

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

BABULGAON-1 (4E6E2D2d) MICROWATERSHED

Humnabad Taluk, Bidar District, Karnataka

Karnataka Watershed Development Project – II **SUJALA – III**

World Bank funded Project

ICAR - NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation:

Rajendra Hegde, Ramesh kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Babulgaon-1 (4E6E2D2d) Microwatershed, Humnabad Taluk, Bidar District, Karnataka", ICAR-NBSS&LUP Sujala MWS Publ.68, ICAR – NBSS & LUP, RC, Bangalore. p.89 & 30.

TO OBTAIN COPIES,

Please write to:

Director, ICAR - NBSS & LUP,

Amaravati Road, NAGPUR - 440 033, India

Phone : (0712) 2500386, 2500664, 2500545 (O)

Telefax : 0712-2522534

E-Mail : director@nbsslup.ernet.in

Website URL : nbsslup.in

Or

Head, Regional Centre, ICAR - NBSS&LUP, Hebbal, Bangalore - 560 024

Phone : (080) 23412242, 23510350 (O)

Telefax : 080-23510350

E-Mail : nbssrcb@gmail.com

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

BABULGAON-1 (4E6E2D2d) MICROWATERSHED

Humnabad Taluk, Bidar District, Karnataka

Karnataka Watershed Development Project – II Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. The challenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of

the land resources, their constraints, inherent potentials and suitability for various land based rural enterprises, crops and other uses is a prerequisite for preparing location-specific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component -1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Babulgaon-1 Microwatershed, Humnabad Taluk, Bidar District, Karnataka" for integrated development was taken up in collaboration with theState Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plotsand socio-economic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micowatershed. The project report with the accompanying maps for the microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricutural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner.

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur S.K. SINGH

Date: 29.12.2018 Director, ICAR - NBSS&LUP, Nagpur

Contributors

Dr. RajendraHegde	Dr. S.K.Singh		
Principal Scientist, Head &	Director, ICAR-NBSS&LUP		
Project Leader, Sujala-III Project	Coordinator, Sujala-III Project		
ICAR-NBSS&LUP, Regional Centre Nagpur			
Bangalore			
Soil Survey, Mapping & Report Preparation			
Dr. B.A. Dhanorkar	Sh. R.S. Reddy		
Dr. K.V. Niranjana	Smt. Chaitra, S.P.		
	Sh. Nagendra, B.R.		
	Sh. Somashekar T.N		
	Dr. Gayathri B.		
	Dr. Savitha H.R		
	Dr. Gopali bardhan		
Field Work			
Sh. C.BacheGowda	Sh. Mahesh, D.B.		
Sh. Somashekar	Sh. Arun Kumar, M.C.		
Sh. VenkataGiriyappa	Sh. Santosh		
Sh. M. Jayaramaiah			
Sh. Paramesha, K.			
GIS Work			
Dr. S.Srinivas	Sh. A.G.Devendra Prasad		
Sh. D.H.Venkatesh	Sh. Prakashanaik, M.K.		
Smt. K.Sujatha	Sh. AbhijithSastry, N.S.		
Smt. K.V.Archana	Sh. Sudip Kumar Suklabaidya		
Sh. N. Maddileti	Sh. Mahamad Ali, M.		
Dr. S.Srinivas	Sh. Avinash, K.N.		
	Sh. Amar Suputhra, S		
	Sh. Anudeep, Y.		
	Sh. Deepak, M.J.		
	Smt. K.Karunya Lakshmi		
	Ms. Seema, K.V.		
	Ms. A. Rajab Nisha		

Laboratory Analysis				
Dr. Lalitha, M	Ms. Thara, V.R			
Smt. ArtiKoyal	Ms. Roopa, G.			
Smt. Parvathy, S.	Ms. Swati, H.			
	Sh. Shantaveera Swami			
	Ms. Shwetha, N.K.			
	Smt. Ishrat Haji			
	Ms. P. PavanKumari			
	Ms. Padmaja			
	Ms. Veena, M.			
	Conservation			
Sh. Sunil P. Maske				
Socio-Econo	omic Analysis			
Dr. S.C. Ramesh Kumar	Sh. M. K. Prakashanaik			
	Ms. Sowmya K.B			
	Sh.Manjunath M			
Sh.Veerabhadraswamy R				
	Sh.Lankesh RS			
	Sh.Kalaveerachari R Kammar			
Sh.Pradyumma U				
	Sh.Yogesha HN			
	Sh.Vijay kumar lamani			
	Sh.Arun N Kambar			
	Sh.Vinay			
	Sh.Basavaraj.Biradar			
	Sh.Vinod R			
Sh.Praveenkumar P Achalkar				
	Sh.Rajendra D			
Watershed Development D	epartment, GoK, Bangalore			
Sh. Rajeev Ranjan IFS	Dr. A. Natarajan			
Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project			
Dr. S.D. Pathak IFS				
Executive Director & Chief Conservator of F	Forests, WDD			

PART-A LAND RESOURCE INVENTORY

Contents

Preface		
Contributor	rs	
Executive S	Summary	
Chapter 1	Introduction	1
Chapter 2	Geographical Setting	3
2.1	Location and Extent	3
2.2	Geology	3
2.3	Physiography	4
2.4	Drainage	4
2.5	Climate	4
2.6	Natural Vegetation	6
2.7	Land Utilization	6
Chapter 3	Survey Methodology	11
3.1	Base maps	11
3.2	Image interpretation for physiography	11
3.3	Field Investigation	13
3.4	Soil mapping	15
3.5	Laboratory Characterization	15
Chapter 4	The Soils	21
4.1	Soils of Lateritic Landscape	21
Chapter 5	Interpretation for Land Resource Management	27
5.1	Land Capability Classification	27
5.2	Soil Depth	29
5.3	Surface Soil Texture	30
5.4	Soil Gravelliness	31
5.5	Available Water Capacity	32
5.6	Soil Slope	33
5.7	Soil Erosion	34
Chapter 6	Fertility Status	37
6.1	Soil Reaction (pH)	37
6.2	Electrical Conductivity (EC)	37
6.3	Organic Carbon (OC)	37
6.4	Available Phosphorus	39
6.5	Available Potassium	39
6.6	Available Sulphur	39
6.7	Available Boron	39
6.8	Available Iron	39
6.9	Available Manganese	39

6.10	Available Copper	39
6.11	Available Zinc	44
Chapter 7	Land Suitability for Major Crops	45
7.1	Land suitability for Sorghum	45
7.2	Land suitability for Maize	48
7.3	Land suitability for Red gram	49
7.4	Land suitability for Sunflower	50
7.5	Land suitability for Cotton	52
7.6	Land suitability for Sugarcane	53
7.7	Land suitability for Soybean	54
7.8	Land suitability for Bengalgram	55
7.9	Land suitability for Guava	57
7.10	Land suitability for Mango	58
7.11	Land suitability for Sapota	60
7.12	Land suitability for Jackfruit	62
7.13	Land suitability for Jamun	62
7.14	Land Suitability for Musambi	63
7.15	Land Suitability for Lime	64
7.16	Land Suitability for Cashew	66
7.17	Land Suitability for Custard Apple	66
7.18	Land Suitability for Amla	67
7.19	Land Suitability for Tamarind	68
7.20	Land Use Classes	69
7.21	Proposed Crop Plan	70
Chapter 8	Soil Health Management	75
Chapter 9	Soil and Water conservation Treatment Plan	81
9.1	Treatment Plan	82
9.2	Recommended Soil and Water Conservation measures	85
9.3	Greening of microwatershed	86
	References	89
	Appendix I	I
	Appendix II	V
	Appendix III	IX

LIST OF TABLES

2.1	Mean Monthly Rainfall, PET, 1/2 PET at Humnabad Taluk, Bidar District	5
2.2	Land Utilization in Humnabad Taluk	7
3.1	Differentiating Characteristics used for Identifying Soil Series	14
3.2	Soil Legend	19
7.1	Soil-Site Characteristics of Babulgaon-1 microwatershed	46
7.2	Crop suitability criteria for Sorghum	47
7.3	Crop suitability criteria for Maize	48
7.4	Crop suitability criteria for Red gram	50
7.5	Crop suitability criteria for Sunflower	51
7.6	Crop suitability criteria for Cotton	52
7.7	Crop suitability criteria for Sugarcane	54
7.8	Crop suitability criteria for Bengalgram	56
7.9	Crop suitability criteria for Guava	57
7.10	Crop suitability criteria for Mango	59
7.11	Crop suitability criteria for Sapota	61
7.12	Crop suitability criteria for Lime	65
7.13	Proposed Crop Plan for Babulgaon-1 Microwatershed	71

LIST OF FIGURES

2.1	Location map of Babulgaon-1 microwatershed	1
2.2	Laterite rock formations in Babulgaon-1 microwatershed	2
2.3	Rainfall distribution in Humnabad Taluk, Bidar District	5
2.4	Natural Vegetation in Babulgaon-1 microwatershed	6
2.5	Current Land use – Babulgaon-1 microwatershed	7
2.6 a, b	Different crops and cropping systems in Mustari south Microwatershed	8
2.7	Location of Wells- Babulgaon-1 microwatershed	9
3.1	Scanned and Digitized Cadastral map of Babulgaon-1 microwatershed	12
3.2	Satellite image of Babulgaon-1 microwatershed	12
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Babulgaon-1 microwatershed	13
3.4	Location of soil profiles in a transect	13
3.5	Soil phase or management units of Babulgaon-1 microwatershed	17
5.1	Land Capability Classification of Babulgaon-1 microwatershed	29
5.2	Soil Depth map of Babulgaon-1 microwatershed	30
5.3	Surface Soil Texture map of Babulgaon-1 microwatershed	31
5.4	Soil Gravelliness map of Babulgaon-1 microwatershed	32
5.5	Soil Available Water Capacity map of Babulgaon-1 microwatershed	33
5.6	Soil Slope map of Babulgaon-1 microwatershed	34
5.7	Soil Erosion map of Babulgaon-1 microwatershed	35
6.1	Soil Reaction (pH) map of Babulgaon-1 microwatershed	38
6.2	Electrical Conductivity (EC) map of Babulgaon-1 microwatershed	38
6.3	Soil Organic Carbon (OC) map of Babulgaon-1 microwatershed	40
6.4	Soil Available Phosphorus map of Babulgaon-1 microwatershed	40
6.5	Soil Available Potassium map of Babulgaon-1 microwatershed	41
6.6	Soil Available Sulphur map of Babulgaon-1 microwatershed	41
6.7	Soil Available Boron map of Babulgaon-1 microwatershed	42
6.8	Soil Available Iron map of Babulgaon-1 microwatershed	42
6.9	Soil Available Manganese map of Babulgaon-1 microwatershed	43

6.10	Soil Available Copper map of Babulgaon-1 microwatershed	43
6.11	Soil Available Zinc map of Babulgaon-1 microwatershed	44
7.1	Land Suitability map of Sorghum	47
7.2	Land Suitability map of Maize	49
7.3	Land Suitability map of Red gram	50
7.4	Land Suitability map of Sunflower	51
7.5	Land Suitability map of Cotton	53
7.6	Land Suitability map of Sugarcane	54
7.7	Land Suitability map of Soyabean	55
7.8	Land Suitability map of Bengalgram	56
7.9	Land Suitability map of Guava	58
7.10	Land Suitability map of Mango	60
7.11	Land Suitability map of Sapota	61
7.12	Land Suitability map of Jackfruit	62
7.13	Land Suitability map of Jamun	63
7.14	Land Suitability map of Musambi	64
7.15	Land Suitability map of Lime	65
7.16	Land Suitability map of Cashew	66
7.17	Land Suitability map of Custard Apple	67
7.18	Land Suitability map of Amla	68
7.19	Land Suitability map of Tamarind	69
7.20	Land Use Classes map of Babulgaon-1 microwatershed	70
9.1	Soil and Water Conservation map of Babulgaon-1 microwatershed	86

EXECUTIVE SUMMARY

The land resource inventory of Babulgaon-1 microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiography and these physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundaries. The soil map shows the geographic distribution and extent, characteristics, classification and use potentials of the soils in the microwartershed.

The present study covers an area of 519 ha in Babulgaon-1 microwatershed in Humnabad taluk of Bidar district, Karnataka. The climate is semiarid and categorized as drought prone with an average annual rainfall of 811 mm of which about 609 mm is received during south—west monsoon, 109 mm during north-east and the remaining 93 mm during the rest of the year. Entire area is covered by soils. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to seven soil series and 17 soil phases (management units) and six Land Use Classes.
- * The length of crop growing period is about 150 days starting from the 1^{st} week of June to 2^{nd} week of October.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 250 m grid interval.
- Land suitability for growing major agricultural and horticultural crops were assessed and maps showing degree of suitability along with constraints were generated.
- ***** *Entire area is suitable for agriculture.*
- ♦ About 58 per cent of the soils are moderately deep to very deep (75->150 cm) and 42 per cent are moderately shallow to very shallow (25-75 cm) soils.
- **Entire** area has clayey soils at the surface.
- About 89 per cent of the area has non-gravelly soils and 11 per cent gravelly soils (15-35 % gravel).
- About 44 per cent of the area has soils that are very high (>200mm/m) in available water capacity, 2 per cent medium (100-150 mm/m) and about 54 per cent low (50-100 mm/m) and very low (<50 mm/m).
- About 97 per cent of the area has nearly level (0-1%) to very gently sloping (1-3%) lands and about 3 per cent area is gently (3-5%) sloping lands.
- An area of about 58 per cent has soils that are slightly eroded (e1), 24 per cent moderately eroded (e2) and 18 per cent severely eroded (e3).
- An area of about 18 per cent has soils that are moderately acid to slightly acid (pH 5.5 to 6.5), about 31 per cent is neutral (pH 6.5-7.3) and about 50 per cent area is slightly to strongly alkaline soils (pH 7.3-9.0).
- **♦** The Electrical Conductivity (EC) of the soils are dominantly <2 dsm⁻¹indicating that the soils are non-saline.
- \bullet Entire area is high (>0.75%) in organic carbon.
- Major area of 83 per cent has soils that are low (<23 kg/ha, 14 per cent medium (23-57 kg/ha) in available phosphorus and high (>57 kg/ha) in about 2 per cent area.

- About 2 per cent area is low (<145 kg/ha), 82 per cent medium (145-337 kg/ha) and 16 per cent high (>337 kg/ha) in available potassium.
- Available sulphur is low (<10 ppm) in about 43 per cent area, medium (10-20 ppm) in 55 per cent and 2 per cent high (>20 ppm).
- * Available boron is low (<0.5 ppm) in about 23 per cent area, 66 per cent medium (0.5-1.0 ppm) and high (>1.0 ppm) in about 10 per cent area.
- **E**ntire area is sufficient (>4.5 ppm) in iron.
- ❖ Available manganese and copper are sufficient in all the soils.
- About 30 per cent area has soils that are deficient (<0.6 ppm) in available zinc and 70 per cent sufficient (>0.6 ppm).
- The land suitability for 19 major crops grown in the microwatershed were assessed and the areas that are highly suitable (S1) and moderately suitable (S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, price and finally the demand and supply position.

Land suitability for various crops in the microwatershed

Lana suitability for various crops in the interowalershea						
Crop	Suitability Area in ha (%)			Crop		tability in ha (%)
	Highly suitab le (S1)	Moderately suitabl e (S2)			Highly suit abl e	Moderately suitabl e (S2)
Sorghum	228 (44)	43 (8)		Sapota	-	18 (3)
Maize	-	43 (8)		Jackfruit	58 (11)	-
Red gram	-	256 (49)		Jamun	10 (2)	277 (53)
Sunflower	228 (44)	44 (8)		Musambi	10 (2)	277 (53)
Cotton	166 (32)	91 (17)		Lime	10 (2)	277 (53)
Sugarcane	-	28 (5)		Cashew	17 (3)	-
Soybean	228 (44)	58 (11)		Custard apple	17 (3)	311 (60)
Bengalgra m	228 (44)	18 (3)		Amla	17 (3)	311 (60)
Guava		18 (3)		Tamarind	10 (2)	269 (52)
Mango	10 (6)	-				

Apart from the individual crop suitability, a proposed crop plan has been prepared for the 6 identified LUCs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fibre and horticulture crops that helps in maintaining the ecological balance in microwatershed.

Maintaining soil-health is vital to crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.,

Soil and water conservation treatment plan has been prepared that would help in identifying the sites to be treated and also the type of structures required.

- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands, field bunds and also in the hillocks, mounds and ridges.
- * This would help in supplementing the income, provide fodder and fuel, generate lot of biomass, of which would help in maintaining ecological balance and help in mitigating climate change.

INTRODUCTION

Soil is a finite natural resource that is central to sustainable agriculture and food security. Over the years, this precious resource is faced with the problems of erosion, salinity, alkalinity, degradation, depletion of nutrients and even decline in availability of land for agriculture. It is a known fact, that it takes thousands of years to form a few centimetres of soil, thus, soil is a precious gift of nature. The area available for agriculture is about 51 per cent of the total geographical area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. However, the capacity of a soil to produce is limited and the limits to the production are set by its intrinsic characteristics, agroclimatic setting, and use and management. There is, therefore, tremendous pressure on land and water resources, which is causing decline in soil-health and stagnation in productivity. As much as 121 m ha of land is reportedly degraded which leads to impaired soil quality. It is imperative that steps are urgently taken to check and reverse land degradation without any further loss of time. The improvements in productivity will have to come from sustainable intensification measures that make the most effective use of land and water resources. Soil erosion alone has degraded about 35 lakh ha. Almost all the uncultivated areas are facing various degrees of degradation, particularly soil erosion; salinity and alkalinity has emerged as a major problem in more than 3.5 lakh ha in the irrigated areas of the State. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. Added to this, every year there is a significant diversion of farm lands and water resources for non-agricultural purposes. Thus, developing strategies to slow down the degradation process or reclaim the soils to normal condition and ensure sustainability of production system are the major issues today. This demands a systematic appraisal of our soil and land resources with respect to their extent, geographic distribution, characteristics, behaviour and use potential, which is very important for developing an effective land use and cropping systems for augmenting agricultural production on a sustainable basis.

The soil and land resource inventories made so far in Karnataka had limited utility because the surveys were of different types, scales and intensities carried out at different times with specific objectives. Hence, there is an urgent need to generate detailed sitespecific farm level database on various land resources for all the villages/watersheds in a time bound manner that would help to protect the valuable soil and land resources and also to stabilize the farm production.

Therefore, the land resource inventory required for farm level planning is the one which investigates all the parameters which are critical for productivity *viz.*, soils, site characteristics like slope, erosion, gravelliness and stoniness, climate, water, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socioeconomic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying potential and problem areas, developing sustainable land use plans, estimation of surface run off and water harvesting potential, preparation of soil and water conservation plans, land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agroecosystem as a whole. The LEU is preferred over landform as the base map for LRI. LEU is the assemblage of landform, slope and land use. An attempt has been made to upscale the soil resource information from 1:250000 and 1:50000 scale to the LEU map in Goa and other states.

The land resource inventory aims to provide site specific database for Babulgaon-1 microwatershed in Humnabad Taluk, Bidar District, Karnataka state for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery. Later, an attempt will be made to uplink this LRI data generated at 1:7920 scale under Sujala-III Project to the proposed Landscape Ecological Units (LEUs) map.

The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

GEOGRAPHICAL SETTING

2.1 Location and Extent

The Babulgaon-1 microwatershed (Raipalle subwatershed) is located in the northern tip of Karnataka in Humnabad Taluk, Bidar District, Karnataka State (Fig.2.1). It comprises parts of Chitgoppa, Bilkhera and Udbala villages. It lies between 17⁰40' to 17⁰ 42' North latitudes and 77⁰12' to 77⁰15' East longitudes and covers an area of 519 ha. It is about 70 km from Bidar and is surrounded by Bilkhera village on the north, Chitgoppa village in the south, Udbal on the northeast and Mustari village on the east.

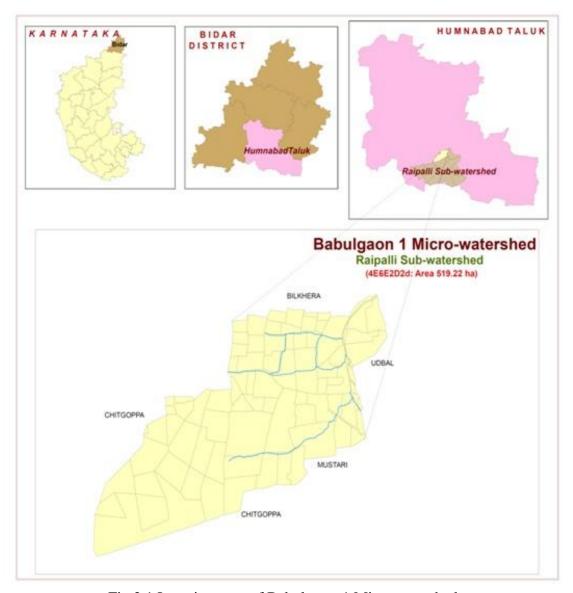


Fig.2.1 Location map of Babulgaon-1 Microwatershed

2.2 Geology

Latereites of Cainozonic occur in a very small area in the northeastern part of Bidar district. Laterites of North Karnataka are younger than the Deccan Trap and older

than black soils of the region. These are formed at an elevation of 600 to 648 m. Laterite capping is quite thick in the region ranging from 30 to 60 m. It is porous and clay-like, and soft but becomes hard on exposure. It composes of mixture of hydrated oxides of iron and aluminium admixed with clay. It is vesicular in appearance and closely resembles Deccan Trap Fig (2.2).

Fig. 2.2 Laterite formation

2.3 Physiography

Physiographically, the area has been identified as Laterite landscape based on geology. The area has been further divided into very gently sloping uplands and lowlands / valleys. The elevation ranges from 600 to 648m MSL. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

The district falls under two distinct river basins, Godavari basin and Krishna basin. The Godavari basin extends over 4,411 sq km, of which Manjra river basin covers 1989 sq km and Karanja river basin covers 2422 sq km. The Krishna basin covers 585 sq km of which Mullamari river basin covers 249 sq km and Gandorinala river basin covers 336 sq km. The main river of the district is Manjra River, which is a tributary of Godavari River. The Karanja River itself is a tributary of Manjra River.

2.5 Climate

The district falls under semiarid tract and is categorized as drought- prone with average annual rainfall of 811 mm (Table 2.1). Of the total rainfall, a maximum of 609 mm is received during south-west monsoon period from June to September, north-east

monsoon from October to early December contributes about 109 mm and the remaining 93 mm is received during the rest of the year. The winter season is from December to February. During April and May, the temperatures reach up to 38.8 °C and in December and January, the temperatures will go down to 16°C. Rainfall distribution is shown in Figure 2.3. The average Potential Evapo-Transpiration (PET) is 146 mm and varies from a low of 106 mm in December to 214 mm in the month of May. The PET is always higher than precipitation in all the months except July August and September. Generally, the Length of crop Growing Period (LGP) is 150 days and starts from 1st week of June to second week of October.

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET in Humnabad Taluk, Bidar District

Sl. no.	Months	Rainfall	PET	1/2 PET
1	JAN	8.10	123.50	61.75
2	FEB	3.70	138.00	69.00
3	MAR	22.60	182.50	91.25
4	APR	22.20	192.10	96.05
5	MAY	36.20	214.40	107.20
6	JUN	113.60	174.00	87.00
7	JUL	158.30	136.00	68.00
8	AUG	176.20	128.00	64.00
9	SEP	160.90	116.50	58.25
10	OCT	86.30	126.60	63.30
11	NOV	18.70	114.10	57.05
12	DEC	4.10	105.80	52.90
Total		810.9	145.95	

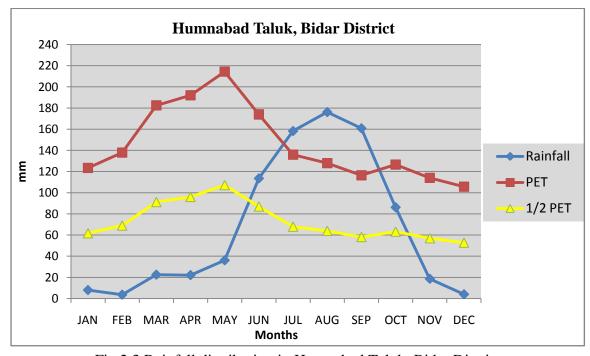


Fig 2.3 Rainfall distribution in Humnabad Taluk, Bidar District

2.6 Natural Vegetation

The natural vegetation is sparse, comprising few tree species, shrubs and herbs. Perenniel fruit plant species of horticulture importance are naturally distributed. Seedlings of Mango, Cashew, Tamarind, Charolli (*Buchanania lanzan*) and others are commonly noticed in the microwatershed Fig (2.4). Some part of the watershed is occupied by sparse forest plantations which includes Neem, Eucalyptus, *Butea* spp. etc. But due to the encroachment and deforestation, which is very well evident in the area, large area is barren without any tree cover at present. Still there are some remnants of the past forest cover, which can be seen in patches in some ridges and hillocks in the microwatershed.

Fig. 2.4 Natural vegetation of Babulgaon-1 Microwatershed

2.7 Land Utilization

About 73 per cent area (Table 2.2) in Humnabad taluk is cultivated at present. An area of about 5 per cent is currently barren. Forests occupy an area of about 11 per cent and the tree cover is in a very poor state. Most of the mounds, ridges and bouldery areas have very poor vegetative cover. Major crops grown in the area are sorghum, maize, wheat, cotton, mulberry, safflower, sugarcane, sunflower, red gram, cabbage, cashew, mango and custard apple. While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the Babulgaon-1 microwatershed is generated. The current land use map prepared shows the arable and non-arable lands, other land uses and different types of crops grown in the area Fig (2.5). The different crops and cropping systems adopted in the microwatershed is

presented in Figures 2.6. a, b and c. Simultaneously, enumeration of wells (bore wells and open wells) and conservation structures in the microwatershed are made and their location in different survey numbers is located on the cadastral map. Map showing the location of wells and other water bodies in the Babulgaon - 1 microwatershed is given in (Fig.2.7).

