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एक विश्िसनीय और कम्प्यूटेशनल रूप से कुशल सूखा मॉडल जल संसाधन प्रबंधन के ललए एक उपयोगी 
उपकरण है क्योंकक सूखे-जोखखम का पूिव ज्ञान इसकी भविष्य की घटना का सटीक अनुमान लगाने की 
हमारी क्षमता पर ननभवर करता है। चरम घटनाओं पर जलिायु पररितवन ररपोटव पर अतंर-सरकारी पैनल ने 
सूखे को एक चरम जलिायु घटना के रूप में मान्यता दी है जजस ेइसके नकारात्मक प्रभािों को कम करने 
के ललए इस से ननपटने की  आिश्यकता है।  इसललए, सूखे प्रबंधन के ललए तेज, सटीक और विश्िसनीय 

सूखा पूिावनुमान मॉडल जो भविष्य के सूखे-जोखखम पर लीड-टाइम जानकारी प्रदान करते हैं, एक उपयोगी 
उपकरण है। सूखा आर्थवक क्षेत्रों (जैस,े कृवि) के ललए जोखखम पैदा करता है, और इसललए इसे ििाव की 
कमी के बजाय जल संसाधनों की कमी से पररभावित ककया जाना चाहहए। इसललए, जल संसाधनों की 
अिधारणा के आधार पर DIs का पूिावनुमान (उदाहरण के ललए, प्रभािी DI, EDI; बयून और विल्हाइट 

1999), सूखे जल विज्ञान और जल संसाधन प्रबंधन के क्षेत्र में ननणवय लेने के ललए उपयोगी है। 
सूखा-जोखखम के बारे में जानकारी ननकालने के ललए, िैजश्िक जलिायु मॉडल (GCMs) से ििाव की र्गरािट 

सांजययकीय या गनतशील तरीकों का उपयोग करके की जाती है। डायनालमक तरीके से छोटे-पैमाने के सूखे 

की जानकारी प्रा्त करने के ललए GCM से सीमा जथथनतयों का उपयोग करते हुए एक सीलमत क्षेत्र के 

उच्च-ररजॉल्यूशन मॉडल (जैसे, क्षेत्रीय जलिायु मॉडल) का उपयोग करते हैं, जबकक सांजययकीय मॉडल 

भविष्य की जलिायु और बड ेपैमाने पर भविष्यिक्ताओं के बीच संबंध की खोज करते हैं। मशीन लननिंग 

(एमएल) एल्गोररदम पर आधाररत सांजययकीय मॉडल में, अनुकरण ककए गए डटेा स ेअनुभिजन्य रूप 

स ेकैललब्रेट ककए जाते हैं। एमएल को थथानीय थतर पर सूखा पूिावनुमान के विकल्प के रूप में मान्यता 
प्रा्त है। एमएल कम जहटल है क्योंकक यह जलिायु रुझानों स ेडटेासेट को 'सीखने' के ललए आत्मसात 

करता है। अन्य लाभों में जहटल भौनतक समीकरणों की आिश्यकता के बबना जलिायु का पूिावनुमान शालमल 

है, आसान मॉडल विकास, कम कम्प्यूटेशनल लागत, तेजी से प्रलशक्षण और परीक्षण, बबदं-ुआधाररत 

पूिावनुमान डटेा और उनके प्रनतथपधी प्रदशवन के सापेक्ष थथानीय अनुप्रयोगों (जैसे, खेतों) की संभािना 
आहद।  
इस अध्ययन में प्रभािी सूखे सूचकांक के पूिावनुमान के ललए एक विश्िसनीय मशीन लननिंग मॉडल विकलसत 

करने का प्रयास ककया गया है।  



 

PREFACE 

 
A reliable and computationally efficient drought model is a useful tool for water resources 

management since a prior knowledge of drought-risk depends on our ability to accurately forecast 

its future occurrence. The Inter-governmental Panel on Climate Change Report on extreme events 

has recognized drought as an extreme climatic event that needs to be mitigated to reduce its 

negative effects. Therefore, fast, accurate and reliable drought forecasting models that provide 

lead-time information on the future drought-risk is a useful tool for drought management. Droughts 

pose risks to economic areas (e.g., agriculture), and so must be defined by the deficiency of water 

resources rather than a rainfall deficiency. Therefore, forecasting of the DIs based on the concept 

of water resources (e.g., the effective DI, EDI; Byun and Wilhite 1999) are useful for decision-

making in the field of drought hydrology and water resource management. 

To extract information on drought-risk, the downscaling of rainfall from global climate models 

(GCMs) is performed using statistical or dynamical methods. Dynamical methods utilize a limited-

area high-resolution model (e.g., regional climate model) using boundary conditions from GCMs 

to derive small-scale drought information while statistical models discover links between future 

climate and large-scale predictors. In statistical models using machine learning (ML) algorithms, 

the simulations are empirically calibrated from the observed data. ML is recognised as an 

alternative for local-scale drought forecasting. ML is less complex as it assimilates datasets to 

‘learn’ from climatic trends. Other advantages include the forecasting of climate without the need 

for complex physical equations, easy model development, low computational cost, fast training 

and testing, the possibility of local applications (e.g., farms) using point-based forecasting data 

and their competitive performance relative to fully-dynamic models. 

In this study an attempt has been made to develop a reliable machine learning model for the 

forecasting of effective drought index.  
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Chapter-1 

Introduction and Review of Literature 

1.1 Introduction 

Drought is a complex hydrologic feature of arid and semiarid regions with strong implications on 

the sustainability of water resources, agriculture and environmental management. The Inter-

governmental Panel on Climate Change Report on extreme events has recognized drought as an 

extreme climatic event that needs to be mitigated to reduce its negative effects (Field 2012). 

Drought forecasting is a critical part of addressing drought and is important in risk management 

and mitigation (Mishra and Singh 2011; Belayneh et al. 2016). Forecasts are performed using 

drought indices (DIs) that are standardized metrics of rainfall, temperature or evapotranspiration. 

Drought models are used to forecast drought indices (DIs) that quantify drought by its onset, 

termination, and subsequent properties such as the severity, duration and peak intensity in order to 

monitor and evaluate the impacts of future drought. Numerically expressed DIs are more 

functional than raw rainfall data as such metrics can be used as better triggers for detecting the 

initiation and termination of drought levels necessary for recovery planning, mitigation and 

decision-making. Therefore, fast, accurate and reliable drought forecasting models that provide 

lead-time information on the future drought-risk is a useful tool for drought management. For 

forecasting of drought, basically two types of models are considered in literature:  

 Physical models which predict coupled effects of the ocean and the atmosphere, known as 

Global Circulation Model (GCM) and 

 Statistical models that assimilate observed values of hydro-meteorological properties (e.g. 

temperature or rainfall) to forecast future drought events. 

Machine learning (ML) (or statistical model) is now being experimented in a wide variety of 

climate applications. The ML models utilize, assimilate and ‘learn’ from the evidence of past 

climate trends using observational dataset to predict the future. The practical advantages of the 

ML algorithm over the GCM are the explanation of the externally driven climate without the need 

for complex physical models, easiness of experimentation, validation and evaluation, low 

computational burden, much more simple and fast in the training and the testing phases, the 
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applicability to the data for a specific point of measurement (a specific area) and the competitive 

performance compared to physical models (Ortiz-Garcia et al., 2014). 

A frequently used ML algorithm in climate sciences is the artificial neural network (ANN). ANN 

is a powerful and versatile data-driven algorithm for capturing and representing complex input and 

output relationships. However a major challenge encountered by the ANN is the requirement of 

iterative tuning of model parameters, slow response of the gradient based learning algorithm used 

and the relatively low prediction accuracy compared to the more advanced ML algorithms (e.g. 

(Acharya et al., 2013; Şahin et al., 2014)). The extreme learning machine (ELM) model has gained 

popularity in hydrological forecasting as an improved artificial intelligence approach that requires 

significantly less computational time than the classical artificial neural network (ANN) model for 

training datasets. The concept of extreme learning machine (ELM) was proposed by Huang (2006) 

for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses hidden 

nodes and analytically determines the output weights of SLFNs. This algorithm tends to provide 

good generalization performance at extremely fast learning speed. The ELM algorithm has a fast 

three step method designed using a single layer feed forward neural network with hidden neurons 

and randomly generated weights. The hidden layer parameters (hidden neurons and biases) are 

first randomized for a particular network architecture (governed by the number of input variables 

and the number of hidden neurons chosen optimally by the ELM network performance).   

Afterwards, the input variables are propagated through the hidden layer and finally the output 

weights are solved as a linear system of equations. 

1.2 Review of literature  

Huang (2006) proposed a new learning algorithm called extreme learning machine (ELM) for 

single-hidden layer feedforward neural networks (SLFNs) which randomly chooses hidden nodes 

and analytically determines the output weights of SLFNs. This algorithm tends to provide good 

generalization performance at extremely fast learning speed. 

Kim and Byun (2009) investigated the effect of global warming on drought patterns over Asia at 

the end of the twenty-first century by a multi-model ensemble method based on daily precipitation 

data of 15 coupled climate models. The projected precipitation climatology was translated into the 

change in drought climatology using the effective drought index. The results of the models were 
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consistent in that they project an increase in the mean and the standard deviation of precipitation 

over most of Asia, and the increase was considerably greater in higher latitude areas. 

Kim et al. (2011) investigated drought in South Korea were using daily precipitation data for 1777–

2008. The climatological characteristics of the effective drought index was used to quantify the 

drought intensity. They developed a spatiotemporal EDI map using wavelet transformation.  

Belayneh and Adamowski (2012) compared the effectiveness of three data-driven models i.e.  

artificial neural networks (ANNs), support vector regression (SVR), and wavelet neural networks 

(WN) for forecasting drought conditions in the Awash River Basin of Ethiopia. The forecast results 

indicate that the coupled wavelet neural network (WN) models were the best models for 

forecasting SPI values over multiple lead times in the Awash River Basin in Ethiopia. 

Rathinasamy and Khosa (2012) presented a comparative evaluation of different wavelet forms 

when employed for forecasting future states of various kinds of time series. The results suggest 

that those wavelet forms that have a compact support, for example the Haar wavelet, have a better 

time localization property and show improved performance in the case of time series that have a 

short memory with short duration transient features.  

