

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

KURUBARAHALLI (4D3D8G1c) MICROWATERSHED

Chikkanayakanahalli Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II **SUJALA – III**

World Bank funded Project

ICAR - NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation:

Rajendra Hegde, Ramesh Kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Kurubarahalli (4D3D8G1c) Microwatershed, Chikkanayakanahalli Taluk, Tumkur District, Karnataka", ICAR-NBSS&LUP Sujala MWS Publ.113, ICAR – NBSS & LUP, RC, Bangalore. p.117 & 30.

.

TO OBTAIN COPIES,

Please write to:

Director, ICAR - NBSS & LUP,

Amaravati Road, NAGPUR - 440 033, India

Phone : (0712) 2500386, 2500664, 2500545 (O)

Telefax : 0712-2522534

E-Mail : director@nbsslup.ernet.in

Website URL: nbsslup.in

Or

Head, Regional Centre, ICAR - NBSS&LUP, Hebbal, Bangalore - 560 024

Phone : (080) 23412242, 23510350 (O)

Telefax : 080-23510350

E-Mail : nbssrcb@gmail.com

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

KURUBARAHALLI (4D3D8G1c) MICROWATERSHED

Chikkanayakanahalli Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. The challenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of

the land resources, their constraints, inherent potentials and suitability for various land based rural enterprises, crops and other uses is a prerequisite for preparing location-specific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component -1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed **Planning** and Development of Kurubarahalli Microwatershed, Chikkanayakanahalli Taluk and Tumakur District, Karnataka" for integrated development was taken up in collaboration with the State Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plots and socio-economic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micowatershed. The project report with the accompanying maps for the Microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricutural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner.

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur S.K. SINGH

Date: 22.09.2018 Director, ICAR - NBSS&LUP, Nagpur

Contributors

Dr. Rajendra Hegde	Dr. S. K. Singh			
Principal Scientist, Head &	Director, ICAR-NBSS&LUP			
Project Leader, Sujala-III Project	Coordinator, Sujala-III Project			
ICAR-NBSS&LUP, Regional Centre	Nagpur			
Bangalore				
Soil Survey, Mappi	ng & Report Preparation			
Dr. B. A. Dhanorkar	Sh. R. S. Reddy			
Dr. K.V. Niranjana	Sh. Venkata Giriyappa			
	Dr. Gopali Bardhan			
	Sh. Nagendra, B. R.			
	Smt. Chaitra, S. P.			
	Sh. Somashekar T N			
	Dr. Gayathri. B.			
	Dr. H. R. Savitha			
Fie	ld Work			
Smt. Vasundhara R.	Sh. Rudresh, M.D.			
Dr. S. Dharumarajan	Sh. Sunil Raj			
Smt. B. Kalaiselvi	Sh. Yogesh Kumar, B.			
Dr. R. Srinivasan	Sh. Veerabhadraswamy, R.			
Sh. C.Bache Gowda	Sh. Vinay			
Sh. Somashekar				
Sh. M. Jayaramaiah				
	S Work			
Dr. S. Srinivas	Sh. A. G. Devendra Prasad			
Sh. D. H. Venkatesh	Sh. Prakashanaik, M. K.			
Smt. K. Sujatha	Sh. Abhijith Sastry, N. S.			
Smt. K. V. Archana	Sh. Nagendra Babu Kolukondu			
Sh. N. Maddileti	Sh. Sudip Kumar Suklabaidya			
	Sh. Avinash, K. N.			
	Sh. Amar Suputhra, S.			
	Sh. Deepak, M. J.			
	Smt. K. Karunya Lakshmi			
	Ms. Seema, K. V.			
	Ms. A. Rajab Nisha			
	Ms. Ramireddy Lakshmi Silpa			
	Ms. Bhanu Rekha, T.			
	Ms. Rajata Bhat			
Labora	Laboratory Analysis			
Dr. M. Lalitha Ms. Steffi Peter				

Smt. Arti Koyal	Ms. Thara, V. R
Smt. Parvathy	Ms. Roopa, G.
	Ms. Swati, H.
	Sh. Shantaveera Swami
	Ms. Shwetha, N.K.
	Smt. Ishrat Haji
	Ms. P. Pavan Kumari
	Ms. Padmaja
	Ms. Veena, M.
Soil & Wat	er Conservation
Sh. Sunil P. Maske	
Socio-Eco	nomic Analysis
Dr. S.C. Ramesh Kumar	Sh. M. K. Prakashanaik
	Ms. Sowmya K.B
	Sh.Manjunath M
	Sh.Veerabhadraswamy R
	Sh.Lankesh RS
	Sh.Kalaveerachari R Kammar
	Sh.Pradyumma U
	Sh. Yogesha HN
	Sh.Vijay kumar lamani
	Sh.Arun N Kambar
	Sh.Vinay
	Sh.Basavaraj.Biradar
	Sh.Vinod R
	Sh.Praveenkumar P Achalkar
	Sh.Rajendra D
	Department, GoK, Bangalore
Sh. Rajeev Ranjan IFS	Dr. A. Natarajan
Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project
Dr. S.D. Pathak IFS	CE WIDD
Executive Director & Chief Conservator o	f Forests, WDD

PART-A LAND RESOURCE INVENTORY

Contents

Preface			
Contributors			
Executive Summary			
	Introduction	1	
Chapter 2	Geographical Setting	3	
2.1	Location and Extent	3	
2.2	Geology	4	
2.3	Physiography	4	
2.4	Drainage	5	
2.5	Climate	5	
2.6	Natural Vegetation	6	
2.7	Land Utilization	7	
Chapter 3	Survey Methodology	11	
3.1	Base maps	11	
3.2	Image Interpretation for Physiography	11	
3.3	Field Investigation	14	
3.4	Soil Mapping	16	
3.5	Laboratory Characterization	16	
3.6	Land Management Units	18	
Chapter 4	The Soils	21	
4.1	Soils of Granite gneiss Landscape	21	
Chapter 5	Interpretation for Land Resource Management	37	
5.1	Land Capability Classification	37	
5.2	Soil Depth	39	
5.3	Surface Soil Texture	40	
5.4	Soil Gravelliness	41	
5.5	Available Water Capacity	42	
5.6	Soil Slope	43	
5.7	Soil Erosion	44	
Chapter 6	Fertility Status	47	
6.1	Soil Reaction (pH)	47	
6.2	Electrical Conductivity (EC)	47	
6.3	Organic Carbon (OC)	47	
6.4	Available Phosphorus	50	
6.5	Available Potassium	50	
6.6	Available Sulphur	50	
6.7	Available Boron	50	
6.8	Available Iron	50	
6.9	Available Manganese	50	
6.10	Available Copper	50	
6.11	Available Zinc	50	
Chapter 7	Land Suitability for Major Crops	55	
7.1	Land suitability for Sorghum	55	
7.2	Land suitability for Fodder sorghum	58	
7 3	Land suitability for Maize	59	

7.4	Land suitability for Upland Paddy	60
7.5	Land suitability for Finger Millet	61
7.6	Land suitability for Redgram	63
7.7	Land suitability for Horsegram	64
7.8	Land suitability for Fieldbean	65
7.9	Land suitability for Cowpea	66
7.10	Land suitability for Groundnut	67
7.11	Land suitability for Sunflower	68
7.12	Land suitability for Onion	70
7.13	Land suitability for Chilli	71
7.14	Land suitability for Brinjal	72
7.15	Land suitability for Tomato	74
7.16	Land suitability for Mango	75
7.17	Land suitability for Sapota	76
7.18	Land suitability for Guava	78
7.19	Land suitability for Pomegranate	79
7.20	Land suitability for Banana	80
7.21	Land suitability for Jackfruit	81
7.22	Land Suitability for Jamun	83
7.23	Land Suitability for Musambi	84
7.24	Land Suitability for Lime	85
7.25	Land Suitability for Cashew	86
7.26	Land Suitability for Custard Apple	87
7.27	Land Suitability for Amla	88
7.28	Land Suitability for Tamarind	90
7.29	Land suitability for Marigold	91
7.30	Land suitability for Chrysanthemum	92
7.31	Land suitability for Jasmine	93
7.32	Land suitability for Coconut	94
7.33	Land suitability for Arecanut	96
7.34	Land Suitability for Mulberry	97
7.35	Land Use Classes	98
7.36	Proposed Crop Plan	99
Chapter 8	Soil Health Management	103
Chapter 9	Soil and Water conservation Treatment Plan	109
9.1	Treatment Plan	109
9.2	Recommended Soil and Water Conservation measures	113
9.3	Greening of Microwatershed	114
	References	115
	Appendix I	i-x
	Appendix II	xi-xxvi
	Appendix III	
	Appendix III	xxvii- xxxv