Table 2.2 Land Utilization in Humnabad Taluk

Sl. No.	Agricultural land use	Area (ha)	Per cent
1.	Total geographical area	99243	-
2.	Total cultivated area	72878	73.43
3.	Area sown more than once	15789	-
4.	Crop intensity	-	121.66
5.	Current fallow land	4989	5.02
6.	Trees and grooves	356	0.35
7.	Forest	11014	11.09
8.	Cultivable wasteland	4717	4.75
9.	Permanent Pasture land	4386	4.41
10.	Barren & Uncultivable land	5307	5.34
11.	Non- Agriculture land	6808	6.85

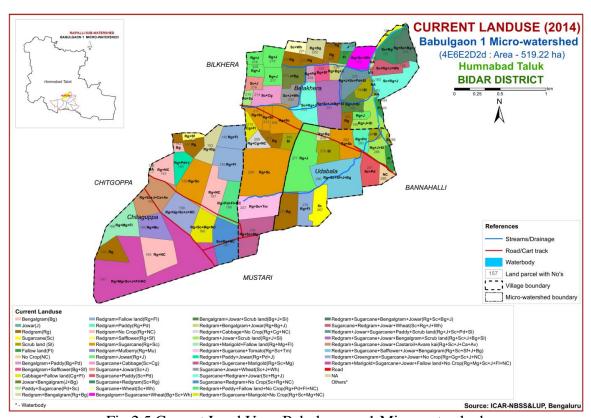


Fig. 2.5 Current Land Use –Babulgaon – 1 Microwatershed

Fig. 2.6.a. Different crops and cropping systems in Babulgaon-1 Microwatershed

Fig. 2.6.b. Different crops and cropping systems in Babulgaon-1 Microwatershed

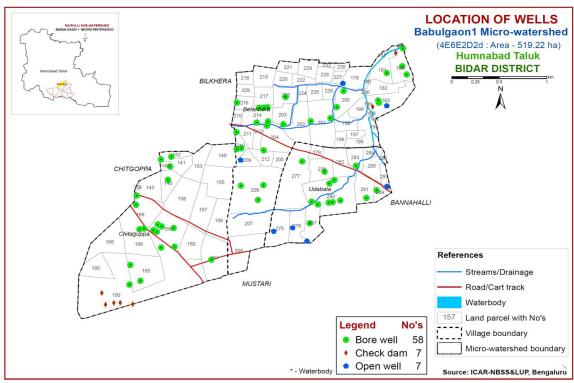


Fig.2.7 Location of Wells and Conservation Structures Babulgaon -1 Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly to a given level of management. This was achieved in Babulgaon-1 microwatershed by the detailed study of all the soil characteristics (depth, texture, colour, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.) and site characteristics (slope of the land, erosion, drainage, occurrence of rock fragments etc.) followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units and showing their extent and geographic distribution on the microwatershed cadastral map. The detailed survey at 1:7920 scale was carried out in an area of 519 ha. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map as a base. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig.3.2). The cadastral map was overlaid on the satellite imagery (Fig.3.3) that helps to identify the parcel boundaries and other permanent features. Apart from cadastral maps and images, toposheets of the area (1:50,000 scale) were also used for initial traversing, identification of geology and landforms, drainage features, present land use and also for selection of transects in the microwatershed.

3.2 Image Interpretation for Physiography

False Colour Composites (FCCs) of Cartosat-I and LISS-IV merged satellite data covering the microwatershed area was visually interpreted using image interpretation elements along with the geology map and all the available collateral data with local knowledge. The delineated physiographic boundaries were transferred on to a cadastral map overlaid on satellite imagery. Physiographically, the area has been identified as laterite landscape and is divided into landforms such as ridges, mounds and uplands based on slope and other relief features. They were further subdivided into physiographic/image interpretation units based on image characteristics.

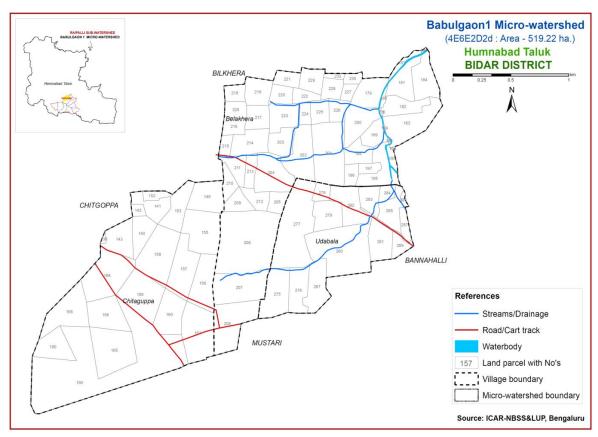


Fig 3.1 Scanned and Digitized Cadastral map of Babulgaon-1 Microwatershed

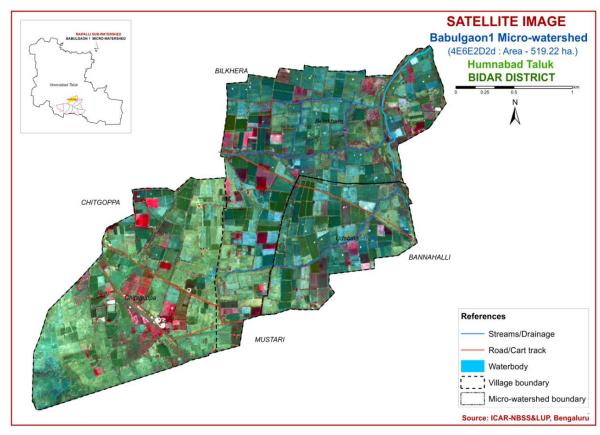


Fig.3.2 Satellite Image of Babulgaon-1 Microwatershed

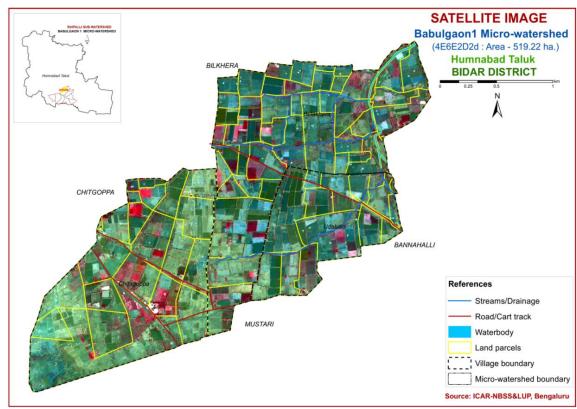


Fig.3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Babulgaon-1 Microwatershed

3.3 Field Investigation

The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, nallas, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheets. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was prepared by studying soils at few selected places. Then, intensive traversing of each physiographic unit like hills, ridges and uplands was carried out. Based on the variability observed on the surface, transects (Fig 3.4) were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

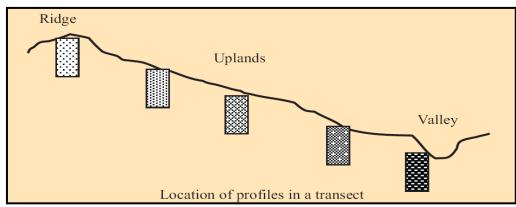


Fig: 3.4. Location of profiles in a transect

In the selected transect, soil profiles (Fig 3.4) were located at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, profiles (vertical cut showing the soil layers from surface to the rock) were opened up to 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas.

Based on the soil characteristics, the soils were grouped into different soil series. Soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management. Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area. The differentiating characteristics used for identifying the soil series are given in Table 3.1. Based on the above characteristics, 7 soil series were identified in the Babulgaon-1 microwatershed.

Table 3.1 Differentiating Characteristics used for identifying Soil Series (Characteristics are of Series Control Section)

Soils of Laterite Landscape									
Sl.No	Soil Series	Depth (cm)	Colour (moist)	Textu re	Gravel (%)	Horizon sequence	Calcareo -usness		
1.	(BGN) Babulgaon	>150	10YR3/2,3/3 7.5YR3/4,4/3	С	<15	Ap-BA- Bss	-		
2.	(CGP) Chitaguppa	100- 150	2.5YR3/3,3/4 5YR3/3,3/4	sc-c	15-35	Ap-Bt- Cr/R	-		
3.	(KDM) Kadambal	25-50	2.5YR3/3,3/4 5YR3/3, 3/4	sc-c	15-35	Ap-Bt- Cr/R	-		
4.	(KKU) KaranjaKhurd	50-75	2.5YR3/3, ³ / ₄ 5YR 3/3, 3/4	sc-c	35-60	Ap-Bt- Cr/R	-		
5.	(MNL) Mudhanal	100- 150	2.5YR3/3, ³ / ₄ 5YR 3/3,3/4	sc-c	35-60	Ap-Bt- Cr/R	-		
6.	(MTN) Muthangi	75-100	2.5YR3/3, 3/4	sc-c	15-35	Ap-Bt- Cr/R	-		
7.	(RMP) Rampur	<25	2.5YR 3/3, 3/4 5YR3/3, 3/4	scl-sc	35-60	Ap-Cr/R	-		

3.4 Soil Mapping

The area under each soil series was further separated into soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management.

The soil mapping units are shown on the map (Fig.3.5) in the form of symbols. During the survey about 12 profile pits, few minipits and a few auger bores representing different landforms occurring in the microwatershed were studied. In addition to the profile study, spot observations in the form of minipits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map.

The soil map shows the geographic distribution of 17 mapping units representing 8 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2. The soil phase map (management units) shows the distribution of 17 soil phases mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one phase will have similar management needs and have to be treated accordingly. The 17 soil phases identified and mapped in the microwatershed were regrouped into 6 Land Use Classes (LMU's) for the purpose of preparing a Proposed Crop Plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Use Classes (LUCs) based on the management needs. One or more than one soil site characteristic having influence on the management have been choosen for identification and delineation of LUCs. For Babulgaon-1 microwatershed, five soil and site characteristics, namely soil depth, soil texture, slope, erosion and gravel content have been considered for defining LUCs. The Land Use Classes are expected to behave similarly for a given level of management.

3.5 Laboratory Characterization

Soil samples were collected from representative master profiles for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected from farmer's fields (85 samples) for fertility status (major and micronutrients) at 250 m grid interval were analyzed in the laboratory (Katyal and Rattan, 2003). By linking the soil fertility data to the survey numbers through GIS, soil fertility maps using kriging method were generated for the microwatershed.

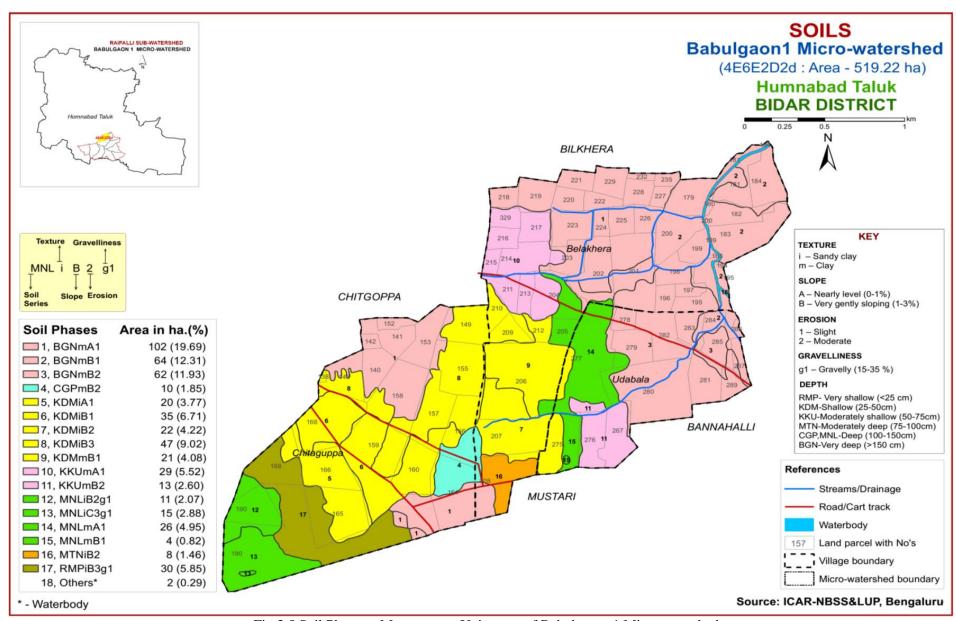


Fig 3.5 Soil Phase or Management Units map of Babulgaon -1 Microwatershed

Table 3.2 Soil Legend

Soil map	Soil	Soil Phase	Mapping Unit Description	Area in		
unit No	Series	Symbol		ha (%)		
			Soils of Laterite Landscape			
		Babulgaon s	soils are very deep (>150 cm), moderately well			
	BGN		e very dark brown to yellowish brown, calcareous	228.1		
		_	y soils occurring on nearly level to very gently	(43.93)		
			ands under cultivation			
1		BGNmA1	Clay surface, slope 0-1 %, slight erosion	102.24		
				(19.69) 63.94		
2		BGNmB1 Clay surface, slope 1-3 %, slight erosion				
				(12.31)		
3		BGNmB2	Clay surface, slope 1-3 %, moderate erosion	61.92		
				(11.93)		
		0 11	pils are deep (100-150 cm), well drained, have dark	9.60		
	CGP		on to dark red clayey soils occurring on nearly level	(1.85)		
			y sloping uplands under cultivation			
4		CGPmB2	Clay surface, slope 1-3%, moderate erosion	9.60		
				(1.85)		
	KDM	Kadambal soils are shallow (25-50 cm), well drained, have very				
	KDM	_	ed to dark reddish brown clayey soils occurring on	144.33 (27.79)		
		very gently t	o gently sloping uplands under cultivation.	(=::::)		
5		KDMiA1	Sandy clay surface, slope 0-1 %, slight erosion	19.55		
				(3.77)		
6		KDMiB1	Sandy clay surface, slope 1-3%, slight erosion	34.85		
				(6.71)		
7		KDMiB2	Sandy clay surface, slope 1-3%, moderate erosion	21.90		
,				(4.22)		
8		KDMiB3	Sandy clay surface, slope 1-3%, severe erosion	46.83		
				(9.02)		
9		KDMmB1	Clay surface, slope 1-3%, slight erosion	21.20		
				(4.08)		
			urd soils are moderate shallow (50-75 cm), well			
	KKU		re dark reddish brown to dark red clayey soils	42.12		
		_	nearly level to very gently sloping uplands under	(8.12)		
		cultivation				
10		KKUmA1	Clay surface, slope 0-1 %, slight erosion	28.64		
				(5.52)		
11		KKUmB2	Clay surface, slope 1-3%, moderate erosion	13.48		
				(2.60)		

	MNL	reddish brow	Mudhanal soils are deep (100-150 cm), well drained, have dark eddish brown to dark red clayey soils occurring on nearly level o very gently sloping uplands under cultivation					
12		MNLiB2g1	Sandy clay surface, slope 1-3%, moderate erosion, gravelly (15-35%)	10.75 (2.07)				
13		MNLiC3g1	C3g1 Sandy clay surface, slope 3-5 %, severe erosion, gravelly (15-35%)					
14		MNLmA1	NLmA1 Clay surface, slope 0-1 %, slight erosion					
15		MNLmB1	MNLmB1 Clay surface, slope 1-3 %, slight erosion					
	MTN	have dark red	Muthangi soils are moderate deep (75-100 cm), well drained, have dark reddish brown to red clayey soils occurring on nearly level to very gently sloping uplands under cultivation					
16		MTNiB2	Sandy clay surface, slope 1-3%, moderate erosion.	7.56 (1.46)				
	RMP	reddish brow	Rampur soils are very shallow (<25 cm), well drained, have dark reddish brown clayey soils occurring on very gently sloping to gently sloping uplands under pasture					
17		RMPiB3g1	Sandy clay surface, slope 1-3%, severe erosion, gravelly (15-35%)	30.36 (5.85)				
		Others	Habitation & Waterbody	1.52 (0.29)				

THE SOILS

Detailed information pertaining to the nature, extent and distribution of different kinds of soils occurring in Babulgaon-1 microwatershed is provided in this chapter. The microwatershed area has been identified as Laterite Landscape based on geology. In all, 7 soil series are identified. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. Soil formation in the laterite landscape is dominantly influenced by the parent material, climate and relief.

A brief description of each of the 7 soil series identified followed by 17 soil phases (management units) mapped under each series (Fig. 3.4) are furnished below. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristics that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of Laterite Landscape

In this landscape, 7 soil series are identified and mapped. Brief description of each series identified in the micro watershed are given below. Of these, Babulgaon (BGN) soil series occupies maximum area of about 228 ha (44%) followed by Kadambal (KDM) 144 ha, Mudhanal (MNL) 45 ha, Karanja Khurd (KKU) 42 ha and other series occupy minor area in the microwatershed.

4.1.1 Babulgaon (BGN) Series: Babulgaon soils are very deep (>150 cm), moderately well drained, have very dark brown to yellowish brown, calcareous cracking clay soils occurring on nearly level to very gently sloping low lands under cultivation.

The thickness of the solum ranges from 150 to 200 cm. The thickness of A horizon ranges from 12 to 17 cm. Its colour is in 10 YR hue with value 3 and chroma 2 to 3. The texture is clay. The thickness of B horizon is more than 150 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 1 to 3. Texture is clay with less than 15 per cent gravel. The available water capacity is very high (>200 mm/m). Three phases were identified and mapped.

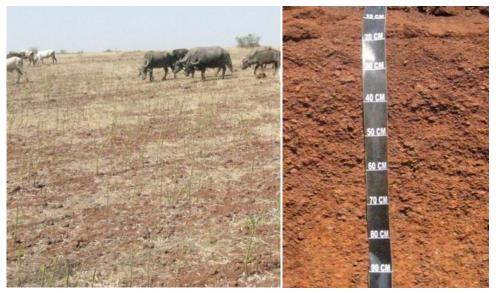
Landscape and Soil Profile characteristics of Babulgaon (BGN) Series

4.1.2 Chitagoppa (CGP) Series: Chitagoppa soils are deep (100-150 cm), well drained, have dark reddish brown to dark red clayey soils occurring on nearly level to very gently sloping uplands.

The thickness of the solum ranges from 115 to 145 cm. The thickness of A horizon ranges from 12 to 17 cm. Its colour is in 7.5 YR hue with value 3 and chroma 2. The texture is clay with 10 to 15 per cent gravel. The thickness of B horizon is 105 to 133 cm. Its colour is in 2.5 YR and 5 YR hue with value 3 and chroma 3 to 4. Texture is sandy clay to clay with 15 to 35 per cent gravel. The available water capacity is medium (101-150 mm/m). Only one phase was identified and mapped.

Landscape and Soil Profile characteristics of Chitagoppa (CGP) Series

4.1.3 Kadambal (**KDM**) **Series:** Kadambal soils are shallow (25-50 cm), well drained, have very dark dusky red to dark reddish brown clayey soils occurring on very gently to gently sloping uplands under cultivation.


The thickness of the solum ranges from 25-50 cm. The thickness of A horizon ranges from 6 to 25 cm. Its colour is in 2.5 YR and 5 YR hue with value 3 and chroma 3 to 4. The texture is dominantly gravelly sandy clay. The thickness of B horizon is 25 to 40 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 3 and chroma 3 to 4. Texture is gravelly sandy clay to gravelly clay with 15 to 35 per cent gravel. The available water capacity is very low (<50 mm/m). Five phases were identified and mapped.

Landscape and Soil Profile characteristics of Kadambal (KDM) Series

4.1.4 Karanja Khurd (KKU) Series: Karanja Khurd soils are moderate shallow (50-75 cm), well drained, have dark reddish brown to dark red clayey soils occurring on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum ranges from 50-75 cm. The thickness of A horizon ranges from 7 to 12 cm. Its colour is in 2.5 YR and 5 YR hue with value 3 and chroma 2 to 4. The texture is dominantly gravelly sandy clay to gravelly clay with 40 per cent gravel. The thickness of B horizon is 45 to 65 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 3 and chroma 2 to 4. Texture is gravelly sandy clay to gravelly clay with 35 to 60 per cent gravel. The available water capacity is very low (<50 mm/m). Two phases were identified and mapped.

Landscape and Soil Profile characteristics of Karanja Khurd (KKU) Series

4.1.5 Mudhanal (MNL) Series: Mudhanal soils are deep (100-150 cm), well drained, have dark reddish brown to dark red clayey soils occurring on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum ranges from 125 to 140 cm. The thickness of A horizon ranges from 14 to 23 cm. Its colour is in 7.5 YR and 5 YR hue with value 2.5 to 3 and chroma 3. The texture is sandy clay with 10 to 20 per cent gravel. The thickness of B horizon is 85 to 130 cm. Its colour is in 2.5 YR and 5 YR hue with value 3 and chroma 3 to 4. Texture is gravelly sandy clay to clay with 35 to 60 per cent gravel. The available water capacity is low (51-100 mm/m). Four phases were identified and mapped.

Soil Profile characteristics of Mudhanal (MNL) Series

4.1.6 Muthangi (MTN) Series: Muthangi soils are moderately deep (75-100 cm), well drained, have dark reddish brown to red clayey soils occurring on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum ranges from 78 to 94 cm. The thickness of A horizon ranges from 12 to 15 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 3 and chroma 2 to 4. The texture is sandy clay to clay with 5 to 10 per cent gravel. The thickness of B horizon is 69 to 80 cm. Its colour is in 2.5 YR hue with value 3 and chroma 3 to 4. Texture is gravelly sandy clay to clay with 15 to 35 per cent gravel. The available water capacity is low (51-100 mm/m). Only one phase was identified and mapped.

Landscape and Soil Profile characteristics of Muthangi (MTN) Series

4.1.7 Rampur (RMP) Series: Rampur soils are very shallow (<25 cm), well drained, have dark reddish brown clayey soils occurring on very gently sloping to gently sloping uplands under pasture.

The thickness of the soil is less than 25 cm. The thickness of A horizon ranges from 7 to 18 cm. Its colour is in 2.5 YR hue with value 3 and chroma 3. The texture is gravelly sandy clay to clay with 40 per cent gravel. The available water capacity is very low (<50 mm/m). Only one phase was identified and mapped.

Landscape and Soil Profile characteristics of Rampur (RMP) Series

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect the land use and conservation needs of an area are land capability, soil depth, soil texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several thematic maps are generated. These would help in identifying the areas suitable for growing crops and, soil and water conservation measures and structures needed thus helping to maintain good soil health for sustained crop production. The various thematic maps generated are described below.

5.1 Land Capability Classification

Land capability classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Soil characteristics:* Depth, texture, gravelliness, calcareousness.

Land characteristics: Slope, erosion, drainage, rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The Land capability classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

- Class I: They are very good lands that have no limitations or very few limitations that restrict their use.
- Class II: They are good lands that have minor limitations and require moderate conservation practices.
- Class III: They are moderately good lands that have moderate limitations that reduce the choice of crops or that require special conservation practices.
- Class IV: They are fairly good lands that have very severe limitations that reduce the choice of crops or that require very careful management.
- Class V: Soils in these lands are not likely to erode, but have other limitations like wetness that are impractical to remove and as such not suitable for agriculture, but suitable for pasture or forestry with minor limitations.
- Class VI: The lands have severe limitations that make them generally unsuitable for cultivation, but suitable for pasture or forestry with moderate limitations.
- Class VII: The lands have very severe limitations that make them unsuitable for cultivation, but suitable for pasture or forestry with major limitations.

Class VIII: Soil and other miscellaneous areas (rock lands) that have very severe limitations that nearly preclude their use for any crop production, but suitable for wildlife, recreation and wind mills.

The land capability subclasses are recognised based on the dominant limitations observed within a given land capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkalinity or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam) (2), fine texture (cracking clay, silty clay) (3), slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units thus identified have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 17 soil map units identified in Babulgaon-1 microwatershed are grouped under three land capability classes and four land capability subclasses. Entire area in the microwatershed is suitable for agriculture (Fig. 5.1).

Good cultivable lands (Class II) cover a maximum area of about 47 per cent and are distributed in the northeastern and southeastern part of the micowatershed with minor problems of soil. Moderately good cultivable lands (Class III) cover an area of about 19 per cent and are distributed in the central and southern part of the microwatershed with moderate problems of erosion and soil. The fairly good cultivable lands (Class IV) cover an area of about 34 per cent. They have severe limitations of soil and are distributed in the central and southwestern part of the microwatershed.

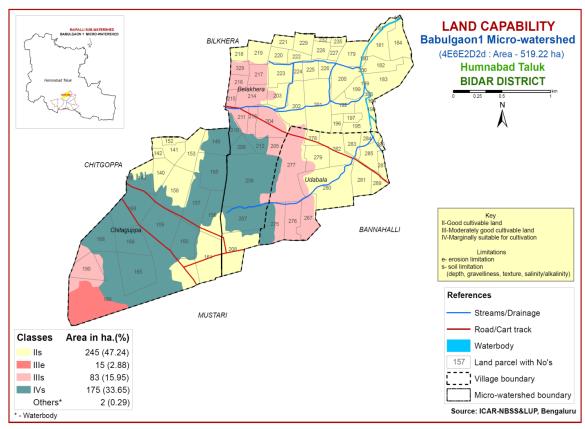


Fig. 5.1 Land Capability map of Babulgaon-1 Microwatershed

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was generated. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.2.

About 30 ha (6%) having very shallow (<25 cm) soils occur in the southern part of the microwatershed. Shallow soils (25-50 cm) cover an area of about 144 ha (28%) and occur in the central and western part of the microwatershed. Moderately shallow (50-75 cm) soils cover a small area of about 42 ha (8%) and are distributed in the northern and southern part of the microwatershed. Moderately deep (75-100 cm) soils occupy a very minor area of about 8 ha (1%). Very deep (>150 cm) soils cover a maximum area of 228 ha (44%) and are distributed in the northeastern and southeastern part of the microwatershed. About 65 ha (13%) area has deep (100-150 cm) soils and distributed in the central and southern part of the microwatershed.

The most productive lands 228 ha (44%) with respect to soil rooting depth where all climatically adapted annual and perennial crops can be grown are very deep (>150 cm depth) occurring in the northern part of the microwatershed.

The most problem lands with an area of about 30 ha (6%) having very shallow (10-25 cm) rooting depth occur in southern part of the microwatershed. They are not suitable for growing agricultural crops but well suited for pasture, forestry or other recreational purposes. Occasionally, short duration crops may be grown if rainfall is normal.

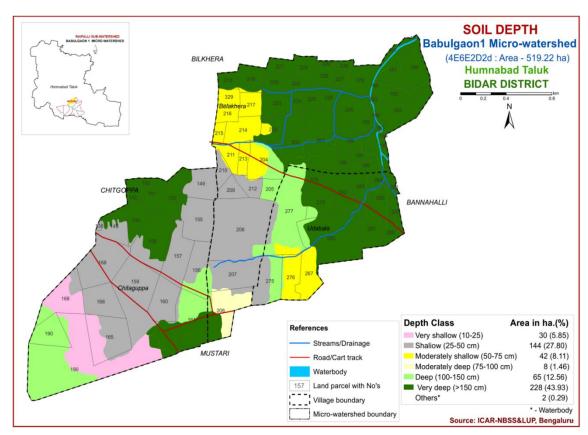


Fig. 5.2 Soil Depth map of Babulgaon-1 Microwatershed

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behaviour, microbial activity and crop suitability. The textural classes used for LRI were used to classify the soils and a surface soil texture map was prepared. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.3.