Huang (2012) showed that both LS-SVM and PSVM can be simplified further and a unified 

learning framework of LS-SVM, PSVM, and other regularization algorithms referred to extreme 

learning machine (ELM) can be built. ELM provides a unified learning platform with a widespread 

type of feature mappings and can be applied in regression and multiclass classification applications 

directly. 

Li and Cheng (2014) proposed a conjunction model of wavelet neural networks with ELM (WNN-

ELM) for 1-month ahead streamflow discharge forecasting. The results indicate that the SLFNs-

ELM performs slightly better than the SVM for peak discharge estimation, and the proposed model 

WNN-ELM provides more accurate forecast precision than SLFNs-ELM and SVM. 

Abdullah et al. (2015) investigated the efficiency of Extreme Learning Machines (ELM) algorithm 

at predicting evapotranspiration in southern part of Iraq. They showed that ELM is efficient, simple 

in application, of high speed, and has very good generalization performance. They recommended 

this algorithm for locations similar to the geographical and meteorological conditions of Iraq that 

consists of both arid and semiarid regions. 
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Deo et al. (2015a) employed the EDI for analysis of historical drought events in Australia and 

demonstrated its skill for quantifying dry spells as well as continuing drought events. 

Belayneh et al. (2016) explored the ability of coupled machine learning models and ensemble 

techniques to predict drought conditions in the Awash River Basin of Ethiopia. They explored the 

potential of wavelet transforms coupled with the bootstrap and boosting ensemble techniques to 

develop reliable artificial neural network (ANN) and support vector regression (SVR) models for 

drought prediction. 

Deo et al. (2016) developed a wavelet-based drought model using the extreme learning machine 

(W-ELM) algorithm where the input data are first screened through the wavelet pre-processing 

technique for better accuracy to forecast the monthly effective DI (EDI). They demonstrate 

enhanced forecast skill of the drought models that use wavelet pre-processing of the predictor 

dataset. 

Deo et al. (2017) studied the drought modelling using multivariate adaptive regression splines 

(MARS), least square support vector machine (LSSVM), and M5Tree models by forecasting SPI 

in eastern Australia. They highlighted the importance of periodicity in drought forecasting and 

also ascertains that model accuracy scales with geographic/seasonal factors due to complexity of 

drought and its relationship with inputs and data attributes that can affect the evolution of drought 

events. 

Dayal et al. (2017) investigated the feasibility of the Artificial Neural Network (ANN) algorithms 

for prediction of a drought index: Standardized Precipitation-Evapotranspiration Index (SPEI). 

They developed an ANN model to predict the index in two selected regions in Queensland, 

Australia. 

1.3 Motivation 

 Machine learning techniques is less complex as it assimilates datasets to ‘learn’ from 

climatic trends and it is recognised as an alternative for local-scale drought forecasting. 

 By the use of machine learning technique, we can forecast the drought without the need for 

complex physical equations.  

 Forecasting of drought index through machine learning has an easy model development, 

low computational cost, fast training and testing, the possibility of local applications (e.g., 



5 
 

farms) using point-based forecasting data and their competitive performance relative to 

fully-dynamic models. 

 The modelling of drought index using machine learning (ML) algorithms for drought 

forecasting is still lacking, especially in India.  

 The extreme learning machine (ELM) model has gained popularity in hydrological 

forecasting as an improved artificial intelligence approach that requires significantly less 

computational time than the classical artificial neural network (ANN) model for training 

datasets.  

 ELM satisfies the universal approximation condition with good generalization 

performance (Huang et al. 2015), and therefore, is a suitable ML approach for drought 

forecasting. 

 Though so many advantages of ELM, existing ELM algorithms pay little attention to 

optimizing the choice of kernels, which is indeed crucial to the performance of ELM for 

applications in drought forecasting. 

 Wavelet transformation of signals can allow a ML model to better analyze the time 

evolution of hydrological processes at different scales. Hence, wavelet decomposition of 

inputs is considered a multi-resolution tool for pre-processing non-stationary signals.  

 Wavelet coupled multiple kernel ELM, to model the drought index has not been explored 

anywhere. 

1.4 Objectives 

1) To develop methodology for modelling and forecasting of drought index using different 

machine learning techniques 

2) To develop and evaluate forecasting model for drought index using multiple kernel extreme 

learning machine  

3) To develop and evaluate wavelet based multiple kernel extreme learning machine for 

forecasting drought index 

1.5 Plan of Report 

This report deals with various aspects of development of multiple kernel extreme learning machine 

(MK-ELM) and wavelet based multiple kernel extreme learning machine (W-MK-ELM) for the 
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forecasting of drought index. This report is divided into five chapters.  Chapter-I of this report i.e. 

the present chapter gives a brief introduction to the problem and objective of the study and review 

of literature on earlier work done in the direction of forecasting of drought index. Chapter-II deals 

with machine learning techniques for modelling and forecasting of drought index. Chapter-III 

discusses multiple kernel extreme learning machine model for drought index. Chapter–IV deals 

with wavelet based multiple kernel extreme learning machine model for forecasting drought index. 
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Chapter-2 

Machine learning techniques for modelling and forecasting of drought index 

2.1 Introduction 

For the forecasting of future drought, basically two types of models are considered in literature: 

physical models and statistical models. Physical models predict coupled effects of the ocean and 

the atmosphere, known as Global Circulation Model (GCM). An alternative to the physical model 

is the machine learning (ML) (or statistical model) that is now being experimented in a wide variety 

of climate applications. Statistical models assimilate observed values of hydro-meteorological 

properties (e.g. temperature or rainfall) to forecast future drought events. The practical advantages 

of the ML algorithm over the GCM are the explanation of the externally driven climate without 

the need for complex physical models, easiness of experimentation, validation and evaluation, low 

computational burden etc. The ML models utilise, assimilate and ‘learn’ from the evidence of past 

climate trends using observational dataset to predict the future. Many types of ML algorithms have 

recently been proposed in literature, including the co-integration methods that analyse 

relationships between stationary and non-stationary data, regression approaches for evaluating 

time-series properties of air temperature, neural networks for predicting rainfall (Abbot and 

Marohasy, 2014) etc. Consequently many studies are using different ML algorithms to 

demonstrate nearly coincident or in some cases, even better prediction yields than the GCM 

models. 

 A frequently used ML algorithm used in climate sciences is the artificial neural network (ANN). 

ANN is a powerful and versatile data-driven algorithm for capturing and representing complex 

input and output relationships. However a major challenge encountered by the ANN is the 

requirement of iterative tuning of model parameters, slow response of the gradient based learning 

algorithm used and the relatively low prediction accuracy compared to the more advanced ML 

algorithms (e.g. (Acharya et al., 2013; Şahin et al., 2014)).  

The purpose of this investigation is then three fold: A first objective consists of evaluating the 

capability of the ELM model considered in the problem of predicting monthly Effective Drought 

Index using meteorological datasets and climate mode indices as input variables. A second 

objective consists of a deep statistical analysis of the results disseminated by the ELM model in 
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relation to the predictions by ANN model. A third objective is to deduce the optimum network 

architecture of the MK-ELM, W-MK-ELM and the ANN models, computational speeds and 

performance parameters. The conclusion is that the wavelet based MK-ELM model performs 

significantly better than the ANN model and therefore, is potentially useful for research in areas 

of effective management of water environments, agriculture and infrastructure. In this study we 

have adopted a much improved class of ML algorithm, known as extreme learning machine (ELM) 

as a statistical model in a problem of predicting the monthly Effective Drought Index (EDI) (Byun 

and Wilhite, 1999). 

2.2 Methodology 

2.2.1 Extreme learning machine (ELM) 

Extreme learning machine (ELM) developed by Huang et al., (2006) is the state-of-art novel 

machine learning algorithm for Single Layer Feedforward Neural Network (SLFNs). 

Consequently the ELM model has been widely used for the solution of estimation problems in 

many different fields and is now gaining attention within the climate research and applied 

engineering community (Acharya et al., 2013; Belayneh and Adamowski, 2012; Şahin et al., 

2014). These investigations and others have demonstrated important advantages of the ELM model 

over the traditional neural network or vector classification schemes. The ELM model is easy to 

use and no parameters need to be tuned except the predefined network architecture, thus avoiding 

many complications faced by the gradient-based algorithms such as learning rate, learning epochs, 

and local minima. Importantly the ELM model has also been proven to be a faster algorithm 

compared with other conventional learning algorithms such as backpropagation (BP) or support 

vector machines (SVM). In the ELM approach most of the training is accomplished in time span 

of seconds or at least in minutes in large complex applications which are not easily achieved by 

using the traditional neural network models (Acharya et al., 2013). The ELM model possesses 

similar generalization performance to the backpropagation, the SVM and the singular value 

decomposition (SVD) algorithms in data classification and prediction problems. Therefore, the 

ELM model has been considered as an ideal computational algorithm for forecasting atmospheric 

and meteorological variables including solar energy, air temperature and rainfall that generally 

have large and complex datasets. 
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ELM was proposed for ‘‘generalized’’ single-hidden layer feedforward networks where the hidden 

layer need not be neuron alike (Huang & Chen, 2006; Huang, Zhou, et al., 2012). The output 

function of ELM for generalized SLFNs is  

𝑓𝐿(𝑿) = ∑𝜷𝑖ℎ𝑖(𝑿) = 𝒉(𝑿)𝜷

𝐿

𝑖=1

 

where  

𝜷 = [𝜷1, … , 𝜷𝐿]
𝑇 is the output weight vector between the hidden layer of L nodes to the m≥ 1 

output nodes, and 𝒉(𝑿) = [ℎ1(𝑿), … , ℎ𝐿(𝑿)] is ELM nonlinear feature mapping, e.g., the output 

(row) vector of the hidden layer with respect to the input 𝑿. 

ℎ𝑖(𝑿) is the output of the ith hidden node output. The output functions of hidden nodes may not 

be unique. Different output functions may be used in different hidden neurons.  

