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A B S T R A C T

Chlorpyrifos selective magnetic molecularly imprinted polymers (MMIPs) were synthesized by precipitation
polymerization using acrylic acid as monomer and ethylene glycol dimethacrylate as cross linker. Properties of
prepared polymers were determined using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron
Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM)
techniques. The imprinted polymers showed much higher adsorption capacity towards the analyte
(Kd= 12,059.5mL g−1) than the magnetic non-imprinted polymers (MNIPs) (Kd= 962.2mL g−1). Adsorption
data fitted well into linearized Freundlich equation (R2= 0.981) and followed pseudo-second-order kinetic
model (R2= 0.999). Scatchard plot analysis revealed heterogeneous binding sites on MMIPs while it was
homogenous on MNIPs. Polymers were highly selective in extracting chlorpyrifos even in the presence of its
structural analogue quinalphos (α=16.2) and triazophos (α=15.6). Imprinted polymer after regeneration was
successfully used three times for rebinding the template without any apparent loss in adsorption capacity. Using
prepared polymers, about 86.23–92.04% and 89.42–102.36% of the chlorpyrifos were successfully recovered
from fortified market samples of honey and brinjal with relative standard deviation of 1.70–3.93% and
0.17–5.50%, respectively.

1. Introduction

Chlorpyrifos is a broad-spectrum organophosphate insecticide,
acaricide and nematicide having non- systemic activity. The molecule
was introduced by Dow Chemical Company in the year 1965. As per
IRAC (Insecticide Resistance Action Committee) MoA (Mode of Action)
classification, chlorpyrifos belongs to Group 1B insecticide acting as a
nerve poison by inhibiting acetylcholinesterase. It is one of the most
commonly used pesticides throughout the world for controlling agri-
cultural as well as non-agricultural pests. In India, it is registered as
10% G, 20% EC, 1.5% DP and 50% EC formulations for controlling
pests of paddy, gram, beans, sugarcane, cotton, citrus, brinjal and
cabbage, etc. It is also used for controlling termite attack in wood as pre
and post construction treatments. As per World Health Organization,
chlorpyrifos is reported to be moderately toxic to humans and causes
autoimmune disorders in fetus or in children and harm the mental
health of generations. It was found to be toxic to shrimps, fish [1] and
reportedly alter the physiological behavior and motor function of honey
bees [2,3]. As per the studies conducted by researchers in USA, Europe,

Brazil and India, around 15% of hive pollen samples and about 20% of
honey samples were found to be contaminated with chlorpyrifos re-
sidues [4]. In India, chlorpyrifos contamination has been reported in
water [5], breast milk [6], tea [7] and fish [8]. Recent studies have
revealed that the derivatives of organophosphate pesticides, especially
chlorpyrifos, are 100 times more toxic than the parent compounds [9].
On an average, chlorpyrifos toxicity results in around 10,000 human
deaths every year [10].

Considering the modern age problems of growing population, pol-
lution and toxic load of pesticides in the environment, one must rely on
the recommended use of pesticide in order to achieve self-sufficiency
with respect to healthy food, fodder and good health for the present as
well as the future generations. Development of analytical approaches
allowing the detection of specific analytes with high selectivity and
sensitivity constitutes a challenging task and often requires efficient
sample pre-treatment techniques due to wide variety of complex sample
matrices. Researchers have developed a number of methodologies like
microwave-assisted solvent extraction [11], liquid-liquid extraction
[12], supercritical fluid extraction [13], modified QuEChERS [14], etc.
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for sample processing in order to achieve high sample throughput.
Though these methods are able to extract pesticides with lesser amount
of solvent and bench space, they lack selectivity and, along with the
desired moiety, some interfering pesticides or other co-extractives in-
variably come in the final analysis extract. This necessitates the de-
velopment of improved sample preparation techniques capable of
cleaning up and enriching the samples for trace level analysis. Mole-
cular imprinting technology is currently being explored to develop
polymers with highly specific recognition sites for the analyte of in-
terest. The molecularly imprinted polymers (MIPs) are found to be as
effective as natural receptors like enzymes or antibodies [15–17].
Magnetic MIPs possess additional advantage of easy separation from
matrix solution by using external magnets. Researchers have used MIPs
in the fields of chromatographic separations [18], biomimectic che-
mical sensors [19–22], process scale purifications [23,24], drug de-
livery [25,26], solid phase extraction [27–30] and catalysis [31–33].