Maximum area of about 518 ha (99.7%) has soils that are clayeyat the surface. They are distributed in all parts of the microwatershed (Fig. 5.3).

The most productive lands (99.7 %) with respect to surface soil texture are the clayey soils that have high potential for soil-water retention and availability, and nutrient retention and availability, but have problems of drainage, infiltration, workability and other physical problems.

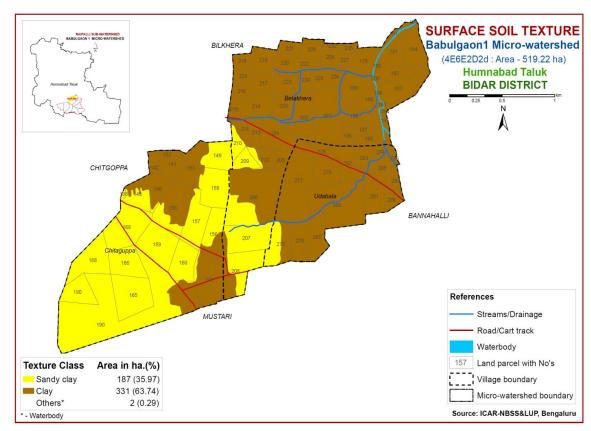


Fig. 5.3 Surface Soil Texture map of Babulgaon-1 Microwatershed

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage, drainage, infiltration and runoff and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization. The gravelliness classes used in LRI were used to classify the soils and using these classes a gravelliness map was generated. The area extent and their geographic distribution in the microwatershed is shown in Figure 5.4.

Maximum area in the microwatershed has soils that are non- gravelly (<15%) 462 ha (89%) and are distributed in the major part of the microwatershed and the soils that are gravelly (15-35%) cover a small area of about 56 ha (11%) and are distributed in the southwestern part of the microwatershed (Fig. 5.4)

The most productive lands with respect to gravelliness are found to be 89%. They are non-gravelly with less than 15 per cent gravel and have potential for growing both annual and perennial crops. The problem soils (11%) that are gravelly (15-35%) where medium duration crops can be grown.

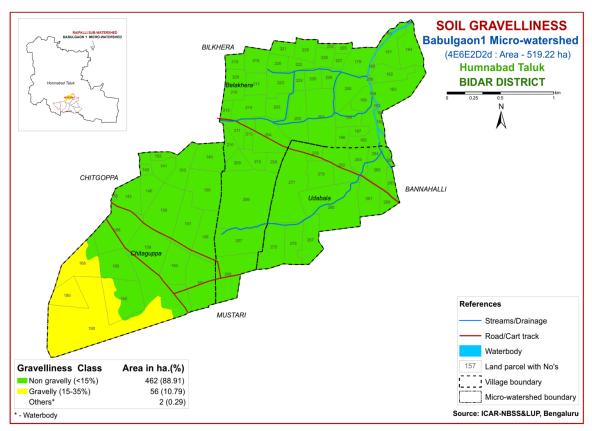


Fig. 5.4 Soil Gravelliness map of Babulgaon-1 Microwatershed

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was generated. The area extent and their geographic distribution of different AWC classes in the microwatershed is given in Figure 5.5.

An area of about 217 ha (42%) in the microwatershed has soils that are very low (<50 mm/m) in available water capacity and are distributed in the northwestern and southwestern part of the microwatershed followed by an area of about 63 ha (12%) that are low (51-100 mm/m) in available water capacity and are distributed in the northern and northwestern part of the microwatershed. A small area of about 10 ha (2%) is medium

(101-150 mm/m) in available water capacity and are distributed in the southern part of the microwateshed. A maximum area of 228 ha (44%) is very high in available water capacity and are distributed in the northeastern, southeastern, southern and northern part of the microwatershed.

About 217 ha (42%) area in the microwatershed has soils that are problematic with regard to available water capacity. Here, only short duration crops can be grown and the probability of crop failure is very high. These areas are best put to other alternative uses. Maximum area of about 228 ha (44%) has soils that have high potential (>200 mm/m) with regard to available water capacity where all climatically adapted long duration crops can be grown successfully.

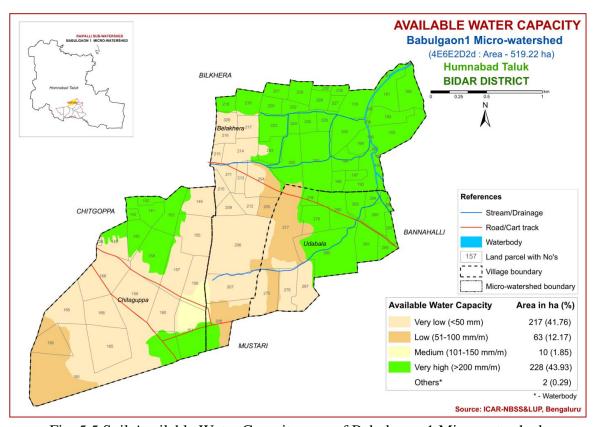


Fig. 5.5 Soil Available Water Capacity map of Babulgaon-1 Microwatershed

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into four slope classes and a slope map was generated showing the area extent and their geographic distribution of different slope classes in the microwatershed (Fig. 5.6).

Nearly level (0-1% slope) lands cover an area of about 176 ha (34%) and is distributed in the northern and southern part of the microwatershed. Major area of about

327 ha (63%) falls under very gently sloping (1-3% slope) lands and is distributed in all parts of the microwatershed. and a very small area of about 15 ha (3%) falls under gently sloping (3-5%) lands.

A maximum area of about 503 ha (97%) in the microwatershed has soils that have high potential in respect of soil slopes. In these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures.

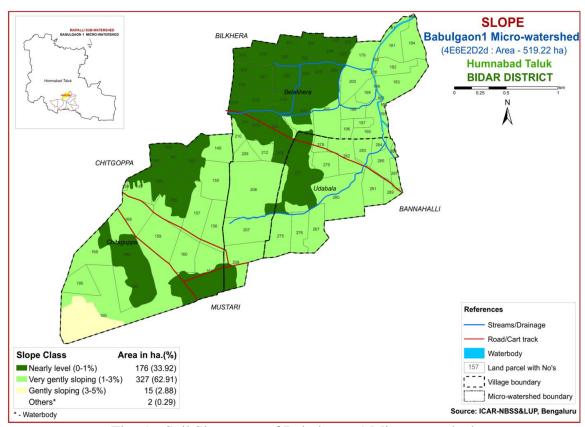


Fig. 5.6 Soil Slope map of Babulgaon-1 Microwatershed

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe erosion (e4) are recognized. The soil map units were grouped into different erosion classes and soil erosion map generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

Slightly eroded (e1 Class) soils cover a maximum area of about 300 ha (58%) and are distributed in the northern western and central part of the microwatershed. Soils that

are moderately eroded (e2 Class) cover an area of about 125 ha (24%) in the microwatershed. They are distributed in the southeastern part of the microwatershed. Severely eroded (e3 Class) soils cover an area of about 92 ha (18%) and are distributed in the western and southern part of the microwatershed.

An area of about 92 ha (18%) in the microwatershed is problematic because of severe erosion. Top priority is to be given to these areas for taking up soil and water conservation and other land development measures. Next in priority would be an area of about 125 ha (24%) where the soils are moderately eroded.

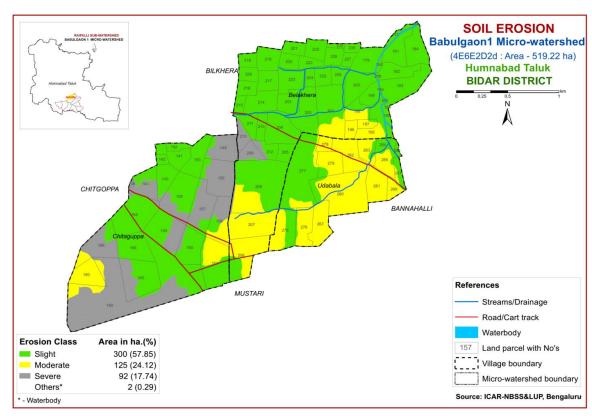


Fig. 5.7 Soil Erosion map of Babulgaon-1 Microwatershed

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status as the area is characterised by low rainfall and high temperatures. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected (65 samples) from the grid points (one soil sample at every 250 m interval) all over the microwatershed through land resource inventory in the year 2014 were analysed for pH, EC, organic carbon, available phosphorus and potassium, and for micronutrients like zinc, boron, copper, iron and manganese, and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been generated using kriging method under GIS. The village/survey number wise fertility data for the microwatershed is given in Appendix-II.

6.1 Soil Reaction (pH)

The soil analysis of the Babulgaon-1 microwatershed for soil reaction (pH) showed that An area of 87 ha (17%) is slightly acid (pH 6.0-6.5) and is distributed in the southwestern part of microwatershed and a very minor area of about 9 ha (2%) is moderately acid (pH 5.5-6.0) and distributed in the southern part of the microwatershed. Maximum area of about 161 ha (31%) is neutral (pH 6.5-7.3) and is distributed in the southern and southwestern part of the microwatershed. Small area of about 42 ha (8%) is slightly alkaline (pH 7.3-7.8) and is distributed in the central and small parts in southwestern part of the microwatershed. An area of about 119 ha (23%) is moderately alkaline (pH 7.8-8.4) and is distributed in the northeastern, northern and central part of the microwatershed. An area of about 100 ha (19%) is under strongly alkaline (pH 8.4-9.0) and is distributed in the southeastern and northeastern part of the microwatershed (Fig. 6.1). About 50% area in the microwatershed is under alkaline, about 18% under acid soils and 31% area is under neutral reaction.

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is <2 dSm⁻¹ (Fig 6.2) and as such the soils are nonsaline.

6.3 Organic Carbon

The soil organic carbon content (an index of available Nitrogen) in the soils of the microwatershed is high (>0.75%) in the entire area in the microwatershed (Fig.6.3).

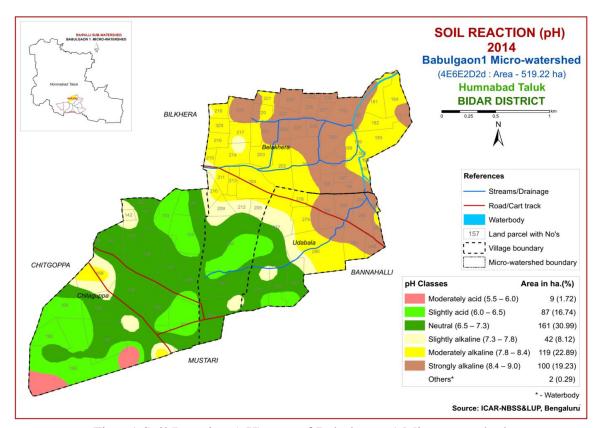


Fig.6.1 Soil Reaction (pH) map of Babulgaon-1 Microwatershed

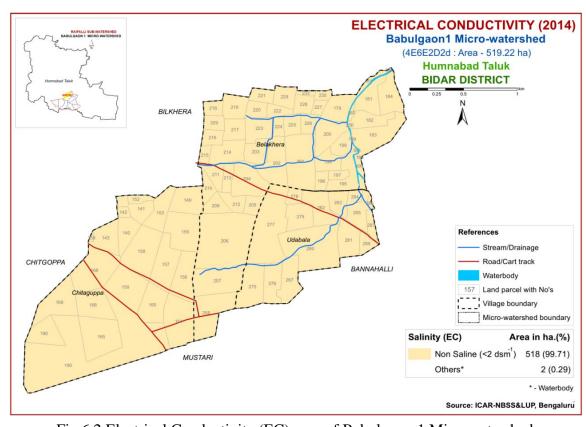


Fig. 6.2 Electrical Conductivity (EC) map of Babulgaon-1 Microwatershed

6.4 Available Phosphorus

Available phosphorus content is low (<23 kg/ha) in maximum area of about 433 ha (83%) area and is distributed in major part of the microwatershed. An area of about 73 ha (14%) is medium (23-57 kg/ha) in available phosphorus and is distributed in the western part of the microwatershed and a very minor area of 11 ha (2%) is high (>57 kg/ha) in available phosphorus and occur in the western part of the microwatershed (Fig 6.4).

6.5 Available Potassium

Available potassium content is low (<145 kg/ha) in an area of 9 ha (2%) and is distributed in the southern part of the microwatershed. Medium (145-337 kg/ha) in maximum area of about 423 ha (82%) and is distributed in major part of the microwatershed. (Fig.6.5) It is high in available potassium (>337 kg/ ha) in an area of 85 ha (16%) and is distributed in the northern part of the microwatershed.

6.6 Available Sulphur

Available sulphur content is low (<10 ppm) in an area of 223 ha (43%) in the microwatershed and is distributed in the eastern and central part of the microwatershed. Major area of about 286 ha (55%) is medium (10-20 ppm) in available sulphur and is distributed in the southern and southwestern part of the microwatershed and a very minor area of about 8 ha (2%) is high (>20 ppm) in available sulphur (Fig.6.6).

6.7 Available Boron

Available boron content is low (<0.5 ppm) in an area of about 121 ha (23%) and is distributed in the central part of the microwatershed it is medium (0.5-1.0 ppm) in major area of 345 ha (66%) and is distributed in all parts of the microwatershed. (Fig.6.7). Available boron is high (>1.0 ppm) in a small area of about 52 ha (10%) and is distributed in the southwestern part of the microwatershed.

6.8 Available Iron

Available iron content is sufficient (>4.5 ppm) in the entire area in the microwatershed (Fig 6.8).

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig 6.10).

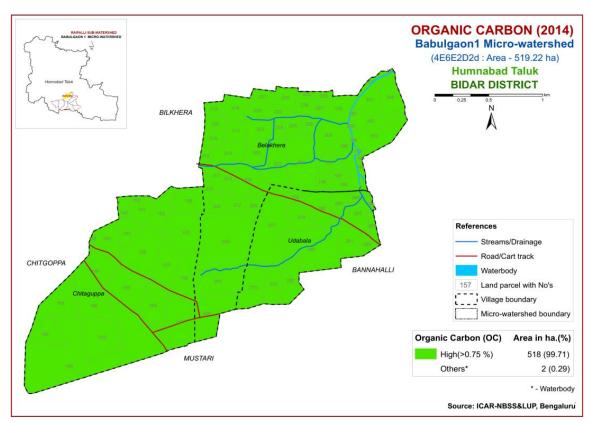


Fig. 6.3 Soil Organic Carbon map of Babulgaon-1 Microwatershed

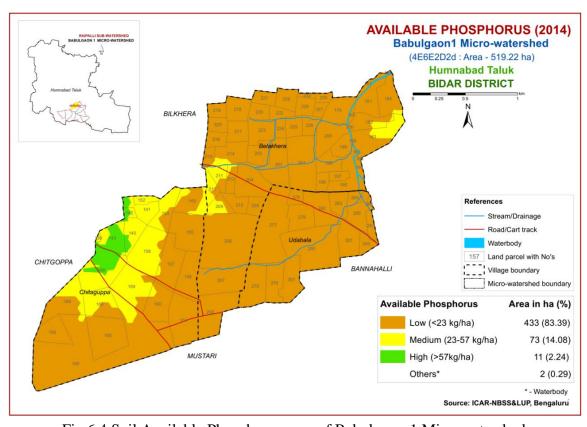


Fig. 6.4 Soil Available Phosphorus map of Babulgaon-1 Microwatershed

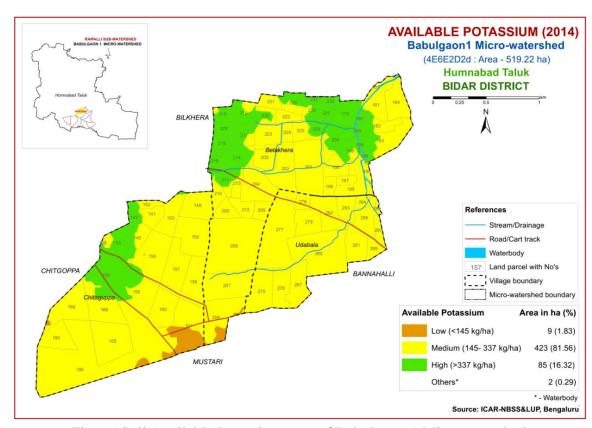


Fig. 6.5 Soil Available Potassium map of Babulgaon-1 Microwatershed

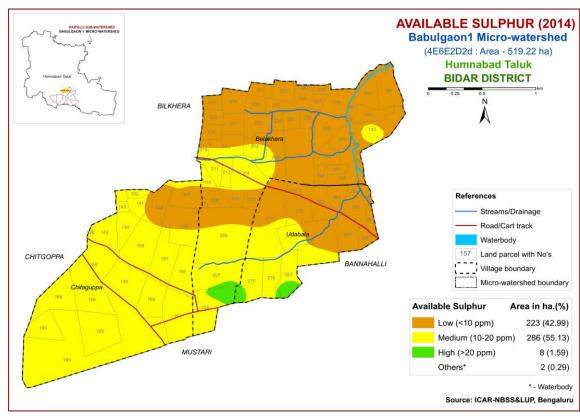


Fig. 6.6 Soil Available Sulphur map of Babulgaon-1 Microwatershed

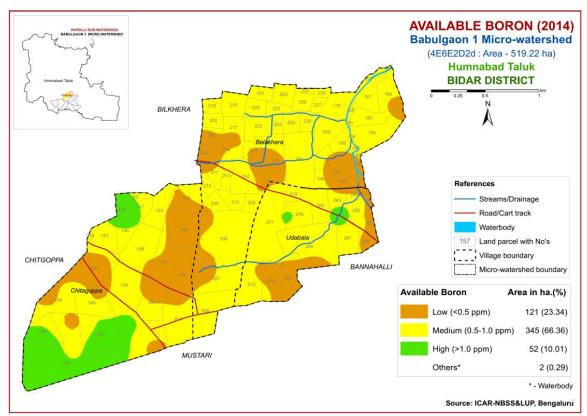


Fig.6.7 Soil Available Boron map of Babulgaon-1 Microwatershed

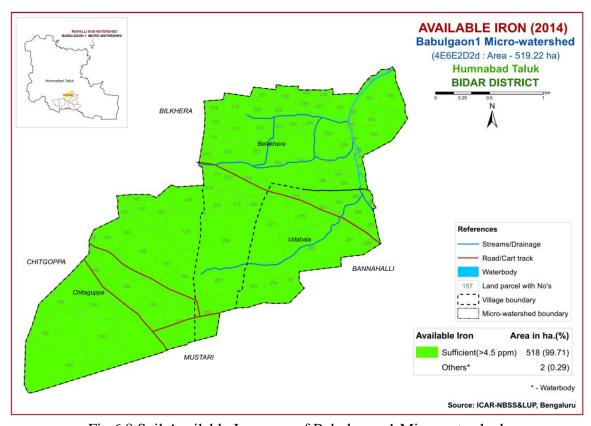


Fig. 6.8 Soil Available Iron map of Babulgaon-1 Microwatershed

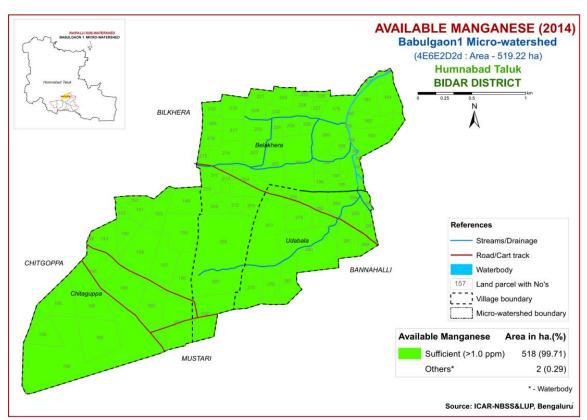


Fig. 6.9 Soil Available Manganese map of Babulgaon-1 Microwatershed

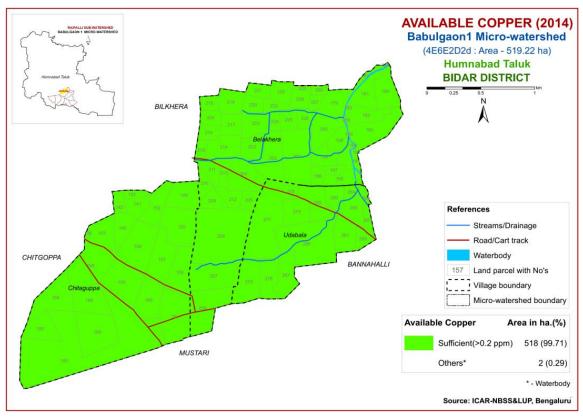


Fig.6.10 Soil Available Copper map of Babulgaon-1 Microwatershed

6.11 Available Zinc

Available zinc content is deficient (<0.6 ppm) in about 155 ha (30 %) and is distributed in the eastern part of the microwatewrshed and sufficient in maximum area of about 363 ha (70%) and distributed in major parts of the microwatershed (Fig 6.11).

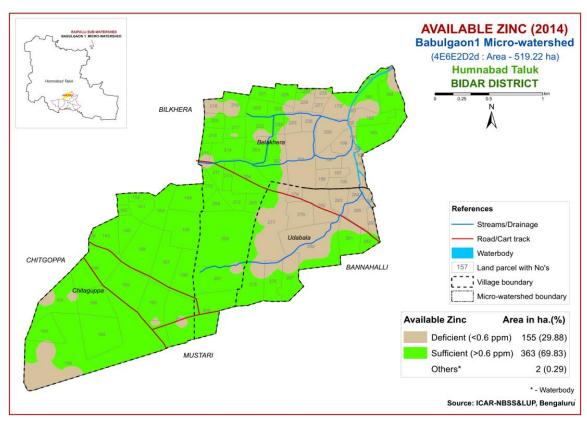


Fig.6.11 Soil Available Zinc map of Babulgaon-1 Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Babulgaon-1 microwatershed were assessed for their suitability for growing food, fodder, fibre and other horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data and also by referring to Naidu et. al. (2006) and Natarajan et. al (2015). The crop requirements were matched with the soil and land characteristics (Table 7.1) to arrive at the crop suitability. In FAO land suitability classification, two orders are recognized. Order S- Suitable and Order N-Not suitable. The orders have classes, subclasses and units. Order-S has three classes, Class S1- Highly Suitable, Class S2- Moderately Suitable and Class S3- Marginally Suitable. Order N has two classes, N1- Currently not Suitable and N2- Permanently not Suitable. There are no subclasses within the class S1 as they will have very minor or no limitations for crop growth. Classes S2 and S3 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability and 'w' for drainage and 'z' for calcareousness. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable land with the limitations of soil depth and erosion is designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 19 major annual and perennial crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major crops grown in Karnataka in an area of 10.47 lakh ha in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad, Bellary, Chitradurga, Mysore and Chamarajnagar districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure. 7.1.

A major area of about 228 ha (44%) is highly suitable (Class S1) for growing sorghum and are distributed in the northeastern part the microwatershed. A small area of about 43 ha (8%) is moderately suitable (Class S2) for growing sorghum and are distributed in the southern part the microwatershed.

 Table 7.1 Soil-Site Characteristics of Babulgaon-1 Microwatershed

Soil Man	Soil Map Climate		Drai-	Drai- Soil	Soil texture		Gravelliness		AWC	Clone					CEC	BS
Units	- (P)	period (Days)	nage class	depth (cm)	Surf- ace	Sub- surface	Surface (%)	Subsurface (%)	(mm/m)	Slope (%)	Erosion	pН	EC	ESP	[Cmol (p ⁺)kg ⁻¹]	(%)
BGNmA1	811	150	MWD	>150	С	c	-	<15	>200	0-1	Slight	7.4	0.1	0.03	32	100
BGNmB1	811	150	MWD	>150	С	c	-	<15	>200	1-3	Slight	7.4	0.1	0.03	32	100
BGNmB2	811	150	MWD	>150	С	c	-	<15	>200	1-3	Moderate	7.4	0.1	0.03	32	100
CGPmB2	811	150	WD	100-150	c	sc-c	-	15-35	101- 150	1-3	Moderate	7.1	0.08	0.62	24	100
KDMiA1	811	150	WD	25-50	sc	sc-c	ı	15-35	<50	0-1	Slight	7.1	0.08	0.55	9.0	100
KDMiB1	811	150	WD	25-50	sc	sc-c	-	15-35	<50	1-3	Slight	7.1	0.08	0.55	9.0	100
KDMiB2	811	150	WD	25-50	sc	sc-c	-	15-35	<50	1-3	Moderate	7.1	0.08	0.55	9.0	100
KDMiB3	811	150	WD	25-50	sc	sc-c	-	15-35	<50	1-3	Severe	7.1	0.08	0.55	9.0	100
KDMmB1	811	150	WD	25-50	c	s c-c	-	15-35	<50	1-3	Slight	7.1	0.08	0.55	9.0	100
KKUmA1	811	150	WD	50-75	с	sc-c	-	35-60	<50	0-1	Slight	7.08	0.08	0.08	12	100
KKUmB2	811	150	WD	50-75	с	sc-c	-	35-60	<50	1-3	Moderate	7.08	0.08	0.08	12	100
MNLiB2g1	811	150	WD	100-150	sc	sc-c	15-35	35-60	51-100	1-3	Moderate	6.9	0.3	2.5	10	100
MNLiC3g1	811	150	WD	100-150	sc	sc-c	15-35	35-60	51-100	3-5	Severe	6.9	0.3	2.5	10	100
MNLmA1	811	150	WD	100-150	С	sc-c	-	35-60	51-100	0-1	Slight	6.9	0.3	2.5	10	100
MNLmB1	811	150	WD	100-150	С	sc-c	-	35-60	51-100	1-3	Slight	6.9	0.3	2.5	10	100
MTNiB2	811	150	WD	75-100	sc	sc-c	-	15-35	51-100	1-3	Moderate	6.1	0.05	0.03	38	100
RMPiB3g1	811	150	WD	<25	sc	scl-sc	15-35	35-60	< 50	1-3	severe	7.05	0.08	0.08	12	100

^{*}Symbols and abbreviations are according to Field Guide for LRI under Sujala-III Project, Karnataka

Table 7.2 Crop suitability criteria for Sorghum

Crop require	ment	Rating					
Soil –site characteristics	I nif		Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Slope	%	2-3	3-8	8-15	>15		
LGP	Days	120-150	120-90	<90			
Soil drainage	class	Well to mod.Well drained	imperfect	Poorly/excessive ly	V.poorly		
Soil reaction	рН	6.0-8.0	5.5-5.98.1- 8.5	<5.58.6-9.0	>9.0		
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	S1, 1s	S, fragmental skeletal		
Soil depth	Cm	100-75	50-75	30-50	<30		
Gravel content	% vol.	5-15	15-30	30-60	>60		
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10		
Sodicity (ESP)	%	5-8	8-10	10-15	>15		

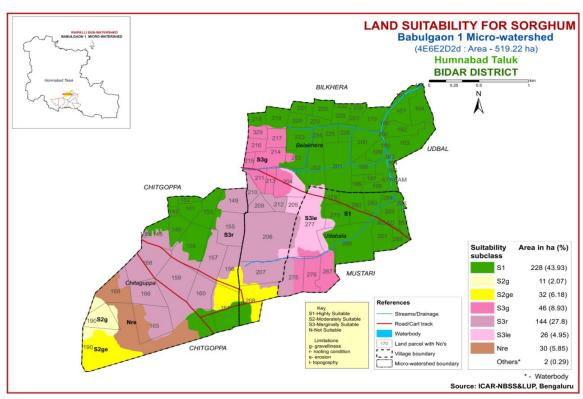


Fig. 7.1 Land Suitability map of Sorghum

They have minor limitations of gravelliness and erosion. Marginally suitable lands (Class S3) for growing sorghum occupy an area of about 216 ha (42%) and occur in central, western and southern part of the microwatershed. They have moderate limitations of rooting depth, slope, erosion and gravelliness and a small area of about 30 ha (6%) area

is not suitable (Class N) for growing sorghum and have very severe limitations of erosion and rooting depth.