 

Figure: Schematic view of ELM 

In particular, in real applications ℎ𝑖(𝑿) can be 

    ℎ𝑖(𝑿) = 𝐺(𝒂𝑖,  𝑏𝑖, 𝑿),        𝒂𝑖 ∈ 𝑹𝑑,  𝑏𝑖 ∈ R 

where  

G(a, b, x) (with hidden node parameters (a, b)) is a nonlinear piecewise continuous function 

satisfying ELM universal approximation capability theorems ( Huang,  et al., 2006). 
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Basically, ELM trains an SLFN in two main stages:  

(1) random feature mapping and  

(2) linear parameters solving.  

In the first stage, ELM randomly initializes the hidden layer to map the input data into a feature 

space by some nonlinear mapping functions. 

The nonlinear mapping functions in ELM can be any nonlinear piecewise continuous functions. In 

ELM, the hidden node parameters (a, b) are randomly generated (independent of the training data) 

according to any continuous probability distribution instead of being explicitly trained, leading to 

remarkable efficiency compared to traditional BP neural networks. In the second stage of ELM 

learning, the weights connecting the hidden layer and the output layer, denoted by β, are solved by 

minimizing the approximation error in the squared error sense: 

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚   ‖𝑯𝛽 − 𝑻‖2 

where  

H is the hidden layer output matrix (randomized matrix):  

𝑯 = [
𝒉(𝑿1)

⋮
𝒉(𝑿𝑁)

] = [
ℎ1(𝑿1) … ℎ𝐿(𝑿1)

⋮ ⋮ ⋮
ℎ1(𝑿𝑁) ⋯ ℎ𝐿(𝑿𝑁)

] 

and T is the training data target matrix: 

𝑇 = [
𝑡1
𝑇

⋮
𝑡𝑁
𝑇
] = [

𝑡11 … 𝑡1𝑚

⋮ ⋮ ⋮
𝑡𝑁1 ⋯ 𝑡𝑁𝑚

] 

where  

 ‖∙  ‖ denotes the Frobenius norm.  

The optimal solution is given by:  

𝛽∗ = 𝑯𝜏𝑻 

where  
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𝑯𝝉 denotes the Moore–Penrose generalized inverse of matrix H.  

Generalization performance:  

Most algorithms proposed for feedforward neural networks do not consider the generalization 

performance when they are proposed first time. ELM aims to reach better generalization 

performance by reaching both the smallest training error and the smallest norm of output weights: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  ‖𝛽‖𝑝
𝜎1 + 𝐶‖𝐻𝛽 − 𝑇‖𝑝

𝜎2 

where  

𝜎1 > 0,  𝜎2 > 0,   𝑝, 𝑞 = 0,
1

2
, 1,2, … ,+∞ 

The first term in the objective function is a regularization term which controls the complexity of 

the learned model. 

Huang, et al. (2012) especially studied the stability and generalization performance of ELM with 

σ1 = σ2 = p = q = 2:  

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚   

1

2
‖𝜷‖2 +

𝐶

2
∑‖𝑒𝑖‖

2

𝑁

𝑖=1

           𝑠. 𝑡.   𝒉(𝑿𝑖)𝛽 = 𝒕𝑖
𝑇 − 𝒆𝑖

𝑇 ,    𝑖 = 1, … , 𝑁. 

By substituting the constraints of above equation into its objective function, we obtain the 

following equivalent unconstrained optimization problem: 

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚  𝐿𝐸𝐿𝑀 =  

1

2
‖𝜷‖2 +

𝐶

2
‖𝑻 − 𝑯𝜷‖2 

If H has more rows than columns (N > L), which is usually the case where the number of training 

patterns is larger than the number of the hidden neurons, we have the following closed form 

solution for β: 

𝜷∗ = (𝑯𝑇𝑯 +
𝑰

𝐶
)
−1

𝑯𝑇𝑻 

where  

I is an identity matrix of dimension L. 
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If the number of training patterns is less than the number of hidden neurons (N < L), then H will 

have more columns than rows, so 

𝜷∗ = 𝑯𝑇 (𝑯𝑯𝑇 +
𝐼

𝐶
)
−1

𝑻 

where, I is an identity matrix of dimension N. 

2.2.2 Artificial Neural Network (ANN) 

ANNs have been applied for modelling purposes for many years in mathematics, engineering, 

medicine, economics, hydrology, meteorology, psychology, neurology and other subjects. Their 

popularity has grown since their first inception in 1943 (McCulloch and Pitts, 1943) mainly to 

solve prediction problems with variables of stochastic nature, nonlinear or unknown variations or 

those that must be determined from less controlled environments (Moustris et al., 2011). An ANN 

model weaves through mathematical components derived from stochastic time-series datasets to 

tackle the prediction of very complex systems (e.g. rainfall or drought prediction). As they are 

flexible and less assumption-dependent, there is no need to define the underlying physical process 

between the inputs and outputs (Morid, et al., 2007). This makes the ANN very suitable for drought 

forecasting where variables that trigger a drought may not be fully understood. Basically, the ANN 

model learns from previous history of how the input signal has varied over the time. It constructs 

logically an input–output mapping system to perform the future predictions. In order to train and 

test an ANN model or predicting a variable, the input data and its corresponding output values are 

necessary (Şahin et al., 2013)  

ANN is a computational paradigm composed of non-linear elements (neurons) operating in parallel 

and massively connected by networks characterized by different weights. A single neuron 

computes the sum of its inputs, adds a bias term, and drives the result through a generally nonlinear 

activation function to produce a single output termed the activation level of the neuron. ANN 

models are specified by network topology, neuron characteristics, and training or learning rules 

(Lippman, 1987) with inputs, output(s) and hidden layers with interconnections. The fundamentals 

processing unit is a neuron, which computes a weighted sum of its input signals, yi, for i = 0,1,2,. 

. . , n, hidden layers, wij and then applies a nonlinear activation function to produce an output 

signals uj. 
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A neuronal model consists of an externally applied bias, bk which has the effect of increasing or 

decreasing the net input of the activation functions depending on whether it is positive or negative. 

Mathematically, a neuron k may be described by 

𝑢𝑘 = ∑𝑤𝑘𝑥𝑗

𝑚

𝑗=1

 

𝑦𝑘 = Φ(𝑢𝑘 + 𝑏𝑘) 

where 𝑥1, 𝑥2, . . ., 𝑥𝑚 are the inputs signals; 𝑤𝑘1, 𝑤𝑘2, . . ., 𝑤𝑘𝑚 are the synaptic weights of neuron 

k; 𝑢𝑘 is the linear combiner output due to input signals; 𝑏𝑘 is the bias; Φ(.) is the activation function 

and 𝑦𝑘 is the output signal of the neuron. Bias 𝑏𝑘 has the effect of applying an affine transformation 

to the output 𝑢𝑘 of the linear combiner in the model (Fig. 2b) as shown by   

𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 

In particular, depending on whether 𝑏𝑘 is positive or negative, the relationship between the induced 

local field or activation potential 𝑣𝑘 of neuron k and linear combiner output 𝑢𝑘 can be modified. 

Note that as a result of this affine transformation, the graph of 𝑣𝑘 versus 𝑢𝑘 no longer passes 

through the origin. The bias 𝑏𝑘 is an external parameter of artificial neuron k.  

𝑣𝑘 = ∑𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=0

 

𝑦𝑘 = Φ(𝑣𝑘) 

The tangent sigmoid, 𝜙(𝑥) logarithmic sigmoid, Ψ(𝑥) and linear, 𝜒(𝑥) transfer function are 

described as follows 

𝜙(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

Ψ(𝑥) =
1

1 + 𝑒−𝑥
 

𝜒(𝑥) = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑥 
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Computationally efficient ANN networks employ second-order training methods, primarily the 

Levenberg-Marquardt (LM) or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton 

backpropagation learning algorithms that minimize the mean squared error between the predicted 

and observed variable (Tiwari and Adamowski, 2013). An LM algorithm uses an approximation 

to the Hessian matrix as follows 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒 

where J is the Jacobian matrix calculated using standard backpropagation techniques and is less 

complex than computing the Hessian matrix. The J contains first derivatives of network errors 

with respect to the weights and biases and e is a vector of errors. The BFGS quasi-Newton is an 

alternative to the conjugate gradient methods for fast optimization, which uses the following 

equation: 

𝑥𝑘+1 = 𝑥𝑘 − 𝐴𝑘
−1𝑔𝑘 

where 𝐴𝑘
−1 is the Hessian matrix (second derivatives) of the performance index at the current values 

of the weights and biases. 

2.2.3 Least-squares support vector regression (LSSVR) 

In this study we incorporated the SVR class of models as a comparison with the neural network 

models. SVR-based models adhere to the structural risk minimization principle in contrast to 

neural network models which are developed to reduce empirical risk. SVR models are designed to 

improve generalization properties of the forecast model by placing a regularization constraint on 

the size of the model weights while neural network models aim to reduce the empirical error 

without regularization—in short, SVR models seek to attain good performance with small weight 

values while neural network models simply seek to attain good performance, with no mechanism 

to control the size of their weights. In general, the LSSVR algorithm (a specific model from the 

SVR class) is utilized to solve a linear programming problem where the training (input) vectors, 

taken as support vectors, are used to nonlinearly map inputs into forecasts. A linear formulation of 

LSSVR helps alleviate the convex quadratic programming problem associated with the original 

SVR model. In the standard SVR, the level of ‘‘slackness’’ (i.e., the property of the SVR which 

determines which training data vectors are chosen as support vectors) is set by selecting an 
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inequality constraint. This forces the inclusion of another parameter in the model that must be 

optimized (i.e., via the quadratic programming problem mentioned above). However, the LSSVR 

model avoids this problem (and solves the regression problem as a set of linear equations) since 

each input vector is chosen as a support vector and a ‘‘slackness’’ term is not required (this aspect 

of LSSVR is often seen as an advantage over SVR due to its faster training speed, higher stability, 

and better control. Consequently, an LSSVR model provides global solutions to the error function 

which is an advantage over gradient based algorithms (e.g., FFBP-ANN) that suffer from 

difficulties posed by the presence of local minima. A kernel function (K) and its relevant 

parameters are chosen such that a bound on Vapnik–Chervonenkis (VC) dimension is minimized, 

yielding stable solutions. 