LIST OF TABLES

2.1	Mean Monthly Rainfall, PET, 1/2 PET at Chikkanayakanahalli Taluk, Tumkur District	5
2.2	Land Utilization in Tumakur District	7
3.1	Differentiating Characteristics used for Identifying Soil Series	15
3.2	Soil map unit description of Kurubarahalli Microwatershed	17
4.1	Physical and Chemical Characteristics of Soil Series identified in Kurubarahalli microwatershed	29
7.1	Soil-Site Characteristics of Kurubarahalli Microwatershed	56
7.2	Crop suitability for Sorghum	57
7.3	Crop suitability for Fodder sorghum	58
7.4	Crop suitability for Maize	59
7.5	Crop suitability for Upland Paddy	61
7.6	Crop suitability for Finger millet	62
7.7	Crop suitability for Redgram	63
7.8	Crop suitability for Horsegram	64
7.9	Crop suitability for Field bean	65
7.10	Crop suitability for Groundnut	68
7.11	Crop suitability for Sunflower	69
7.12	Crop suitability for Onion	70
7.13	Crop suitability for Chilli	71
7.14	Crop suitability for Brinjal	73
7.15	Crop suitability for Tomato	74
7.16	Crop suitability for Mango	75
7.17	Crop suitability for Sapota	77
7.18	Crop suitability for Guava	78
7.19	Crop suitability for Pomegranate	79
7.20	Crop suitability for Banana	81
7.21	Crop suitability for Jackfruit	82
7.22	Crop Suitability for Jamun	83
7.23	Crop Suitability for Musambi	84

7.24	Crop Suitability for Lime	85
7.25	Crop Suitability for Cashew	87
7.26	Crop Suitability for Custard Apple	88
7.27	Crop Suitability for Amla	89
7.28	Crop Suitability for Tamarind	90
7.29	Crop suitability for Marigold	91
7.30	Crop suitability for Chrysanthemum	93
7.31	Crop suitability for Jasmine	94
7.32	Crop suitability for Coconut	95
7.33	Crop suitability for Arecanut	96
7.34	Crop suitability for Mulberry	97
7.35	Proposed Crop Plan for Kurubarahalli Microwatershed	100

LIST OF FIGURES

2.1	Location map of Kurubarahalli Microwatershed	3
2.2	Granite and granite gneiss rocks	4
2.3	Granite rocks	4
2.4	Rainfall distribution in Chikkanayakanahalli Taluk, Tumkur District	6
2.5	Natural vegetation of Kurubarahalli Microwatershed	6
2.6	Current Land use-Kurubarahalli Microwatershed	8
2.6.a	Different crops and cropping systems in Kurubarahalli Microwatershed	8
2.6.b	Different crops and cropping systems in Kurubarahalli Microwatershed	9
2.7	Location of Wells- Kurubarahalli Microwatershed	10
3.1	Scanned and Digitized Cadastral map of Kurubarahalli Microwatershed	13
3.2	Satellite image of Kurubarahalli Microwatershed	13
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Kurubarahalli Microwatershed	14
3.4	Location of profiles in a transect	14
3.5	Soil phase or management units of Kurubarahalli Microwatershed	19
5.1	Land Capability Classification of Kurubarahalli Microwatershed	38
5.2	Soil Depth map of Kurubarahalli Microwatershed	39
5.3	Surface Soil Texture map of Kurubarahalli Microwatershed	40
5.4	Soil Gravelliness map of Kurubarahalli Microwatershed	41
5.5	Soil Available Water Capacity map of Kurubarahalli Microwatershed	42
5.6	Soil Slope map of Kurubarahalli Microwatershed	43
5.7	Soil Erosion map of Kurubarahalli Microwatershed	44
6.1	Soil Reaction (pH) map of Kurubarahalli Microwatershed	48
6.2	Electrical Conductivity (EC) map of Kurubarahalli Microwatershed	48
6.3	Soil Organic Carbon (OC) map of Kurubarahalli Microwatershed	49
6.4	Soil Available Phosphorus map of Kurubarahalli Microwatershed	49
6.5	Soil Available Potassium map of Kurubarahalli Microwatershed	51
6.6	Soil Available Sulphur map of Kurubarahalli Microwatershed	51
6.7	Soil Available Boron map of Kurubarahalli Microwatershed	52
6.8	Soil Available Iron map of Kurubarahalli Microwatershed	52
6.9	Soil Available Manganese map of Kurubarahalli Microwatershed	53
6.10	Soil Available Copper map of Kurubarahalli Microwatershed	53

6.11	Soil Available Zinc map of Kurubarahalli Microwatershed	54
7.1	Land suitability for Sorghum	57
7.2	Land suitability for Fodder sorghum	58
7.3	Land suitability for Maize	60
7.4	Land suitability for Upland paddy	61
7.5	Land suitability for Finger millet	62
7.6	Land suitability for Redgram	63
7.7	Land suitability for Horsegram	65
7.8	Land suitability for Field bean	66
7.9	Land suitability for Cowpea	67
7.10	Land suitability for Groundnut	68
7.11	Land suitability for Sunflower	69
7.12	Land suitability for Onion	71
7.13	Land suitability for Chilli	72
7.14	Land suitability for Brinjal	73
7.15	Land suitability for Tomato	74
7.16	Land suitability for Mango	76
7.17	Land suitability for Sapota	77
7.18	Land suitability for Guava	78
7.19	Land suitability for Pomegranate	80
7.20	Land suitability for Banana	81
7.21	Land suitability for Jackfruit	82
7.22	Land Suitability for Jamun	83
7.23	Land Suitability for Musambi	84
7.24	Land Suitability for Lime	86
7.25	Land Suitability for Cashew	87
7.26	Land Suitability for Custard Apple	88
7.27	Land Suitability for Amla	89
7.28	Land Suitability for Tamarind	90
7.29	Land suitability for Marigold	92
7.30	Land suitability for Chrysanthemum	93
7.31	Land suitability for Jasmine	94
7.32	Land suitability for Coconut	95
7.33	Land suitability for Arecanut	96
7.34	Land suitability for Mulberry	98
7.35	Land Use Classes map of Kurubarahalli Microwatershed	99
7.36	Soil and water conservation map of Kurubarahalli Microwatershed	114

EXECUTIVE SUMMARY

The land resource inventory of Kurubarahalli Microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiography and the physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundries. The soil map shows the geographic distribution and extent, characterstics, classification, behaviour and use potentials of the soils in the microwartershed.

The present study covers an area of 645 ha in Chikkanayakanahalli taluk of Tumkuru district, Karnataka. The climate is semiarid and categorized as drought-prone with an average annual rainfall of 700 mm, of which about 378 mm is received during south —west monsoon, 179 mm during north-east and the remaining 143 mm during the rest of the year. An area of about 81 per cent is covered by soils and five per cent by rock lands and 14 per cent by habitations and waterbodies. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to 10 soil series and 21 soil phases (management units) and 5 land use classes.
- \clubsuit The length of crop growing period is about 120-150 days starting from 2^{nd} week of August to 3^{rd} week of November.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 250 m grid interval.
- Land suitability for growing 34 major agricultural and horticultural crops were assessed and maps showing the degree of suitability along with constraints were generated.
- ❖ About 81 per cent area in the microwatershed is suitable for agriculture.
- About 51 per cent of the soils are deep (100-150 cm) to very deep (>150 cm), 14 per cent moderately deep and 16 per cent moderately shallow.
- About 35 per cent of the area has clayey soils at the surface and 46 per cent loamy soils.
- About 26 per cent of the area has non-gravelly (<15% gravel) soils, 28 per cent gravelly soils (15-35 % gravel) and 27 per cent soils are very gravelly (35-60%) to extremly gravelly (60-80%).
- About 64 per cent has soils that are very low (<50 mm/m) to low (51-100 mm/m) in available water capacity and 5 per cent medium (101-150 mm/m) in available water capacity and about 12 per cent high (>200 mm/m).
- About 59 per cent of the area has very gently sloping (1-3% slope) lands and 22 per cent gently sloping (3-5%).