7.2 Land Suitability for Maize (Zea mays)

Maize is the most important food crop grown in an area of 13.37 lakh ha in almost all the districts of the State. The crop requirements for growing maize (Table 7.3) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.2.

A small area of about 43 ha (8%) is moderately suitable (Class S2) for growing maize and are distributed in the southern part of the microwatershed. They have minor limitations of gravelliness and erosion. Marginally suitable lands (Class S3) for growing maize occupy major area of about 444 ha (86%) and occur in all parts of the microwatershed. They have moderate limitations of rooting depth, texture and gravelliness. A very small area of about 30 ha (6%) is not suitable (Class N) for growing maize and occur in southern part of the microwatershed. They have very severe limitations of rooting depth and erosion.

Table 7.3 Crop suitability criteria for Maize

Crop requireme	ent	Rating					
Soil–site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Slope	%	<3	3.5	5-8			
LGP	Days	>100	100-80	60-80			
Soil drainage	Class	Well drained	Mod. to imperfectly	Poorly/excessively	V.poorly		
Soil reaction	pН	5.5-7.5	7.6-8.5	8.6-9.0			
Surface soil texture	Class	l, cl, scl, sil	Sl, sicl, sic	C(s-s), ls	S,fragmental		
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<15	15-35	35-50	>50		
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	2.0-4.0			
Sodicity (ESP)	%	<10	10-15	>15			

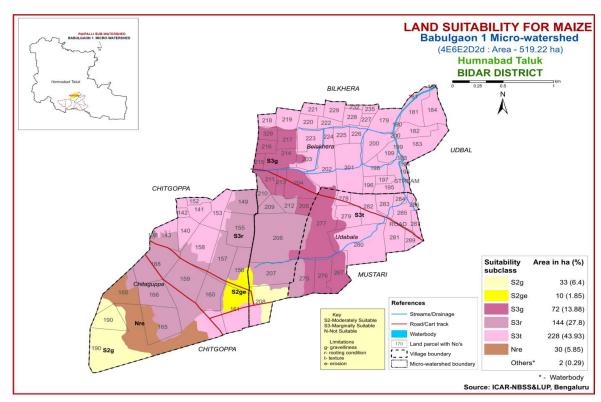


Fig. 7.2 Land Suitability map of Maize

7.3 Land Suitability for Redgram (Cajanus cajan)

Redgram is the most important pulse crop grown in an area of 7.28 lakh ha in almost all the districts of the State. The crop requirements for growing redgram (Table 7.4) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing redgram was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.3.

Maximum area of about 256 ha (49%) is moderately suitable (Class S2) for growing redgram and are distributed in the northeastern, southeastern and western part of the microwatershed. They have minor limitations of gravelliness, texture and erosion. Marginally suitable lands (Class S3) for growing redgram occupy an area of about 231 ha (45%) and occur in the central and western part of the microwatershed. They have moderate limitations of rooting depth, slope, erosion and gravelliness. Small area of about 30 ha (6%) is not suitable (Class N) for growing redgram and occur in southern part of the microwatershed. They have severe limitations of rooting depth and erosion.

Table 7.4 Land suitability criteria for Red gram

Crop requiren	nent	Rating				
Soil-site characteristics	unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	<3	3-5	5-10	>10	
LGP	Days	>210	180-210	150-180	<150	
Soil drainage	class	Well drained	Mod. well drained	Imperfectly drained	Poorly drained	
Soil reaction	рН	6.5-7.5	5.0-6.5 7.6-8.0	8.0-9.0	>9.0	
Sub Surface soil texture	Class	l, scl, sil, cl, sl	sicl, sic, c(m)	ls		
Soil depth	Cm	>100	75-100	50-75	<50	
Gravel content	% vol.	<15	15-35	3-60	>60	
Salinity (EC)	dsm ⁻¹	<1.0	1.0-2.0	>2.0		
Sodicity (ESP)	%	<10	10-15	>15		

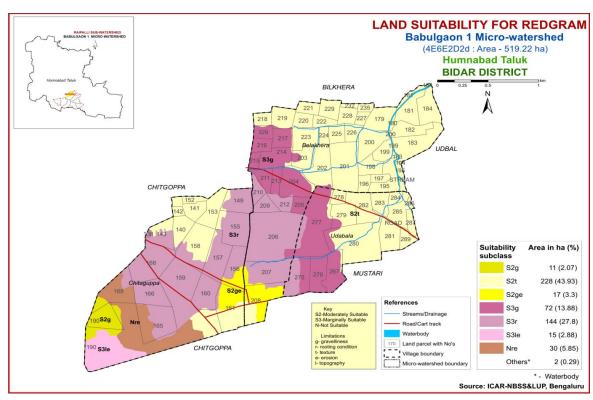


Fig. 7.3 Land Suitability map of Redgram

7.4 Land Suitability for Sunflower (Helianthus annus)

Sunflower is the most important oilseed crop grown in an area of 3.56 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.5)

were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sunflower was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

Table 7.5 Crop suitability criteria for Sunflower

Crop requiren	nent	Rating				
Soil-site characteristics unit		Highly suitable (S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Slope	%	<3	3-5	5-10	>10	
LGP	Days	>90	80-90	70-80	<70	
Soil drainage	class	Well drained	Mod. well rained	Imperfectly drained	Poorly drained	
Soil reaction	рН	6.5-8.0	8.1-8.55.5-6.4	8.6-9.0;4.5- 5.4	>9.0<4.5	
Surface soil texture	Class	l, cl, sil, sc	Scl, sic, c,	c (>60%), sl	ls, s	
Soil depth	Cm	>100	75-100	50-75	<50	
Gravel content	% vol.	<15	15-35	35-60	>60	
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0		
Sodicity (ESP)	%	<10	10-15	>15		

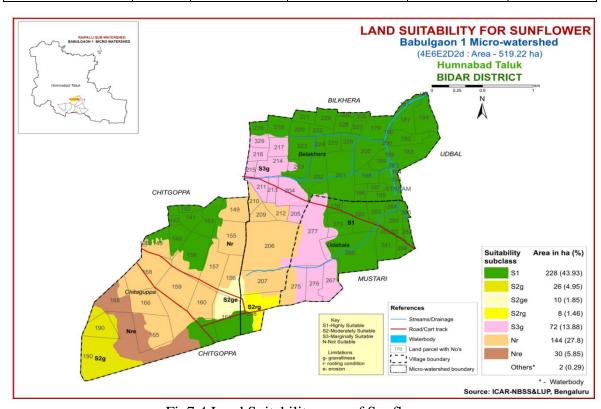


Fig7.4 Land Suitability map of Sunflower

Maximum area of about 228 ha (44%) is highly suitable (Class S1) for growing sunflower and are distributed in the northeastern, eastern, northwestern and southern part of the microwatershed. Moderately suitable (Class S2) lands for sunflower are found to occur in a small area of about 44 ha (8%). They have minor limitations of gravelliness and erosion and are distributed in the southewestern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 72 ha (14%) and occur in the central part of the microwatershed. They have moderate limitations of gravelliness. An area of about 174 ha (34%) is not suitable (Class N) for growing sunflower and occur in southwestern part of the microwatershed. They have very severe limitations of erosion and rooting depth

7.5 Land Suitability for Cotton (Gossypium hirsutum)

Cotton is the most important fibre crop grown in the State in about 8.75 lakh ha area in Raichur, Dharwad, Belgaum, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Chamarajnagar districts. The crop requirements for growing cotton (Table 7.6) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cotton was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.5.

Table 7.6 Crop suitability criteria for Cotton

Crop requiren	nent	Rating				
Soil-site characteristics	Unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	1-2	2-3	3-5	>5	
LGP	Days	180-240	120-180	<120		
Soil drainage	class	Well to moderately well	Imperfectly drained	Poor somewhat excessive	Stagnant/ Excessive	
Soil reaction	pН	6.5-7.5	7.6-8.0	8.1-9.0	>9.0>6.5	
Surface soil texture	Class	Sic, c	Sicl, cl	Si, sil, sc, scl, l	Sl, s,ls	
Soil depth	Cm	100-150	60-100	30-60	<30	
Gravel content	% vol.	<5	5-10	10-15	15-35	
CaCO ₃ in root zone	%	<3	3-5	5-10	10-20	
Salinity (EC)	dSm ⁻¹	2-4	4.0-8.0	8.0-12	>12	
Sodicity (ESP)	%	5-10	10-20	20-30	>30	

An area of about 166 ha (32%) has soils that are highly suitable (Class S1) and are distributed in the northeastern, southern, northwester and southern part of the microwatershed. An area of about 91 ha (17%) has soils that are moderately suitable (Class S2) for growing cotton with minor limitations of gravelliness, erosion and texture. They are distributed in the southeastern and northern part of the microwatershed. The

marginally suitable (Class S3) lands cover a maximum area of about 232 ha (45%) and occur in major part of the microwatershed. They have moderate limitations of gravelliness, slope, erosion and rooting depth. A small area of about 30 ha (6%) is not suitable (Class N) for growing cotton with very severe limitations of rooting depth and erosion and are distributed in the southern part of the microwatershed.

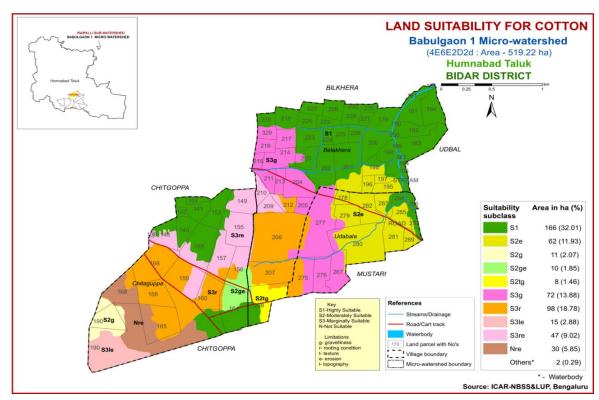


Fig. 7.5 Land Suitability map of Cotton

7.6 Land Suitability for Sugarcane (Saccharum officinarum)

Sugarcane is the most important commercial crop grown in 6.91 lakh ha area in Kalaburgi, Bijapur, Bagalkot, Bidar, Mysore, chamarajanagar and Mandya districts. The crop requirements for growing sugarcane (Table 7.7) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sugarcane was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.6.

A minor area of 28 ha (5%) is moderately suitable (Class S2) for growing sugarcane with minor limitations of gravelliness and erosion and occur in the southern part of the microwatershed. The marginally suitable (Class S3) lands cover a maximum area of about 460 ha (88%) and mainly occur in all parts of the microwatershed. They have moderate limitations of texture, gravelliness, slope and rooting depth. An area of about 30 ha (6%) is not suitable (Class N) for growing sugarcane and occur in the southern part of the microwatershed. they very severe limitations of rooting depth and erosion.

Table 7.7 Crop suitability criteria for Sugarcane

Crop requ	Crop requirement Rating				
Soil-site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)
Slope	%	<3	3-5	5-8	>8
Soil drainage	class	Well drained	Mod./imperfectl y drained	Poorly drained	V.poor/excessivel y drained
Soil reaction	рН	7.0-8.0	6.0-6.9 8.1-9.0	4.0-5.9 9.1- 9.5	<4.0/ >9.5
Surface soil texture	Class	l, cl, sil, sicl	C(m/k), sl	C+(ss)	
Soil depth	cm	>100	100-75	75-50	< 50
stoniness	%	<15	15-35	35-50	>50
Salinity (EC)	dSm ⁻¹	<2.0	2.0-4.0	4.0-9.0	>9
Sodicity (ESP)	%	<10	10-15	15-25	>25

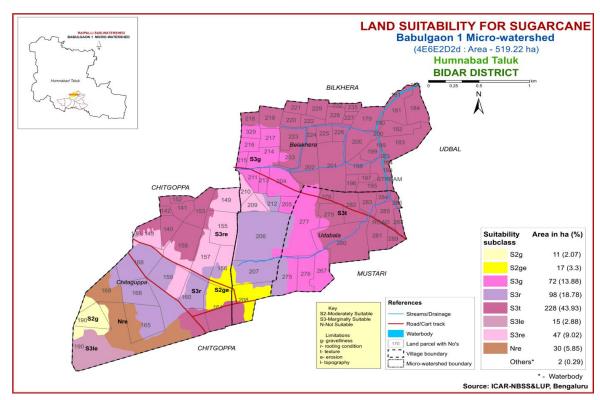


Fig. 7.6 Land Suitability map of Sugarcane

7.7 Land Suitability for Soybean (*Glycine max*)

Soybean is the most important pulse and oil seed crop grown in about 2.56 lakh ha area in Bijapur, Raichur, Kalaburgi, Dharwad, Belgaum and Bellary districts. The crop requirements for growing soybean were matched with the soil-site characteristics and a land suitability map for growing soybean was generated. The area extent and their

geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.7.

Highly suitable (Class S1) lands are found to occur in maximum area of 228 ha (44%) and are distributed in the north-eastern, southern and south-eastern part of the microwatershed. Moderately suitable (Class S2) lands are found to occur in a small area of about 58 ha (11%). They have minor limitations of graveliness and erosion. They are dominantly distributed in the southern and central part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 202 ha (39%) and occur in the central and western part of the microwatershed. They have moderate limitations of rooting depth, erosion and gravelliness. A very small area of about 30 ha (6%) is not suitable (Class N) for growing soybean and occur in the southern part of the microwatershed. They have very severe limitations of rooting depth and erosion.

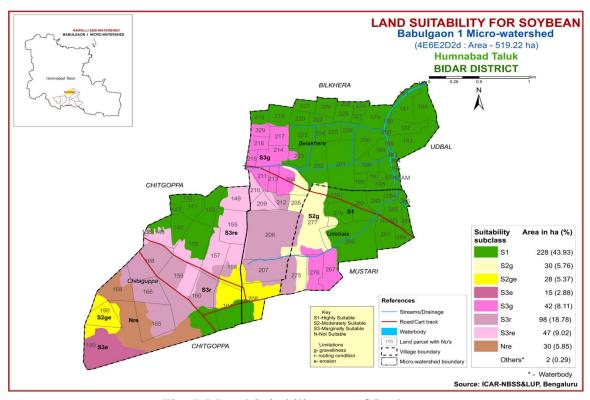


Fig. 7.7 Land Suitability map of Soybean

7.8 Land Suitability for Bengalgram (*Cicer arietinum*)

Bengalgram is one of the major pulse crop grown in an area of 9.39 lakh ha in northern Karnataka in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad and Bellary districts. The crop requirements for growing Bengalgram (Table 7.8) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and land suitability map for growing Bengalgram was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.8.

Table 7.8 Crop suitability criteria for Bengalgram

Crop requirer	nent	Rating				
Soil—site characteristics	Unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Slope	%	<3	3-5	5-10	>10	
LGP	Days	>100	90-100	70-90	< 70	
Soil drainage	class	Well drained	Mod. to well drained; Imperfectly drained	Poorly drained; excessively drained	Very Poorly drained	
Soil reaction	pН	6.0-7.5	5.5-5.77.6-8.0	8.1-9.0;4.5- 5.4	>9.0	
Surface soil texture	Class	l, scl, sil, cl,	sicl, sic, c	S1, c>60%	S, fragmental	
Soil depth	Cm	>75	51-75	25-50	<25	
Gravel content	% vol.	<15	15-35	35-60	>60	
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0		
Sodicity (ESP)	%	<10	10-15	>15		

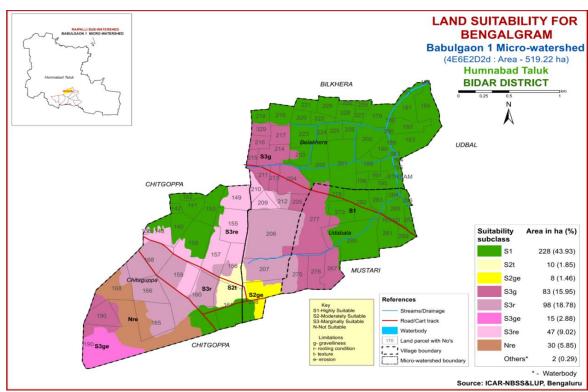


Fig. 7.8 Land Suitability map of Bengalgram

An area of about 228 ha (44%) in the microwatershed has soils that are highly suitable (Class S1) for growing Bengalgram. They have minor or no limitations for growing Bengalgram and are distributed in the northeastern, southern, northern and southeastern part of the microwatershed. A very minor area of about 18 ha (3%) is

moderately suitable (Class S2) for Bengalgram. They are distributed in the southern part of the microwatershed. They have minor limitations of texture, gravelliness and erosion. Marginally suitable lands (Class S3) for growing bengalgram occupy a major area of about 243 ha (47%) and mainly occur in the central, southern and western part of the microwatershed. They have moderate limitations of gravelliness, rooting depth and erosion. A small area of about 30 ha (6%) is not suitable (Class N) for growing bengalgram in the microwatershed and occur in the southern part of the microwatershed. They have very severe limitations of rooting depth and erosion.

7.9 Land suitability for Guava (*Psidium guajava*)

Guava is the most important fruit crop grown in an area of 0.65 lakh ha in almost all the districts of the State. The crop requirements (Table 7.9) for growing guava were matched with the soil-site characteristics (7.1) and a land suitability map for growing guava was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.9.

Table 7.9 Crop suitability criteria for Guava

Cro	Crop requirement			Rating				
	naracteristics	Unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)		
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23			
Soil moisture	Growing period	Days	>150	120-150	90-120	<90		
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly	poor	Very poor		
	Texture	Class	Scl, l, cl, sil	Sl,sicl,sic.,sc,c	C (<60%)	C (>60%)		
Nutrient availability	рН	1:2.5	6.0-7.5	7.6-8.0:5.0- 5.9	8.1-8.5:4.5- 4.9	>8.5:<4.5		
	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15		
Rooting	Soil depth	Cm	>100	75-100	50-75	< 50		
conditions	Gravel content	% vol.	<15	15-35	>35			
Soil	Salinity	dS/m	<2.0	2.0-4.0	4.0-6.0			
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25		
Erosion	Slope	%	<3	3-5	5-10	>10		

A very small area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the southern part and have minor limitations of gravelliness and rooting depth. The marginally suitable (Class S3) lands cover a maximum area of about 326 ha (63%) and are distributed in major part of the microwatershed. They have moderate

limitations of rooting depth, slope, erosion and gravelliness. An area of about 175 ha (34%) is not suitable (Class N) for growing guava in the microwatershed and are distributed in the central and southwestern part of the microwatershed.

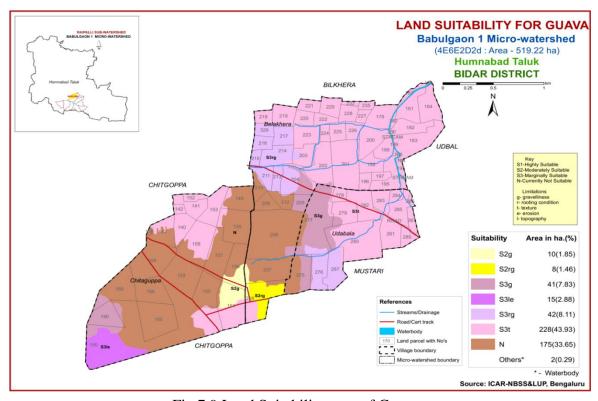


Fig 7.9 Land Suitability map of Guava

7.10 Land suitability for Mango (Mangifera indica)

Mango is the most important fruit crop grown in an area of 1.73 lakh ha in almost all the districts of the State. The crop requirements (Table 7.10) for growing mango were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.10.

A very minor area of about 10 ha (6%) in the microwatershed is highly suitable (Class S1) for growing mango and are distributed in the southern part of the microwatershed. The marginally suitable (Class S3) lands cover a small area of about 49 ha (9%) and are distributed in the central part of the microwatershed. They have moderate limitations of rooting depth and gravelliness. A maximum area of about 460 ha (89%) is not suitable (Class N) for growing mango in the microwatershed and are distributed in all parts of the microwatershed.

Table 7.10 Crop suitability criteria for Mango

Crop	requirement		Rating				
Soil-site cha	aracteristics	Unit	Highly suitable (S1)	Moderately Suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Climate	Temp. in growing season	⁰ C	28-32	24-27 33-35	36-40	20-24	
Cililate	Min. temp. before flowering	⁰ C	10-15	15-22	>22		
Soil moisture	Growing period	Days	>180	150-180	120-150	<120	
Soil aeration	Soil drainage	class	Well drained	Mod. To imperfectly drained	Poor drained	Very poorly drained	
	Water table	M	>3	2.50-3.0	2.5-1.5	<1.5	
	Texture	Class	Sc, 1, sil, cl	Sl, sc, sic, l, c	C (<60%)	C (>60%),	
Nutrient availability	рН	1:2.5	5.5-7.5	7.6-8.55.0-5.4	8.6-9.04.0- 4.9	>9.0<4.0	
avanaomity	OC	%	High	medium	low		
	CaCO ₃ in root zone	%	Non calcareous	<5	5-10	>10	
Rooting	Soil depth	cm	>200	125-200	75-125	<75	
conditions	Gravel content	%vol	Non- gravelly	<15	15-35	>35	
Soil toxicity	Salinity	dS/m	Non saline	<2.0	2.0-3.0	>3.0	
	Sodicity	%	Non sodic	<10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

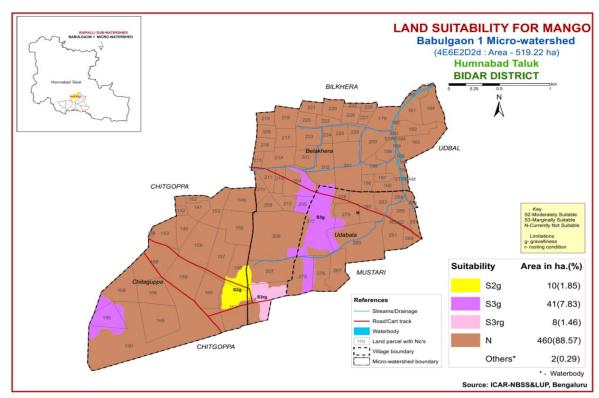


Fig. 7.10 Land Suitability map of Mango

7.11 Land suitability for Sapota (Manilkara zapota)

Sapota is the most important fruit crop grown in an area of 0.29 lakh ha in almost all the districts of the State. The crop requirements (Table 7.11) for growing sapota were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area extent and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11

A very small area of about 18 ha (3%) is moderately suitable (Class S2) for growing sapota and are distributed in the southern part and they have minor limitations of gravelliness. The marginally suitable (Class S3) lands cover a maximum area of about 326 ha (63%) and are distributed in the northern, northwestern and northeastern part of the microwatershed. They have moderate limitations of texture, rooting depth, slope, erosion and gravelliness. A an area of about 175 ha (34%) is not suitable (Class N) for growing sapota in the microwatershed and are distributed in the central and western part of the microwatershed.

Table 7.11 Crop suitability criteria for Sapota

Cro	p requirement		Rating			
Soil –site c	haracteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	>42 <18
Soil moisture	Growing period	Days	>150	120-150	90-120	<120
Soil aeration	Soil drainage	class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained
Nutrient	Texture	Class	Scl, l, cl, sil	Sl, sicl, sc	C (<60%)	ls, s, C (>60%)
availability	рН	1:2.5	6.0-7.5	7.6-8.0 5.0-5.9	8.1-9.0 4.5-4.9	>9.0 <4.5
	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15
Dagting	Soil depth	Cm	>150	75-150	50-75	< 50
Rooting conditions	Gravel content	% vol.	Non gravelly	<15	15-35	<35
Coil towicity	Salinity	dS/m	Non saline	Up to 1.0	1.0-2.0	2.0-4.0
Soil toxicity	Sodicity	%	Non sodic	10-15	15-25	>25
Erosion	Slope	%	<3	3-5	5-10	>10

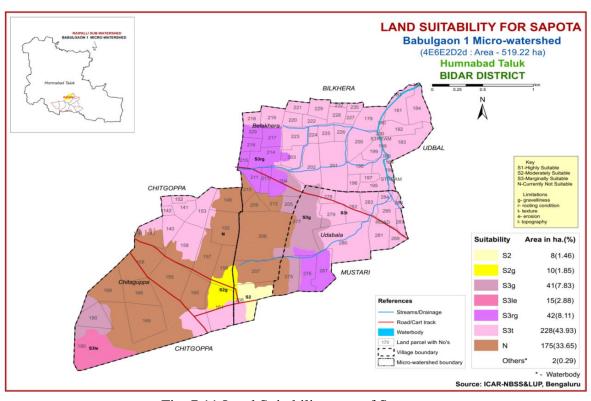


Fig. 7.11 Land Suitability map of Sapota

7.12 Land Suitability for Jackfruit (Artocarpus heterophyllus)

Jackfruit is the most important fruit crop grown in 5368 ha almost all the districts of the State. The crop requirements for growing jackfruit were matched with the soil-site characteristics and a land suitability map for growing jackfruit was generated. The area extent and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.12.