Given an input–output data set, X and Y comprised of N training data samples, i.e., (𝑥𝑡,  𝑦𝑡) for t 

= 1, 2,…,N, where 𝑥𝑡  𝜖 ℝ𝑑  and 𝑦𝑡 𝜖 ℝ𝑑; the LSSVR model is minimized with respect to the loss 

function L defined by 

𝐿(𝑊 ,  𝑒) =
1

2
𝑊𝑇𝑊 + 𝐶

1

2
∑𝑒𝑡

2,

𝑁

𝑡=1

 

where  

   𝑒𝑡
2 is the quadratic loss term,  

   W is the weight vector and  

   C is the regularization parameter 

To solve for the LSSVR parameters, the Lagrangian multipliers method is used as follows 

(Suykens et al. 2002): 

𝐿(𝑊 , 𝑘,  𝑒,  𝛼) = 𝐿(𝑊 ,  𝑒) − ∑𝛼𝑡{𝑊
𝑇𝜙(𝑥𝑡) + 𝑘 + 𝑒𝑡 − 𝑦𝑡}

𝑁

𝑡=1

 

where  

 𝜙(x) is a nonlinear mapping function 
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 𝛼 𝜖 ℝ𝑁 is the set of Lagrange multipliers and  

 𝑘 𝜖 ℝ is the bias term.  

The conditions which prove to be optimal in solving the LSSVR parameters are determined by 

taking partial derivatives of the extended loss function [i.e., L(𝑊,  𝑘, 𝑒 𝛼)] with respect to each 

term (𝑊,  𝑘, 𝑒 𝛼) as follows: 

𝛿𝐿

𝛿𝑊
= 0 → 𝑊 = ∑𝛼𝑡𝜙(𝑥𝑡)

𝑁

𝑡=1

 

𝛿𝐿

𝛿𝑘
= 0 → ∑𝛼𝑡 = 0

𝑁

𝑡=1

 

𝛿𝐿

𝛿𝑒𝑡
= 0 → 𝛼𝑡 = 𝐶𝑒𝑡,     𝑡 = 1, … , 𝑁 

𝛿𝐿

𝛿𝛼𝑡
= 𝑊𝑇𝜙(𝑥𝑡) + 𝑘 + 𝑒𝑡 − 𝑦𝑡 ,   𝑡 = 1,… ,𝑁 

The above conditions can be expressed in matrix form as: 

[0 1⃗ 𝑇

1⃗ Ω + 𝐶−1𝐼
] = [

𝐾
𝛼
] = [

0
𝑌
] 

where  

1⃗  is a vector of ones and 

Ω is used to represent the kernel function (K) satisfying Mercer’s theorem (Mercer 1909; Okkan 

and Serbes 2012):  

Ω𝑢𝑣 = 𝜙(𝑥𝑢)
𝑇𝜙(𝑥𝑣) = 𝐾(𝑥𝑢,  𝑥𝑣),   𝑢, 𝑣 = 1, …  ,  𝑁, 

where the kernel function [𝐾(𝑥𝑢,  𝑥𝑣) 𝜖 ℝ] may be represented by the commonly used RBF: 



17 
 

𝐾(𝑥𝑡,  𝑥) = 𝑒
(−

‖𝑥−𝑥2‖

2𝜎2 )
 

 𝜎 represent the RBF kernel width. 

 

Figure: Schematic representation of LSSVR 

 

2.3 Results and Discussion 

2.3.1 Study area and climate data 

This study utilised monthly precipitation data of Sagar and Chattarpur district of Bundelkhand 

region (Fig. 2.1) for a 52-year period (1951–2002) acquired from the India Water Portal website. 

The choice of test stations was ideal for testing the skill of the drought model. In terms of its 

climatic conditions, the Sagar district had average annual precipitation 1060 mm while the 

Chattarpur district had average precipitation 1032 mm with coefficient of variation 0.211 and 

0.257 respectively. Hence, the EDI models developed in this study can be useful tools for drought-

risk studies in these sites. Figure 2.2 and 2.3 shows plot of precipitation of Sagar and Chattarpur 

district respectively. 
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Figure 2.1 Geographical location of Bundelkhand region 

 

Figure 2.2 Plot of precipitation of Sagar district 

0

100

200

300

400

500

600

700

800

900

Ja
n

u
ar

y

Fe
b

ru
ar

y

M
ar

ch

A
p

ri
l

M
ay

Ju
n

e

Ju
ly

A
u

gu
st

Se
p

te
m

b
er

O
ct

o
b

e
r

N
o

ve
m

b
er

D
ec

e
m

b
er

Ja
n

u
ar

y

Fe
b

ru
ar

y

M
ar

ch

A
p

ri
l

M
ay

Ju
n

e

Ju
ly

A
u

gu
st

Se
p

te
m

b
er

O
ct

o
b

e
r

N
o

ve
m

b
er

D
ec

e
m

b
er

Ja
n

u
ar

y

Fe
b

ru
ar

y

M
ar

ch

A
p

ri
l

M
ay

Ju
n

e

Ju
ly

A
u

gu
st

Se
p

te
m

b
er

O
ct

o
b

e
r

N
o

ve
m

b
er

D
ec

e
m

b
er

Ja
n

u
ar

y

Fe
b

ru
ar

y

19751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015

Sagar



19 
 

 

Figure 2.3 Plot of precipitation of Chattatpur district 

 

2.3.2 Calculation of effective drought index (EDI) 

In order to develop drought forecasting models, the precipitation data were used to calculate the 

effective drought index (EDI) (Byun and Wilhite 1999). In this study, the EDI was determined 

from daily effective precipitation (PE), with summed precipitation both for the current and the 

antecedent day determined by a time-dependent reduction function. 

Suppose that Pm is the rainfall recorded on any day, m (1 ≤ 𝑚 ≤ 365) and N* is the duration of 

summation of the preceding period, then PE for that (current ith) day is: 

𝑃𝐸𝑖
= ∑ [

∑ 𝑃𝑚
𝑁∗

𝑚=1

𝑁∗
]

𝐷

𝑁∗=1

 

Above equation defines the degree to which Pm is converted into Pm for the ith day but importantly, 

this model considers antecedent precipitation with reduced weighting. That is, the PE will 

accumulate 100 % of precipitation received a day before, and 85 % of that received 2 days before, 

and 77 % of that received 3 days before, and so on, to 0.0423 % of precipitation 365 days before 
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the ith day (Kim et al. 2009). The model puts the highest weight on present rainfall, whereas the 

previous days’ contributions decrease gradually up to the annual cycle (N = 365 days, ignoring 

leap year for simplicity). In order to formulate the EDI, two simple equations were utilized: 

𝐷𝑃𝐸𝑖
= 𝑃𝐸𝑖

− 𝑀𝑃𝐸 

𝐸𝐷𝐼𝑖 =
𝐷𝑃𝐸𝑖

𝑆𝑃𝐸
 

where, MPE is the mean PE, SPE is the standard deviation derived from the hydrological period 

(1951–2002), and i is the particular day. The "drought range" of Effective Drought Index (EDI) 

are:  

 Extremely dry conditions at Less than -2  

 Severe drought at       -1.5 to -1.99   

 Moderate drought at      -1 to -1.49.  

 Near normal conditions -0.99 to 0.99  

In this study, for converting precipitation data in to Effective Drought Index (EDI), R code has 

been developed. By using developed code all precipitation data were converted in to EDI. 

2.3.3 Input selection and drought model development 

When designing a robust drought model, it is important to consider pertinent factors such as the 

proper selection of predictor variables or their combinations, training of predictor variables, 

ensuring the minimum level of over-fitting, selecting the best training algorithm and activation 

functions, ensuring the smallest generalization error and using the best performance assessment 

metrics. As there is no ‘rule-of-thumb’ to determine the significant inputs (Tiwari and Adamowski 

2013), patterns engrossed in the EDI signal were recognized by correlation statistics i.e. 

autocorrelation function (ACF) and partial ACFs (PACFs; Tiwari and Adamowski 2013). The 

statistical method attempted to extract lagged information from the signal to analyse time periods 

between the current index value, and the index at a point in the past domain. Subsequently, 

optimum inputs for each time lag were identified by statistically analysing the lagged combinations 

and correlation coefficients (r). While the ACF detected seasonality in inputs, the PACF removed 
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any dependence on intermediate elements (those within lags), interpreted as a regression of the 

time-series against its past lagged value. Figures 2.1 to 2.4 shows correlograms of ACF and PACF 

for both district considered with a 95 % confidence interval. As a norm, scaling of predictor 

variables was applied prior to the simulations in order to avoid the patterns or attributes with larger 

numeric ranges dominating those of the smaller numeric range.  

 

Figure 2.4 ACF of Sagar district 

 

Figure 2.5 PACF of Sagar district 
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Figure 2.6 ACF of Chattarpur district 

 

Figure 2.7 PACF of Chattarpur district 

A three layer network that contained the input, feature optimisation and the output space was 

employed with the predictor dataset from training and the testing sets used for developing the 

present drought models. ELM model in this study was developed using the logarithmic sigmoid 

activation function. To identify the best ELM network architecture (i.e., number of hidden 

neurons), the number of hidden neurons was decided upon a priori. The architecture that performed 

best on a particular partition was then used to justify a particular architecture as optimal. Initially, 

the ELM model was randomly executed 50–1000 times to explore the effect of the variation of the 

randomized hidden layer weights and biases on the network’s output. The objective was to obtain 

the smallest mean square error (MSE) for the weights and optimal nodes in the hidden layer. 
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Finally, this resulted in 100 randomizations that were appropriate for a stable solution of the 

forecasted monthly EDI. For each station, the time to run drought models was also recorded. 

As a benchmark, the ANN model was also developed as this model has been shown to be an 

effective tool for drought forecasting. The ANN models were developed by considering different 

architectures with iteratively varying hidden neurons (1–35). During this period, the MSE value 

was monitored at the iterations of the training phase. The training was stopped when the MSE was 

at its minimum in comparison to earlier iterations or when the maximum number of epochs was 

reached (Bishop 1995). As with previous studies (Tiwari and Adamowski 2013; Deo and S¸ ahin 

2015a), the secondorder Levenberg–Marquardt training algorithm, which is a fast and efficient 

algorithm, was employed for the ANN model. 