Scientists worldwide are exploring different surface modification
and precipitation methods to enhance selectivity of the MIPs. In recent
past, Peng et al., have synthesized photonic-magnetic responsive mo-
lecularly imprinted microspheres (PM-MIMs) by seed polymerization
and applied to the extraction of 17 β- estradiol from spiked milk powder
and drinking water samples. They have reported the recoveries in the
range of 97.5–113.0% with< 4.4% relative standard deviations [34].
MMIPs for diazinon were prepared by one-step surface imprinting
technique using precipitation polymerization method and efficiently
used for extraction of diazinon from spiked tomato, cucumber, apple,
and water samples [35]. Bisphenol A selective water-compatible tem-
perature and magnetic dual-responsive MIPs (WC-TMMIPs) were pre-
pared via reversible addition-fragmentation chain transfer precipitation
polymerization and employed as adsorbents for magnetic solid-phase
extraction (MSPE) with>85% recovery from seawater samples [36].
Magnetic molecularly imprinted polymer (MMIP) on mesoporous silica
(mSiO2)-coated Fe3O4 nanoparticles was synthesized using surface-im-
printing technology for selective adsorption of atrazine. The recoveries
of atrazine from spiked river water, lake water, and well water sample
using prepared polymer were 87.4, 92.9, and 101.7%, respectively
[37]. A multi-templates molecularly imprinted polymer for the rapid
and selective detection of alkyl phenol compounds including bisphenol
A, 4-tert-octylphenol and 4-nonylphenol has been successfully synthe-
sized via surface imprinting technology [38].

In the present work, a highly selective and specific magnetic mo-
lecularly imprinted polymer (MMIP) for chlorpyrifos has been synthe-
sized by precipitation polymerization. The polymeric materials were
characterized by FTIR, SEM, TEM, VSM, etc. to know the bond inter-
action, surface morphology, size and magnetic properties of the MMIPs.
Adsorption capacity, kinetics of adsorption and binding selectivity
studies were conducted to know its effectiveness after repeated uses.

Chlorpyrifos analysis was performed using GLC-ECD (Gas Liquid
Chromatography-Electron Capture Detector). Applicability of prepared
MMIPs in selective extraction of chlorpyrifos was demonstrated in
market samples of honey and brinjal.

2. Experimental

2.1. Reagents and chemicals

Analytical grade chlorpyrifos, quinalphos and triazophos were ob-
tained from Sigma-Aldrich, Germany. Chlorpyrifos (Tech.) used for
preparation of imprinted polymer was supplied by Insecticide India
Limited. Acrylic acid, ethylene glycol dimethacrylate (EGDMA) and
azobisisobutyronitrile (AIBN) were procured from Sigma-Aldrich, USA.
Oleic acid and polyvinylpyrrrolidone (PVP) were purchased from
Thomas Baker (Chemicals) Pvt. Ltd., Mumbai, India. Fe3O4 nanopowder
(99.5 ± 5%, 80 nm) and Buffer capsules of pH 4.0, 7.0 and 9.2 were
obtained from Nanoshel and Fisher chemicals USA, respectively.
Solvents like acetone, dichloromethane (DCM), methanol, hexane etc.
were procured from Merck Life Science Private Limited, India. Water
with a resistivity of 18.2 MΩ.cm was taken from Milli-Q water system
(Millipore, Billerica, MA, USA).