An area of about 58 ha (11%) is highly suitable (Class S2) for growing jackfruit and are distributed in the central and southern part of the microwatershed. They have minor limitations of gravelliness and rooting depth. The marginally suitable (Class S3) lands cover an area of about 228 ha (44%) and occur in the northeastern, northern and central part of the microwatershed. They have moderate limitations of texture. Maximum area of about 232 ha (45%) is not suitable (Class N) for growing jackfruit and are occur in the central, southern and western part of the microwatershed.

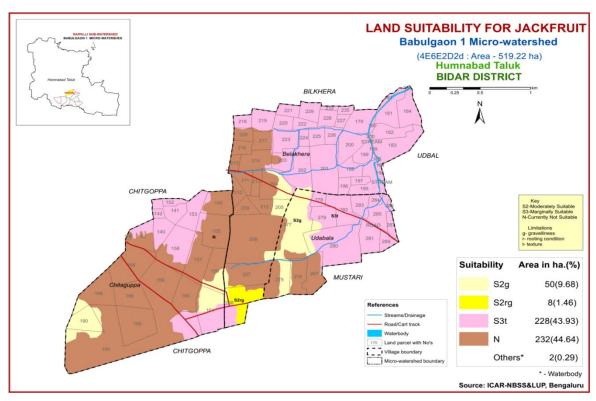


Fig 7.12 Land Suitability map of jackfruit

7.13 Land Suitability for Jamun (Syzygium cumini)

Jamun is an important fruit crop grown in almost all the districts of the State. The crop requirements for growing jamun were matched with the soil-site characteristics and a land suitability map for growing jamun was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.13.

A very small area of about 10 ha (2%) is highly suitable (Class S1) for growing jamun and are distributed in the southern part of the microwatershed. A maximum area of

277 ha (53%) is moderately suitable (Class S2) for growing jamun and are distributed in the northeastern, eastern and southern part of the microwatershed. They have minor limitations of rooting depth, gravelliness and texture. The marginally suitable (Class S3) lands cover an area of about 15 ha (3%) and occur in the southern part of the microwatershed. They have moderate limitations of slope and erosion. An area of about 217 ha (42%) is not suitable (Class N) for growing jamun and are occur in the central, southern and western part of the microwatershed.

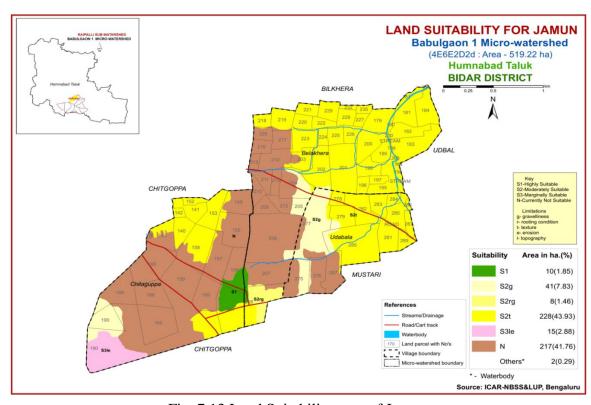


Fig. 7.13 Land Suitability map of Jamun

7.14 Land Suitability for Musambi (Citrus limetta)

Musambi is the important fruit crop grown in 5446 ha almost all the districts of the State. The crop requirements for growing musambi were matched with the soil-site characteristics and a land suitability map for growing musambi was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.14

A very small area of about 10 ha (2%) has soils that are highly suitable (Class S1) and are distributed in the southern part of the microwatershed. Maximum area of about 277 ha (53%) has soils that are moderately suitable (Class S2) for growing musambi with minor limitations of gravelliness, rooting depth and texture and are distributed in the northeastern, eastern, northern and southern part of the microwatershed. The marginally suitable (Class S3) lands cover a small area of about 47 ha (11%) and occur in the northwestern and northeastern part of the microwatershed. They have moderate limitations of gravelliness, slope, erosion and rooting depth. An area of about 175 ha

(34%) is not suitable (Class N) for growing musambi and are distributed in the central and western part of the microwatershed.

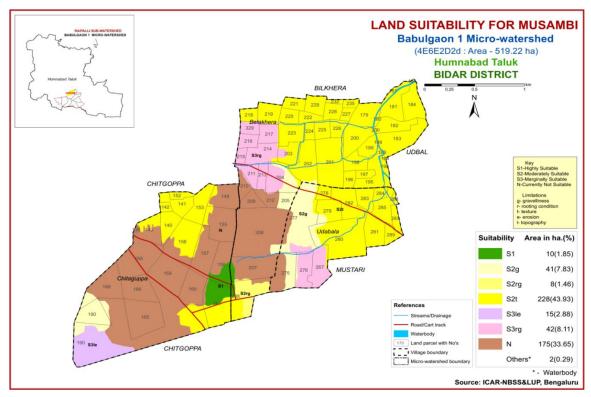


Fig. 7.14 Land Suitability map of Musambi

7.15 Land Suitability for Lime (Citrus sp)

Lime is one of the most important fruit crop grown in an area of 0.11 lakh ha in almost all the districts of the State. The crop requirements for growing lime (Table 7.16) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing lime was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.15.

A very small area of about 10 ha (2%) has soils that are highly suitable (Class S1) and are distributed in the southern part of the microwatershed. Maximum area of about 277 ha (53%) has soils that are moderately suitable (Class S2) for growing lime with minor limitations of gravelliness, rooting depth and texture and are distributed in the northeastern, eastern, northern and southern part of the microwatershed. The marginally suitable (Class S3) lands cover a small area of about 57 ha (11%) and occur in the northern and southern part of the microwatershed. They have moderate limitations of gravelliness, slope, erosion and rooting depth. An area of about 175 ha (34%) is not suitable (Class N) for growing lime and are distributed in the central and western part of the microwatershed.

Table 7.12 Crop suitability criteria for Lime

Cro	Crop requirement			Rating			
	Soil –site characteristics U		Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)	
Climate	Temperature in growing season	°C	28-30	31-35 24-27	36-40 20-23	>40 <20	
Soil moisture	Growing period	Days	240-265	180-240	150-180	<150	
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly drained	poorly	Very poorly	
	Texture	Class	Scl, l, sicl, cl, s	Sc, sc, c	C(>70%)	S, ls	
Nutrient availability	pН	1:2.5	6.0-7.5	5.5-6.47.6- 8.0	4.0-5.4 8.1-8.5	<4.0 >8.5	
	CaCO ₃ in root zone	%	Non 34calcareous	Upto 5	5-10	>10	
Dooting	Soil depth	Cm	>150	100-150	50-100	< 50	
Rooting conditions	Gravel content	% vol.	Non gravelly	15-35	35-55	>55	
Soil	Salinity	dS/m	Non saline	Upto 1.0	1.0-2.5	>2.5	
toxicity	Sodicity	%	Non sodic	5-10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

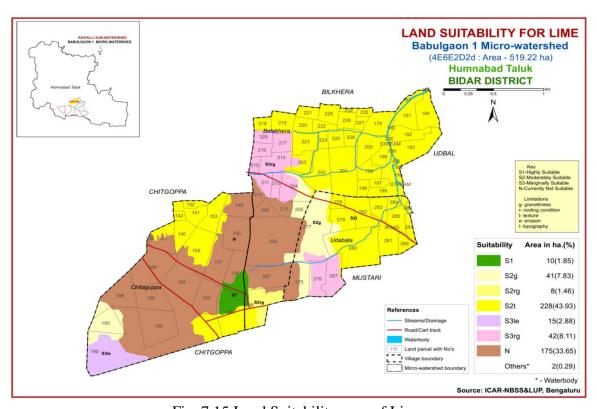


Fig. 7.15 Land Suitability map of Lime

7.16 Land Suitability for Cashew (Anacardium occidentale)

Cashew is one of the most important fruit crop grown in an area of 0.70 lakh ha in almost all the districts of the State. The crop requirements for growing cashew were matched with the soil-site characteristics and a land suitability map for growing cashew was generated. The area extent and geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.16.

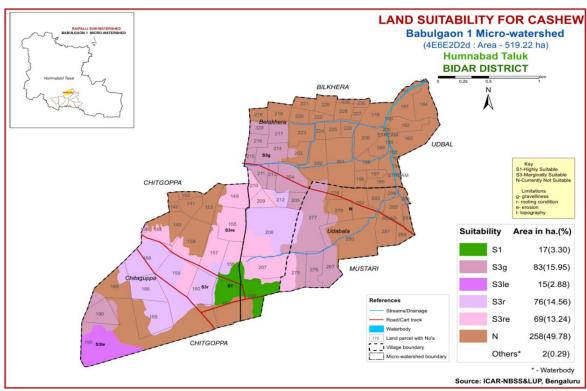


Fig. 7.16 Land Suitability map of Cashew

An area of about 17 ha (3%) has soils that are highly suitable (Class S1) for growing cashew and are distributed in the southern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 243 ha (47%) and occur in the central, southern and western part of the microwatershed. They have moderate limitations of gravelliness, slope, erosion and rooting depth. A maximum area of about 258 ha (50%) is not suitable (Class N) for growing cashew and occur in the northeastern and northern part of the microwatershed.

7.17 Land Suitability for Custard Apple (*Annona reticulata*)

Custard apple is one of the most important fruit crop grown in 1426 ha almost all the districts of the State. The crop requirements for growing custard apple were matched with the soil-site characteristics and a land suitability map for growing custard apple was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.17.

Small area of about 17 ha (3%) area is highly suitable (Class S1) for growing custard apple and are distributed in the southern part of the microwatershed. Maximum

area of about 311 ha (60%) has soils that are moderately suitable (Class S2) for growing custard apple with minor limitations of rooting depth, texture and gravelliness and are distributed in major parts of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 160 ha (31%) and occur in the southern and central part of the microwatershed. They have moderate limitations of gravelliness, calcareousness and rooting depth. An area of about 30 ha (6%) is not suitable (Class N) for growing custard apple and occur in the southern part of the microwatershed.

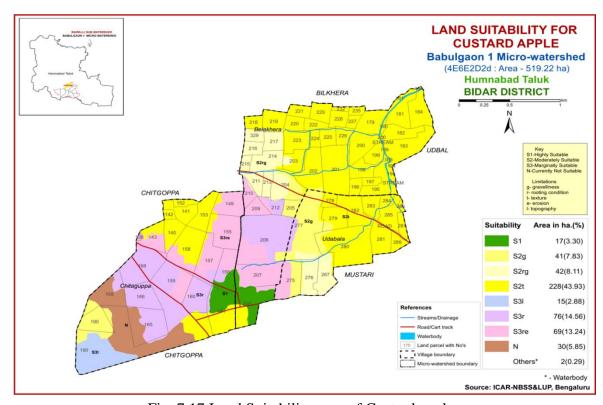


Fig. 7.17 Land Suitability map of Custard apple

7.18 Land Suitability for Amla (*Phyllanthus emblica*)

Amla is one of the fruit and medicinal crop grown in 151 ha in almost all the districts of the State. The crop requirements for growing amla were matched with the soil-site characteristics and a land suitability map for growing amla was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.18.

About an area of 17 ha (3%) is highly suitable (Class S1) for growing amla and are distributed in the southern part of the microwatershed. Maximum area of about 311 ha (60%) has soils that are moderately suitable (Class S2) for growing amla with minor limitations of rooting depth, texture and gravelliness and are distributed in the northern, northeastern and southern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 160 ha (31%) and occur in the southwestern and central part of the microwatershed. They have moderate limitations of slope, erosion and rooting

depth. An area of about 30 ha (6%) is not suitable (Class N) for growing amla and occur in the southern part of the microwatershed.

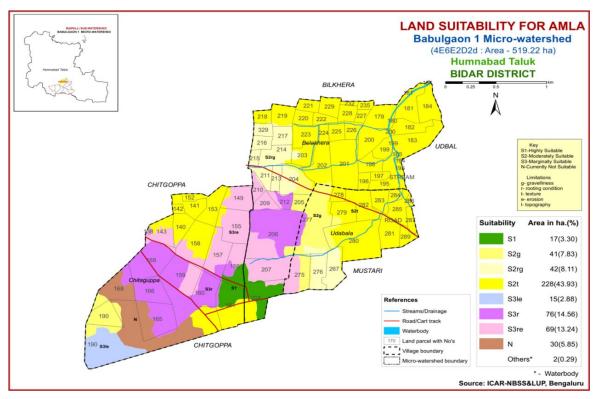


Fig 7.18 Land Suitability map of Amla

7.19 Land Suitability for Tamarind (Tamarindus indica)

Tamarind is the most important spice crop grown in 0.14 lakh ha almost all the districts of the state. The crop requirements for growing tamarind were matched with the soil-site characteristics and a land suitability map for growing tamarind was prepared. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.19.

A very small area of about 10 ha (2%) has soils that are highly suitable (Class S1) and are distributed in the southern part of the microwatershed. Maximum area of about 269 ha (52%) has soils that are moderately suitable (Class S2) for growing tamarind with minor limitations of gravelliness and texture and are distributed in the northeastern, northern and southern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 23 ha (4%) and are occur in the southern part of the microwatershed. They have moderate limitations of slope, erosion and rooting depth. An area of about 217 ha (42%) is not suitable (Class N) for growing tamarind and are distributed in the central, western and southern part of the microwatershed.

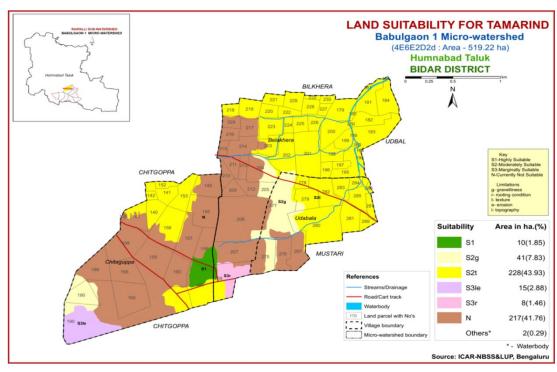


Fig. 7.19 Land Suitability map of Tamarind

7.20 Land Use Classes (LUCs)

The 17 soil map units identified in Babulgaon - 1 microwatershed have been grouped into 6 Land Use classes (LUC's) for the purpose of preparing Proposed Crop Plan. Land Use classes are grouped based on the similarities in respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Use classes map (Fig.7.20) has been generated. These Land Use Classes are expected to behave similarly for a given level of management.

The map units that have been grouped into six Land Use classes along with brief description of soil and site characteristics are given below.

LUCs	Soil map units	Soil and site characteristics
1	RMPiB3g1	Very shallow (<25 cm), gravelly sandy clay to sandy clay loam soils with slopes of 1-3%, severe erosion and gravelly (15-35%).
2	KDMiA1 KDMiB1 KDMiB2 KDMiB3 KDMmB1	Very shallow (25-50 cm), gravelly sandy clay to clay soils with slopes of 0-3%, slight to severe erosion.
3	KKUmA1 KKUmB2	Moderately shallow (50-75 cm), gravelly sandy clay to clay soils with slopes of 0-3%, slight to moderate erosion.
4	MTNiB2	Moderately deep (75-100 cm), gravelly sandy clay to clay soils with slopes of 1-3%, moderate erosion.
5	MNLiB2g1 MNLiC3g1 MNLmA1 MNLmB1 CGPmB2	Deep (100-150 cm), gravelly sandy clay to clay soils with slopes of 0-3%, slight to severe erosion and gravelly (15-35%).
6	BGNmA1 BGNmB1 BGNmB2	Very deep (>150 cm), lowland clayey soils with slopes of 0-3%, slight to moderate erosion.

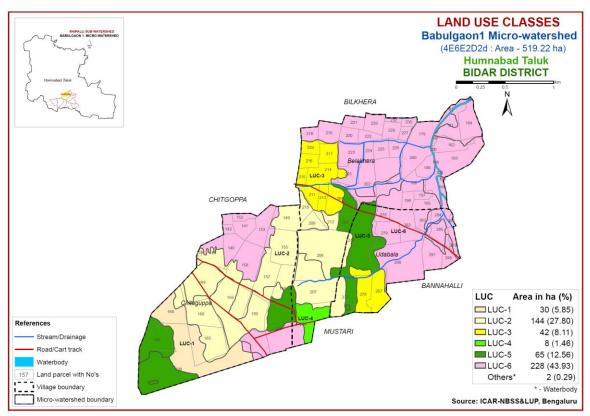


Fig. 7.20 Land Use Classes Map- Babulgaon-1 Microwatershed

7.21 Proposed Crop Plan for Babulgaon -1 Microwatershed

After assessing the land suitability for the 19 crops, the proposed crop plan has been prepared for the six identified LUCs by considering only the highly (Class S1) and moderately (Class S2) suitable lands for each of the 19 crops. The resultant proposed crop plan is presented below in Table 7.14

 Table 7.13 Proposed Crop Plan for Babulgaon -1 Microwatershed

LUC No	Mapping Units	Survey Number	Field Crops	Forestry/ Grasses	Suitable Horticulture Crops under Irrigation	Horticulture Crops with suitable Interventions	Suitable Interventions
LUC 1 30 ha (6%)	RMPiB3g1	Chithaguppa: 190	Sole crop: Bajra, Navane, Linseed, Redgram+Ashwagandh a Redgram + Phundi Red gram + Fodder sorghum, Red gram + Sesamum, Redgram+ Green gram, Redgram +black gram Red gram + Soybean	Jatropa.	Fruit crops: Custard apple, Charolli, Markingnut, Ber, Cashew, <i>Butea spp</i> , Karonda, Bael, Woodapple	Custard apple, Cashew, Tamarind, Aonla	Deep and wider size pit, Drip irrigation with suitable soil and water conservation measures
144 ha	KDMiA1 KDMiB1 KDMiB2 KDMiB3 KDMmB1	Belakhera: 206,207,209, 210, 212 Chithaguppa: 138,143,149, 155,156,157, 159,160,165, 166,168 Udabala: 275	Sole crop; Sorghum, Castor, Bajra, Navane, Niger Red gram + Soybean Red gram + Green gram Red gram + Black gram Red gram + Phundi Red gram + Sessamum, Red gram + Fodder sorghum Red gram + Ashwagandha	Simaruba, Glyricidia, Subabul, Butea spp. Neem, Jatropa, Sandalwood Grasses: Styloxanthes hamata, styloxanthes scabra, Hybrid Napier, Sesbania, Khus grass	Fruit crops: Custard apple, Tamarind, Ber, Cashew, Bael, Woodapple, karonda, Aonla Vegetables: Cluster bean, Bhendi, Phundi Flowers: Gaillardia, Spider lilly	Cashew, Guava, custard apple, Tamarind, Aonla, Lime, Pommelo, Jamun, Ber apple Vegetables: Onion, Tomato, Brinjal, Chilli, Bhendi Flowers-Gaillardia, Marigold, Chrysanthemum, lilly	
	KKUmA1 KKUmB2	Belakhera: 204,211,213, 214,215,216, 217,329	Sole crop: Redgram, soyabean, Sugarcane, Ground nut, sunflower, sorghum.	-do-	Fruit crops: Sapota, Guava, Lime Jamun, Tamarind, Jackfruit, Fig	Fruits: Mango, Guava, Lime, Sweet orange, Kinnow , Papaya, , Banana,	Cultivation on raised beds with mulches and drip.

		Udabala: 267, 276	Red gram + Soybean Red gram + Green gram Red gram + Black gram Red gram + Sesame		Vegetables: Clusterbean, Bhendi, Chilli, Curryleaf, Drumstick Flowers: Gaillardia, Spider lilly, Marigold	Coconut. Vegetables: Solanaceous, Cucurbits, Crucifers, tuberous and leafy vegetables, Drumstick and Curry leaf. Flowers: Gaillardia, Tuberose, Marigold, Chrysanthemum, Rose, Jasmine, Spices: Zinger, turmeric	Drip irrigation with suitable soil and water conservation measures
LUC 4 8 ha (2%)	MTNiB2	Belakhera: 208	-do-	-do-	Fruit crops: Mango, Sapota, Guava, Lime Jamun, Tamarind, Jackfruit, Fig Vegetables: Beans, Bhendi, Drumstick, Cluster bean, Curryleaf, Coriander etc. Flowers: Gaillardia, lilly, Marigold	Fruits: Banana, Papaya, Mango, Sapota, lime, sweet orange, Kinnow, Guava, Coconut, Vegetables: Solanaceous, Cucurbits, Crucifers, tuberous and leafy vegetables, Drumstick and curry leaf. Flowers: Gaillardia, Tuberose, Marigold, Chrysanthemum, Rose, Jasmine, Spices: Zinger, turmeric	Cultivation on raised beds with mulches and drip irrigation system. Drip irrigation with suitable soil and water conservation measures
65 ha	MNLiB2g1 MNLiC3g1 MNLmA1 MNLmB1 CGPmB2	Belakhera: 205 Udabala: 277	- do-	-do-	Fruit crops: Mango, Sapota, Guava, Lime Jamun, Tamarind, Jackfruit, Fig	Fruit crops: Banana, Papaya, Mango, Sapota, lime, sweet orange, Kinnow, Guava, Coconut,	Cultivation on raised beds with mulches and drip irrigation

					Vegetables: Beans, Bhendi, Drumstick, Cluster bean, Curryleaf, Coriander etc. Flowers: Gaillardia, lilly, Marigold	Vegetables: Solanaceous, Cucurbits, Crucifers, tuberous and leafy vegetables, Drumstick and Curry leaf. Flowers: Gaillardia, Tuberose, Marigold, Rose, Jasmine, Chrysanthemum, Spices: Zinger, turmeric	system. Drip irrigation with suitable soil and water conservation measures
LUC 6 228 ha (44%)	BGNmA1 BGNmB1 BGNmB2	182,183,184, 194,195,196, 197,198,199, 200,201,202, 203,218,219, 220,221,222, 223,224,225, 226,227,228, 229,232,235 Chithaguppa: 140,141,142,	Sole crop; Kharif season: Redgram, Soybean, Sugarcane, Sunflower, Cotton, sorghum, red gram Cotton+ Red gram Red gram + Green gram Red gram + Black gram Red gram + Sesame Rabi season: Sorghum, Bengalgram, Safflower, Sunflower, Wheat.	_	Fruit crops: Sapota, Guava, Lime Jamun, Tamarind, etc. Vegetables: Beans, Bhendi, Drumstick, Cluster bean, Curryleaf, Coriander etc.		Cultivation on raised beds with mulches and drip irrigation system. Drip irrigation with suitable soil and water conservation measures

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characteristics of a healthy soil are

- ➢ Good soil tilth
- > Sufficient soil depth
- Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- ➤ Large population of beneficial organisms
- > Small proportion of plant pathogens and insect pests
- ➤ Low weed pressure
- Free of chemicals and toxins that may harm the crop
- Resistance to degradation
- Resilience when unfavorable conditions occur

Characteristics of Babulgaon-1 Microwatershed

- ❖ The soil phases with sizeable area identified in the microwatershed belonged to the soil series of BGN (228 ha), KDM (144 ha), MNL (45 ha), KKU (42 ha), RMP (30 ha), CGP (10 ha) and MTN (6 ha). As per land capability classification, entire area in the microwatershed falls under arable land category (Class II, III and IV). The major limitations identified in the arable lands were soil and erosion.
- ❖ On the basis of soil reaction, small area of about 96 ha (18%) is moderately to slightly acid (pH 5.5-6.5), about 161 ha (31%) is under neutral (pH 6.5-7.3) and

maximum area of about 261 ha (50%) is under slightly to strongly alkaline (pH 7.3-9.0).

Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Alkaline soils

(Slightly alkaline to moderately alkaline soils)

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron -5kg/ha (once in three years).

Neutral soils

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers, (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is one of the major factor affecting the soil health in the microwatershed. Out of total 519 ha area in the microwatershed, an area of 217 ha is suffering from moderate and severe erosion. These areas need immediate soil and water conservation and, other land development and land husbandry practices for restoring soil health.

Dissemination of information and communication of benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil health especially by the Central Government on issuing Soil-Health Cards to all the farmers,

media outlets like regional, state and National Newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as cellular phones and the Internet, which can be much more effective in reaching the younger farmers.

Inputs for Net Planning and Interventions needed

Net planning in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Plans for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.
- In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning are briefly presented below.
- ❖ Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- ❖ Surface soil texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut, root vegetables (carrot, raddish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, Karnataka can be adopted.
- ❖ Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- ❖ Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these

units. In general, erosion and soil are the major constraints in Babulgaon-1 microwatershed.

- ♦ Organic Carbon: The OC content is high (>0.5%) in entire area in the microwatershed.
- ❖ Promoting green manuring: Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level. For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.
- ♦ Available Phosphorus: In 433 ha (83%) area, the available phosphorus is low (<23 kg/ha), medium (23-57 kg/ha) in about 73 ha (14 %) area and high (>57 kg/ha) in 11 ha (2%) area. Hence for all the crops, 25% additional P-needs to be applied, where available p is low or medium.
- ❖ Available Potassium: Available potassium is medium in maximum area of 423 ha (82%) of the microwatershed, about 9 ha (2%) area is low (<145 kg/ha) in available potassium and an area of about 85 ha (55%) is high (>337 kg/ha) in available potassium. Hence, in all these plots, where available potassium is low and medium, for all the crops, additional 25 % potassium may be applied.
- ❖ Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. It is low in an area of 223 ha (43%) area of the microwatershed and medium in 286 ha (55%). These areas need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertitilizer (13% sulphur) for 2-3 years for the deficiency to be corrected. High in about 8 ha (2%).
- **Available Iron:** It is sufficient (>4.5 ppm) in entire area in the microwatershed.
- ❖ Available Zinc: It is deficient (<0.6 ppm) in about 155 ha (30%). Application of zinc sulphate @25kg/ha is to be recommended and about 363 ha (70%) area is sufficient (>0.6 ppm) in the microwatershed.
- ❖ Soil alkalinity: The microwatershed has 261 ha (50%) area has soils that are slightly to strongly alkaline. These areas need application of gypsum and wherever calcium is in excess, iron pyrites and element sulphur can be recommended.

Management practices like treating repeatedly with good quality water to drain out the excess salts and provision of subsurface drainage and growing of salt tolerant crops like Casuarina, Acasia, Neem, Ber etc, are recommended.