The LSSVR model developed in this study was based on the radial basis kernel function (RBF). 

The choice of the RBF was appropriate, as it has a good ability to map nonlinear input samples to 

high dimensional space, it is able to discover non-linear relationships between target data and input 

data attributes and it has superior performance compared to the linear kernel. Also, the linear kernel 

is a special case of the RBF and the sigmoid kernel behaves like the RBF for certain parameters. 

The setting of C and r is important for a model’s forecasting accuracy (Hoang et al. 2014). A range 

of kernel widths, 𝑟 = 2[15,13,11,9,7,5,3,1,−1,−3,−5]  and regularisation constants, 𝐶 =

2[−15,−13,−11,−9,−7,−5,−3,−1,1,3]  were trialled to create the best LSSVR structure. The optimised 

parameters were chosen based on the smallest MSE. Initially, a grid-search was used to identify 

plausible parameters that were then fine-tuned using the Nelder–Mead simplex algorithm. 

2.3.4 Model Evaluation  

All the model simulations using the ELM, SVR and the ANN algorithms were conducted in the R 

software. Table 2.1 shows the parameters of the ELM, SVR and the ANN model. The 52-years of 

available data (1951–2002) were portioned into two parts, viz the training (1951–1999) and the 

testing (2000–2002) phases. The training dataset was used for designing both network models. 

After training the proposed network, a weight matrix was obtained and applied to the independent 

inputs in the ‘‘test’’ set. Then the final outcomes were compared with the observed (actual) values 

of the Effective Drought Index. 
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Table 2.1 The neuronal arrangements for the ELM and the ANN models 

Location Model Training algorithm or 

Activation function 

Neuron structure 

Sagar ANN Levenberg-Marquardt 10-26-1 

ELM Logarithmic sigmoid 11-50-1 

Chattarpur ANN Levenberg-Marquardt 10-32-1 

ELM Logarithmic sigmoid 12-45-1 

For designing the ELM model three layers were used to build the architecture (see Table 2.1) for 

predicting monthly EDI trained with data from 1951 to 1999, and tested over 2000 to 2002 with 

observed Effective Drought Index (EDIo). The ELM output layer had one neuron representing the 

predicted monthly Effective Drought Index (EDIp) but in hidden layers a maximum of 75 neurons 

are tested. A taxonomy of activation functions were tried one by one, which included sigmoid, 

log-sigmoid, hyperbolic-tangent sigmoid, radial bias, triangular bias, hyperbolic-tangent sigmoid 

and hard-limit. In each trial the numbers of nodes in hidden layer were increased gradually by an 

interval of five. Then, the nearly optimal node for ELM was selected as 50 with the hard-limit 

activation function and 11-50-1 neurons in the architecture of the ELM model for Sagar and 12-

45-1 architecture for Chattarpur district. 

In addition, to show the potential of the proposed ELM model for predicting the Effective Drought 

Index a performance comparison in terms of the estimation capability was made between the ELM 

and the conventional feedforward ANN model run with the BP algorithm. Because it is a well-

known universal estimator, the ANN model can rather be considered as standard benchmark. In 

accordance with Maier and Dandy (2000), all data prior to its inclusion into the ANN model was 

scaled appropriately. In the present investigation, the input neurons were scaled in the range of [-

1, 1] and a transfer function was implemented to explain the nonlinear relationship between input 

and output neurons. For determining the optimum ANN model to be used in this work, the set of 

five backpropagation training algorithms used were as follows: scaled conjugate gradient, one-

step secant, BFGS quasi-Newton, Bayesian regulation and Levenberg-Marquardt. Additionally, 

the set of two commonly used family of hidden transfer functions (hyperbolic-tangent sigmoid and 

log-sigmoid) and the three output functions (linear, hyperbolic-tangent sigmoid & log-sigmoid) 

were all tried on the testing datasets one at a time in order to seek the optimum model for the final 
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experiments. Like in the case of the ELM model, the number of neurons in the hidden layer was 

varied gradually but this time over the range 4 to 50 neurons. Consequently, the optimum training 

algorithm was the Levenberg–Marquardt, the hidden transfer function was the hyperbolic-tangent 

sigmoid and the output transfer function was linear with an ANN architecture of 10-26-1 for Sagar 

and 10-32-1 for Chattarpur district. 

The estimation capability of the monthly EDI from the all machine learning algorithms were 

statistically evaluated using the following score metrics or prediction error indicators: Root-Mean 

Square Error (RMSE) and Mean Absolute Error (MAE). Table 2.2 shows the performance 

capability of the ELM, SVR and the ANN models used in this study. The results confirms that 

ELM model perform better compare to the ANN and SVR model in all the evaluation criteria. 

Table 2.2 performance capability of the ELM, SVR and the ANN models 

Location Predictive 

Model 

RMSE MAE Correlation 

coefficient 

 

Sagar 

ELM 0.679 0.387 0.835 

ANN 0.690 0.390 0.818 

SVR 0.699 0.435 0.801 

 

Chattarpur 

ELM 0.725 0.418 0.794 

ANN 0.743 0.429 0.761 

SVR 0.778 0.457 0.750 
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Chapter-3 

Multiple kernel extreme learning machine model for drought index 

3.1 Introduction 

Accurate forecasting of drought index is an appealing yet difficult activity in the modern world. 

Many factors influence the behavior of the drought index, therefore, drought forecasting is 

regarded as one of the most challenging topics for researchers. In the past, methods based on 

statistics were proposed for tackling this problem, such as the autoregressive (AR) model, the 

autoregressive moving average (ARMA) model and the autoregressive integrated moving average 

(ARIMA) model. These are linear models which are, more than often, inadequate for drought index 

forecasting. Recently, nonlinear approaches have been proposed, such as artificial neural network, 

fuzzy neural networks (FNN), support vector regression (SVR), Extreme learning machine etc. 

ANN has been widely used machine learning techniques due to its universal approximation 

property. Previous researchers indicated that ANN, which implements the empirical risk 

minimization principle, outperforms traditional statistical models. However, ANN suffers from 

local minimum traps and difficulty in determining the hidden layer size and learning rate. On the 

contrary, SVR, proposed by Vapnik and his co-workers, has a global optimum and exhibits better 

prediction accuracy due to its implementation of the structural risk minimization principle which 

considers both the training error and the capacity of the regression model. However, the 

practitioner has to determine in advance the type of kernel function and the associated kernel 

hyperparameters for SVR. Unsuitably chosen kernel functions or hyperparameter settings may 

lead to significantly poor performance. Most researchers use trial-and-error to choose proper 

values for the hyperparameters, which obviously takes a lot of efforts. In addition, using a single 

kernel may not be sufficient to solve a complex problem satisfactorily.  

Extreme learning machine (ELM) was first designed for single hidden layer feed forward neural 

network and then extended to generalized single hidden layer feed forward networks (SLFN) 

which did not necessarily resemble neurons. Different from traditional neural SLFN learning 

algorithms ELM aims to minimize both training error and the norm of output weights. Due to its 

(1) high efficiency, (2) easy-implementation, (3) unification of classification and regression and 

(4) unification of binary and multi-class classification, ELM has been an active research topic over 
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the past a few years. In addition the ELM has also been successfully applied to many applications 

such as imbalance learning, missing data learning and activity recognition etc.  

Although researchers have made great progress from both a theoretical and a practical point of 

view, ELM has still not well considered the following two issues. The first one is how to choose 

an optimal kernel for a specific application when the kernel trick is applied to ELM such as in 

previous work. The other one is how to handle information fusion in ELM when multiple 

heterogenous data sources are available. Liu et al. 2015 proposed a general framework by 

borrowing the idea of multiple kernel learning (MKL) to handle the above two issues. They called 

their framework a multiple kernel extreme learning machine (MK-ELM). In the MK-ELM, the 

optimal kernel is assumed to be a linear combination of a group of base kernels, and the base kernel 

combination weights and structural parameters of ELM are jointly optimized in the learning 

process. Though sharing the same assumption that the optimal kernel is a linear combination of 

base kernels, the proposed MK-ELM and the widely studied SVM based MKL algorithms have 

important differences. (1) In MK-ELM, the binary and multi-class classification problems are 

unified in to one common formula. In contrast, the one- against-one (OAO) and one-against-all 

(OAA) strategies are usually adopted in SVM based MKL algorithms to handle the multi-class 

classification problems. (2) The optimization problem for MK-ELM is much simpler than the one 

used in SVM based MKL algorithms. The structural parameter of MK-ELM can be analytically 

obtained by a matrix inverse operation, while a constrained quadratic programming (QP) solver is 

required to solve the optimization problems of SVM based MKL algorithms. 

The development of better forecasting models for forecasting of  drought is an appealing problem 

as drought events in many part of India are known to significantly impact sustainable economic 

growth, infrastructure, daily living, agricultural industry and natural ecosystems. However, in 

predicting future drought the application of the Effective Drought Index (EDI) for drought 

assessment has been considered superior to the many other indices used in literature. In particular, 

the merits of the EDI were emphasized in a study by Pandey et al., (2008) that investigated drought 

in Orissa (India) showed the greater capability of the EDI compared to the other drought indices 

(e.g., Standardized Precipitation Index, SPI and the Rainfall Decile Drought Index, RDDI) in 

quantifying water resources in relation to drought. Another study by Morid et al. (2006) in Tehran 

(Iran) who showed the significantly better performance of EDI, and its better response in detecting 
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the start of drought when compared to other approaches (e.g., percent of normal, SPI, China-Z 

index, Z-Score).  

The purpose of this investigation to develop multiple kernel Extreme Learning Machine (MK-

ELM) model for the forecasting of effective drought Index and compared the output with ANN 

and ELM models. The prediction capabilities of the proposed model were assessed by performance 

metrics like the Mean Absolute Error, Root-Mean Square Error. 