Stock solutions (1000 μgmL−1) of chlorpyrifos, quinalphos and
triazophos were prepared in 100mL volumetric flask separately by
dissolving 100mg of each pesticide in acetone and making the volume
up to the mark. Working solutions of lower concentrations for analysis
were obtained by diluting in hexane. All the samples and standard so-
lutions were stored in refrigerator at 4 °C until used.

2.2. GLC-ECD/TSD analysis

Analysis of chlorpyrifos, quinalphos and triazophos was done using
Varian CP-3800 GC. The instrument was equipped with CP-Sil 5 CB
(15m×0.53mm) column, electron capture detector (ECD) and ther-
mionic specific detector (TSD) (bead current, 3.100 A). Carrier gas was
N2 (IOLAR I grade) having the flow rate of 2mLmin−1 through column.
Sample analysis was done with GLC-ECD except for selectivity studies
where GLC-TSD (Thermionic Specific Detector) was used because of the
poor response of triazophos in ECD. While operating with ECD, column
oven temperature was programmed as 190 °C for 1min, temperature
increased @ 10 °C/min to 240 °C held for 1min, temperature increased
@ 30 °C to 280 °C, held for 10min with a retention time of 4.88min for
chlorpyrifos (Fig. 1A).The detector and injector port temperatures were
maintained at 300 °C and 280 °C, respectively. Samples were injected in
split mode (1:20) with an injection volume of 2 μL. During GLC-TSD
analysis, column oven temperature was programmed at 160 °C for
1min, temperature increased @ 20 °C/min to 280 °C and maintained for

Fig. 1. (A) GLC-ECD chromatogram of chlorpyrifos (B) GLC-TSD chromatogram of chlorpyrifos, quinalphos and triazophos.
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5min. Retention time for chlorpyrifos, quinalphos and triazophos with
the above programming were 5.30, 5.73 and 6.73min, respectively
(Fig. 1B).

2.3. MMIPs/MNIPs preparation

Polymers were prepared by precipitation polymerization in 100mL
ethanol:water (80:20) using acrylic acid (4.0mmol, 288.2mg) as
monomer, EGDMA (20mmol, 3.9 g) as cross-linker, AIBN (50mg) as
initiator and chlorpyrifos (1.0mmol, 350.6mg) as a template molecule.
Preassembly solution was prepared by dissolving chlorpyrifos and ac-
rylic acid in 10mL methanol in a round bottom (RB) flask followed by
30min of stirring. In a separate three mouth RB flask, magnetic Fe3O4

nanoparticles (1 g) were thoroughly dispersed in 1mL of oleic acid for
10min followed by addition of preassembly solution and EGDMA. The
contents were ultrasonicated for 30min to obtain pre-polymerization
solution. Polyvinylpyrrrolidone (PVP, 0.4 g) and AIBN dispersed in
100mL of ethanol:water (80:20) was added to the pre-polymerization
solution. The solution was continuously stirred and purged with ni-
trogen gas for 15min. Reaction temperature was slowly increased to
60 °C and kept constant for 24 h. After polymerization, the magnetic
molecularly imprinted polymer precipitate was filtered through
Buchner funnel and washed thoroughly with water and methanol.
Finally the material was washed with methanol: acetic acid (8:2) in
Soxhlet till no chlorpyrifos was detected in the washing. MMIPs were
dried under vacuum at 60 °C and stored at ambient temperature in glass
bottle. MNIPs were prepared and processed in similar way without
addition of the template molecule.

2.4. Polymeric material characterization

Synthesized MMIPs/MNIPs were characterized by FTIR, SEM,TEM
and VSM to know the bonding interaction of monomers, crosslinker,
template molecule and magnetic particles, their surface morphology
and magnetic properties. FTIR was recorded on Bruker (Alpha) instru-
ment in the range of 4000–400 cm−1 using polymer:KBr (1:100, w/w)
pellets. Surface morphology of the polymers was imaged by CarlZeiss-
Evo-MA-10 scanning electron microscope (SEM) at 20 KV/EHT and
10 Pa by coating the polymers with gold and palladium followed by
imaging under high vacuum. Polymers size and voids were measured by
transmission electron microscopy (TEM, JEOL 100CX-11). Polymer
suspension in 1% ethanol was mounted on the grid by staining with 2%
uranyl acetate and images were taken after drying the grid. Magnetic
properties of the polymer were assessed by vibrating sample magnet-
ometer (VSM) at room temperature using VSM Lake Shore 7410 system
at a magnetization of 2.0 T.