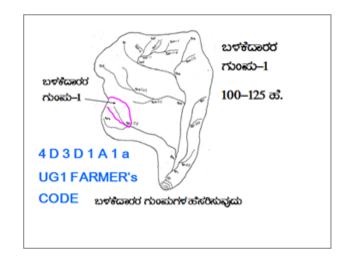
♦ Land Suitability for various crops: Areas that are highly, moderately and marginally suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Babulgaon-1 microwatershed, the land resource inventory database prepared under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) prepared were

- ➤ Soil depth
- ➤ Surface soil texture
- ➤ Soil gravelliness
- ➤ Available water capacity
- ➤ Soil slope
- > Soil erosion
- ➤ Land capability
- > Present land use and land cover
- > Crop suitability maps
- ➤ Rainfall map
- ➤ Hydrology
- ➤ Water Resources
- > Socio-economic data
- ➤ Contour plan with existing features network of waterways, pothissa boundaries, cut up/ minor terraces etc.
- ➤ Cadastral map (1:7920 scale)
- > Satellite imagery (1:7920 scale)

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List to be collected.


Steps for Survey and Preparation of Treatment Plan

The boundaries of Land User Groups' and Survey No. boundaries are traced in the field.

- Naming of user groups and farmers
- ➤ Identification of arable and non arable lands
- > Identification of drainage lines and gullies
- ➤ Identification of non treatable areas
- ➤ Identification of priority areas in the arable lands
- > Treatment plan for arable lands
- ➤ Location of water harvesting and recharge structures

9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment A. BUNDING

Steps fo	r Survey and Preparation of		USER GROUP-1
	Treatment Plan		
Cadastral ma	ap (1:7920 scale) is enlarged to		CLASSIFICATION OF GULLIES
a scale of 1:2	2500 scale		ಕೊರಕಲಿನ ವರ್ಗೀಕರಣ
Existing netv	work of waterways, pothissa		
boundaries,	grass belts, natural drainage	UPPER REACH	•
lines/ waterc	ourse, cut ups/ terraces are		• ಮಧ್ಯಸ್ಥರ
marked on th	ne cadastral map to the scale	MIDDLE REACH	15 +10=25 ಹ. • ಕೆಳಸ್ತರ
Drainage lin	es are demarcated into		25 ಹೆಕ್ಟೇರ್ ಗಿಂತ ಅಧಿಕ
Small	(up to 5 ha catchment)	LOWER REACH	PEg
gullies			POINT OF CONCENTRATION
Medium	(5-15 ha catchment)		
gullies			
Ravines (15-25 ha catchment) and			
Halla/Nala	(more than 25ha catchment)		

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance
Stope percentage	vertical interval (iii)	(m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

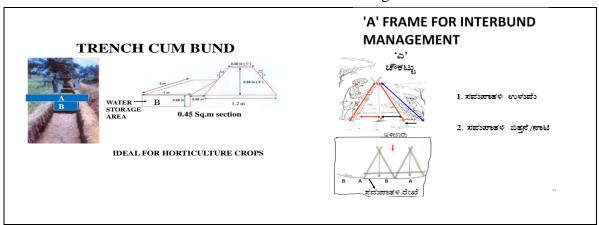
Note: i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1- A= 0-1% slope, 1= slight erosion) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class (bg $_0$ -b=loamy sand, g $_0$ = <15% gravel). The recommended Sections for different soils are given below.


Recommended Bund Section

Top width (m)	Base width (m)	Height (m)	Side slope (Z:1;H:V)	Cross section (sq m)	Soil Texture	Remar ks
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetat
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	ive bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soils	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow black soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow black soils	
0.6	3.1	0.7	1.78:1	1.29	Medium black soils	
0.5	3	0.85	1.47:1	1.49		

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Size of Borrow Pits/ Trench recommended for Trench cum Bund (by machinery)

Bund section	Bund length	Earth quantity	Pit			Berm (pit to pit)	Soil depth class	
m ²	m	m ³	L(m)	W(m)	D(m)	QUANTITY (m ³)	m	
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep

B. Waterways

- **a)** Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- **b)** Considering the contour plan of the MWS, additional waterways/modernization of the existing ones can be thought of.
- **c**) The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in Gokatte/ Recharge ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bunds are formed in the field.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

- a) The cadastral map has to be updated as regards the network of drainge lines (gullies/nalas/hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.
- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- Considering the Catchment, Nala bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ Nala bund/ Percolation tank) will be decided considering the commitments and available runoff in water budgeting and quality of water in the wells and site suitability.
- e) Detailed Leveling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from geological maps.
- g) Rainfall intensity data of the nearest Rain gauge station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge structures is reduced by providing vegetative, boulder and earthern checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/ survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type. The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been prepared which shows the spatial distribution and extent of area. A maximum area of about 260 ha (50%) requires trench cum bunding and strengthening of bunds about 228 ha (44%) area needs graded bunds or strengthening of existing bunds and about 30 ha (6%) area requires crescent bunds. The conservation plan prepared may be presented to all the stakeholders including farmers and after including their suggestions, the conservation plan for the microwatershed may be finalised in a participatory approach.

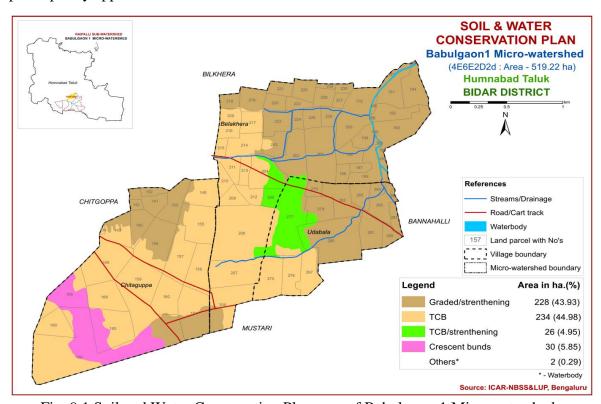


Fig. 9.1 Soil and Water Conservation Plan map of Babulgaon-1 Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability classes V, VI and VII) and also the lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open pits during the 1st week of March along the contour and heap the dug out soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2nd or 3rd week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Neral (*Sizyzium cumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry De	eciduous Species	Temp (°C)	Rainfall(mm)
1.	Bevu	Azadiracta indica	21–32	400 –1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 -50	500-2,500
5.	Kamara	Hardwikia binata	25 -35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 -2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 -2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist D	Peciduous Species		
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 -50	500 - 2000
19.	Shivane	Gmelina arboria	20 -50	500 -2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000
23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20 - 40	500 - 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- 2. FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- 3. IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- 4. Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Reaserch Gap and future needs. Fert. News 48 (4); 9-20.
- 5. Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS &LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- 7. Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015)Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- 8. Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull. 23, NBSS &LUP, Nagpur.
- 9. Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How?, National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- Shivaprasad, C.R., R.S. Reddy, J. Sehgal and M. Velayuthum (1998) Soils of Karntaka for Optimising Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- 12. Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix I

Babulgaon-1 Microwatershed Soil Phase Information

Village	Surve y No.	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Belakhera	179	5.89	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Bengalgram+Sugarcane +Wheat (Bg+Sc+Wh)	1 Openwell	IIs	Graded/strent hening
Belakhera	180	0.49	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	Graded/strent hening
Belakhera	181	6.74	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane+Redgram(Sc +Rg)	1 Borewell,1 Checkdam	IIs	Graded/strent hening
Belakhera	182	4.95	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane+Redgram+J owar+Wheat(Sc+Rg+J+ Wh)	Not Available	IIs	Graded/strent hening
Belakhera	183	9.84	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Sugarcane+Redgram+J owar(Sc+Rg+J)	1 Checkdam,1 Openwell,2 Borewell	IIs	Graded/strent hening
Belakhera	184	6.6	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Sugarcane+B engalgram+Jowar (Rg+Sc+Bg+J)	3 Borewell	IIs	Graded/strent hening
Belakhera	194	0.09	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land(Fl)	Not Available	IIs	Graded/strent hening
Belakhera	195	7.39	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Jowar+Scrub land(Rg+J+Sl)	Not Available	IIs	Graded/strent hening
Belakhera	196	2.13	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram(Rg)	Not Available	IIs	Graded/strent hening
Belakhera	197	1.62	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram+Jowar(Rg+J)	Not Available	IIs	Graded/strent hening
Belakhera	198	4.01	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Bengalgram+Jowar+Scr ub land(Bg+J+Sl)	Not Available	IIs	Graded/strent hening
Belakhera	199	3.57	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land (Sl)	Not Available	IIs	Graded/strent hening
Belakhera	200	6.87	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Redgram+Jowar+Sugar cane+Paddy+Scrub land (Rg+J+Sc+Pd+Sl)	2 Borewell	IIs	Graded/strent hening
Belakhera	201	13.84	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Redgram+Sugarcane+J owar+Bengalgram+Scr ub land (Rg+Sc+J+Bg+Sl)	2 Borewell	IIs	Graded/strent hening
Belakhera	202	9.06	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Sugarcane+Redgram+J owar (Sc+Rg+J)	Not Available	IIs	Graded/strent hening
Belakhera	203	4.5	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Sugarcane+Jowar+Whe at (Sc+J+Wh)	1 Borewell	IIs	Graded/strent hening
Belakhera	204	8.94	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Redgram+Sugarcane (Rg+Sc)	2 Borewell	IIIs	тсв
Belakhera	205	2.63	MNLmA1	LUC-5	Deep (100- 150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0- 1%)	Slight	Scrub land (SI)	Not Available	IIIs	TCB/strenthen ing

ı

Village	Surve y No.	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Belakhera	206	25.11	KDMmB1	LUC-2	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Slight	Redgram+Sugarcane(R g+Sc)	3 Borewell	IVs	тсв
Belakhera	207	11.11	KDMiB2	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Moderat e	Redgram+Sugarcane+T omato (Rg+Sc+Tm)	Not Available	IVs	тсв
Belakhera	208	11.74	MTNiB2	LUC-4	Moderately deep (75- 100 cm)	Sandy clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram+Sugercane+M arigold (Rg+Sc+Mg)	Not Available	IIs	тсв
Belakhera	209	3.19	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Redgram+Cabbage+No Crop(Rg+Cg+NC)	1 Openwell	IVs	тсв
Belakhera	210	2.63	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Cabbage+Fallow land(Cg+Fl)	3 Borewell	IVs	тсв
Belakhera	211	3.39	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Redgram+Sugarcane(R g+Sc)	Not Available	IIIs	тсв
Belakhera	212	3.11	KDMmB1	LUC-2	Shallow (25-50 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Slight	Redgram(Rg)	Not Available	IVs	тсв
Belakhera	213	2.55	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Redgram+Sugarcane(R g+Sc)	Not Available	IIIs	тсв
Belakhera	214	6.23	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Sugarcane+Cabbage(Sc +Cg)	5 Borewell	IIIs	тсв
Belakhera	215	1.77	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Paddy+Sugarcane(Pd+S c)	Not Available	IIIs	тсв
Belakhera	216	2.79	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Sugarcane+Jowar(Sc+J)	1 Borewell	IIIs	тсв
Belakhera	217	3.97	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Redgram+Jowar(Rg+J)	Not Available	IIIs	тсв
Belakhera	218	2.47	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Jowar(Rg+J)	Not Available	IIs	Graded/strent hening
Belakhera	219	4.89	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Jowar(Rg+J)	Not Available	IIs	Graded/strent hening
Belakhera	220	2.91	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram(Rg)	Not Available	IIs	Graded/strent hening
Belakhera	221	2.72	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Sugarcane+Wheat(Sc+ Wh)	Not Available	IIs	Graded/strent hening
Belakhera	222	2.28	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram(Rg)	Not Available	IIs	Graded/strent hening
Belakhera	223	5.61	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Jowar+Bengalgram(J+B g)	1 Borewell	IIs	Graded/strent hening
Belakhera	224	1.76	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Bengalgram+Paddy(Bg +Pd)	Not Available	IIs	Graded/strent hening
Belakhera	225	3.09	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Bengalgram+Safflower(Bg+Sf)	Not Available	IIs	Graded/strent hening

Village	Surve y No.	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Belakhera	226	2.81	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Bengalgram+ Jowar(Rg+Bg+J)	Not Available	IIs	Graded/strent hening
Belakhera	227	1.57	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Fallow land(Fl)	Not Available	IIs	Graded/strent hening
Belakhera	228	3.04	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram(Rg)	Not Available	IIs	Graded/strent hening
Belakhera	229	3.83	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Bengalgram(Rg+Bg)	Not Available	IIs	Graded/strent hening
Belakhera	232	0.78	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram(Rg)	Not Available	IIs	Graded/strent hening
Belakhera	235	1.37	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Jowar(J)	Not Available	IIs	Graded/strent hening
Belakhera	329	2.57	KKUmA1	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Redgram+Jowar(Rg+J)	Not Available	IIIs	тсв
Chitaguppa	138	0.28	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	NA	Not Available	IVs	тсв
Chitaguppa	140	4.77	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Paddy+Jowar (Rg+Pd+J)	1 Borewell	IIs	Graded/strent hening
Chitaguppa	141	4.63	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram(Rg)	1 Borewell	IIs	Graded/strent hening
Chitaguppa	142	1.12	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Bengalgram(Bg)	1 Borewell	IIs	Graded/strent hening
Chitaguppa	143	6.08	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Redgram+No Crop(Rg+NC)	Not Available	IVs	тсв
Chitaguppa	149	7.06	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Redgram+Fallow land(Rg+Fl)	Not Available	IVs	тсв
Chitaguppa	152	1.61	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Safflower(Rg +Sf)	1 Borewell	IIs	Graded/strent hening
Chitaguppa	153	6.14	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Bengalgram(Rg+Bg)	Not Available	IIs	Graded/strent hening
Chitaguppa	155	10.4	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Redgram+Fallow land(Rg+Fl)	Not Available	IVs	тсв
Chitaguppa	156	8.11	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Redgram+Paddy+Fallo w land+No Crop(Rg+Pd+Fl+NC)	Not Available	IVs	тсв
Chitaguppa	157	9.26	KDMiB3	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Redgram+No Crop(Rg+NC)	Not Available	IVs	тсв
Chitaguppa	158	12.01	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Sugarcane(R g+Sc)	Not Available	IIs	Graded/strent hening
Chitaguppa	159	10.67	KDMiB1	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Slight	Redgram+Greengram+ Sugarcane+Jowar+No Crop(Rg+Gg+Sc+J+NC)	6 Borewell	IVs	тсв
Chitaguppa	160	7.55	KDMiB1	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Slight	Redgram+Sugarcane+M arigold+No Crop(Rg+Sc+Mg+NC)	Not Available	IVs	тсв
Chitaguppa	161	11.78	BGNmA1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0-1%)	Slight	Sugarcane+Redgram+N o Crop(Sc+Rg+NC)	1 Borewell	IIs	Graded/strent hening

Village	Surve y No.	Total Area (ha)	Soil Phase	LUC	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Capa bility	Conservation Plan
Chitaguppa	165	12.37	KDMiA1	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0-1%)	Slight	Redgram+No Crop(Rg+NC)	2 Borewell	IVs	тсв
Chitaguppa	166	7.87	KDMiA1	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Nearly level (0- 1%)	Slight	Redgram+Mulberry(Rg +Mu)	Not Available	IVs	тсв
Chitaguppa	168	22.91	KDMiB1	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Slight	Redgram+Sugarcane+J owar+Castaroil+Avare kai(Rg+Sc+J+Ca+Av)	4 Borewell	IVs	тсв
Chitaguppa	190	57.46	RMPiB3g1	LUC-1	Very shallow (<25 cm)	Sandy clay	Gravelly (15- 35%)	Very low (<50 mm)	Very gently sloping (1-3%)	Severe	Redgram+Marigold+Su garcane+Jowar+Fallow land+No Crop (Rg+Mg+Sc+J+Fl+NC)	4 Checkdam,2 Borewell	IVs	Crecent bunds
Udabala	267	6.91	KKUmB2	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Moderat e	Sugarcane(Sc)	1 Openwell,2 Borewell	IIIs	тсв
Udabala	275	8.63	KDMiB2	LUC-2	Shallow (25-50 cm)	Sandy clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Moderat e	Redgram(Rg)	1 Openwell	IVs	тсв
Udabala	276	6.02	KKUmB2	LUC-3	Moderately shallow (50- 75 cm)	Clay	Non gravelly (<15%)	Very low (<50 mm)	Very gently sloping (1-3%)	Moderat e	Redgram+Fallow land(Rg+Fl)	1 Openwell	IIIs	тсв
Udabala	277	19.66	MNLmA1	LUC-5	Deep (100- 150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Nearly level (0- 1%)	Slight	Redgram+Jowar(Rg+J)	1 Borewell	IIIs	TCB/strenthen ing
Udabala	278	2.03	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram+Bengalgram(Rg+Bg)	Not Available	IIs	Graded/strent hening
Udabala	279	5.77	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Scrub land (SI)	1 Borewell	IIs	Graded/strent hening
Udabala	280	19.01	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram+Sugarcane+S afflower+Jowar+Bengal gram(Rg+Sc+Sf+J+Bg)	6 Borewell	IIs	Graded/strent hening
Udabala	281	6.03	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Sugarcane+Paddy(Sc+P d)	1 Borewell	IIs	Graded/strent hening
Udabala	282	7.21	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram+Sugarcane(R g+Sc)	Not Available	IIs	Graded/strent hening
Udabala	283	3.75	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram+Paddy(Rg+P d)	1 Borewell	IIs	Graded/strent hening
Udabala	284	1.69	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land (SI)	Not Available	IIs	Graded/strent hening
Udabala	285	4.96	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	Redgram+Jowar+Scrub land(Rg+J+Sl)	Not Available	IIs	Graded/strent hening
Udabala	286	0.48	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Scrub land (SI)	Not Available	IIs	Graded/strent hening
Udabala	287	1.89	BGNmB1	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land(Fl)	1 Openwell	IIs	Graded/strent hening
Udabala	289	2.33	BGNmB2	LUC-6	Very deep (>150 cm)	Clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Moderat e	No Crop(NC)	1 Borewell	IIs	Graded/strent hening

Appendix II

Babulgaon-1 Microwatershed Soil Fertility Information

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Belakhera	179	Strongly alkaline (pH 8.4-9.0)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Belakhera	180	Strongly alkaline (pH 8.4-9.0)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Belakhera	181	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Belakhera	182	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Belakhera	183	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Belakhera	184	Moderately alkaline	Non Saline	High	kg/ha) Low (<23	337 kg/ha) Medium (145-	ppm) Low (<10	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	194	(pH 7.8-8.4) Moderately alkaline	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	ppm) Low (<10	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Deficient
Belakhera	195	(pH 7.8-8.4) Strongly alkaline	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	ppm) Low (<10	1.0 ppm) Low (<0.5	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
		(pH 8.4-9.0) Strongly alkaline	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	ppm) Low (<10	ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Belakhera	196	(pH 8.4-9.0) Strongly alkaline	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	ppm) Low (<10	1.0 ppm) Low (<0.5	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Belakhera	197	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Belakhera	198	Strongly alkaline (pH 8.4-9.0)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Belakhera	199	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Belakhera	200	Strongly alkaline (pH 8.4-9.0)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	High (>337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Belakhera	201	Strongly alkaline (pH 8.4-9.0)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Belakhera	202	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Belakhera	203	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23	Medium (145-	Medium (10-	Medium (0.5- 1.0 ppm)	Sufficient	Sufficient	Sufficient	Sufficient
Belakhera	204	Moderately alkaline	Non Saline	High	kg/ha) Low (<23	337 kg/ha) Medium (145-	20 ppm) Medium (10-	Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	205	(pH 7.8-8.4) Slightly alkaline	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	20 ppm) Low (<10	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	206	(pH 7.3-7.8) Neutral (pH 6.5-7.3)	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	207	Neutral (pH 6.5-7.3)	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
			(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Low (<23	337 kg/ha) Medium (145-	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	208	Neutral (pH 6.5-7.3) Slightly alkaline	(<2 dsm) Non Saline	(>0.75 %) High	kg/ha) Medium (23-	337 kg/ha) Medium (145-	20 ppm) Low (<10	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	209	(pH 7.3-7.8)	(<2 dsm)	(>0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Belakhera	210	Slightly alkaline	Non Saline	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10-	Medium (0.5-	Sufficient (>4.5 ppm)	Sufficient	Sufficient	Sufficient
		(pH 7.3-7.8) Moderately alkaline	(<2 dsm) Non Saline	High	Medium (23-	High (>337	20 ppm) Medium (10-	1.0 ppm) Medium (0.5-	Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	211	(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
D 1 11	240	Slightly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Belakhera	212	(pH 7.3-7.8)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	213	Moderately alkaline	Non Saline	High	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Delakilera	213	(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	214	Moderately alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
Delaimera		(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	215	Moderately alkaline	Non Saline	High	Low (<23	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	216	Moderately alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	217	Moderately alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	218	Moderately alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
		(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Belakhera	219	Strongly alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	220	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
		Moderately alkaline	Non Saline	High	Low (<23	Medium (145-	ppm) Low (<10	1.0 ppm) Medium (0.5-	(>4.5 ppm) Sufficient	(>1.0 ppm) Sufficient	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Belakhera	221	(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Belakhera	222	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Belakhera	223	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Belakhera	224	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Belakhera	225	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
B 1 11	226	Strongly alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Belakhera	226	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
D -1 -1-b	225	Strongly alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Belakhera	227	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Dololrhono	228	Strongly alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Belakhera	220	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Belakhera	229	Strongly alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Бетакиега	229	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	232	Strongly alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
DEIGNIEI d	232	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Belakhera	235	Strongly alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Delumitera	233	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Belakhera	329	Moderately alkaline	Non Saline	High	Low (<23	High (>337	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Delakiicia	327	(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Chitaguppa	138	Neutral (pH 6.5-7.3)	Non Saline	High	Medium (23-	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
	100	Trouble (pir old 715)	(<2 dsm)	(>0.75 %)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Village	Survey Number	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Chitaguppa	140	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	141	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	142	Slightly alkaline (pH 7.3-7.8)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	143	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	High (>57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	149	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	152	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	153	Slightly acid (pH 6.0-6.5)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	155	Slightly acid (pH 6.0-6.5)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	156	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	157	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	158	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	159	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	160	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	161	Slightly acid (pH 6.0-6.5)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	165	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	166	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	168	Slightly acid (pH 6.0-6.5)	Non Saline (<2 dsm)	High (>0.75 %)	Medium (23- 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Chitaguppa	190	Slightly acid (pH 6.0-6.5)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	High (>1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Udabala	267	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Udabala	275	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Udabala	276	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Udabala	277	Neutral (pH 6.5-7.3)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Udabala	278	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Udabala	279	Moderately alkaline (pH 7.8-8.4)	Non Saline (<2 dsm)	High (>0.75 %)	Low (<23 kg/ha)	Medium (145- 337 kg/ha)	Low (<10 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (>1.0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)

Village	Survey	Soil Reaction	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available
· mage	Number	Don Heation	Julility	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Udabala	280	Moderately alkaline	Non Saline	High	Low (<23	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Uuabala	200	(pH 7.8-8.4)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Udahala	281	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Sufficient
Udabala	281	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Udabala	282	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Uuabala	202	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Udabala	283	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Udabaia	283	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Udabala	284	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Ouabaia	204	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
IIdahala	285	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Medium (0.5-	Sufficient	Sufficient	Sufficient	Deficient
Udabala	205	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
IIdahala	286	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Udabala	280	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
IIdahala	287	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Deficient
Udabala	287	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(<0.6 ppm)
11.3 -11 -	200	Strongly alkaline	Non Saline	High	Low (<23	Medium (145-	Low (<10	Low (<0.5	Sufficient	Sufficient	Sufficient	Sufficient
Udabala	289	(pH 8.4-9.0)	(<2 dsm)	(>0.75 %)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	(>1.0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Appendix III

Babulgaon-1 Microwatershed Soil Suitability Information

Village	Survey No.	Sorghu m	Maiz e	Red gram	Sun flower	Cott on	Sugar cane	Soyabe an	Bengalgr am	Guav a	Man go	Sapo ta	Jackfr uit	Jamu n	Musam bi	Lime	Cashe w	Custard apple	Amla	Tamari nd
Belakhera	179	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	180	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	181	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	182	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	183	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	184	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	194	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	195	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	196	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	197	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	198	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	199	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	200	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
		S1			S1			S1	S1									S2t		S2t
Belakhera	201		S3t	S2t		S1	S3t	_	_	S3t	N	S3t	S3t	S2t	S2t	S2t	N		S2t	
Belakhera	202	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	203	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	204	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Belakhera	205	S3le	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S2g	S2g	S2g	S3g	S2g	S2g	S2g
Belakhera	206	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N	S3r	S3r	S3r	N
Belakhera	207	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N	S3re	S3re	S3re	N
Belakhera	208	S2ge	S2g	S2ge	S2rg	S2tg	S2ge	S2ge	S2ge	S2rg	S3rg	S2	S2rg	S2rg	S2rg	S2rg	S1	S1	S1	S3r
Belakhera	209	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N	N	N	N	N	N	S3re	S3re	S3re	N
Belakhera	210	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N	N	N	N	N	N	S3re	S3re	S3re	N
Belakhera	211	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Belakhera	212	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N	S3r	S3r	S3r	N
Belakhera	213	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Belakhera	214	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Belakhera	215	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Belakhera	216	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Belakhera	217	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Belakhera	218	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	219	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	220	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	221	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	222	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	223	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	224	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	225	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	226	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	227	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
	228	S1	S3t		S1	S1	S3t	S1	S1		N N		S3t		S2t	S2t	N	S2t	S2t	S2t
Belakhera				S2t						S3t		S3t		S2t						
Belakhera	229	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	232	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Belakhera	235	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t

Village	Survey No.	Sorghu m	Maiz e	Red gram	Sun flower	Cott	Sugar cane	Soyabe an	Bengalgr am	Guav a	Man go	Sapo ta	Jackfr uit	Jamu n	Musam bi	Lime	Cashe w	Custard apple	Amla	Tamari nd
Belakhera	329	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Chitaguppa	138	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N	N	N	N	N	N	S3re	S3re	S3re	N
Chitaguppa	140	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Chitaguppa	141	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Chitaguppa	142	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Chitaguppa	143	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N	N	N	N	N	N	S3re	S3re	S3re	N
Chitaguppa	149	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N	N	N	N	N	N N	S3re	S3re	S3re	N
Chitaguppa	152	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Chitaguppa	153	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Chitaguppa	155	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N N	N	N	N	N	N N	S3re	S3re	S3re	N
Chitaguppa	156	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N	N	N	N	N	N	S3re	S3re	S3re	N
Chitaguppa	157	S3r	S3r	S3r	Nr	S3re	S3re	S3re	S3re	N	N	N	N	N	N	N N	S3re	S3re	S3re	N
Chitaguppa	158	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Chitaguppa	159	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N N	S3r	S3r	S3r	N
Chitaguppa	160	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N N	N	N	N	N	N N	S3r	S3r	S3r	N
Chitaguppa	161	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Chitaguppa	165	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N N	S3r	S3r	S3r	N
Chitaguppa	166	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N N	S3r	S3r	S3r	N
Chitaguppa	168	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N	S3r	S3r	S3r	N
Chitaguppa	190	Nre	Nre	Nre	Nre	Nre	Nre	Nre	Nre	N	N	N	N	N	N	N N	N	N	N	N
Udabala	267	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Udabala	275	S3r	S3r	S3r	Nr	S3r	S3r	S3r	S3r	N	N	N	N	N	N	N	S3re	S3re	S3re	N
Udabala	276	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3rg	N	S3rg	N	N	S3rg	S3rg	S3g	S2rg	S2rg	N
Udabala	277	S3le	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S2g	S2g	S2g	S3g	S2g	S2g	S2g
Udabala	278	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	279	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	280	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	281	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	282	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	283	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	284	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	285	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	286	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	287	S1	S3t	S2t	S1	S1	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Udabala	289	S1	S3t	S2t	S1	S2e	S3t	S1	S1	S3t	N	S3t	S3t	S2t	S2t	S2t	N	S2t	S2t	S2t
Jundulu		31	551	521		520	550		J1	550	.,	550	550	520	321	521		321	524	520

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1.	Executive summary	1-3
2.	Introduction	5
3.	Methodology	7-11
4.	Results and discussions	13-30

LIST OF TABLES

1. Soci	ial status	
1	Human population among sample households	13
2	Basic needs of sample households	14
3	Institutional participation among the sample population	16
II. Eco	onomic status	
4	Occupational pattern in sample households	16
5	Domestic assets among samples households	16
6	Farm assets among samples households	17
7	Livestock assets among sample households	17
8	Milk produced and Fodder availability of sample households	18
9	Women empowerment of sample households	19
10	Per capita daily consumption of food among the sample households	19
11	Annual average Income from various sources	20
12	Average annual expenditure of sample households	21
13	Distribution of land holding among the sample households	22
14	Land holding among samples households	22
III. R	esource use pattern	
15	Number of tree/plants covered in sample farm households	22
16	Present cropping pattern among samples households	23
17	Distribution of soil series in the watershed	24
IV. Ed	conomic land evaluation	
18	Cropping pattern on major soil series	25
19	Alternative land use options for different size group of farmers	25
19	(Benefit Cost Ratio)	23
20	Economics Land evaluation and bridging yield gap for different crops	26
21	Estimation of onsite cost of soil erosion	27
22	Ecosystem services of food grain production	28
23	Ecosystem services of water supply for crop production	29
24	Farming constraints	30

LIST OF FIGURES

1	Location of study area	8
2	ALPES Framework	9
3	Basic needs of sample households	15
4	Domestic assets among the sample households	17
5	Livestock assets among sample households	18
6	Per capita daily consumption of food among the sample households	20
7	Average annual expenditure of sample households	21
8	Present cropping pattern	23
9	Estimation of onsite cost of soil erosion	27
10	Ecosystem services of food grain production	28
11	Ecosystem services of water supply	29

EXECUTIVE SUMMARY

Baseline socioeconomic characterisation is prerequisite to prepare action plan for program implementation and to assess the project performance before making any changes in the watershed development program. The baseline provides appropriate policy direction for enhancing productivity and sustainability in agriculture.

