designed and developed for reading data for computation on

the assembler software. Client is required to upload the input data in ‘fasta’ or ‘fastq’ format in

each section.

5.3 Cluster Connectivity

During the process of assembly, programs installed on ASHOKA HPC have been used for faster

results. The JSP based web application connects to the HPC through available java library called

“JSch”. It needs user credentials to login to the HPC. File management and folder creation are

done using different methods developed in java. Command line arguments are passed to the java

method to copy input file and run program on HPC (cluster). The output files generated on the

HPC are copied back to web server the same way. The files generated on HPC login are deleted

after the process of computation and file copying is complete.

 41

Assembly Options

The options available for assembly process have been shown in the following Fig 5.6.

Figure 5.6: Options for Assembly Process

5.4 Pre-processing

On the menu of “Genome Assembly” there are many submenu options available. For pre-

processing of input sequences, the “Input Data Pre-processing” needs to be chosen. Clicking on

this option opens the page as given in Fig 5.7. On this page read file needs to be chosen from the

user’s folder shown on a dropdown. We can also mention result file and the folder name for result

file generation.

Figure 5.7: Pre-processing of Input Data

 42

After clicking on submit button, computation starts and after it is finished the following result

page (Fig. 5.8) is shown.

Figure 5.8: Result of Pre-processing

5.5 Alignment

The pre-processed long reads sequences are corrected for error using short read sequences by

aligning. The alignment process can be started by choosing submenu “Aligning Short Over Long

Reads” from menu option “GENOME ASSEMBLY”. This opens a new page as given in Fig 5.9.

The user needs to choose short read and long read files in zipped form. After selecting these files

“submit” button is clicked to start the process. The alignment process takes some time to complete.

Figure 5.9: Aligning Short over Long Reads

 43

The corrected file is generated on HPC which is then put on the web server for providing a link to

download by the user as given in Fig 5.10. The content of a corrected sequence file has been shown

in Fig 5.11 as an example.

Figure 5.10: Assembling Short over Long Reads

Figure 5.11: Content of a corrected sequence file

5.6 Assembling Long Reads

Next step in the genome assembly process is now assembling of corrected sequence using MIRA

program. The menu option to run this program is “Assembling Long Reads”. The following web

page will be shown (Fig 5.12) after choosing this option.

 44

Figure 5.12: Assembling Short over Long Reads

This web page asks two parameters – Name of the FastQ file and the name of sequencing

technology. Clicking on “Submit” button below starts the assembly program MIRA installed on

HPC. After the assembly is complete, the result page as given in Fig 5.13 is shown. The fasta file

as shown in Fig 5.14 and quality file as given in Fig 5.15 is generated on the server.

Figure 5.13: Result of Assembly

Figure 5.14: Assembling Short over Long Reads

 45

Figure 5.15: Assembling Short over Long Reads

5.7 Scaffolding

Scaffolding option is chosen to start the scaffolding process. It shows the following page given in

Fig 5.16. The assembled sequence file is chosen from the dropdown menu. The dropdown menu

shows all the files available on user’s specific folder. The chosen sequence file and supplementary

file is needed to be specified to start the scaffolding process. Clicking on “Submit” button starts

the computation on the HPC after copying necessary files on HPC. The generated result file is then

sent to the server. The generated result files are shown in Fig 4.17. These files can be downloaded

on the user’s pc. The content of result file is shown in Fig 5.18.

 46

Figure 5.16: Scaffolding

Figure 5.17: Result of Scaffolding

Figure 5.18: Content of Scaffolded file

5.8 Help

Finally, online help facility is provided to the users upon going to the “Help” menu option. It

includes the details on how to use the software for signup, data management and using the process

of assembly. User can click on the help option provided on the horizontal menu provided on each

page of the software.