3.2 Materials and Methods 

ELM was proposed for ‘‘generalized’’ single-hidden layer feedforward networks where the hidden 

layer need not be neuron alike (Huang, et al., 2012). The output function of ELM for generalized 

SLFNs is  

𝑓𝐿(𝐗) = ∑𝜷𝑖ℎ𝑖(𝐗) = 𝒉(𝐗)𝜷

𝐿

𝑖=1

 

where 𝜷 = [𝜷1, … , 𝜷𝐿]
𝑇 is the output weight vector between the hidden layer of L nodes to the 

m≥ 1 output nodes, and 𝒉(𝑿) = [ℎ1(𝐗),… , ℎ𝐿(𝐗)] is ELM nonlinear feature mapping. The output 

functions of hidden nodes may not be unique. Different output functions may be used in different 

hidden neurons. In particular, in real applications ℎ𝑖(𝐗) can be 

ℎ𝑖(𝐗) = 𝐺(𝐚𝑖, 𝑏𝑖 , 𝐗),        𝐚𝑖 ∈ 𝐑𝑑 , 𝑏𝑖 ∈ R 

where G(a, b, x) (with hidden node parameters (a, b)) is a nonlinear piecewise continuous function 

satisfying ELM universal approximation capability theorems (Huang, et al., 2006). 

ELM trains an SLFN in two main stages: (1) random feature mapping and (2) linear parameters 

solving. In the first stage, ELM randomly initializes the hidden layer to map the input data into a 

feature space (called ELM feature space1) by some nonlinear mapping functions. The random 

feature mapping stage differs ELM from many existing learning algorithms such as SVM, which 

uses kernel functions for feature mapping, or deep neural networks, which use Restricted 

Boltzmann machines (RBM) or Auto-Encoders/Auto-Decoders for feature learning. The nonlinear 

mapping functions in ELM can be any nonlinear piecewise continuous functions. 
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3.2.1 Basic ELM 

In the second stage of ELM learning, the weights connecting the hidden layer and the output layer, 

denoted by β, are solved by minimizing the approximation error in the squared error sense: 

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚   ‖𝐇𝛽 − 𝐓‖2 

where H is the hidden layer output matrix (randomized matrix):  

𝐇 = [
𝐡(𝐗1)

⋮
𝒉(𝑿𝑁)

] = [
ℎ1(𝐗1) … ℎ𝐿(𝑿1)

⋮ ⋮ ⋮
ℎ1(𝑿𝑁) ⋯ ℎ𝐿(𝑿𝑁)

] 

and T is the training data target matrix: 

𝑇 = [
𝑡1
𝑇

⋮
𝑡𝑁
𝑇
] = [

𝑡11 … 𝑡1𝑚

⋮ ⋮ ⋮
𝑡𝑁1 ⋯ 𝑡𝑁𝑚

] 

Where ‖ ∙ ‖ denotes the Frobenius norm.  

The optimal solution to (3) is given by  

𝛽∗ = 𝐇𝜏𝐓 

 where 𝐇𝝉 denotes the Moore–Penrose generalized inverse of matrix H. There are many efficient 

ethod, iterative method, and single value decomposition (SVD).  

3.2.2 Regularized ELM and ELM kernels 

Huang, Zhou, et al. (2012) especially studied the stability and generalization performance of ELM 

with σ1 = σ2 = p = q = 2:  

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚    

1

2
‖𝜷‖2 +

𝐶

2
∑‖𝑒𝑖‖

2

𝑁

𝑖=1

           𝑠. 𝑡.  𝐡(𝐗𝑖)𝛽 = 𝐭𝑖
𝑇 − 𝐞𝑖

𝑇 ,   𝑖 = 1,… ,𝑁. 

𝑚𝑖𝑛
𝛽 ∈ 𝑅𝐿×𝑚  𝐿𝐸𝐿𝑀 = 

1

2
‖𝜷‖2 +

𝐶

2
‖𝐓 − 𝐇𝜷‖2 
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The above problem is widely known as the ridge regression or regularized least squares. By setting 

the gradient of LELM with respect to β to zero, we have 

𝐿𝐸𝐿𝑀 = 𝛽∗ − C𝐇𝑇(𝐓 − 𝐇𝛽∗) = 0 

If H has more rows than columns (N > L), which is usually the case where the number of training 

patterns is larger than the number of the hidden neurons, we have the following closed form 

solution for β: 

𝛽∗ = (𝑯𝑇𝑯 +
𝑰

𝐶
)
−1

𝐇𝑇𝐓 

where I is an identity matrix of dimension L. 

Note that in practice, rather than explicitly inverting the L × L matrix in the above expression, we 

can instead solve a set of linear equations in a more efficient and numerically stable manner. If the 

number of training patterns is less than the number of hidden neurons (N < L), then H will have 

more columns than rows, which usually gives an under-determined least squares problem. 

Moreover, it is less efficient to invert a L×L matrix in this case. To handle this problem, we restrict 

β to be a linear combination of the rows in 𝐇: 𝜷 = 𝑯𝑻𝜶(𝜶 ∈ 𝐑𝑁×𝑚). Notice that when N < L and 

H is of full row rank, then 𝐇𝐇𝑇is invertible. Substituting 𝜷 = 𝐇𝑇𝜶into (10), and multiplying both 

sides by (𝐇𝐇𝑇)−1𝐇, we get 

𝜶∗ − 𝐶(𝐓 − 𝐇𝐇𝑇𝜶∗) = 0 

This yield 

𝜷∗ = 𝑯𝑇𝜶∗ = 𝐇𝑇 (𝐇𝐇𝑇 +
𝐼

𝐶
)
−1

𝐓 

where I is an identity matrix of dimension N. 

3.2.3 Multiple Kernel Learning 

It is well known that the choice of kernels is crucial for kernel-based algorithms Cortes and Vapnik 

(1995). Much effort has been devoted to tuning an optimal kernel for a specific application. MKL 
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provides an elegant way to handle such an issue by optimizing a data-dependent kernel. In MKL, 

the optimal kernel is assumed to be a linear combination of a group of base kernels, and the optimal 

combination coefficients and the structural parameters of classifiers are jointly learned by 

maximizing the margin. Specifically, MKL takes the form of  

𝑘(∙,∙; 𝛾) = ∑ 𝛾𝑝𝑘𝑝(∙,∙)
𝑚

𝑝=1
 

where {𝑘𝑝(∙,∙)}𝑝=1

𝑚
 are m pre-defined base kernels, and {𝛾𝑝}𝑝=1

𝑚
are the base kernel combination 

coefficients. 

3.3 Results and Discussion 

Extreme learning machine (ELM) has been an important research topic over the last decade due to 

its high efficiency, easy-implementation, unification of classification and regression, and 

unification of binary and multi-class learning tasks. Though integrating these advantages, existing 

ELM algorithms pay little attention to optimizing the choice of kernels, which is indeed crucial to 

the performance of ELM in applications. More importantly, there is the lack of a general 

framework for ELM to integrate multiple heterogeneous data sources for the prediction. In this 

study, we propose a multiple kernel extreme learning machines (MK-ELM), to improve the 

forecasting accuracy of drought index of the extreme learning machine. In the proposed MK-ELM, 

the optimal kernel combination weights and the structural parameters of ELM are jointly 

optimized.  

In this study, we assume that the optimal kernel can be expressed as a linear combination of base 

kernels, and jointly learn the structural parameters of ELM and the optimal kernel combination 

coefficients. Several kernel combination has been empirically specified and optimized and found 

that Gaussian kernel and a polynomial kernel are the best kernel combination.  

Details about the data and input selection and drought model development process has been 

discussed in the section 2.3.1 and 2.3.3 respectively in the previous chapter. To evaluate the 

performance of the model, we used RMSE and MAE. The RMSE and MAE provide different types 

of information about the forecasting capabilities of the model in the overall test set. Basically, 

RMSE measures the goodness-of-fit relevant to high flow values whereas MAE is not weighted 

towards high(er) magnitude or low(er) magnitude events, but instead evaluates all deviations from 
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the observed values, in both an equal manner and regardless of sign. Table 3.1 summarizes the 

performance metrics of the MK-ELM model in terms of its mean statistical metrics. Also, the 

comparative statistics of the ANN and ELM models used as benchmarks for the MK-ELM are 

shown. It is found that the statistical performance metrics of the MK-ELM model were better in 

magnitude to those of the other models.  

Table 3.1 Performance metrics of the MK-ELM model compared with the ANN and the 

ELM models  

Location Predictive 

Model 

RMSE MAE Correlation 

coefficient 

 

Sagar 

MK-ELM 0.639 0.352 0.856 

ELM 0.679 0.387 0.835 

ANN 0.690 0.390 0.818 

 

Chattarpur 

MK-ELM 0.683 0.392 0.831 

ELM 0.725 0.418 0.794 

ANN 0.743 0.429 0.761 

 

A comparison of the performance based on statistical analysis of errors of the predicted output 

with the observed values for each model for the two district are shown in Table 3.1. The MK-ELM 

outperformed the ELM and ANN model by all means of performance indicators between the 

predicted and observed Effective Drought Index. The RMSE and MAE was lower for the MK-

ELM compared to the ELM and ANN models. If the comparison of the correlation coefficient is 

made, then MK-ELM model exhibited the best prediction performance with 0.856 and 0.831 for 

Sagar and Chattarpur district respectively. The proposed MK-ELM model outperforms to the ELM 

and ANN model in all the evaluation criteria. 
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Chapter-4 

Wavelet based multiple kernel extreme learning machine model for 

forecasting drought index 

4.1 Introduction 

The popularity of discrete wavelet transformation (DWT) in water resources research has grown 

in recent years (Adamowski and Karapataki 2010; Tiwari and Adamowski 2013, Partal et al. 2015, 

etc) as wavelet-conjunction forecasting models have been found to be more accurate than classical 

(non-wavelet) ML counterparts. In the previous chapter, drought forecasting in Sagar and 

Chattarpur district, the classical MK-ELM based model was developed for the forecasting of the 

EDI. However, in that study the entire signal was utilized instead of its wavelet decomposed 

equivalents. Hence in this study, we have used DWT whereby wavelet sub-series with various 

frequency components of the raw signal were used to develop the W-MK-ELM model. Like other 

signals of a hydro-meteorological origin, a set of input time-series that represent drought evolution 

in the temporal domain is likely to exhibit localized high and low frequency components with 

dynamical features of nonlinearity and non-stationarities. Due to the localization properties in time 

and scale, wavelet transformation of such signals can allow a ML model to better analyze the time 

evolution of hydrological processes at different scales. Hence, wavelet decomposition of inputs is 

considered a multi-resolution tool for pre-processing non-stationary signals; for instance, prior to 

developing ML models (Adamowski et al. 2012) and analysing trends or periodicities. This 

technique is similar to short time Fourier transformation as a windowing tool where inputs are 

decomposed into shifted and scaled versions according to a mother wavelet to extract frequency 

information.  