Methodology: Babulgaon-1 Microwatershed (Raipalli sub-watershed, Humnabad taluk, Bidar district) is located in between $17^040'-17^042'$ North latitudes and $77^012'-77^015'$ East longitudes, covering an area of about 519.22 ha, bounded by Mustari, Udbal, Chitgoppa and Bilkhera villages with length of growing period (LGP) 120-150 days. We used soil resource map as basis for sampling farm households to test the hypothesis that soil quality influence crop selection, and conservation investment of farm households. The level of technology adoption and productivity gaps and livelihood patterns were analyses. The cost of soil degradation and ecosystem services were quantified.

Results: The socio-economic outputs for the Babulgaon-1 Microwatershed in Raipalli sub-watershed, Humnabad taluk and Bidar district are presented here.

Social Indicators;

- ❖ *Male and female ratio is 55.4 to 44.6 per cent to the total sample population.*
- ❖ Younger age group of 18 to 30 populations is around 71.4 per cent to the total population.
- ❖ *Literacy population is around 92.0 per cent.*
- Social groups belong to scheduled caste (SC) and scheduled tribe (ST) was around 20 per cent.
- Liquefied petroleum gas (LPG) is the source of energy for a cooking among 60 per cent.
- ❖ About 40 per cent of households have a yashaswini health card.
- ❖ Dependence on ration cards for food grains through public distribution system is around 70 per cent.
- Swach bharath program providing closed toilet facilities around 50 per cent of sample households.
- ❖ *Institutional participation is only 7.1 per cent of sample households.*
- * Women participation in decisions making of agriculture production of households was found.

Economic Indicators;

* The average land holding is 2.0 ha indicates that majority of farm households are belong to small and medium farmers. The irrigated land account for 62.8 per cent and rainfed land is 42.1 per cent of total cultivated land of the sample farmers.

- Agriculture is the main occupation among 54.2 per cent and agriculture is the main and agriculture labour is subsidiary occupation for 33.3 per cent of sample households.
- * The average value of domestic assets is around Rs.18843 per household. Mobile and television are popular media mass communication.
- * The average value of farm assets is around Rs.250 per household, only 10 per cent of sample farmers are having weeder.
- * The average value of livestock is around Rs.40033 per household; about 61.5 per cent of household are having livestock.
- * The average per capita food consumption is around 810.2 grams (1637.0 kilo calories) against national institute of nutrition (NIN) recommendation at 827 gram. Around 70.0 per cent of sample households are consuming less than the NIN recommendation.
- * The annual average income is around Rs 26634 per household. About 90.0 per cent of farm households are below poverty line.
- ❖ The per capita average monthly expenditure is around Rs. 1451.

Environmental Indicators-Ecosystem Services;

- * The value of ecosystem service helps to support investment to decision on soil and water conservation and in promoting sustainable land use.
- The onsite cost of different soil nutrients lost due to soil erosion is around Rs. 1080 per ha/year. The total cost of annual soil nutrients is around Rs. 487243 per year for the total area of 519.28 ha.
- * The average value of ecosystem service for food grain production is around Rs. 4530/ ha/year. Per hectare food grain production services is maximum in red gram (Rs. 11328) followed by soybean (Rs. 2924), bengal gram (Rs. 2547) and sunflower (Rs. 1320).
- ❖ The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum in redgram (Rs. 58317) followed by bengal gram (Rs. 45420), sunflower (Rs. 32457) and soybean (Rs. 21202).

Economic Land Evaluation;

- ❖ The major cropping pattern is red gram (74.3 %) followed by bengal gram (14.4 %) sunflower (7.1 %) and soybean (4.2 %).
- ❖ In Babulgoan 1 micro watershed, major soils are soil of Hindupur (BGN) series are having very deep soil depth cover around 43.9 % of area. On this soil farmers are presently growing red gram (69.5 %), bengalgram (17.1 %), sunflower (8.4 %) and soybean (5.1 %). Devarahalli (KDM) are also having shallow soil depth

- cover around 27.8 % of area, main crops is red gram. Kallipura (RMP) soil series having very shallow soil depth cover around 5.8 % of areas, in these area main crops is red gram.
- ❖ The total cost of cultivation and benefit cost ratio (BCR) in study area for red gram ranges between Rs. 55182/ha in RMP soil (with BCR of 1.20) and Rs. 30326/ha in BGN soil (with BCR of 1.37).
- ❖ In bengal gram the cost of cultivation in BGN soil is Rs. 25076//ha (with BCR of 1.10)
- ❖ In soybean the cost of cultivation in BGN soil is Rs 29680/ha (with BCR of 1.10) and sunflower the cost of cultivation in BGN soil is Rs28572/ha (with BCR of 1.05).
- ❖ The land management practices reported by the farmers are crop rotation, tillage practices, fertilizer application and use of farm yard manure (FYM). Due to higher wages farmer are following labour saving strategies is not prating soil and water conservation measures. Less ownership of livestock limiting application of FYM.
- ❖ It was observed soil quality influences on the type and intensity of land use. More fertilizer applications in deeper soil to maximize returns.

Suggestions;

- ❖ Involving farmers is watershed planning helps in strengthing institutional participation.
- ❖ The per capita food consumption and monthly income is very low. Diversifying income generation activities from crop and livestock production in order to reduce risk related to drought and market prices.
- * Majority of farmers reported that they are not getting timely support/extension services from the concerned development departments.
- * By strengthing agricultural extension for providing timely advice improved technology there is scope to increase in net income of farm households.
- ❖ By adopting recommended package of practices by following the soil test fertiliser recommendation, there is scope to increase yield in red gram (0 to 20.7 %), bengal gram (55.1 %), soybean (49.4 %) and sunflower (40.7 %).

INTRODUCTION

Watershed Development program aim to restore degraded watersheds in rainfed regions to increase their capacity to capture and store rain water, reduce soil erosion, and improved soil nutrients and carbon contents so they can produce greater agricultural yields and other benefits. As majority of rural poor live in these regions and dependent on natural resources for their livelihood and sustenance, improvements in agricultural yields improve human welfare and simultaneously improve national food security.

Sujala–III watershed development project conceptualised and implemented by the Watershed Development Department of Government of Karnataka with tripartite cost-sharing arrangements. The World Bank through International Development Association provided major portion of plan outlay as a loan to Government of India and in turn loan to Government of Karnataka.

The objectives of Sujala-III is to demonstrate more effective watershed management through greater integration of programs related to rain fed agriculture, innovative and science based approaches and strengthened institutions and capacities. The project is implemented in 11 districts of Bidar, Vijayapura, Gulbarga, Yadgir, Koppal, Gadag, Raichur, Davanagere, Tumkur, Chikkamangalur and Chamarajanagar which have been identified by the Watershed Development Department based on rainfall and socioeconomic conditions. The project will be implemented over six years and linked with the centrally financed integrated watershed management programme.

Economic evaluations can better guide in watershed planning and implementation, as well as raise awareness of benefits of ecosystem restoration for food security and poverty alleviation program. The present study aims to characterize socio-economic status of farm households, assess the land and water use status, evaluate the economic viability of land use, prioritize farming constraints and suggest the measures for soil and water conservation for sustainable agriculture.

Objectives of the study

- 1. To characterize socio-economic status of farm households
- 2. To evaluate the economic viability of land use and land related constraints
- 3. To estimate the ecosystem service provided by the watershed and
- 4. To suggest alternatives for sustainable agriculture production.

METHODOLOGY

Study area

Babulgaon-1 Microwatershed is located in North eastern Transition Zone of Karnataka (Figure 1). Extends over all the five taluks of Bidar district and two of Gulbarga. The total geographical area of the zone is about 0.87 M ha of which 0.7 M ha is under cultivation with 0.07 M ha under irrigation. Most of the zone is at an elevation of 800-900 m MSL, but some area is between 450 and 800m. Average annual rainfall of the zone ranges is from 830 to 919 mm. The major soils encountered are red and lateritic soils with shallow to medium black soils occurring over limited area. The main cropping season is *Kharif*. Sorghum, *bajra*, red gram, oilseeds, cotton and sugarcane are the important crops of the zone. It's represented Agro Ecological Sub Region (AESR) 6.2 having LGP 120-150 days.

Babulgaon-1 Microwatershed (Raipalli sub-watershed, Humnabad taluk and Bidar district) is located in between $17^040^{\circ} - 17^042^{\circ}$ North latitudes and $77^012^{\circ} - 77^015^{\circ}$ East longitudes, covering an area of about 519.22 ha, bounded by Mustari, Udbal, Chitgoppa and Bilkhera villages.

Sampling Procedure:

In this study we have followed soil variability as criterion for sampling the farm households. In each Microwatershed the survey numbers and associated soil series are listed. Minimum three farm households for each soil series were taken and summed up to arrive at total sample for analysis.

Sources of data and analysis:

For evaluating the specific objectives of the study, primary data was collected from the sample respondents by personal interview method with the help of pre-tested questionnaire. The data on socio-economic characteristics of respondents such as family size and composition, land holdings, asset position, occupational pattern and education level was collected. The present cropping pattern and the level of input use and yields collected during survry. The data collected from the representative farm households were analysed using Automated Land Potential Evalution System (Figure 2).

LOCATION MAP OF BABULGAON 1 MICRO-WATERSHED

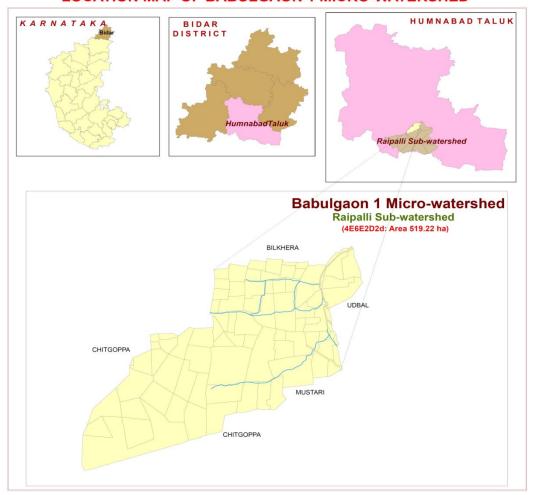


Figure 1: Location of study area

Steps followed in socio-economic assessment

- •After the completion of soil profile study link the cadastral number to the soil profile in the micro watershed.
- Download the names of the farmers who are owning the land for each cadastral number in the Karnataka BHOOMI Website.
- Compiling the names of the farmers representing for all the soil profiles studied in the micro watershed for socio-economic Survey.
- Conducting the socioeconomic survey selected of farm households in the micro watershed.
- Farm households database created using the Automated Land Potential Evaluation System (ALPES) for analysis of socio economic status for each micro watershed
- Synthesis of tables and preparation of report for each micro watershed.

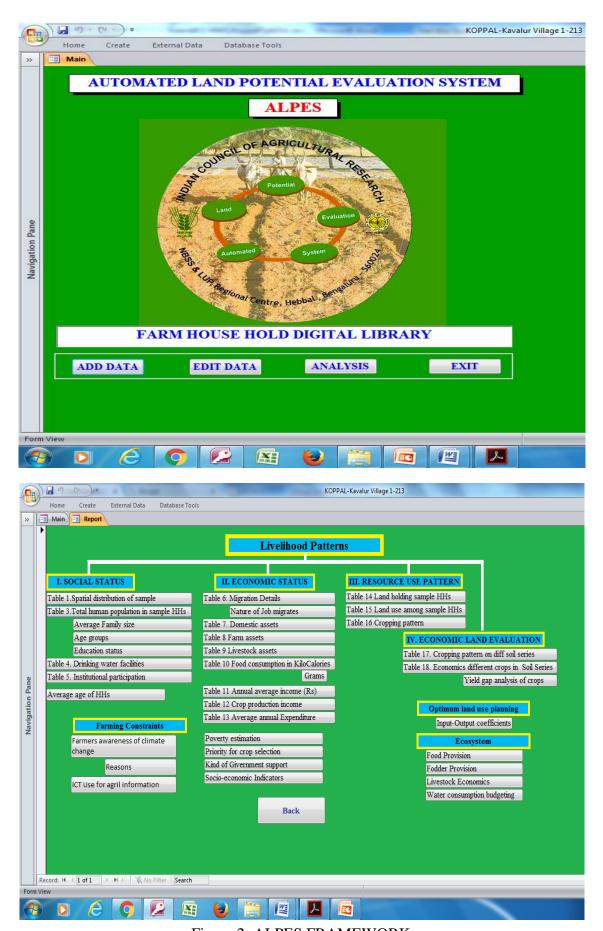


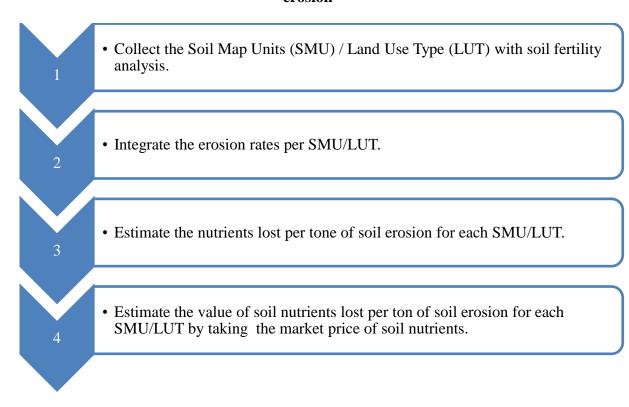
Figure 2: ALPES FRAMEWORK

The sample farmers were post classified in to marginal and small (0.0 to <=2 acres), medium and semi medium (>2 to <=10 acres) and large (>10 acres). The steps involved in estimation of soil potential involve estimation of total cost of cultivation, the yield/gross returns and net income per hectare. The cost of inputs such seed, manure and fertilizer, plant protection chemicals, payment towards human and bullock labour and interest on working capita are included under operational costs. In the case of perennial crops, the cost of establishment was estimated by using actual physical requirements and prevailing market prices. Estimation cost included maintenance cost up to bearing period. The value of main product and by product from the crop enterprise at the market rates were the gross returns of the crop. Net returns were worked out by deducting establishment and maintained cost from gross returns.

Operational Cost = cost of seeds, fertilizers, pesticides. Cost of human and bullock labour, cost of machinery, cost of irrigation water + interest on working capital.

Gross returns = Yield (Quintals/hectare)*Price (Rs/Quintal)

Net returns = Gross returns-Operational cost.


Benefit Cost Ratio = Net returns/Total cost.

Economic suitability classes: once each land use —land area combination has been assigned an economic value by the land evaluation, the question arises as to its 'suitability', that is, the degree to which it satisfies the land user. The FAO framework defines two suitability orders: 'S'(suitable if benefit cost ratio (BCR)>1) and 'N'(not suitable if (BCR<1), which are dived into five economic suitability classes: 'S1'(highly suitable if BCR>3), 'S2'(suitable if BCR>2 and <3), 'S3'(Marginally suitable if BCR>1 and <2), 'N1'(Not suitable for economic reasons but physically suitable) and 'N2'(not suitable for physical reasons). The limit between 'S3' and 'N1'must be at least at the point of financial feasibility (i.e. net returns, NPV, or IRR>0 and BCR>1). The other limits depend on social factors such as farm size, family size, alternative employment or investment possibilities and wealth expectations; these need to be specified for the Soil series.

Economic Valuation of Soil ecosystem services:

The replacement cost approach was followed for estimating the onsite cost of soil erosion, Market price method was followed for estimating the value of food and fodder production. Value transfer menthods was followed for estimating the value of water demand by different crops in the micro watershed.

Steps followed in Replacement cost methods for estimation of onsite cost of soil erosion

RESULTS AND DISCUSSIONS

The demographic information shows that the household population dynamics encompasses the socioeconomic status of the farmer. For a rural family, the household size should be optimal to earn a comfortable livelihood through farm and non-farm wage earning. The total number of population in watershed area was 56, out of which 55.4 per cent were males and 44.6 per cent females. Average family size of the households is 5.6. Age is an important factor, which affects the potential employment and mobility status of respondents. The data on age wise distribution of farmers in the sample households indicated that majority of the farmers are coming under the age group of 30 to 50 years (37.5 %) followed by more than 50 years (33.9 %), 18 to 30 years (16.1 %) and 0 to 18 years (12.5 %). Hence, in the study area in general, the respondents were of young and middle age, indicating thereby that the households had almost settled with whatever livelihood options they were practicing and sample respondents were young by age who could venture into various options of livelihood sources. Data on literacy indicated that 7.1 per cent of respondents were illiterate and 92.9 per cent literate (Table 1).

Table 1: Human population among sample households in Babulgaon-1 Microwatershed

Particulars	Units	Value
Total human population in sample HHs	Number	56
Male	% to total Population	55.4
Female	% to total Population	44.6
Average family size	Number	5.6
Age group		•
0 to 18 years	% to total Population	12.5
18 to 30 years	% to total Population	16.1
30 to 50 years	% to total Population	37.5
>50 years	% to total Population	33.9
Average age	Age in years	41.5
Education Status		•
Illiterates	% to total Population	7.1
Literates	% to total Population	92.9
Primary School (<5 class)	% to total Population	41.1
Middle School (6- 8 class)	% to total Population	7.1
High School (9- 10 class)	% to total Population	12.5
Others	% to total Population	32.2

The ethnic groups among the sample farm households found to be 60.0 per cent belonging to other backward caste (OBC) followed by general castes is belonging to 20.0

per cent and scheduled caste (SC) of 20.0 per cent (Table 2 and Figure 3). About 40.0 per cent of sample households are using fire wood as source of fuel for cooking. All the sample farmers are having electricity connection. About 40.0 per cent are sample households having health cards. About 70.0 per cent of farm households are having ration cards for taking food grains from public distribution system. About 50.0 per cent of farm households are having toilet facilities.

Table 2: Basic needs of sample households in Babulgaon-1 Microwatershed

Particulars	Units	Value	
Social groups		-	
SC	% of Households	20.0	
OBC	% of Households	60.0	
General	% of Households	20.0	
Types of fuel use for coo	king	<u> </u>	
Fire wood	% of Households	40.0	
Gas	% of Households	60.0	
Energy supply for home		1	
Electricity	% of Households	100	
Number of households h	aving Health card	,	
Yes	% of Households	40.0	
No	% of Households	60.0	
MGNREGA Card		,	
Yes	% of Households	0	
No	% of Households	100	
Ration Card		<u> </u>	
Yes	% of Households	70.0	
No	% of Households	30.0	
Households with toilet		<u> </u>	
Yes	% of Households	50.0	
No	% of Households	50.0	
Drinking water facilities	Drinking water facilities		
Tube well	% of Households	100	

The data collected on the source of drinking water in the study area is presented in Table 2. All sample respondents are having tube well source for water supply for domestic purpose.

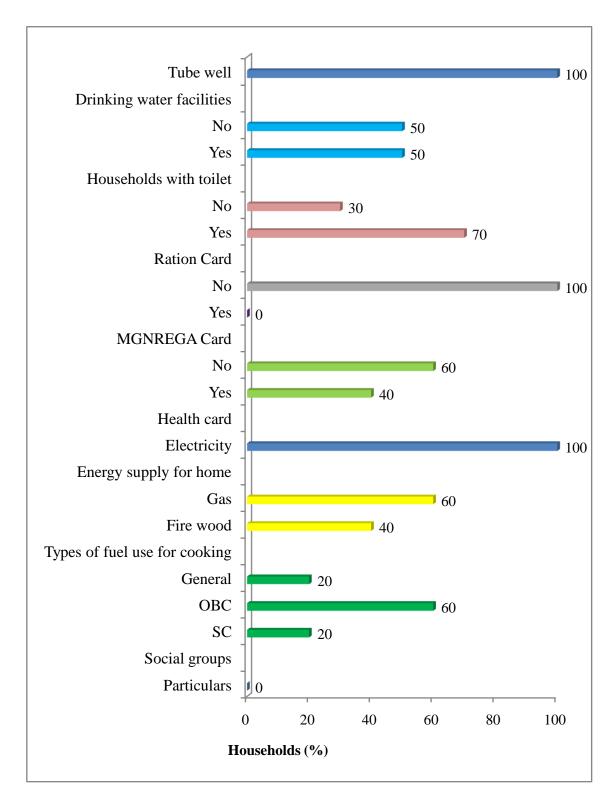


Figure 3: Basic needs of sample households in Babulgaon-1 Microwatershed

Only 7.1 per cent of the farmers are participating in community based organizations (Table 3). Among them majority were participating in village panchayat (1.8 %) followed by co-operative societies-credit (1.8 %) and self help group organization (3.6 %) like Sri Dharmasthala Swasahaya Sangha, Stri Shakhti Sangha.

Table 3: Institutional participation among the sample population in Babulgaon-1 Microwatershed

Particulars	Units	Value
No. Of people participating	% to total	7.1
Co-operative Societies- Credit	% to total	1.8
Village panchayat	% to total	1.8
Self help groups(SHG's)	% to total	3.6
No. Of people not participating	% to total	92.9

The occupational pattern (Table 4) among sample households shows that agriculture is the main occupation around 54.2 per cent of farmers followed by subsidiary occupations like agricultural labour (33.3 %), non agriculture labour (4.2%), trade and business (4.2%) government service (2.1%) and private service (2.1%).

Table 4: Occupational pattern in sample population in Babulgaon-1 Microwatershed

Occupation		% to total
Main	Subsidiary	% to total
	Agriculture	54.2
	Agriculture Labour	33.3
Agricultura	Non Agriculture Labour	4.2
Agriculture	Govt. service	2.1
	Private service	2.1
	Trade and business	4.2
Family labour availability		Man days/month
Male labour		65.0
Female labour		42.0
Total		107.0

The important assets especially with reference to domestic assets were analyzed and are given in Table 5 and Figure 4. The important domestic assets possessed by all categories of farmers are refrigerator (10.0 %) followed by motor cycle (20.0 %), mixer/grinder (50.0 %) television (90.0 %) and mobile phone (100 %). The average value of domestic assets is around Rs 18843 per households.

Table 5: Domestic assets among the sample households in Babulgaon-1 Microwatershed

Particulars	% of households	Average value in Rs
Refrigerator	10.0	18000
Motor cycle	20.0	60000
Mixer/grinder	50.0	2540
Television	90.0	7256
Mobile Phone	100.0	6420
Average value in Rs	18843	

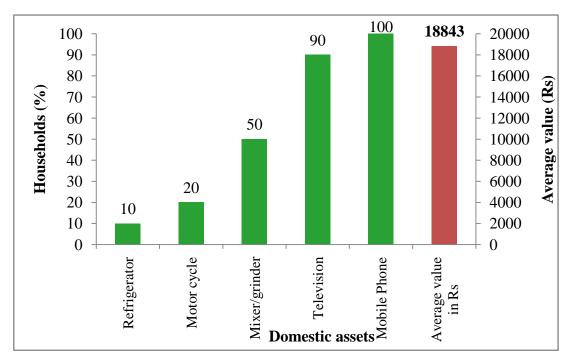


Figure 4: Domestic assets among the sample households in Babulgaon-1 Microwatershed

The most popularly owned farm equipments were sickles, plough, cattle shed; pump sets, chaff cutter, bullock cart, sprayer and thresher. Weeder (10 %) was commonly present in all the sampled farmers; these were primary implements in agriculture. The average value of farm assets is around Rs 250 per households (Table 6).