2.5. Binding studies

To optimize the amount of polymeric material that can absorb
maximum amount of chlorpyrifos, different amounts of polymers viz. 5,
10, 20, 50 and 100mg were dispersed in chlorpyrifos solution (3mL of
50 μgmL−1) prepared in MeOH:Water (1:1) and the tubes were shaken
on a horizontal shaker. After 2 h, tubes were centrifuged at 3500 rpm
for 5min. Supernatant (1mL) was drawn and partitioned with DCM
(3×20mL). Residues were reconstituted in hexane for analysis by GC-
ECD.

Time required for maximum binding of chlorpyrifos on MMIPs was

Fig. 2. Schematic representation of synthesis and utility of MMIPs in selective extraction of chlorpyrifos from honey and brinjal.
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evaluated by conducting the adsorption kinetics experiment. Optimized
amount of polymers in the above experiment (20mg) were dispersed in
3mL of 50 μgmL−1 chlorpyrifos solutions in test tube and kept on a
horizontal shaker. Sample was drawn periodically to determine the

equilibration time.
Binding isotherm was obtained by conducting the sorption experi-

ment with different concentrations viz. 1, 5, 10, 20, 50 and
100 μgmL−1 of the chlorpyrifos solution (3mL). Polymers (20mg)
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were added and test tubes were kept on a horizontal shaker. After
equilibrium was achieved, the supernatants were drawn and processed.

Binding selectivity of the polymers was evaluated by conducting the
sorption experiment in the presence of chlorpyrifos structural analogue
quinalphos and triazophos. 20mg of polymers were taken in test tube
and 3mL of 50 μgmL−1 mixture solution of chlorpyrifos, quinalphos
and triazophos was added to each test tube. Supernatants were pro-
cessed after 2 h of shaking and analyzed by GC-TSD.

Effect of solution pH on binding of the polymers was studied by
dispersing 20mg of sorbent in 3mL of 50 μgmL−1 chlorpyrifos solution
prepared in different pH buffers (4.0, 7.0 and 9.2). Test tubes were
shaken for 2 h on horizontal shaker and then supernatants were pro-
cessed and analyzed by GC.

All experiments were conducted in triplicate. The amount sorbed on
the polymeric material was obtained by subtracting the amount ana-
lyzed by GC in supernatant from the total amount added in the test
tube.

2.6. Regeneration of MMIPs/MNIPs

To dislodge chlorpyrifos bound on the MMIPs (as per section 2.5,
20mg MMIPs in 3mL of 50 μgmL−1), following three methods were
tried:

Method-1: Soxhlet extraction using methanol: acetic acid (8:2) as
solvent for 12 h. Washings were evaporated, partitioned with DCM
and reconstituted in hexane for analysis by GC.
Method-2: Dipping in 5mL of acetone: acetic acid (8:2, v/v) fol-
lowed by ultrasonication for 1min. MMIPs were collected by using
an external magnet. Again the washed MMIPs were dispersed in
5mL of acetone: acetic acid (8:2, v/v) followed by ultrasonication
for 1min and polymers were separated using external magnet.
MMIPs were washed one more time. Combined supernatants ob-
tained from the three washings were evaporated, processed and
reconstituted in hexane for analysis by GC.

Method-3: In this method, washing was done as per Method-2 but
the solvent system used was methanol: acetic acid (8:2, v/v) instead
of acetone: acetic acid (8:2, v/v).

Considering the ease and efficiency of extraction, Method-3 was
selected for further use in the study for regeneration of MMIPs.