- An area of about 36 per cent has soils that are slightly eroded (e1), 36 per cent moderately eroded (e2) and 9 per cent severely eroded (e4) soils.
- An area of about 35 per cent has soils that are slightly acid (pH 5.0-6.5) to moderately acid, 11 per cent strongly acid (pH 5.0-5.5), 30 per cent neutral (pH 6.5-7.3) and 6 per cent slightly alkaline in soil reaction.
- **♦** The Electrical Conductivity (EC) of the soils are dominantly <2 dS m⁻¹indicating that the soils are non-saline.
- About 75 per cent of the soils are low (<0.5%) and 5 per cent are medium (0.5-0.75%) in organic carbon content.
- About 38 per cent area is medium (23-57 kg/ha) and 42 per cent high (>57 kg/ha) in available phosphorus content.
- About 17 per cent of the soils are low (<145 kg/ha), medium (145-337 kg/ha) in 63 per cent and <1 per cent of the soils are high (>337 kg/ha) in available potassium content.
- Available sulphur is high (>10 ppm) in about 18 per cent area, medium (10-20 ppm) in about 50 per cent area and low (<10 ppm) in about 13 per cent area.
- Available boron is low (0.5 ppm) in about 50 per cent area and medium (0.5-1.0 ppm) in 31 per cent area.
- **♦** Entire area is sufficient (>4.5 ppm) in available iron.
- Available manganese, copper and zinc are sufficient in all the soils of the microwatershed.
- The land suitability for 34 major crops grown in the microwatershed were assessed and the areas that are highly suitable (S1) and moderately suitable (S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, market price and finally the demand and supply position.

Land suitability for various crops in the Microwatershed

C	Suite	ability	C	Suit	ability
Crop	Area in ha (%)		Crop	Area in ha (%)	
	Highly	Moderately		Highly	Moderately
	suitable	suitable		suitable	suitable
	(S1)	(S2)		(S1)	(S2)
Sorghum	37 (6)	256 (40)	Guava	25 (4)	258 (40)
Fodder Sorghum	37 (6)	256 (40)	Pomogranate	25 (4)	240 (37)
Maize	37 (6)	171 (27)	Banana	25 (4)	240 (37)
Upland paddy	37 (6)	356 (55)	Jackfruit	25 (4)	155 (24)
Finger millet	37 (6)	271 (42)	Jamun	25 (4)	198 (31)
Redgram	37 (6)	256 (40)	Musambi	25 (4)	240 (37)
Horse gram	37 (6)	385 (60)	Lime	25 (4)	240 (37)
Field bean	37 (6)	256 (40)	Cashew	25 (4)	258 (40)
Cowpea	37 (6)	256 (40)	Custard apple	37 (6)	459 (71)
Groundnut	37 (6)	374 (58)	Amla	37 (6)	385 (60)
Sunflower	25 (4)	240 (37)	Tamarind	25 (4)	198 (31)
Onion	37 (6)	176 (27)	Marigold	37 (6)	256 (40)
Chilli	37 (6)	256 (40)	Chrysanthemum	37 (6)	256 (40)
Brinjal	37 (6)	256 (40)	Jasmine	37 (6)	176 (27)
Tomato	37 (6)	256 (40)	Coconut	25 (4)	155 (24)
Mango	25 (4)	113 (17)	Arecanut	25 (4)	155 (24)
Sapota	25 (4)	155 (24)	Mulberry	25 (4)	3088)

Apart from the individual crop suitability, a proposed crop plan has been prepared for the 5 identified LUCs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fodder, fibre and horticulture crops that helps in maintaining productivity and ecological balance in the microwatershed.

- * Maintaining soil-health is vital to crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.
- Soil and water conservation treatment plan has been prepared that would help in identifying the sites to be treated and also the type of structures required.
- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands, field bunds and also in the hillocks, mounds and ridges that would help in supplementing the farm income, provide fodder and fuel and generate lot of biomass. This helps in maintaining ecological balance and contribute to mitigating climate change.

INTRODUCTION

Land is a scarce resource and basic unit for any material production. It can support the needs of the growing population, provided they use the land in a rational and judicious manner. But what is happening in many areas of the state is a cause for concern to everyone involved in the management of land resources at the grassroots level. The area available for agriculture is about 51 per cent of the total geographical area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. The limited land area is under severe stress and strain due to increasing population pressure and competing demands of various land uses. Due to this, every year there is significant diversion of farm lands and water resources for non-agricultural purposes. Apart from this, due to lack of interest in farmers for farming, large tracts of cultivable lands are turning into fallows in many areas and this trend is continuing at an alarming rate.

Further, land degradation has emerged as a serious problem which has already affected about 38 lakh ha of cultivated area in the state. Soil erosion alone has degraded about 35 lakh ha. Almost all the uncultivated areas are facing various degrees of degradation, particularly soil erosion. Salinity and alkalinity has emerged as a major problem in more than 3.5 lakh ha in the irrigated areas of the state. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. The continued neglect and unscientific use of the resources for a long time has led to the situation observed at present in the state. It is a known fact and established beyond doubt by many studies in the past that the cause for all kinds of degradation is the neglect and irrational use of the land resources. Hence, there is an urgent need to generate a detailed site-specific farm level database on various land resources for all the villages/watersheds in a time bound manner that would help to protect the valuable soil and land resources and also to stabilize the farm production.

Therefore, the land resource inventory required for farm level planning is the one which investigates not only the surface but also consider the other parameters which are critical for productivity *viz.*, soils, climate, water, minerals and rocks, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socio-

economic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying the potential and problem areas, developing sustainable land use plans, estimation of surface run off and water harvesting potential, preparation of soil and water conservation plans, land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agroecosystem as a whole. The LEU is preferred over landform as the base map for LRI. LEU is the assemblage of landform, slope and land use. An attempt has already been made to upscale the soil resource information from 1:250000 and 1:50000 scale to the LEU map in Goa and other states.

The land resource inventory aims to provide site specific database for Kurubarahalli microwatershed in Chikkanayakanahalli Taluk, Tumkur district, Karnataka State for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery. Later, an attempt will be made to uplink this LRI data generated at 1:7920 scale under Sujala-III Project to the proposed Landscape Ecological Units (LEUs) map.

The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

GEOGRAPHICAL SETTING

2.1 Location and Extent

Tumkur District popularly known as *Kalpataru Nadu* (for production of Coconuts) is located 71 kms away from the capital city of Karnataka State. The study area of Kurubarahalli microwatershed (Anekatte sub-watershed) is located in the southern part of Karnataka in Chikkanayakanahalli taluk, Tumkur district, Karnataka State (Fig. 2.1). It lies between 13°23' and 13°25' North latitudes and 76°35' and 76°37' East longitudes and covers an area of 645 ha. It comprises parts of Kedhigehalli, Marasandra, Chikkanahalli, Chikkanayakanahalli, Dugudihalli, Dabbekatta and Jogihalli villages. It is about 12 km south of Chikkanayakanahalli town and is surrounded by Dugudihalli, Dabbekatta on the south, Marasandra villages on the west, Chikkanahalli on the north and Chikkanayakanahalli and Jogihalli villages on the eastern side of the microwatershed.