Table 6: Farm assets among samples households in Babulgaon-1 Microwatershed

Particulars	% of households	Average value in Rs
Weeder	10	250

Livestock is an integral component of the conventional farming systems (Table 7 and Figure 5). The highest livestock population is bullocks were around 37.5 per cent followed by crossbred milching cow (12.5 %), dry buffalos (12.5 %), local milching cow (25.0 %) and milching buffalos (12.5 %). The average value of livestock was Rs 40033 per household.

Table 7: Livestock assets among sample households in Babulgaon-1 micro-watershed

Livestock	% of livestock population	Average value in Rs
Local Milching Cow	25.0	22500
Crossbred Milching Cow	12.5	70000
Dry Buffalos	12.5	18000
Milching Buffalos	12.5	28000
Bullocks	37.5	61667
Average value	40	0033

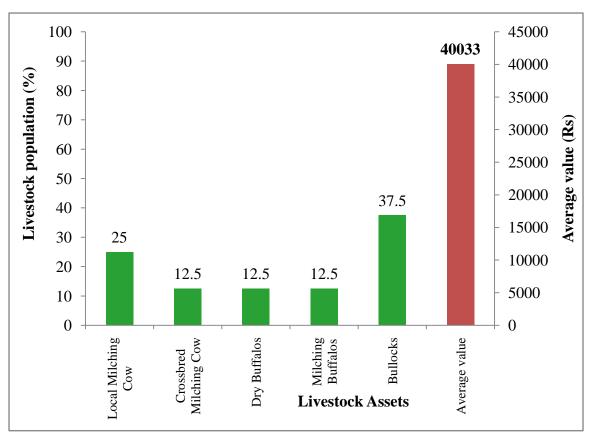


Figure 5: Livestock assets among sample households in Babulgaon-1 micro-watershed

Average milk produced in sample households is 892 litters/ annum. The highest milk produced of cross bred mulching cows is 1750 litters/annum followed by the mulching buffalos and local mulching cow (Table 8).

Table 8: Milk produced of sample households in Babulgaon-1 Microwatershed

Name of the Livestock	Ltr./Lactation/animal
Crossbred Milching Cow	1750
Local Milching Cow	375
Milching Buffalos	560
Average Milk produced	892
Livestock having households (%)	61.5
Livestock population (Numbers)	75

A woman participation in decision making is in this micro-watershed is presented in Table 9. About 100 per cent of women participation in local organisation activates, 100 per cent women earning for her family requirement and 100 per cent of women taking decision in her family and agriculture related activities.

Table 9: Women empowerment of sample households in Babulgoan 1 Microwatershed % to Grand Total

Particulars	Yes	No
Women participation in local organization activities	100	0
Women elected as panchayat member	0	100
Women earning for her family requirement	100	0
Women taking decision in her family and agriculture related activities	100	0

The food intake in terms of kilo calorie (kcal) per person per day was calculated and presented in the Table 10 and Figure 6. More quantity of cereals is consumed by sample farmers which accounted for 974.3 kcal per person. The other important food items consumed was pulses 191.8 kcal followed by cooking oil 209.7 kcal, milk 130.3 kcal, vegetables 40.9 kcal, egg 83.5 kcal and meat 6.7 kcal. In the sampled households, farmers were consuming less (1637.0 kcal) than NIN- recommended food requirement (2250 kcal).

Table 10: Per capita daily consumption of food among the sample households in Babulgaon-1 Microwatershed

Particulars	NIN recommendation (gram/ per day/ person)	Present level of consumption (gram/ per day/ person)	Kilo Calories /day/person
Cereals	396.0	286.6	974.3
Pulses	43.0	55.9	191.8
Milk	200.0	200.5	130.3
Vegetables	143.0	170.5	40.9
Cooking Oil	31.0	36.8	209.7
Egg	0.5	55.6	83.3
Meat	14.2	4.4	6.7
Total	827.7	810.2	1637.0
Threshold of NIN recommendation		827 gram*	2250 Kcal*
% Below NIN	I	70.0	100
% Above NIN		30.0	0

Note: * day/person

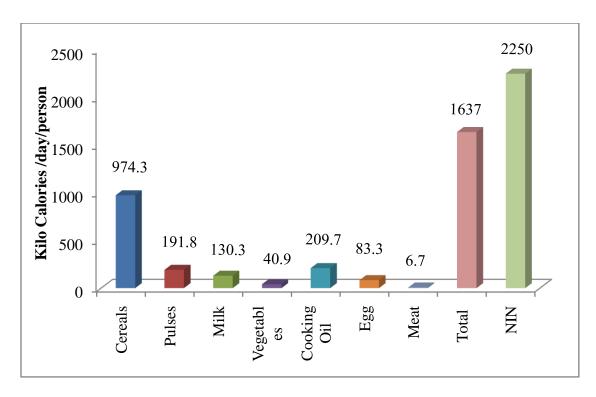


Figure 6: Per capita daily consumption of food among the sample households in Babulgaon-1 Microwatershed

Annual income of the sample HHs: The average annual household income is around Rs 26634. Major source of income to the farmers in the study area is from crop production (Rs 17757) followed by livestock income (Rs.8877). The monthly per capita income is Rs.396, which is less than the threshold monthly income of Rs 975 for considering above poverty line. Due to the fact that erratic rainfall and shortage of water, farmers are diverting from crop production activities to enable the household for a comfortable livelihood. The incomes from the other aforesaid sources are very meagre (Table 11).

Table 11: Annual average income of HHs from various sources in Babulgaon1 Microwatershed

Particulars	Income *
Nonfarm income (Rs)	0(0)
Livestock income (Rs)	8877 (30)
Crop Production (Rs)	17757 (100)
Total Annual Income (Rs)	26634
Average monthly per capita income (Rs)	396
Threshold for Poverty level (Rs 975 per month/person))
% of households below poverty line	90.0
% of households above poverty line	10.0

^{*} Figure in the parenthesis indicates % of Households

The average annual expenditure of farm households indicated that farmers in the study area spend highest on food (Rs. 50304) followed by education, clothing, social function and health. Now a day's education is most important among all of us. In today's competitive world, education is a necessity for man after food, clothing, and shelter. It is the only fundamental way by which a desired change in the society can happen. The average per capita monthly expenditure is around Rs.1451 and about 90.0 per cent of farm households are below poverty line (Table 12 and Figure 7).

Table 12: Average annual expenditure of sample HHs in Babulgaon-1 Microwatershed

Particulars	Value in Rupees	Per cent
Food	50304	51.6
Education	4500	4.6
Clothing	7350	7.5
Social functions	28200	28.9
Health	7200	7.4
Total Expenditure (Rs/year) 97554 1		100.0
Monthly per capita expenditure (Rs)	1451	

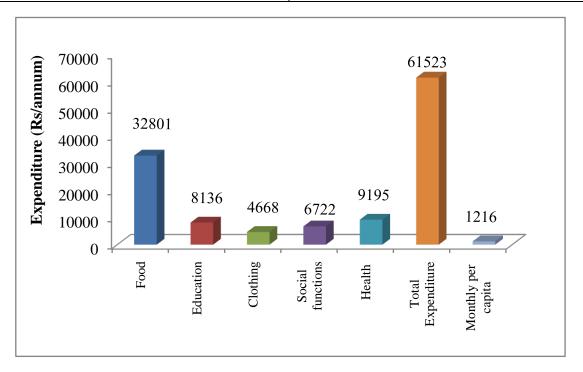


Figure 7: Average annual expenditure of sample HHs in Babulgaon-1 Microwatershed

Land holding: Total area cultivated by them is 18.1 ha. The average land holding of sample HHs is 2.0 ha. The large number of sample HHs (80.0 %) belong to sample size group with an average holding size of 1.2 ha followed by medium farmers (10.0 %) with an average holding size of 3.8 ha and large farmers (10.0 %) of sample household with an average land holding size of 5.7 ha (Table 13).

Table 13: Distribution of land holding among the sample households in Babulgaon-1 micro-watershed

Particulars	Units	Values
Small farmers		
Sample size	Percent	80.0
Total land	ha	8.7
Average land holding	ha	1.2
Medium farmers		
Sample size	percent	10.0
Total land	ha	3.8
Average land holding	ha	3.8
Large farmers		
Sample size	Percent	10.0
Total land	ha	5.7
Average land holding	ha	5.7
Total sample household	ls	
Sample size	Percent	100
Total land	ha	18.1
Average land holding	ha	2.0

Land use: The total land holding in the Babulgaon-1 Micro-watershed is 18.1 ha (Table 14). Of which 11.4 ha is rain fed land and 7.7 ha is irrigated land. The average land holding per household is worked out to be 2.0 ha.

Table 14: Land use among samples households in Babulgaon-1 Microwatershed

Particulars	Per cent	Area in ha	
Irrigated land	42.4	7.7	
Rainfed Land	62.8	11.4	
Fallow Land	0.0	0.0	
Total land holding	100.0	18.1	
Average land holding	2.0		

In the micro-watershed, the prevalent present land uses under perennial plants are teak (73.2 %) followed by neem trees (16.5 %), tamarind (5.9 %), eucalyptus (2.4 %) and mango (1.2%) (Table15).

Table 15: Number of trees/plants covered in sample farm households in Babulgaon-1 Microwatershed

Particulars	Particulars Number of Plants/trees	
Coconut	2	8.0
Mango	3	1.2
Neem trees	42	16.5
Eucalyptus	6	2.4
tamarind	15	5.9
Teak	186	73.2
Grand Total	254	100.0

The land use decisions are usually based on experience of farmers, tradition, expected profit, personal preferences, resources and social requirements.

The present dominant crops grown in dry lands in the study area were by red gram (74.3 %) followed by sunflower (7.1 %) and soybean (4.2 %) which are taken during Kharif and bengal gram (14.4%) during Rabi season respectively. The cropping intensity was 116.8 per cent (Table 16 and Figure 8).

Table 16: Present cropping pattern and cropping intensity in Babulgaon-1
Microwatershed % to Grand Total

Crops	Kharif	Rabi	Grand Total
Bengal gram		14.4	14.4
Red gram	74.3		74.3
Soybean	4.2		4.2
Sunflower	7.1		7.1
Grand Total	85.6	14.4	100.0
Cropping intensity		116.8	·

Figure 8: Present cropping pattern in Babulgaon-1 Microwatershed

Economic land evaluation

The main purpose of economic land evaluation in the watershed is to identify the existing production constraints and propose the potential/alternate options for agrotechnology transfer and for bridging the adoption and yield gap.

In Babulgaon-1 micro-watershed, 6 soil series are identified and mapped (Table 17). The distribution of major soil series are Babulgoan (BGN) covering an area around

228 ha (43.9 %) followed by CGP 9.6 ha (1.8 %), Kadambal (KDM) 144.2 ha (27.8 %), Karaja khurd (KKU) 42.1 ha (8.1 %), Mudhanal (MNL) 44.8 ha (10.7 %), Muthangi (MTN) 7.6 ha (1.5 %) and Rampur (RMP) 30.4 ha (5.8 %).

Table 17: Distribution of soil series in Babulgaon-1 Microwatershed

Soil.	Mapping		Area in
No	Unit	Description	ha (%)
	BGN	Very deep, clayey soils developed from alluvium on nearly level	102.2
	mA1	low lands; clay surface on 0-1 % slope, slightly eroded.	(19.7)
1	BGN	Very deep, clayey soils developed from alluvium on nearly level	63.9
	mB1	low lands; clay surface on 1-3 % slope, slightly eroded.	(12.3)
	BGN	Very deep, clayey soils developed from alluvium on nearly level	61.9
	mB2	low lands; clay surface on 1-3 % slope, moderately eroded.	(11.9)
2	CGP	Deep, sandy clay soils developed from laterite on very gently	9.6
	mB2	uplands; clay surface on 1-3% slope, moderately eroded	(1.8)
	KDM	Shallow, gravelly clay soils developed from laterite on very gently	19.5
	iA1	uplands; clay surface on 0-1 % slope, slightly eroded	(3.8)
	KDM	Shallow, gravelly clay soils developed from laterite on very gently	34.8
	iB1	uplands; sandy clay surface on 1-3% slope, slightly eroded	(6.7)
	KDM	Shallow, gravelly clay soils developed from laterite on very gently	21.9
	iB2	uplands; sandy clay surface on 1-3% slope, moderately eroded	(4.2)
	KDM	Shallow, gravelly clay soils developed from laterite on very gently	46.8
3	iB3	uplands; sandy clay surface on 1-3% slope, severely eroded	(9.0)
3	KDM	Shallow, gravelly clay soils developed from laterite on very gently	21.2
	mB1	uplands; clay surface on 1-3% slope, slightly eroded	(4.1)
	KKU mA1	Moderately shallow, gravelly sandy clay soils developed from	28.6
		laterite on very gently uplands; clay surface on 0-1 % slope,	(5.5)
	1112 1 1	slightly eroded.	(3.3)
	KKU	Moderately shallow, gravelly sandy clay soils developed from	13.5
	mB2	laterite on very gently uplands; clay surface on 1-3% slope,	(2.6)
		moderately eroded.	(=:0)
	MNL	Deep, gravelly clay soils developed from laterite on very gently	10.7
	iB2g1	uplands; sandy clay surface on 1-3% slope, moderately eroded,	(2.1)
		slightly gravely, 15-30 per cent gravels	(' /
	MNL	Deep, gravelly clay soils developed from laterite on very gently	14.9
4	iC3g1	uplands; sandy clay surface on 3-5 % slope, severely eroded,	(2.9)
		slightly gravely, 15-30 per cent gravels	
	MNL	Deep, gravelly clay soils developed from laterite on very gently	1
	mA1	uplands; clay surface on 0-1 % slope, slightly eroded	(4.9)
	MNL mD1	Deep, gravelly clay soils developed from laterite on very gently	
	mB1	uplands; clay surface on 1-3 % slope, slightly eroded	(0.8)
_	MTN	Moderately deep, gravelly clay soils developed from laterite on	7.6
5	iB2	very gently sloping uplands; sandy clay surface on 1-3% slope,	(1.5)
		moderately eroded. Very shallow, gravelly also soils developed from laterite on very	
6	RMP	Very shallow, gravelly clay soils developed from laterite on very	30.4
6	iB3g1	gently sloping uplands; sandy clay surface on 1-3% slope, severely eroded, slightly gravely, 15-30 per cent gravels.	(5.8)
7		Water body	1.5(0.3)
/		water body	1.5(0.3)

Present cropping pattern on different soil series are given in Table 18. Crops grown on Babulgoan soils are bengalgram, redgram, soybean and sunflower. Redgram on Kadambal soils is grown. Redgram are grown on Rampur soils.

Table 18: Cropping pattern on major soil series in Babulgaon-1 Microwatershed

(Area in per cent)

Soil Series	Soil Depth	Crops	Dr	y	Irrigated	Grand
Sull Series	Son Depth	Crops	Kharif	Rabi	Kharif	Total
RMP	Very shallow (<25 cm)	Redgram	100.0	0.0	0.0	100.0
KDM	Shallow (25-50 cm)	Redgram	0.0	0.0	100.0	100.0
BGN	Very deep (>150 cm)	Bengalgram	0	17.1	0.0	17.1
		Redgram	46.0	0.0	23.5	69.5
		Soybean	5.1	0.0	0.0	5.1
		Sunflower	0.0	0.0	8.4	8.4

Land is used for agricultural use for growing cereals, pulse, oilseeds and commercial crops. The soil/land potential are measures in terms of physical yield and net income. The alternative land use options for each micro-watershed are given below (Table 19).

Table 19: Alternative land use options for different size group of farmers (Benefit Cost Ratio) in Babulgaon-1 Microwatershed.

Soil Series	Small Farmers	Medium Farmers	Large Farmers
BGN	Bengal gram(1.10), red gram(1.27) Soybean(1.10) & sunflower(1.05)	Red gram(1.44)	Red gram(1.50)
KDM	Red gram(2.58)		
RMP	Red gram(1.20)		

The productivity of different crops grown in Babulgaon-1 Microwatershed under potential yield of the crops is given in Table 20.

The data on cost of cultivation and benefit cost ratio (BCR) of different crops is given in Table 20. The total cost of cultivation in study area for red gram ranges between Rs.55182/ha in RMP soil (with BCR of 1.20) and Rs.30326/ha in BGN soil (with BCR of 1.37), bengal gram cultivation in BGN soil Rs 25076/ha (with of 1.10) and soybean cultivation in BGN Rs.29680/ha (With BCR of 1.10) and sunflower cultivation in BGN soil Rs.28572/ha (with BCR of 1.05).

The data on FYM, Nitrogen, Phosphorus and Potash application by the farmers to different crops and recommended FYM for different crops is given in Table 20. There is a huge gap between FYM application by farmers and recommended FYM in all the crops

across the soils. There is a larger yield gap in crops grown across different soil series. Adequate knowledge about recommended package of practices is the pre-requisite for their use in cultivation of crops. It is a fact that, recommended practices are major contributing factors to yield. Inadequate knowledge about recommended practices leads to their improper adoption. Strengthening of extension services by concerned agency is required to increase adoption of recommended cultivation practices and ultimately reducing the gap. By adopting soil-test fertiliser recommendation, there is scope to increase yield and income to a maximum of Rs 28010 in bengal gram and a minimum of Rs 6493 in red gram cultivation.

Table 20: Economic land evaluation and bridging yield gap for different crops in Babulgoan-1 Microwatershed

	RMP	KDM		BC	S N	
D. d. L.	(<25 cm)	(25-50cm)		(>150		
Particulars	Red	Red	Bengal	Red	G. L.	Sun
	gram	gram	gram	gram	Soybean	flower
Total cost (Rs/ha)	55182	47788	25076	30326	29680	28572
Gross Return (Rs/ha)	66434	61763	27623	41078	32604	29892
Net returns (Rs/ha)	11253	13975	2547	10752	2924	1320
BCR	1.20	1.29	1.10	1.37	1.10	1.05
Farmers Practices (FP)						
FYM (t/ha)	2.2	4.2	2.2	2.4	1.3	1.5
Nitrogen (kg/ha)	69.0	50.1	30.3	67.6	80.0	54.8
Phosphorus (kg/ha)	49.6	65.5	34.0	51.6	57.5	51.8
Potash (kg/ha)	0.0	0.0	0.0	15.0	0.0	22.5
Grain (Qtl/ha)	12.9	12.6	6.7	9.8	10.0	9.8
Price of Yield (Rs/Qtl)	5200	4950	4200	4500	3300	3100
Soil test based fertilizer Re	ecommenda	tion (STBR))			
FYM (t/ha)	7.4	7.4	7.4	7.4	6.2	6.6
Nitrogen (kg/ha)	18.5	18.5	13.9	18.5	20.4	41.4
Phosphorus (kg/ha)	61.8	49.4	46.3	61.8	72.6	74.1
Potash (kg/ha)	24.7	24.7	37.1	22.2	30.9	37.1
Grain (Qtl/ha)	12.4	12.4	14.8	12.4	19.8	16.5
% of Adoption/yield gap (S	STBR-FP) /	(STBR)				
FYM (%)	70.9	43.5	70.1	67.8	79.8	77.2
Nitrogen (%)	-272.3	-170.3	-118.3	-265.0	-292.6	-32.5
Phosphorus (%)	19.7	-32.5	26.5	16.5	20.8	30.1
Potash (%)	100.0	100.0	100.0	32.4	100.0	39.2
Grain (%)	-4.7	-2.3	55.1	20.7	49.4	40.7
Value of yield and Fertilize	er (Rs)					
Additional Cost (Rs/ha)	5680	2630	6276	5028	5490	6196
Additional Benefits (Rs/ha)	-3021	-1401	34285	11521	32208	20791
Net change Income (Rs/ha)	-8701	-4031	28010	6493	26718	14596

Economic valuation of Ecosystem Services (ES) was aimed at combining use and non-use values to determine Total Economic Value (TEV) of ES. Ecosystem Services

(ES) were valued based on their annual flow or utilization in common monetary units, Rs/year. The valuation of ES was based on market price in 2017 or market cost approaches whichever is applicable, and in other cases on value or benefit transfer from previous valuation studies.

The onsite cost of different soil nutrients lost due to soil erosion is given in Table 21 and Figure 9. The average value of soil nutrient loss is around Rs 1080.4 per ha/year. The total cost of annual soil nutrients is around Rs 487243 per year for the total area of 519.2ha.

Table 21: Estimation of onsite cost of soil erosion in Babulgaon-1 Microwatershed

Particulars	Quantity(k	kg)	Value (Rs)		
T at ticulars	Per ha	Total	Per ha	Total	
Organic matter	144.58	65205	910.8	410790	
Phosphorus	1.59	718	70.0	31578	
Potash	0.19	88	3.9	1754	
Iron	0.26	115	12.3	5534	
Manganese	0.25	112	68.3	30822	
Cupper	0.02	8	10.3	4646	
Zinc	0.00	2	0.2	70	
Sulphur	0.11	49	4.3	1963	
Boron	0.00	2	0.2	86	
Total	144.13	66299	1080.4	487243	

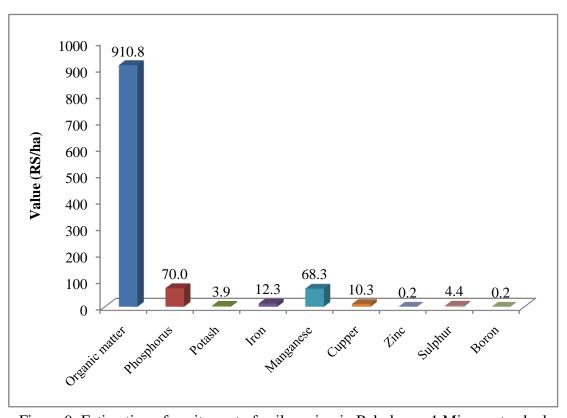


Figure 9: Estimation of onsite cost of soil erosion in Babulgaon-1 Microwatershed

The average value of ecosystem service for food grain production is around Rs 4530/ ha/year (Table 22 and Figure 10). Per hectare food grain production services is maximum in red gram (Rs 11328) followed by soybean (Rs.2924), bengal gram (Rs 2547) and sunflower (Rs 1320).

Table 22: Ecosystem services of food grain production in Babulgaon-1 Microwatershed

Production	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Gross	Cost of	Net
items					Returns	Cultivation	Returns
Items		III IIu	(Quinu)	(145/Q11)	(Rs/ha)	(Rs/ha)	(Rs/ha)
Pulses	Bengal gram	2.7	6.6	4200	27623	25076	2547
	Redgram	14.2	10.7	4686	50194	38866	11328
Oil seeds	Soybean	0.8	9.9	3300	32604	29680	2924
	Sunflower	1.3	9.6	3100	29892	28572	1320
Average value		19.1	9.2	3821	35078	30548	4530

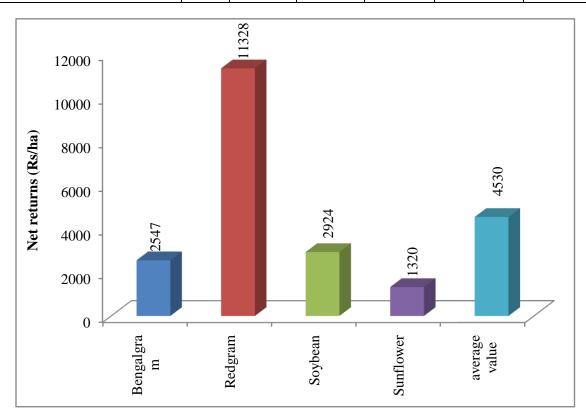


Figure 10: Ecosystem services of food grain production in Babulgaon-1 Microwatershed

The water demand for production of different crops was worked out in arriving at the ecosystem services of water support to crop growth. The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The hectare value of water used and value of water was maximum (Table 23 and Figure 11) in red gram (Rs.58317) followed by bengal gram (Rs.45420), sunflower (Rs.32457) and soybean (Rs.21202).

Table 23: Ecosystem services of water supply in Babulgaon-1 Microwatershed

Crops	Yield (Qtl/ha)	Virtual water (cubic meter) perha	Value of Water (Rs/ha)	Water Consumption (Cubic meters/Qtl)
Bengalgram	6.6	4542	45420	691
Redgram	10.7	5831	58317	544
Soybean	9.9	2120	21202	215
Sunflower	9.6	3245	32457	337
Average value	36.8	3934	39349	447

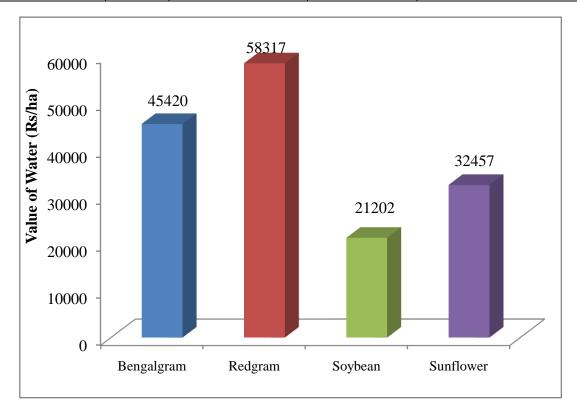


Figure 11: Ecosystem services of water supply in Babulgaon-1 Microwatershed

The main farming constraints in Babulgoan-1 Micro-watershed to be found are less rainfall, lack of good quality seeds, lack of transportation and damage of crops by wild animals. Majority of farmers depend up on money lender of the sources of loan for purpose of crop production. Farmers to sell the agriculture produce through village market and the farmers getting the agriculture related information on newspaper and television. Farmers reported that they are not getting timely support/extension services from the concerned development department (Table 24).

Table 24: Farming constraints related land resources of sample households in Babulgaon-1 Microwatershed

Sl. No	Particulars	Per cent
1	Less Rainfall	60.0
2	Lack of good quality seeds	10.0
3	Non availability of Plant Protection Chemicals	100
	Source of loan	
4	Money lender	50.0
	Bank	40.0
5	Market for selling	
	Village market	100
6	Sources of Agri-Technology information	•
	Television	100

The findings of the study would be very much useful to the planners and policy makers of the study area to identify the irrationality in the existing production pattern and to suggest appropriate production plans for efficient utilization of their scarce resources resulting in increased net farm incomes and employment. The study also throws light on future potentialities of increasing net farm income and employment under different situations viz., with existing and recommended technology.