2.7. Reusability of the MMIPs

MMIPs (20mg) were dispersed in 3mL of 50 μgmL−1 chlorpyrifos
solution and shaken for 2 h on horizontal shaker. MMIPs were extracted
from the solution using an external magnet. Bound chlorpyrifos on
MMIPs was washed out using Method-3 (as described in Section 2.6)
and the polymers were dried. The regenerated MMIPs were again dis-
persed in 3mL of 50 μgmL−1 chlorpyrifos solution and subjected to
sorption. After 2 h, MMIPs were recovered and washed again as per
Method-3. This adsorption desorption cycle was done two more times.
The washing obtained from the first use and the three successive reuses
were processed separately and analyzed by GC.

2.8. Method validation

Chlorpyrifos standard solution of different concentrations were in-
jected into GLC-ECD under earlier optimized instrumental conditions
and a calibration curve for chlorpyrifos was generated by plotting the
concentration of the analyte versus peak area obtained in ECD detector.
For recovery studies untreated control samples of brinjal were procured
from the farm unit of Division of Vegetable Science, ICAR-IARI, New
Delhi and honey samples were obtained from Project Coordinator, All
India Coordinated Research Project on Honey bees and Pollinators,
ICAR-IARI, New Delhi, India.

Honey sample (2 g) was fortified at 5 μg g−1 level using 50 μgmL−1

chlorpyrifos solution. Viscous sample was diluted to 10mL using dis-
tilled water and mixed with MMIPs (50mg) and anhydrous MgSO4

(150mg). The test tubes were shaken for 15min. Magnetic polymers
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from the solution were separated using an external magnet and washed
as per earlier optimized Method-3 to extract bound chlorpyrifos on the
MMIPs. Remaining solution in the test tube was partitioned with di-
chloromethane to extract unbound chlorpyrifos. Samples were analyzed
on GC-ECD to determine actual sorption percentage of chlorpyrifos on
the MMIPs from fortified honey sample.

In case of brinjal, 10 g of homogenized sample was taken in a test
tube and fortified to the level of 5 μg g−1 by addition of 1mL of
50 μgmL−1 chlorpyrifos solution in the test tube. Then 1 g of NaCl, 4 g
of MgSO4 and 10mL of ethyl acetate was added in tube followed by
vortexing for 2min. After vortexing thoroughly, tube was centrifuged
for 5min at 3500 rpm and the upper layer of ethyl acetate (2mL) was
pipetted out in microcentrifuge tube. MMIPs (50mg) and MgSO4

(150mg) were added to the tube, followed by vortexing for 2min.
MMIPs were separated from the tube using an external magnet. The
bound chlorpyrifos on the MMIPs were washed out as per Method-3.
The chlorpyrifos remaining in the solution was extracted with di-
chloromethane. Final residues were dissolved in hexane and analyzed
to know the actual sorption percentage of chlorpyrifos on MMIPs from

the fortified brinjal sample.

3. Results and discussion

3.1. Synthesis and characterization of MMIPs

Imprinted polymers for chlorpyrifos were synthesized by pre-
cipitation polymerization via non-covalent imprinting method.
Schematic representation of the synthesis process has been shown in
Fig. 2. Polymerization took place under nitrogen purging at 60 °C for
24 h. Non-covalent imprinting approach enables easy removal of tem-
plate from the polymeric cavity due to weak interactions like hydrogen
bonding between acrylic acid monomer and the chlorpyrifos.