4.2 Material and Methods 

Discrete wavelet transformation 
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Mathematically, coefficients of wavelet transformation 𝑊𝑓(𝑟, 𝑠) of a continuous signal f(t) are 

defined by a linear integral operator (Tiwari and Adamowski 2013): 

𝑊𝑓(𝑟, 𝑠) = |𝑟|
1
2 ∫ 𝑓(𝑡)Ψ ∗ (

𝑡 − 𝑠

𝑟
) 𝑑𝑡

+∞

−∞

 

where  

 * is a complex conjugate, the mother wavelet function Ψ(𝑡) is real or complex,  

 r is the scale/frequency factor controlling the dilation (𝑟 > 1) and contraction (𝑟 < 1)  

and  

 s is the time factor affecting the temporal translation of that function. 

It is assumed that the mother wavelet has finite energy (i.e., a condition of admissibility) and 

therefore, is of the form ∫ Ψ(𝑡)𝑑𝑡 = 0
+∞

−∞
 with successive wavelet function Ψ𝑟,𝑠(𝑡) written as: 

Ψ𝑟,𝑠(𝑡) = |𝑟|−
1
2Ψ(

𝑡 − 𝑠

𝑟
)    𝑟 ∈ 𝑅,   𝑟 ≠ 0,      𝑠 ∈ 𝑅 

Note that when the input signal has infinite energy it will be impossible to cover its frequency 

spectrum and its time duration with wavelets. However, generally most real-life signals (including 

those in hydrology) are constrained with finite energy, so the assumption of admissibility can be 

considered as reasonable. By way of its action, seeks to identify the level of similarity between 

input time series and mother wavelets at different scales and translations. This generates a set of 

wavelet coefficient contour maps (or scalogram). In order to transform input data by wavelet 

analysis, the transformation will search for correlations between the signal and wavelet function 

at different scales of r and locally around the time of s to produce a scalogram. As it is not feasible 

to compute wavelet coefficients at every resolution level of r and s, a dyadic grid arrangement can 

be made where coefficients with values corresponding to powers of two are chosen. This simple, 

yet efficient method for practical purposes is defined as (Mallat 1998): 

Ψ𝑚,𝑛 (
𝑡 − 𝑠

𝑟
) = 𝑟0

−𝑚
2 Ψ ∗ (

𝑡 − 𝑛𝑠0𝑟0
𝑚

𝑟0
𝑚 ), 
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where m and n are the integers that denote the magnitude of wavelet dilation and translation, 

respectively (𝑟0 > 1) is a specified dilation step and (𝑠0 > 0) is the location parameter. Typically, 

it is reasonable to choose (𝑟0 = 2) and (𝑠0 = 1) (Tiwari and Adamowski 2013). 

In this study, DWT was applied to select translation and location parameters of discrete input 

signals. Subsequently, discrete wavelet coefficients (DWCs) were acquired to represent the 

minimum number of components needed to reflect the time-series according to the mother wavelet. 

Several wavelet families that have proven useful for various applications are described in Mallat 

(1998). In practice, hydrologists need to analyse a discrete signal (e.g., monthly, seasonal or 

annual) rather than a continuous signal as signals in this field of study are mostly discrete in the 

time domain. For a discrete time-series, 𝑊𝑓(𝑡), that could also represent the input variable of a 

drought model, assuming (𝑟0 = 2) and (𝑠0 = 1), the DWT function simplifies as: 

𝑊𝑓(𝑚, 𝑛) = 2
−𝑚

2⁄ ∑ 𝑓(𝑡)Ψ ∗ (2−𝑚𝑡 − 𝑛),

𝑁−1

𝑡=0

 

where 𝑊𝑓(𝑚, 𝑛),  is the wavelet coefficient of the DWT process, f(t) is a finite time series (t = 0, 

1, 2,…,N – 1), n is the time translation parameter between0 < 𝑛 < 2𝑀−𝑚 − 1 and m is the 

magnitude dilation parameter (1<). In this way, a DWT process is able to perform a multilevel 

resolution decomposition of time-series by choosing a discrete scale (integer) for m and n to 

develop a set of wavelet coefficients. In this study, the DWCs were used to create time-series 

(input) variables in order to forecast the EDI. 

Considering that in wavelet analysis, a time-series of length N can be decomposed into M 

components with zero redundancy, the inverse discrete transform in terms of a signal smoothed 

component ( �̅� ) to denote the entire signal mean is described as: 

𝑓(𝑡) = �̅� + ∑ ∑ 𝑊𝑓(𝑚, 𝑛)2
−𝑚
2 Ψ ∗ (2−𝑚𝑡 − 𝑛)

2𝑀−𝑚−1

𝑛=0

𝑀

𝑚=1

 

In simplified form, above Eq. can be written as:  

𝑓(𝑡) = �̅�(𝑡) + ∑ 𝑊𝑚(𝑡),

𝑀

𝑚=1
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where �̅�(𝑡) is the approximation sub-signal at level M, and 𝑊𝑚(𝑡) is the detailed sub-signal at 

each level m = 1, 2,…,M. As the mother wavelet translates across the input signal during the 

wavelet transformation process, it generates wavelet coefficients that represent similarity between 

the signal and mother wavelet (at specific scales). The wavelet coefficients, 𝑊𝑖(𝑡) (i = 1, 2…,M) 

show details of the input signal that capture small features of interpretational values in data 

(generally, the fast changing nature of time-series). The residual (or approximation) term shows 

the background information of data (long-term or low frequency information). In this study, the 

DWT technique was adopted as a robust tool without the need for erroneous assumptions or 

parametric procedures for analysis of the input signal. Because it permits the analysis of more 

detailed information [W1(t), W2(t),…,Wl(t)] with low frequencies as well as approximated signals 

with high frequency, the relevant characteristics in a given hydrologic dataset (e.g., periods, hidden 

period, dependence and jumps) can be easily diagnosed by closely observing the DWCs. 

Consequently, the accuracy of the ELM model was expected to be higher by pre-processing of the 

inputs.  

3. Results and Discussion 

As further improvement to the MK-ELM model, the DWT was applied on the predictor signals to 

achieve a time-scale representation of the localized and transient phenomenon at different scales 

in the data series (Tiwari and Adamowski 2013). Figure 4.1 shows a schematic view of the stages 

in wavelet based model development. Given that the EDI signal was derived from precipitation 

data which had distinct seasonality and specific frequency components, the DWT process aimed 

to achieve a time-scale realisation of both the localized and transient phenomena at various 

frequencies.  
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Figure 4.1 schematic view of the stages in wavelet based model development 

The wavelet function utilised in this study was adopted from the family of Daubechies mother 

wavelets, where the DWT process operated as two sets of functions with a high-pass and a low-

pass filter. The predictor variables were passed through the high- and low-pass filters to acquire 

detail (D1, D2, D3) in terms of high frequency components and the approximation coefficients 

(A3) in terms of low frequency components of the signal. When developing wavelet-based forecast 

models, it is an important requirement during the decomposition stage to avoid incorporating 

information from future data (that is to be used in the testing phase) in the calibration set. This is 

achieved in this study by performing wavelet decomposition on each partition (training, and 

testing) independently. If this requirement is not followed and the complete dataset (training and 

testing) is decomposed together (as is sometimes done in other studies in the literature), then future 

data (that is not truly available to the forecaster at a particular time step) would be used in the 

calculation of the wavelet and scaling coefficients for a particular time step, unintentionally 

introducing bias into the forecast. As the performance of the Daubechies (db5) wavelet with three 

levels of decomposition was the best, for illustration purposes, only three levels of decomposition 

(D1, D2, D3) and one approximation (A3) for the EDI data over the tested period. The low-
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frequency components reflected by A3 showed the broad-scale patterns in the predictor dataset 

including its periodicity and trends, and were closely in-phase with the predictor signal, whereas 

the high-frequency components (D1, D2, D3) appeared to replicate greater details of the subtle but 

significant patterns in the input time-series. 

It is noteworthy that although earlier studies demonstrated the better performance of wavelet-based 

models, the way in which wavelet sub time-series are included in model development can vary. 

Some studies have used all of their wavelet sub-series, whereas others have removed the db1 sub-

series and added the remaining series, considering the former series as noise due to low correlation 

with their original data. In other studies, new wavelet time-series were developed by adding up the 

effective DWCs based on regression correlation. 

Table 4.1 lists correlation coefficients (r) of wavelet-decomposed signals with the original signal. 

Interestingly, the approximation component A3 of the predictor time-series appeared to constitute 

the primary wavelet series for monthly EDI-forecasting. However, considering that the correlation 

with the original dataset was relatively large in its magnitude (0.313–0.836) compared with 

previous studies (Tiwari and Adamowski 2013), we used all wavelet sub-series for drought model 

development in the present study. 

Table 4.1 Correlation coefficients (r) of wavelet-decomposed signals with the original signal 

Discrete wavelet component Sagar Chattarpur 

A3 0.836 0.786 

D1 0.313 0.318 

D2 0.347 0.351 

D3 0.375 0.419 

In this study, a primary objective was to test the usefulness of the wavelet based MK-ELM model 

relative to the other ML models considered for monthly forecasting of the EDI. There was a 

harmonic variation in the evolution of the forecasted and observed value of the DI. The scatter 

plots revealed significant differences in the performance of the W-MK-ELM model for all stations 

considered for EDI forecasting. For all three stations, the W-MK-ELM was superior in its 

performance for EDI forecasting relative to the ELM and the MK-ELM models. 
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Table 4.2 displays the performance score metrics of the W-MK-ELM, MK-ELM and ELM models. 

The EDI forecasts generated by the W-MK-ELM were in close agreement with their observed 

values compared to the simulations by the MK-ELM and ELM models. This was demonstrated by 

the consistently lower values of the RMSE and MAE for the W-MK-ELM model. When 

comparing the model performance via the RMSE and MAE, the magnitude of metrics must be as 

small as possible to reflect small deviations of simulations from observed data. However, the MAE 

value is less sensitive to extreme values in the simulations than the RMSE value. For the best 

model the r, which is determined by a scatter plot of observed and forecasted EDI, is expected to 

be close to unity.  