 47

CHAPTER –VI

CONCLUSIONS

Researchers and developers have been working very hard to address the issue of complexity

involved in the computational process of genome assembly. As presented in Chapter-II of this

report, many algorithms have been developed to reduce the complexity involved in genome

assembly. However, more efforts are needed to be put to address this problem so that genome

assembly process may be simpler, less complex and faster with the available computational

resources.

In this project, the team worked towards this problem to get a faster hybrid genome assembler.

This assembler uses high-end computing resources for correction of errors on long read sequences

by aligning them with short reads and then assemble the long reads using an efficient parallelized

assembly program.

The genome assembler developed under the project carries out the assembly process in the form

of pipeline using fast available algorithms. The pipeline carries out the processes such as

pre-processing of short and long read sequences, correcting the errors in the long reads, assembly

of corrected long reads using a fast and parallelized assembler to form contigs and finally

scaffolding these contigs using a parallelized scaffolding tool. The whole process of computation

can be carried out using a web browser for convenience of the user. The results of every

computational steps are downloaded to the client machine for viewing. The output the of the

developed software was also tested for its quality using a web-based tool.

It is known that new technologies in the computational and hardware resources are emerging very

fast which is making heavy computational task easier. Therefore, the process of assembly may

further be improved with availability of more high-end computational resources. Further, new and

improved algorithms may be developed for error correction on long read sequences. Development

of improved algorithms for assembly of long reads and scaffolding can also provide a better

genome assembler in future.

 48

सारांश

वतªमान डी-नोवो असेÌबलसª मु́ य łप से वतªमान एकल-अण ुअनøुमण तकनीकŌ Ĭारा उÂपÆन लबंे समय से पढ़े जान े

वाले अनुøमण डेटा का ÿभावी łप से उपयोग करने म¤ असमथª ह§ ³यŌिक इसम¤ मु´य łप से काफì ýिुट दर है। इस

पåरयोजना म¤, कुशल अस¤बली पåरणामŌ के िलए लंबे और छोटे दोनŌ ÿकार के रीड्स कì आवÔयकता होती ह।ै लंबी

रीिडंग पर ýिुट सुधार लंबी रीिडंग पर छोटी रीिडंग को संरेिखत करके लंबे रीिडंग पर ýिुटयŌ को कम करने और उÆह¤

अस¤बली के िलए उपयोग करने के Ĭारा िकया गया था। हमारा ŀिĶकोण छोटी, उ¸च-पहचान वाले अनøुमŌ के साथ

परूक करके इस तकनीक का उपयोग करता है, िजसके पåरणामÖवłप लंबे, सटीक टेप और बेहतर अस¤बिलयां होती ह§।

हमारे हाइिāड ŀिĶकोण का पåरणाम कम ýुिटयŌ और अंतराल के साथ उ¸च गुणव°ा कì अस¤बली ह,ै जो जीनोम

पåरÕकरण कì महंगी लागत को कम कर दगेा और अिधक सटीक डाउनÖůीम िवĴेषण को स±म करेगा। जीनोिम³स के

सभी पहलुओ,ं िवशेष łप से जीनोम एनोटेशन और तलुनाÂमक जीनोिम³स के िलए उ¸च-गुणव°ा कì अस¤बली

महÂवपूणª ह§। यह ÖपĶ ह ै िक उ¸च-गुणव°ा वाली अस¤बली, लंबी अखंिडत Öपंजी के साथ, िवÖततृ िवषयŌ पर

सकाराÂमक ÿभाव डालेगी।

इस तरह, यह दखेा गया है िक उ¸च ýिुट दर जीनोम अस¤बली के िलए एक बाधा नहé बन सकती ह।ै हाई-एरर, लॉÆग

रीड्स को िकसी भी पवूª तकनीक के साथ अस¤बिलयŌ का उÂपादन करन ेके िलए परूक शॉटª-रीड्स के साथ संयोजन म¤

कुशलतापवूªक इकęा िकया जा सकता ह,ै जो हम¤ "एक गुणसýू, एक कंिटग के लàय के करीब एक कदम आगे लाएगा।