Fig. 3A (i-iii) shows the FTIR spectra of imprinted and non im-
printed polymers. Characteristic peaks at ~1730 cm−1, 1150 cm−1,
2960 cm−1 and 1450 cm−1 were attributed to carbonyl stretching, CeO
stretching, CeH stretching and CeH bending vibrations suggesting in-
corporation of cross-linker in the polymeric matrix. A characteristic
peak of FeeO appeared at 526 cm−1 indicates inclusion of magnetic
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particles in the matrix. Broad peak around 3600–3400 cm−1 may be
assigned to –OH stretching vibration in acrylic acid. Due to same che-
mical composition there was no significant difference observed in the
FT-IR spectra of non-imprinted polymers and imprinted polymer (after
washing). FT-IR spectra of imprinted polymers (before washing) shows
reduced intensity peaks. Reduction in the intensity of –OH stretching
vibration at3600–3400 cm−1 could be due to the disruption in the
hydrogen bonding among acrylic acid molecules due to interaction of
chlorpyrifos with the monomer [39,40]. SEM images of MMIPs suggest
spherical, porous and rough surfaces of polymeric particles as compared
to the flat, compact and smooth surfaces of MNIPs (Fig. 3B). These
porous surfaces of the MMIPs with specific cavity enable high binding
affinity for chlorpyrifos than for the MNIPs. TEM images of MMIPs
appear more irregular due to presence of the imprint as compared to the
smoother, uniform appearance of MNIPs spheres (Fig. 3C). Dark spots
in the images are due to incorporation of magnetic nanoparticles in
polymeric matrix.

For determining magnetic properties of polymeric materials, mag-
netic saturation hysteresis curves were obtained for MMIPs and Fe3O4

using vibrating sample magnetometer (VSM) (Fig. 3D). Magnetic hys-
teresis loops of MMIPs and Fe3O4 were found to be symmetrical about
the origin. The MMIPs responded well to the external magnetic field.
The saturation magnetization of Fe3O4 and MMIPs were 78.0 emu g−1

and 18.2 emu g−1, respectively. Reduction in magnetization of MMIPs
as compared to Fe3O4 magnetite indicates the formation of polymeric
layer on the magnetite [41].

3.2. Adsorption isotherms

Adsorption capacities of MMIPs/MNIPs were evaluated in different
concentrations of chlorpyrifos solution by conducting static adsorption
experiment (Fig. 4A). It can be interpreted that the amount of chlor-
pyrifos adsorbed on MMIPs and MNIPs goes on increasing as the con-
centration increases. The amount of sorption is much higher in case of
MMIPs than that of MNIPs, thus showing the presence of chlorpyrifos
imprints or cavities on MMIPs. The binding properties of MMIPs were
determined by Scatchard plot analysis (Fig. 4B) which is based on the
following equation:

=C /C (C C )/K .s e max s dc

where Ce is the equilibrium concentration of chlorpyrifos in the
solution, Cs is the amount of chlorpyrifos bound to the MMIPs at
equilibrium, Cmax is the apparent maximum binding amount and Kdc is
the dissociation constant. It can be seen that MMIPs show two types of
adsorption curves. The left part of the curve suggests higher binding
affinity in the concentration range 1–10 μgmL−1. The Kdc and Cmax

calculated from the intercept and slope of the regression equation Cs/
Ce=−6.2757×+28,694 were found to be 0.159 μgmL−1 and
4562.3 μg g−1 of dry polymer, respectively. The right part of the curve
shows lower binding affinity in the concentration range of
10–100 μgmL−1 with Kdc and Cmax values of 4.43 μgmL−1 and
60,000.6 μg g−1 of dry polymer calculated from regression equation Cs/
Ce=−0.2256×+13,535, respectively. The two straight lines in
Scatchard plot of MMIPs are indicative of the presence of hetero-
geneous binding sites in comparison to single line curve observed for
MNIP. Zhu et al. (2002) have also reported that MMIPs prepared with
non-covalent imprinting possess heterogeneous distribution of binding
sites [42].

Pseudo first and second order kinetic models were employed to the
sorption data (Fig. 4C & D). The pseudo-second order kinetic model
gave high values of correlation coefficients (R2= 0.999) as compared
to the pseudo first order kinetics (R2= 0.539). Cs value of 6725.6
calculated from the pseudo-second order kinetic model also correlated

well with the Cs Exp value of 6714.6.The adsorption data fitted better
in Freundlich isotherm (R2=0.981) as compared to Langmuir isotherm
(R2= 0.738). Adsorption of chlorpyrifos on MMIP was favorable with
intensity factor ‘n’= 1.23.