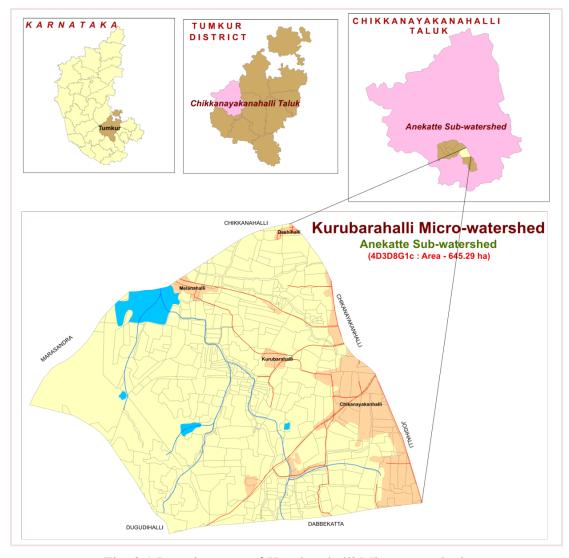


Fig. 2.1 Location map of Kurubarahalli Microwatershed

2.2 Geology

Major rock formations observed in the microwatershed are of Archaean age and comprise of (Figs. 2.2 and 2.3) granite and gneiss. They are essentially pink to gray granite gneisses. The rocks are coarse to medium grained. They consist primarily of quartz, feldspar, biotite and hornblende. The gray granite gneisses are highly weathered, fractured and fissured upto a depth of about 10 m.

Fig. 2.2 Granite and granite gneiss rocks

Fig. 2.3 Granite rocks

2.3 Physiography

Physiographically, the area has been identified as granite gneiss landscape based on geology. It has been further divided into three landforms viz; mounds/ ridges, uplands and lowlands based on slope and other relief features. They have been further subdivided into four physiographic units, viz; summits, side slopes, very gently sloping uplands and lowlands/valleys. The elevation ranges from 788-839 m. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

There are no perennial rivers flowing in Chikkanayakanahalli taluk. However, the area is drained by several small seasonal streams like Tore *Halla* which joins Kare Tore and further drains to Suvarnamuki river along its course. Though, they are not perennial, during rainy season, they carry large quantities of rain water. The microwatershed area has only few small tanks which are not capable of storing water that flows during the rainy season. Due to this, the ground water recharge is very much affected in the villages. This is reflected in the failure of many bore wells in the villages. If the available rain water is properly harnessed by constructing new tanks and recharge structures at appropriate places in the villages, then the drinking and irrigation needs of the area can be met. The drainage network is dendritic to subparallel.

2.5 Climate

The district falls under semiarid tract and is categorized as drought-prone with an average annual rainfall of 700 mm (Table 2.1). Of the total rainfall, a maximum of 378 mm is received during south-west monsoon period from June to September, north-east monsoon from October to early December contributes about 179 mm and the remaining 143 mm is received during the rest of the year. The winter season is from December to February. During April and May, the temperatures reach up to 35 °C and in December and January, the temperatures will go down to 20 °C. Rainfall distribution is shown in Figure 2.4. The average Potential Evapo-Transpiration (PET) is 110 mm and varies from a low of 73 mm in December to 152 mm in the month of April. The PET is always higher than precipitation in all the months except in the months of September and October. Generally, the Length of crop Growing Period (LGP) is 120-150 days and starts from 2nd week of August to 3rd week of November.

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET in Chikkanayakanahalli Taluk, TumkurDistrict

Sl. No.	Months	Rainfall (mm)	PET	1/2 PET	
1	1 January		78.3	39.15	
2	2 February		102.7	51.35	
3	March	17.1	142.6	71.3	
4	April	40.0	151.6	75.8 74.85	
5	May	76.6	149.7		
6	June	75.2	121.1	60.55	
7	July	73.2	107.6	53.8	
8	August	87.4	105.8	52.9	
9	September	142.3	101.2	50.6	
10	October	126.4	100.2	50.1	
11	November	42.4	85.0	42.5	
12	December	10.3	73.0	36.5	
Total		700.5			

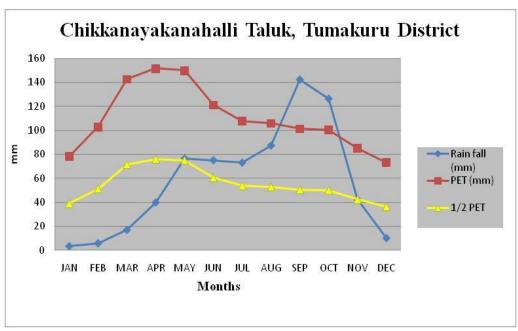


Fig 2.4 Rainfall distribution in Chikkanayakanahalli Taluk, Tumkur District

2.6 Natural Vegetation

The natural vegetation is sparse comprising few tree species, shrubs and herbs. The mounds, ridges and boulders occupy very sizeable area which is under thin to moderately thick forest vegetation. Still, there are some remnants of the past forest cover which can be seen in patches in some ridges and hillocks in the microwatershed (Fig. 2.5).

Apart from the continuing deforestation, the presence of large population of goats, sheep and other cattle in the microwatershed is causing vegetative degradation of whatever little vegetation left in the area. The uncontrolled grazing has left no time for the regeneration of the vegetative cover. This leads to the accelerated rate of erosion on the hill slopes resulting in the formation of deep gullies in the foot slopes that eventually result in the heavy siltation of tanks and reservoirs in the microwatershed.

Fig. 2.5 Natural Vegetation of Kurubarahalli Microwatershed

2.7 Land Utilization

About 55 per cent area (Table 2.2) in Chikkanayakanahalli taluk is cultivated at present. An area of about 7 per cent is currently barren. Forests occupy an area of about 7 per cent. Most of the mounds, ridges and bouldery areas have very poor vegetative cover. Major crops grown in the area are Ragi, Groundnut, Maize, Sorghum, Sunflower, Redgram, Horsegram, Field bean, Cowpea, Mango, Banana, Mulberry and plantation crops like Coconut and Arecanut. While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the Kurubarahalli microwatershed is prepared. The current land use map generated shows the arable and non-arable lands, other land uses and different types of crops grown in the area (Fig. 2.6). The different crops and cropping systems adopted in the microwatershed is presented in Figures 2.6. a & b. Simultaneously, enumeration of wells (bore wells and open wells) and existing conservation structures in the microwatershed are made and their location in different survey numbers is located on the cadastral map. Map showing the location of wells and other water bodies in Kurubarahalli microwatershed is given in Fig. 2.7.

Table 2.2 Land Utilization in Chikkanayakanahalli Taluk

Sl. No.	Agricultural land use	Area (ha)	Per cent
1.	Total geographical area	112998	-
2.	Total cultivated area	61718	54.61
3.	Area sown more than once	8231	-
4.	Cropping intensity	-	113.33
5.	Trees and grooves	2715	2.40
6.	Forest	8235	7.28
7.	Cultivable wasteland	18164	16.07
8.	Permanent Pasture land	4500	3.98
9.	Barren land	7773	6.87
10.	Non- Agriculture land	6771	5.99