पैकबायो और अÆय ÿौīोिगिकया,ं जैस ेिक आयन टोर¤ट, एक बार आवÔयक होन ेके कुछ समय म¤ उ¸च गुणव°ा वाले

जीनोम अस¤बिलयŌ का उÂपादन करना संभव बनाती ह§।

जैव सचूना िव²ान म¤ कई उपकरण समानांतर कÌÈयटेूशनल बुिनयादी ढांच ेपर पåरणाम ÿाĮ करने के िलए समानांतर

कÌÈयटेूशनल बुिनयादी ढांच ेपर चलते ह§ ³यŌिक भारी कÌÈयटेूशनल एÐगोåरदम या जॉब के आकार शािमल ह§। इस

काम म¤, सपुरकंÈयिूटंग इÆĀाÖů³चर पर Öथािपत समानांतर उपकरणŌ का उपयोग तेज पåरणामŌ के िलए िकया गया था।

जीनोम अस¤बली को एचपीसी पयाªवरण पर एक पाइपलाइन łप और चल औजारŌ म¤ िकया जाता ह।ै यह अÅययन

अस¤बली के िविभÆन घटकŌ के िलए एक वेब-आधाåरत सॉÉटवेयर बनाने के उĥÔेयŌ के साथ शłु िकया गया था -

ÿीÿोसेिसंग, ýिुट सधुार के िलए संरेखण, लॉÆग रीड के िलए अस¤बली और मचान। सॉÉटवेयर को जे एस पी, जावा, एच

टी एम एल और सी एस एस का उपयोग करके िवकिसत िकया गया ह।ै यह सॉÉटवेयर शािमल सभी चरणŌ के िलए

गणना कì एक ®ृंखला करता ह।ै इन गणनाओ ंको तेज पåरणाम ÿाĮ करने के िलए अशोका सपुरकंÈयिूटंग िसÖटम पर

िकया जाता है। पåरणाम āाउज़र पर उपयोगकताª को िदखाए जाते ह§ िजस े úाहक कì Öथानीय हाडª िडÖक पर भी

डाउनलोड िकया जा सकता ह।ै

 49

SUMMARY

Current de-novo assemblers are unable to effectively use the long-read sequencing data generated

by present single-molecule sequencing technologies primarily because of the considerable error

rate. In this project, both long and short reads have been required for efficient assembly results.

The error correction on long reads were performed by aligning short reads over long reads to get

reduced errors on the long reads and use them for assembly. Our approach exploits this technology

by complementing it with shorter, high-identity sequences resulting in long, accurate transcripts

and improved assemblies. The result of our hybrid approach is higher quality assemblies with

fewer errors and gaps, which will drive down the expensive cost of genome finishing and enable

more accurate downstream analyses. High-quality assemblies are critical for all aspects of

genomics, especially genome annotation and comparative genomics. It is clear that higher-quality

assemblies, with long unbroken contigs, will have a positive impact on a wide range of disciplines.

This way, it is noticed that high error rates do not become a barrier to genome assembly. High-

error, long reads can be efficiently assembled in combination with complementary short-reads to

produce assemblies not possible with any prior technology, bringing us one step closer to the goal

of “one chromosome, one contig.” The rapid turnaround time possible with PacBio and other

technologies, such as Ion Torrent, can make it possible to produce high-quality genome assemblies

at a fraction of the time once required.

Many tools in bioinformatics run on parallelized computational infrastructure for getting results in

a comparatively less time because of heavy computational algorithms or job sizes involved. In this

work, the parallelized tools installed on supercomputing infrastructure were utilized for faster

results. The genome assembly is carried out in a pipeline form and running tools on HPC

environment. This study was undertaken with the objectives to create a web-based software for

various components of assembly namely – pre-processing, alignment for error correction, long

read assembly and scaffolding. The software has been developed using JSP, Java, HTML and CSS.