3.3. MMIPs amount

Sorption experiment with varying amounts of polymer was con-
ducted to evaluate optimum binding of chlorpyrifos on MMIPs. From
Fig. 5A, it can be illustrated that sorption increases with the increase in
polymer amount. A sorption maximum was reached with 20mg of
MMIPs. Further increase in the polymer amount did not lead to any
appreciable increase in sorption. Although, MNIPs also showed in-
creased sorption with increasing polymer amount, the extent of sorp-
tion was much lower as compared to MMIPs.

3.4. Sorption equilibrium time

Time required for maximum adsorption of chlorpyrifos on MMIPs
was determined by conducting the static binding experiment for dif-
ferent durations of sorption. Fig. 5B shows that most of the added
chlorpyrifos was adsorbed within 30min. Fast attainment of sorption
equilibrium could be due to the large number of chlorpyrifos imprinted
sorption sites on the MMIPs.

3.5. pH sensitive adsorption on MMIPs

Sorption experiments were conducted to estimate the effectiveness
of MMIPs in extracting chlorpyrifos from different pH solutions. From
Fig. 5C, it can be seen that the solution pH has almost no effect on the
sorption efficiency of MMIPs/MNIPs. At pH 4.0, 7.0 and 9.2, the MMIPs
showed the sorption percentage of 93.46, 90.49 and 93.15 respectively.
Other researchers have also concluded that binding ability of MIPs re-
main unaffected in acidic or basic solution thus making it a superior
recognition element [43,44].

3.6. Binding specificity

Competitive binding of chlorpyrifos on the MMIPs/MNIPs were
evaluated by conducting the sorption experiment in the presence of its
structural analogue quinalphos and triazophos (Fig. 5D). It was found
that the synthesized MMIPs were highly selective and specific in ex-
tracting chlorpyrifos. The static distribution coefficient (Kd=Cs/Ce),
separation factor (α=Kd chlorpyrifos/Kd analogue) and relative separation
factor (β=α1/α2) presented in Table 1 were calculated as per our
previous publication [45].

High value of static distribution coefficient (12,059.5 mL g−1) ob-
served for chlorpyrifos reflects high adsorption capacity of imprinted
polymer for chlorpyrifos as compared to quinalphos (744.0mL g−1)
and triazophos (770.8mL g−1). High separation factor values of MMIPs
(16.2 and 15.6) compared to MNIPs (5.8 and 6.1) are indicative of very
high selectivity of MMIPs towards chlorpyrifos in comparison to its

Table 1
Selectivity parameters of MMIPs and MNIPs of chlorpyrifos.

MMIP MNIP

Compounds Kd1 (mL g−1) α1 Kd2 (mL g−1) α2 β

Chlorpyrifos 12,059.5 – 962.2 – –
Quinalphos 744.0 16.2 165.3 5.8 2.8
Triazophos 770.8 15.6 156.7 6.1 2.5
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structurally similar analogues quinalphos and triazophos. Relative se-
paration factor values further showed the presence of chlorpyrifos se-
lective imprints in MMIPs.

3.7. Washing method optimization

Bound chlorpyrifos on imprinted polymer was dislodged using three
methods (Fig. 5E). Soxhlet extraction with methanol: acetic acid (8:2,
v/v) for 12 h (Method-1) gave the maximum removal percentage
(93.8%) followed by sonication with methanol: acetic acid (8:2, v/v)
(89.0%) (Method-3) while the least removal was achieved by sonication
with acetone: acetic acid (8:2, v/v) (80.9%) (Method-2). Since Soxhlet
extraction was time consuming as compared to the other methods,
Method-3, i.e. sonication with methanol: acetic acid (8:2, v/v) was
selected for template removal. It took 10–15min to extract chlorpyrifos
from the cavities of MMIPs and the removal percentage was at par with
the Soxhlet extraction.