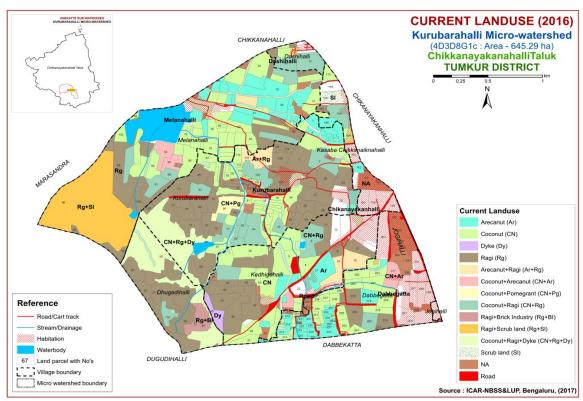


Fig. 2.6 Current Land Use – Kurubarahalli Microwatershed

Fig. 2.6.a Different crops and cropping systems in Kurubarahalli Microwatershed

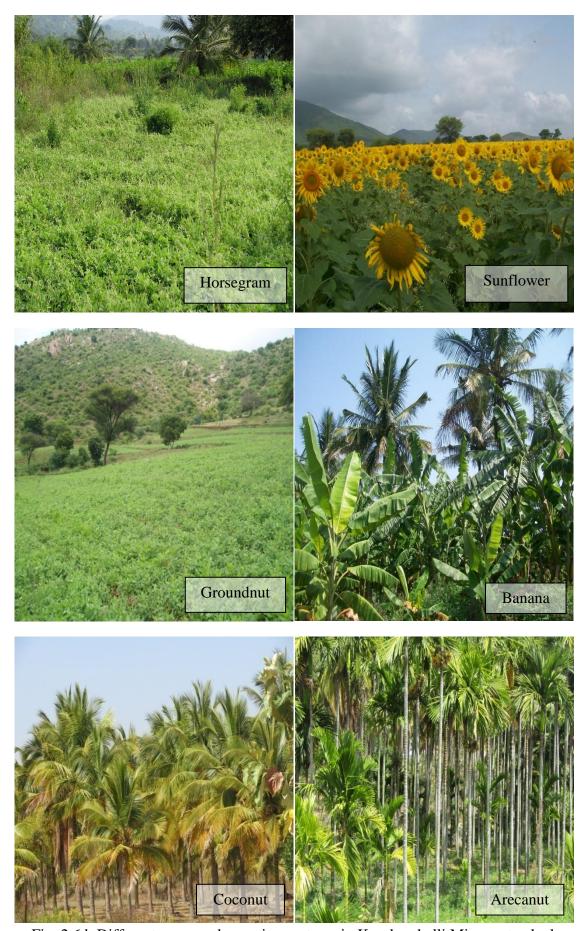


Fig. 2.6.b Different crops and cropping systems in Kurubarahalli Microwatershed

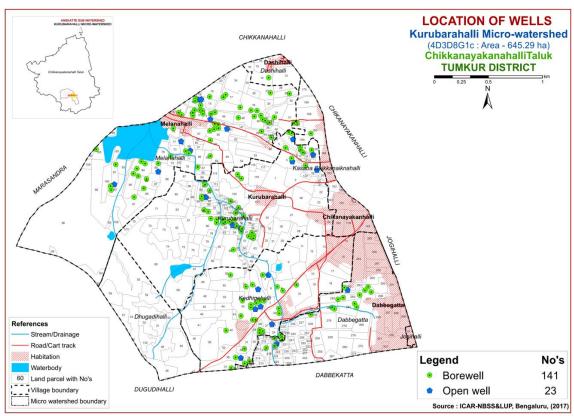


Fig. 2.7 Location of wells in Kurubarahalli Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly to a given level of management. This was achieved in Kurubarahalli microwatershed by the detailed study of all the soil characteristics (depth, texture, colour, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.) and site characteristics (slope of the land, erosion, drainage, occurrence of rock fragments etc.) and followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units, and showing area extent and their geographic distribution on the microwatershed cadastral map. The detailed survey at 1:7920 scale was carried out in an area of 645 ha. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map as a base. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig. 3.2). The cadastral map was overlaid on the satellite imagery (Fig. 3.3) that helps to identify the parcel boundaries and other permanent features. Apart from cadastral maps and images, toposheets of the area (1:50,000 scale) were also used for initial traversing, identification of geology and landforms, drainage features, present land use and also for selection of transects in the microwatershed.

3.2 Image Interpretation for Physiography

False Colour Composites (FCCs) of Cartosat-I and LISS-IV merged satellite data covering the microwatershed area was visually interpreted using image interpretation elements along with the geology map and all the available collateral data with local knowledge. The delineated physiographic boundaries were transferred on to a cadastral map overlaid on satellite imagery. Physiographically, the area has been identified as granite gneiss landscape and is divided into landforms such as ridges, mounds, uplands and valleys based on slope and other relief features. They were further subdivided into physiographic/ image interpretation units based on image characteristics. The image interpretation legend for physiography is given below.

Image Interpretation Legend for Physiography

G- Granite gneiss landscape

G1	8		Hills/ Ridges/ Mounds
	G11		Summits
	G12		Side slopes
		G121	Side slopes with dark grey tones
G2			Uplands
	G21		Summits
	G22		Gently sloping uplands
		G221	Gently sloping uplands, yellowish green (eroded)
		G222	Gently sloping uplands, yellowish white (severely
			eroded)
	G23		Very gently sloping uplands
		G231	Very gently sloping uplands, yellowish green
		G232	Very gently sloping uplands, medium green and pink
		G233	Very gently sloping uplands, pink and green (scrub
			land)
		G234	Very gently sloping uplands, medium greenish grey
		G235	Very gently sloping uplands, yellowish white (eroded)
		G236	Very gently sloping uplands, dark green
		G237	Very gently sloping uplands, medium pink (coconut
			garden)
		G238	Very gently sloping uplands, pink and bluish white
			(eroded)
	G24		Valleys/ lowlands
			Valleys, pink tones
		G242	Valleys gray mixed with pink tones

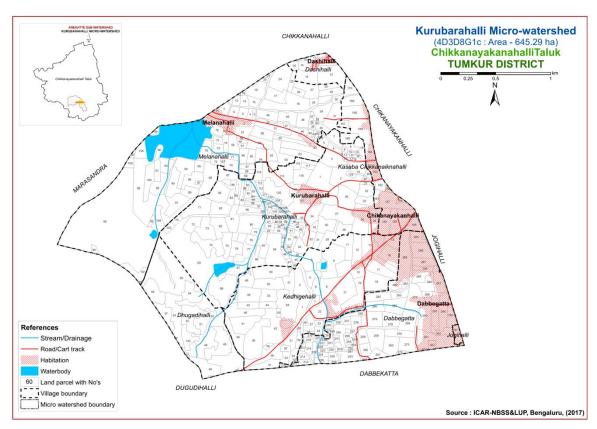


Fig. 3.1 Scanned and Digitized Cadastral map of Kurubarahalli Microwatershed

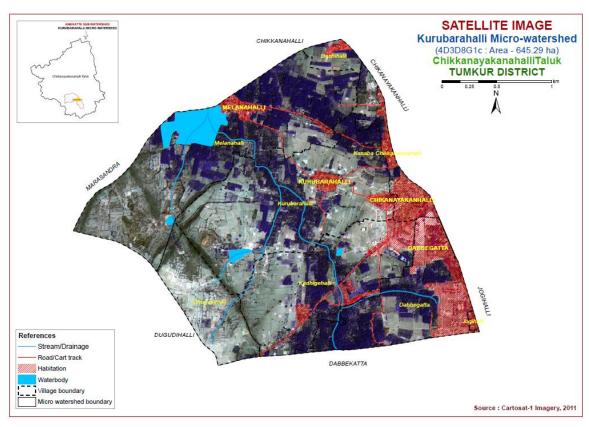


Fig. 3.2 Satellite Image of Kurubarahalli Microwatershed

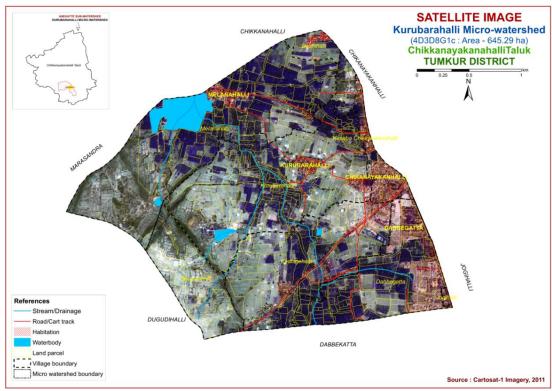


Fig. 3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Kurubarahalli Microwatershed

3.3 Field Investigation

The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, *nallas*, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheets. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was prepared by studying soils at few selected places. Then, intensive traversing of each physiographic unit like hills, ridges, uplands and valleys was carried out. Based on the variability observed on the surface, transects (Fig. 3.4) were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

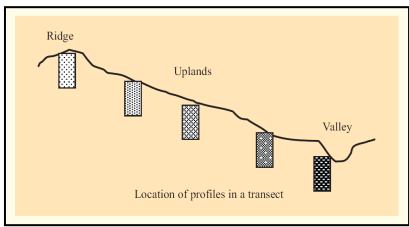


Fig. 3.4. Location of profiles in a transect

In the selected transect, soil profiles were located (Fig. 3.4) at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, profiles (vertical cut showing the soil layers from surface to the rock) were opened upto 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas.

Based on the soil characteristics, the soils were grouped into different soil series. Soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management. Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, calcareousness, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area. The differentiating characteristics used for identifying the soil series are given in Table 3.1. Based on the above characteristics, 10 soil series were identified in the Kurubarahalli microwatershed.