Table 4.2 Performance score metrics of the W-MK-ELM, MK-ELM and ELM models 

Location Predictive 

Model 

RMSE MAE Correlation 

coefficient 

 

Sagar 

W-MK-ELM 0.621 0.334 0.871 

MK-ELM 0.639 0.352 0.856 

ELM 0.679 0.387 0.835 

 

Chattarpur 

W-MK-ELM 0.663 0.375 0.854 

MK-ELM 0.683 0.392 0.831 

ELM 0.725 0.418 0.794 

 

Interestingly, the filtering of the predictor (input) signals by DWT produced a general increase in 

the magnitude of r and a corresponding reduction in the magnitude of RMSE and MAE for all 

models. In spite of this improvement, the performance of W-MK-ELM remained superior when 

compared with MK-ELM and ELM models.  

A time-series of the absolute value of prediction errors |PE| generated by the W-MK-ELM, MK-

ELM and the ELM models in the test period (Jan 2000–December 2002) is shown in Fig. 4.5. 

Although mean prediction errors for each month varied significantly, there was a general 

agreement on overall harmonic variations when compared on a month-by-month basis. 

Nonetheless, the fluctuations in magnitude of |PE| were generally larger for MK-ELM and ELM 

models compared to the W-MK-ELM model for all three stations.  
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A closer examination of the mean forecasted error in different error brackets is exhibited in Table 

4.3, where the frequency distribution of the forecast error in various error brackets was analysed 

using data from all stations for W-MK-ELM compared to the MK-ELM and ELM models.  

Table 4.3 The % frequency of the prediction error |PE| in various error brackets for pooled 

data 

Range of prediction 

error 

W-MK-ELM MK-ELM ELM 

𝟎 ≤ 𝑷𝑬 < 𝟎. 𝟓 93 91.2 90 

𝟎. 𝟓 ≤ 𝑷𝑬 < 𝟏 7 8.0 9.3 

𝟏 ≤ 𝑷𝑬 < 𝟏. 𝟓 0 0.8 0.7 

 

It is obvious that the frequency of |PE| for the W-MK-ELM model was the highest (≈93 %) for 

the smallest range of prediction errors (i.e. 0 ≤ |𝑃𝐸| ≤ 0.5), whereas that for the MK-ELM model 

was ≈ 91.2 % and the ELM model was ≈90 %, thus indicating that the wavelet-based MK-ELM 

model incurred smaller errors than the two counterparts. Notably, in the next upper range of 

forecasted errors (0.5 ≤ |𝑃𝐸| ≤ 1), approximately 7.0 % of the forecasted errors fell within this 

range for the W-MK-ELM model compared to 8.0 % for MK-ELM and 9.3 % for ELM models. 

Likewise, in the next upper band categorized as(1 ≤ |𝑃𝐸| ≤ 1.5), the W-MK-ELM model did not 

produce any errors whereas approximately 0.8 % and 0.7% of all forecasted errors were generated 

by the MK-ELM and ELM models respectively. The wavelet-based MK-ELM model was more 

accurate than the MK-ELM and ELM models for the forecasting of the EDI. 
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सार 

सूखा-जोखखम प्रबंधन के लिए सूखा पूर्ाानुमान मॉडि एक  व्यार्हारिक उपकिण है। सूखे मॉडि का उपयोग 

सूखा सूचकांकों (DIs) का अनुमान िगाने के लिए ककया जाता है, जो भवर्ष्य के सूखे के प्रभार्ों की 
ननगिानी औि मूलयांकन किने के लिए इसकी शुरुआत, समाप्तत, औि बाद की संपवियों जैसे कक गंभीिता, 
अर्धध औि चिम तीव्रता से सूखे की मात्रा ननधाारित किते हैं। सूखा सूचकांक सामान्य रूप से र्र्ाा औि / 
या तापमान, र्ाष्पीकिण या अन्य औसत दजे का चि पि ननभाि किता  हैं। सूखा सूचकांकों की गणना के 

लिए र्र्ाा के डटेा का व्यापक रूप से उपयोग ककया जाता है, क्योंकक िंबे समय तक र्र्ाा रिकॉडा अक्सि 

उपिब्ध होते हैं। सूखे के आकिन के लिए कई डीआई में, प्रभार्ी सूखा सूचकांक (ईडीआई) को बेहति 

तकनीक माना जाता है। EDI एक गहन सूचकांक है जो सूखे-जोखखम का वर्श्िेर्ण किने के लिए समय 

पि आधारित होने के साथ र्र्ाा के आंकडों के लिए िागू जि संचय पि वर्चाि किता है। इस अध्ययन में 
प्रभार्ी सूखा सूचकांक के पूर्ाानुमान के लिए मलटीपि कनेि एक्सट्रीम िननिंग मशीन (MK-ELM) औि 

र्ेर्िेट आधारित MK-ELM एलगोरिदम प्रस्तावर्त ककए गए हैं। एमके-ईएिएम आधारित तिंधगका के 

वर्कास के लिए, इनपुट डटेा को पहिे तिंधगका पूर्ा प्रसंस्किण के माध्यम से जांचा जाता है। ऑटोकॉिेिेशन 

फंक्शन (एसीएफ) औि आंलशक एसीएफ द्र्ािा ननधाारित, चािू औि वपछिे महीनों के लिए अतंिालित 

ईडीआई संकेतों को 1 महीने के िीड-टाइम ईडीआई पूर्ाानुमान के लिए महत्र्पूणा इनपुट के रूप में उपयोग 

ककया जाता है। सूखे मॉडि वर्कास के लिए, बुंदेिखडं क्षेत्र के सागि औि छतिपुि प्जिे के डटेा के 52 र्र्ा 
(1951-2002) का उपयोग ककया गया है। असतत र्ेर्िेट ट्रांसफॉमेशन (डीडब्लयूटी) भवर्ष्यर्क्ता डटेासेट 

पि अपन ेसमय-आर्वृि घटकों में इनपुट वर्घटटत किने के लिए िागू होता है जो आर्धधकताओं पि 

महत्र्पूणा जानकािी कैतचि किते हैं। डब्लयूडी-एमके-ईएिएम मॉडि के लिए इनपुट के रूप में नई ईडीआई 

उप-श्ृंखिा वर्कलसत किने के लिए डीडब्लयूटी उप-श्ृंखिा का उपयोग ककया गया  है। एमके-ईएिएम एर् ं 

डब्लय-ूएमके-ईएिएम की पूर्ाानुमान क्षमता को ईएिएम, कृत्रत्रम तंत्रत्रका नेटर्का  (एएनएन), LSSVR 

स े तुिना ककया गया है।  सांप्ययकीय मेटट्रक्स जैसे आि स्कर्ेि, RMSE एर् ं MAPE का प्रयोग  

पूर्ाानुमाननत औि देखे गए ईडीआई के बीच संबंध के लिए ककया गया है।  परिणाम सूखे मॉडि के उन्नत 

पूर्ाानुमान कौशि को प्रदलशात किते हैं जो भवर्ष्यर्क्ता डटेासेट के र्ेर्िेट प्री-प्रोसेलसगं का उपयोग किते 
हैं। सांप्ययकीय माप डडंो  के आधाि पि, डब्लयू-एमके-ईएिएम ने पािंपरिक ईएिएम, एिएसएसर्ीआि, 
एएनएन मॉडि की तुिना में बेहति प्रदशान ककया है। इस अध्यन के परिणाम से पता चिता है कक एमके-
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ईएिएम औि र्ेिेट आधारित डब्लयू-एमके-ईएिएम मॉडि कक वर्रे्शता तथा  सूखे पूर्ाानुमान मॉडि के 

प्रदशान को बेहति बनाने के लिए इनपुट डेटा के तिंग परिर्तान के िाभों को प्रदलशात किता हैं। 

 

 

 

 

Abstract 

Drought forecasting models are practical tools for drought-risk management. Drought models are 

used to forecast drought indices (DIs) that quantify drought by its onset, termination, and 

subsequent properties such as the severity, duration, and peak intensity in order to monitor and 

evaluate the impacts of future drought. Drought indices are normally continuous functions of 

precipitation and/or temperature, evapotranspiration or other measurable variable. Precipitation 

data are widely used to calculate drought indices, because long-term precipitation records are often 

available. Out of several DIs for drought assessment, Effective Drought Index (EDI) is considered 

as superior technique. The EDI is an intensive index that considers water accumulation with a 

weighting function applied to rainfall data with the passage of time in order to analyze the drought-

risk. In this study, multiple kernel extreme learning machine (MK-ELM) and wavelet based MK-

ELM algorithms are proposed for the forecasting of effective drought index. For the development 

of wavelet based MK-ELM, the input data are first screened through the wavelet pre-processing.   

Determined by the autocorrelation function (ACF) and partial ACFs, the lagged EDI signals for 

the current and past months are used as significant inputs for 1 month lead-time EDI forecasting. 

For drought model development, 52 years (1951-2002) of data of Sagar and Chattarpur district of 

Bundelkhand region are used. The discrete wavelet transformation (DWT) is applied to the 

predictor datasets to decompose inputs into their time–frequency components that capture 

important information on periodicities. DWT sub-series are used to develop new EDI sub-series 

as inputs for the W-MK-ELM model. The forecasting capability of MK-ELM and W-MK-ELM is 

benchmarked with ELM, artificial neural network (ANN), least squares support vector regression 

(LSSVR) models. Statistical metrics based on agreement between the forecasted and observed 
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EDI, including the coefficient of determination, root-mean square error and mean absolute error 

are used to assess the effectiveness of the models. The results demonstrate enhanced forecast skill 

of the drought models that use wavelet pre-processing of the predictor dataset. Based on statistical 

measures, W-MK-ELM outperformed traditional ELM, LSSVR, ANN models. The results 

demonstrate the usefulness of MK-ELM and wavelet based W-MK-ELM over ELM, ANN and 

LSSVR models and the benefits of wavelet transformation of input data to improve the 

performance of drought forecasting models. 
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