3.8. Reusability of MMIPs

Sorption efficiency of MMIPs regenerated as per section 3.7 was
tested by conducting sorption experiments three times with the inter-
mittent regeneration of MMIPs. The polymers were found effective in
removing 95.6, 92.0, 91.5 and 89.7% of the sorbed chlorpyrifos in first
use and successive reuse respectively (Fig. 5F). Results revealed that the
material can be regenerated and reused, at least three times, for re-
moving chlorpyrifos from the matrix without any appreciable loss in the
sorption efficiency. Results also suggest that the imprints or the sorp-
tion cavities on the MMIPs are mechanically strong and are not dis-
turbed by acid washing and ultra-sonication.

3.9. Method validation

The calibration curve of chlorpyrifos was found to be linear from
0.01 to 5 μgmL−1 with R2 value of 0.967 and instrument detection
limit of 0.01 μgmL−1. Recovery results revealed that MMIPs were able

to extract 87.9% and 90.0% of added chlorpyrifos from fortified honey
and brinjal samples with relative standard deviation of 5.35% and
6.0%, respectively. GLC chromatograms of the MMIPs washing and the
honey and brinjal extract after MMIP treatment are presented in Fig. 6A
and B. A small peak of chlorpyrifos in the honey and brinjal extract is
due to unbound residual chlorpyrifos in the extract (Fig. 6C).

The results of chlorpyrifos analysis using synthesized MMIPs were
also compared with the findings of recently published literature
(Table 2). It can be seen that the analysis of chlorpyrifos using different
detection techniques in tomato [46], honey [47,48], sweet corn, soil
[49], water [50], coffee extract [51], Chinese cabbage and tomato [52]
gives sensitivity and precision comparable with our results. The se-
paration factor values of the prepared MMIPs are much higher than that
reported by Chen et al., 2017 [52] indicating formation of better im-
prints for chlorpyrifos on MMIPs. Comparison of our results with the
earlier reported results show that the synthesized MMIPs possess very
high selectivity and enrichment ability in extracting chlorpyrifos from
complex environmental matrices.

3.10. Applicability in real samples

Optimized methodology was used to check the applicability of the
method for extraction of chlorpyrifos from market samples of honey
and brinjal collected from three different locations of Delhi. As market
samples of honey and brinjal were found to contain very less residues
(< 0.05 μg g−1), they were fortified at 5 μg g−1 level and processed as
per earlier optimized method. Recovery results are presented in
Table 3. Recovery of chlorpyrifos from the fortified market samples of
honey and brinjal samples were found to be 86.23–92.04% (RSD
1.70–3.93%) and 89.42–102.36% (RSD 0.17–5.50%), respectively,
which further validate the method accuracy.

In this work, we are able to get highly selective MMIPs as adsorbent
with additional advantage of separation using an external magnet.
Extraction of chlorpyrifos from food matrices hardly took 15min with
no need of further cleanup for analysis.
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4. Conclusions

A simple and rapid method has been developed to extract chlor-
pyrifos from honey and brinjal using magnetic molecularly imprinted
polymers. The prepared polymers showed the features of high sorption
capacity, faster attainment of sorption equilibrium, easy separation and
specific removal of chlorpyrifos from honey and brinjal. Use of the
synthesized MMIPs can be extended for extracting chlorpyrifos from
other complex environmental and food matrices.
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Table 3
Applicability of MMIPs in market samples of honey and brinjal.

Sample Found
(μg g−1)

Spiked
(μg g−1)

Recovered
(μg g−1)

Recovery % RSD %

Honey
Brand 1 0.040 5.00 4.38 86.85 3.93
Brand 2 0.046 5.00 4.64 92.04 3.68
Brand 3 0.048 5.00 4.35 86.23 1.70

Brinjal
Market 1 0.036 5.00 4.50 89.42 0.17
Market 2 0.025 5.00 5.14 102.36 1.26
Market 3 0.047 5.00 4.79 94.97 5.50
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