Table 3.1 Differentiating Characteristics used for identifying Soil Series (Characteristics are of Series Control Section)

	Soils of Granite gneiss Landscape						
Sl. No	Soil Series	Depth (cm)	Colour (moist)	Texture (control section)	Gravel (%) (control section)	Horizon sequence	Calcare- ousness
1.	Lakkur (LKR)	50-75	2.5YR 2.5/3, 2.5/4, 3/4, 3/6	gsc	40-60	Ap-Bt-Bc- Cr	
2.	Kutegoudanahundi (KGH)	50-75	7.5YR3/2,3/3,3/4	scl	15-35	Ap-Bt-Cr	
3.	Hooradhahalli (HDH)	75-100	2.5YR2.5/4,3/4, 3/6	gsc-gc	>35	Ap-Bt-Cr	-
4.	Gollarahatti (GHT)	75-100	2.5YR3/4,3/6, 4/4,4/6	gscl	15-35	Ap-Bt-Cr	
5.	Bidanagere (BDG)	75-100	5YR3/3,3/4,4/3,5/4 2.5YR3/4	gc	35-60	Ap-Bt-Cr	1
6.	Jedigere (JDG)	100-150	5YR 4/6, 3/4, 7.5YR 3/4, 4/6	sc-c	<15	Ap-Bt-BC- Cr	1
7.	Balapur (BPR)	100-150	2.5YR2.5/4,3/4	gsc-gc	>35	Ap-Bt-Cr	
8.	Lakshmangudda (LGD)	100-150	10YR3/1,3/2,4/1,4/2, 7.5YR3/1,3/2,5/1, 2.5Y5/2,5/3,6/3	С	<15	Ap-Bss-Ck	-
9.	Nagalapur (NGP)	100-150	5YR2.5/2,3/2, 2.5YR3/6,4/6	sc-c	>35	Ap-Bt-Cr	-
10.	Thondigere (TDG)	>150	7.5YR3/3,3/4,4/6 10YR3/3,4/3, 4/4,4/6	sl, scl, sc	-	Ap-Bw-C	-

3.4 Soil Mapping

The area under each soil series was further separated into 21 soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management.

The soil mapping units are shown on the map (Fig. 3.5) in the form of symbols. During the survey about 19 profile pits, few mini pits and a few auger bores representing different landforms occurring in the microwatershed were studied. In addition to the profile study, spot observations in the form of mini pits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map. The soil map shows the geographic distribution of 21 mapping units representing 10 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2. The soil phase map (management units) shows the distribution of 21 soil phases mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one phase will have similar management needs and have to be treated accordingly.

3.5 Laboratory Characterization

Soil samples for each soil series were collected from representative master profiles for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected from farmer's fields (84 samples) for fertility status (major and micronutrients) at 250 m grid interval were analyzed in the laboratory (Katyal and Rattan, 2003). By linking the soil fertility data to the survey numbers through GIS, soil fertility maps were generated by using Kriging method for the microwatershed.

Table 3.2 Soil map unit description of Kurubarahalli Microwatershed

Soil map unit no.	Soil Series	Soil Phase	Mapping Unit Description	Area in ha (%)
		SOILS	OF GRANITE GNEISS LANDSCAPE	
	LKR	have reddisl	are moderately shallow (50-75 cm), well drained, h brown to dark red gravelly sandy clay soils n very gently to gently sloping uplands under	74 (11.43)
1		LKRcB2g1	Sandy loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	26 (3.98)
2		LKRcB2g2	Sandy loam surface, slope 1-3%, moderate erosion, very gravelly (35-60%)	7 (1.09)
3		LKRcC2g2	Sandy loam surface, slope 3-5%, moderate erosion, very gravelly (35-60%)	41 (6.36)
	KGH	drained, have	shundi soils are moderately shallow (50-75 cm), well the brown to dark brown gravelly sandy clay loam soils to very gently to gently sloping uplands under	29 (4.56)
4		KGHcC3g2	Sandy loam surface, slope 3-5%, severe erosion, very gravelly (35-60%)	29 (4.56)
	HDH	drained, hav	li soils are moderately deep (75-100 cm), well e red to dark red and reddish brown gravelly sandy soils occurring on very gently sloping uplands under	20 (3.13)
5		HDHcB2g1	Sandy loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	20 (3.13)
	GHT	have dark re	soils are moderately deep (75-100 cm), well drained, eddish brown to dark red gravelly sandy clay loam ag on very gently sloping uplands under cultivation	21 (3.28)
6		GHTcB2g1	Sandy loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	12 (1.82)
7		GHTcB2g2	Sandy loam surface, slope 1-3%, moderate erosion, very gravelly (35-60%)	9 (1.46)
	BDG	have dark re	soils are moderately deep (75-100 cm), well drained, eddish brown gravelly clay soils occurring on very atly sloping uplands under cultivation	50 (7.84)
8		BDGcC2g2	Sandy loam surface, slope 3-5%, moderate erosion, very gravelly (35-60%)	17 (2.66)
9		BDGcC3g3	Sandy loam surface, slope 3-5%, severe erosion, extremely gravelly (60-80%)	25 (3.94)
10		BDGiB1	Sandy clay surface, slope 1-3%, slight erosion	8 (1.24)
	JDG	brown to dar	s are deep (100-150 cm), well drained, have dark k reddish brown sandy clay to clay soils occurring on loping uplands under cultivation	25 (3.93)
11		JDGiB2	Sandy clay surface, slope 1-3%, moderate erosion	25 (3.93)

	BPR	reddish brov	s are deep (100-150 cm), well drained, have dark wn to dark red gravelly sandy clay to clay soils n very gently to gently sloping uplands under	104 (16.05)
12		BPRcB2g1	Sandy loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	29 (4.51)
13		BPRcB2g2	Sandy loam surface, slope 1-3%, moderate erosion, very gravelly (35-60%)	19 (2.95)
14		BPRcC2g2	Sandy loam surface, slope 3-5%, moderate erosion, very gravelly (35-60%)	26 (3.98)
15		BPRhB1g1	Sandy clay loam surface, slope 1-3%, slight erosion, gravelly (15-35%)	30 (4.61)
	LGD	light olive b	dda soils are deep (100-150 cm), well drained, have rown to very dark gray clay soils occurring on very ds under cultivation	80 (12.37)
16		LGDiB1	Sandy clay surface, slope 1-3%, slight erosion	65 (10.02)
17		LGDiB1g1	Sandy clay surface, slope 1-3%, slight erosion, gravelly (15-35%)	15 (2.35)
	NGP	reddish brov	oils are deep (100-150 cm), well drained, have dark wn to dark red gravelly sandy clay to clay soils very gently sloping uplands under cultivation	112 (17.36)
18		NGPmB1	Clay surface, slope 1-3%, slight erosion	65 (10.02)
19		NGPmB1g1	Clay surface, slope 1-3%, slight erosion, gravelly (15-35%)	47 (7.34)
	TDG	brown to dar	soils are very deep (>150 cm), well drained, have dark k yellowish brown sandy loam to sandy clay stratified ag on very gently sloping lowlands under cultivation	5 (0.71)
20		TDGhB1	Sandy clay loam surface, slope 1-3%, slight erosion	5 (0.71)
21		Rock outcrops	Rock lands, both massive and bouldery	33 (5.13)
22		Others	Habitation and water bodies	91 (14.12)

3.6 Land Management Units

The 21 soil phases identified and mapped in the microwatershed were grouped into 5 Land Management Units (LMU's) for the purpose of preparing a Proposed Crop Plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Management Units (LMU's) based on the management needs. One or more than one soil site characteristic having influence on the management have been choosen for identification and delineation of LMUs. For Kurubarahalli microwatershed, five soil and site characteristics, namely soil depth, soil texture, slope, erosion and gravel content have been considered for defining LMUs. The land ManagementUnits are expected to behave similarly for a given level of management.