This software does a series of computations for all the steps involved. These computations are

done on ASHOKA supercomputing system to get the faster results. The results are shown to the

user on the browser which can also be downloaded to the client’s local hard disk.

 50

REFERENCES

1. Bushnell Brian. (2014). BBMap: A Fast, Accurate, Splice-Aware Aligner. Berkeley, CA:
Ernest Orlando Lawrence Berkeley National Laboratory.

2. Chevreux, B. et al. (2004). Using the miraEST assembler for reliable and automated mRNA

transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14, 1147–1159.

3. H. Backman TW, Girke T. (2016). systemPipeR: NGS workflow and report generation
environment. BMC Bioinformatics 17:388.

4. Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z.,
Rasko, D.A., McCombie, W.R., Jarvis, E.D., et al. (2012). Hybrid error correction and de-novo
assembly of single-molecule sequencing reads. Nature Biotechnology 30, 693–700.

5. Lee, H., Gurtowski, J., Yoo, S., Marcus, S., McCombie, W.R., and Schatz, M. (2014). Error
correction and assembly complexity of single molecule sequencing reads. bioRxiv.

6. Li, H. (2016). Minimap and miniasm: fast mapping and de-novo assembly for noisy long
sequences. Bioinformatics.

7. Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., et al.
(2012). Comparison of the two major classes of assembly algorithms: overlap-layout-
consensus and de-bruijn-graph. Briefings in Functional Genomics 11, 25–37.

8. Lin, H., and Liao, Y. (2015). Evaluation and Validation of Assembling Corrected PacBio Long
Reads for Microbial Genome Completion via Hybrid Approaches. PLOS ONE 10, e0144305.

9. Liu, Y., Schmidt, B., and Maskell, D.L. (2012). CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 28, 1830-
1837.

10. Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert, P., and
Fostier, J. (2016). Jabba: hybrid error correction for long sequencing reads. Algorithms for
Molecular Biology 11.

11. Salmela, L., and Rivals, E. (2014). LoRDEC: accurate and efficient long read error correction.
Bioinformatics 30, 3506–3514.

12. Utturkar, S.M., Klingeman, D.M., Land, M.L., Schadt, C.W., Doktycz, M.J., Pelletier, D.A.,
and Brown, S.D. (2014). Evaluation and validation of de-novo and hybrid assembly techniques
to derive high-quality genome sequences. Bioinformatics 30, 2709–2716.

13. Vaser, R., Sovic, I., Nagarajan, N., and Sikic, M. (2016). Fast and accurate de-novo genome
assembly from long uncorrected reads. bioRxiv.

 51

14. Wang, Y., Yu, Y., Pan, B., Hao, P., Li, Y., Shao, Z., Xu, X., and Li, X. (2012). Optimizing
hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with
highly divergent genome. BMC Systems Biology 6, S21.

15. Wang JR, Holt J, McMillan L, and Jones CD. (2018). FMLRC: Hybrid long read error
correction using an FM-index. BMC Bioinformatics. 19(1):50. doi: 10.1186/s12859-018-
2051-3. PubMed PMID: 29426289; PubMed Central PMCID: PMC5807796.

16. Ye, C., Hill, C.M., Wu, S., Ruan, J., and Ma, Z. (Sam) (2016). DBG2OLC: Efficient Assembly
of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing
Technologies. Scientific Reports 6, 31900-31906.

17. Yeo, S., Coombe, L., Chu, J., Warren, R. L. & Birol, I. (2017). ARCS: scaffolding genome
drafts with linked reads. Bioinformatics https://doi.org/10.1093/bioinformatics/btx675.

18. Zimin, A.V., Puiu, D., Luo, M.-C., Zhu, T., Koren, S., Yorke, J.A., Dvorak, J., and Salzberg,
S. (2016). Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a
progenitor of bread wheat, with the mega-reads algorithm. bioRxiv.