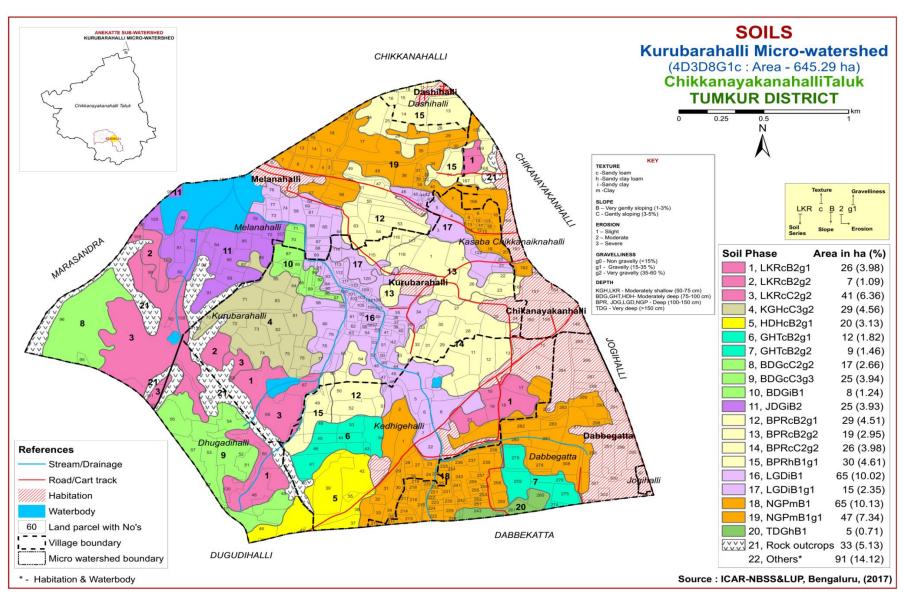


Fig. 3.5 Soil Phase or Management Units-Kurubarahalli Microwatershed

THE SOILS

Detailed information pertaining to the nature, area extent and their distribution of different kinds of soils occurring in Kurubarahalli microwatershed is provided in this chapter. The microwatershed area has been identified as granite gneiss landscape based on geology. In all, 10 soil series are identified. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. In the granite gneiss landscape, it is by parent material, relief and climate.

A brief description of each of the 10 soil series identified followed by 21 soil phases (management units) mapped (Fig. 3.5) are furnished below. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristic that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of granite gneiss landscape

In this landscape, 10 soil series are identified and mapped. Of these, Nagalapur series occupies maximum area of 112 ha (17%) followed by Balapur 104 ha (16%), Lakshmangudda 80 ha (12%), Lakkur 74 ha (11%), Bidanagere 50 ha (8%) and other series occupy minor area in the microwatershed. Brief description of each series along with number of soil phases identified is given below.

4.1.1 Lakkur (LKR) Series: Lakkur soils are moderately shallow (50-75 cm), well drained, have reddish brown to dark red gravelly sandy clay red soils. They have developed from granite gneiss and occur on nearly level to very gently and gently sloping uplands. The Lakkur series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Typic Rhodustalfs.

The thickness of the solum ranges from 51 to 74 cm. The thickness of A horizon ranges from 12 to 18 cm. Its colour is in 5YR and 2.5 YR hue with value 3 to 4 and chroma 4 to 6. The texture varies from loamy sand to sandy clay loam with 15 to 50 per cent gravel. The thickness of B horizon ranges from 39 to 58 cm. Its colour is in 2.5 YR hue with value 3 to 4 and chroma 4 to 6. Texture varies from sandy clay loam to sandy clay with 40 to 60 per cent gravel. The available water capacity is low (50-100 mm/m). Three phases were identified and mapped.

Landscape and soil Profile characteristics of Lakkur (LKR) Series

4.1.2 Kutegoudanahundi (**KGH**) **Series:** Kutegoudanahundi soils are moderately shallow (50-75 cm), well drained, have brown to dark brown sandy clay loam soils. They have developed from granite gneiss and occur on very gently to gently sloping uplands. The Kutegoudanahundi series has been classified as a member of the fine-loamy, mixed, isohyperthermic family of Typic Haplustalfs.

The thickness of the solum ranges from 50 to 74 cm. The thickness of A horizon ranges from 12 to 22 cm. Its colour is in 7.5 YR and 10 YR hue with value and chroma 3 to 4. The texture varies from loamy sand to sandy loam with 15 to 30 per cent gravel. The thickness of B horizon ranges from 40 to 62 cm. Its colour is in 7.5 YR hue with value and chroma 3 to 4. Its texture is sandy clay loam with gravel content of 15 to 35 per cent. The available water capacity is medium (100-150 mm/m). Only one phase was identified and mapped.

Landscape and soil Profile characteristics of Kutegoudanahundi (KGH) Series

4.1.3 Hooradhahalli (HDH) Series: Hooradhahalli soils are moderately deep (75-100 cm), well drained, have red to dark red and reddish brown gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Hooradhahalli series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum ranges from 76 to 100 cm. The thickness of A horizon ranges from 11 to 19 cm. Its colour is in 5 YR and 2.5 YR hue with value 3 to 4 and chroma 3 to 6. The texture varies from loamy sand to sandy clay with 15 to 50 per cent gravel. The thickness of B horizon varies from 65 to 83 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture is sandy clay to clay with 35 to 50 per cent gravel. The available water capacity is low (50-100 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Hooradhahalli (HDH) Series

4.1.4 Gollarahatti (GHT) Series: Gollarahatti soils are moderately deep (75-100 cm), well drained, have dark reddish brown to dark red sandy clay loam soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Gollarahatti series has been classified as a member of the fine-loamy, mixed, isohyperthermic family of Typic Rhodustalfs.

The thickness of the solum ranges from 78 to 98 cm. The thickness of A-horizon ranges from 12 to 18 cm. Its colour is in 5 YR and 2.5 YR hue with value 3 to 4 and chroma 4 to 6. Texture varies from loamy sand to sandy clay with 15 to 35 per cent gravel. The thickness of B horizon ranges from 66 to 81 cm. Its colour is in 2.5 YR hue with value 3 to 4 and chroma 4 to 6. Texture is sandy clay loam to clay with 15 to 35 per cent gravel. The available water capacity is medium (100-150 mm/m). Two phases were identified and mapped.

Landscape and soil Profile characteristics of Gollarahatti (GHT) Series

4.1.5 Bidanagere (BDG) Series: Bidanagere soils are moderately deep (75-100 cm), well drained, have dark reddish brown gravelly clay soils. They have developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The Bidanagere soil series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum ranges from 78 to 99 cm. The thickness of A-horizon ranges from 12 to 19 cm. Its colour is in 2.5 YR and 5 YR hue with value 2 to 3 and chroma 3 to 4. The texture varies from sandy clay loam to sandy clay with 10 to 20 per cent gravel. The thickness of B-horizon ranges from 68 to 85 cm. Its colour is in 2.5 YR hue with value 3 to 5 and chroma 3 to 4. Its texture is gravelly sandy clay to clay with gravel content of 35-60 per cent. The available water capacity is very low (<50 mm/m). Three phases were identified and mapped.

Landscape and soil Profile Characteristics of Bidanagere (BDG) Series

4.1.6 Jedigere (JDG) Series: Jedigere soils are deep (100-150 cm) well drained, have yellowish red to strong brown sandy clay to clay soils. They have developed from granite gneiss and occur on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum ranges from 117 to 145 cm. The thickness of A horizon ranges from 13 to 21 cm. Its colour is in hue 5 YR and 7.5 YR with value 2 to 4 and chroma 2 to 6. Its texture is dominantly sandy clay and sand clay loam. The thickness of B horizon ranges from 104 to 124 cm. Its colour is in hue 5 YR and 7.5 YR with value 2 to 4 and chroma 3 to 6. Its texture is dominantly clay. The available water capacity is very high (>200 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Jedigere (JDG) Series

4.1.7 Balapur (BPR) Series: Balapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Balapur soil series has been classified as a member of the clayey-skeletal, mixed, isohyperthermic family of Typic Rhodustalfs.

The thickness of the solum ranges from 102 to 147 cm. The thickness of A horizon ranges from 12 to 17 cm. Its colour is in 5 YR and 2.5 YR hue with value and chroma 3 to 4. The texture ranges from loamy sand to sandy clay with 15 to 50 per cent gravel. The thickness of B horizon ranges from 90 to 132 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture is sandy clay to clay with 35 to 50 per cent gravel. The available water capacity is low (51-100 mm/m). Four phases were identified and mapped.

Landscape and soil Profile characteristics of Balapur (BPR) Series

4.1.8 Lakshmangudda (LGD) Series: Lakshmangudda soils are deep (100-150 cm), well drained, have light olive brown to very dark gray cracking clay soils. They have developed from granite gneiss and occur on nearly level uplands. The Lakshmangudda series has been classified as a member of the fine, smectitic, isohyperthermic family of Typic Haplusterts.

The thickness of the solum ranges from 108 to 149 cm. The thickness of A horizon ranges from 16 to 20 cm. Its colour is in 7.5 YR and 10 YR hue with value and chroma 3 to 4. The texture varies from sandy clay to clay with 5 to 10 per cent gravel. The thickness of B horizon ranges from 90 to 132 cm. Its colour is in 2.5 Y, 10 YR and 7.5 YR hue with value 3 to 6 and chroma 1 to 3. Its texture is clay. The available water capacity is high (150-200 mm/m). Two phases were identified and mapped.

Landscape and soil Profile Characteristics of Lakshmangudda (LGD) Series

4.1.9 Nagalapur (NGP) Series: Nagalapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands.

The thickness of the solum ranges from 105 to 145 cm. The thickness of Ahorizon ranges from 14 to 20 cm. Its colour is in 7.5 YR hue with value and chroma 3 to 4. The texture ranges from sandy loam to sandy clay with 10 to 50 per cent gravel. The thickness of B horizon ranges from 90 to 128 cm. Its colour is in 2.5 YR, 5 YR and 7.5 YR hue with value 3 to 5 and chroma 3 to 6. Texture is sandy clay to clay with 35 to 80 per cent gravel. The available water capacity is low (51-100 mm/m). Two phases were identified and mapped.

Landscape and soil Profile Characteristics of Nagalapur (NGP) Series

4.1.10 Thondigere (**TDG**) **Series:** Thondigere soils are very deep (>150 cm), well drained, have dark brown to dark yellowish brown, sandy loam, sandy clay loam and sandy clay stratified soils. They have developed from alluvio-colluvium and occur on nearly level to very gently sloping lowlands under cultivation. The Thondigere soil series has been classified as a member of the fine-loamy, mixed, isohyperthermic family of Fluventic Haplustepts.

The thickness of the solum is more than 150 cm. The thickness of A-horizon ranges from 12 to 19 cm. Its colour is in 10 YR, 5 YR and 7.5 YR hue with value 3 to 4 and chroma 4. The texture is sandy clay loam. The thickness of B horizon is more than 150 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 to 4 and chroma 3 to 6. Its texture is sandy, loamy sand, sandy clay loam, sandy clay and clay. The available water capacity is medium (101-150 mm/m). Only one phase was identified and mapped.

Landscape and soil Profile Characteristics of Thondigere (TDG) Series.

Table: 4.1 Physical and Chemical characteristics of soil series identified in Kurubarahalli microwatershed

Soil Series Table: 4.1 Physical: Lakkur (LKR), **Pedon:** RM-8. **Location:** 15⁰04'26.3"N, 75⁰37'84.1"E, (4D4A3I1f), Belhatti village, Shirahatti taluk, Gadag distrtict

Analysis at: NBSS&LUP, Regional Centre, Bengaluru Classification: Clayey-skeletal, mixed, isohyperthermic Typic Rhodustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ Ma	•a4
			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)		Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5-0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-21	Ap	74.00	8.34	17.66	9.62	11.57	15.76	23.13	13.92	20	sl	-	-
21-35	Bt	54.37	10.48	35.14	16.33	8.64	9.69	11.59	8.11	40	sc	-	-
35-56	Вс	48.37	13.46	38.17	10.96	7.69	9.17	11.28	9.27	60	sc	-	-

Depth		оН (1:2.5	`	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ł			(1:2.5)	O.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	LSI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%			cm	ol kg ⁻¹				%	%
0-21	8.18	-	Ī	0.30	0.56	0.94	0.31 0.55 0.86					12.19	0.69	100.00	4.51
21-35	8.17	-	ı	0.30	0.52	1.29	1	-	0.19	0.84	1.03	22.18	0.63	100.00	3.79
35-56	7.95	-	-	0.46	0.48	1.99	-	-	0.24	0.58	0.82	22.94	0.60	100.00	2.53

Soil Series: Hooradhahalli (HDH), **Pedon:** RM-69 **Location:** 13⁰24'31"N, 76⁰33'41"E, (4D3D8G2d), Hesarahalli village, Chikkanayakanahalli taluk, Tumukura district **Analysis at:** NBSS&LUP, Regional Centre, Bengaluru **Classification:** Clayey-skeletal, mixed, isohyperthermic R Classification: Clayey-skeletal, mixed, isohyperthermic Rhodic Paleustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ 1/4-	•-4
			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)	-18 Ap	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5-0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-18	Ap	72.56	15.17	12.27	4.57	8.33	17.38	23.88	18.39	35	sl	-	-
18-33	Bt1	56.29	10.75	32.96	7.88	10.24	13.41	14.43	10.34	55	scl	-	-
33-58	Bt2	46.66	10.79	42.55	10.79	9.87	8.43	9.04	8.53	55	sc	-	-
58-90	Bt3	43.09	13.63	43.27	9.90	8.25	7.32	8.76	8.87	45	С	-	-

Depth	-	оН (1:2.5	`	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ŀ)11 (1.2.3	,	(1:2.5)	O.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	ESI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-18	6.54	-	-	0.07	0.60	0.00	2.68 1.38 0.44 0.42 4.91					5.84	0.48	84.07	7.11
18-33	5.90	-	1	0.07	0.52	0.00	3.99	1.27	0.09	0.37	5.71	8.61	0.26	66.32	4.29
33-58	6.16	-	-	0.07	0.44	0.00	4.92	1.67	0.08	0.55	7.22	10.00	0.24	72.23	5.50
58-90	6.39	-	-	0.06	0.40	0.00	4.30	2.02	0.08	0.46	6.87	9.21	0.21	74.61	5.05

Soil Series: Gollarahatti (GHT), **Pedon:** RM-2 **Location:** 50⁰04'88.8"N, 75⁰37'65.2"E, (4D4A3I1f), Belhatti village, Shirahatti taluk, Gadag district.

Analysis at: NBSS&LUP, Regional Centre, Bengaluru Classification: Fine- loamy, mixed, isohyperthermic Typic Rhodustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ Ma	•a4
			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)	em)	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-26	Ap	83.22	5.74	11.05	9.71	11.73	16.68	27.10	16.58	30	ls	-	-
26-63	Bt1	55.91	13.36	30.73	13.05	9.66	11.10	14.29	7.81	20	scl	-	-
63-84	Bt2	57.17	11.38	31.45	10.53	10.11	12.28	13.83	10.42	20	scl	-	-

Depth		оН (1:2.5)	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ŀ)11 (1.2.3	,	(1:2.5)	O.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	ESI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-26	5.70	-	-	0.06	0.20	0.00	1.50	0.60	0.09	0.13	2.32	3.17	0.29	73.00	4.10
26-63	6.26	-	-	0.04	0.24	0.00	7.35	1.55	0.09	0.17	9.15	9.89	0.32	93.00	1.72
63-84	6.50	-	-	0.05	0.20	0.47	1	-	0.09	0.21	0.30	10.18	0.32	100.00	2.06

Series: Bidanagere (BDG), **Pedon**: RM-3 **Location:** 13⁰22'11"N, 76⁰38'03"E, (4D3D8G1a), Tharabenahalli village, Chikkanayakanahalli taluk, Tumakuru district

Analysis at: NBSS&LUP, Regional Centre, Bengaluru Classification: Clayey-skeletal, mixed, isohyperthermic Rhodic Paleustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ Ma	.:
			Total				Sand			Coarse	Texture	% Mo	oisture
Depth (cm)	(cm)	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-20	Ap	81.19	11.25	7.56	12.54	15.07	17.90	21.94	13.75	50	ls	-	-
20-35	Bt1	57.45	11.45	31.10	12.76	11.02	10.92	12.45	10.31	50	scl	-	-
35-92	Bt2	44.63	7.85	47.52	12.40	9.61	8.37	7.75	6.51	60	С	-	-

Depth		оН (1:2.5	`	E.C.	O.C.	CaCO ₃		Exch	angeabl	e bases		CEC	CEC/ Clay	Base	ESP
(cm)	ŀ)11 (1.2.5	,	(1:2.5)	O.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹							%	%
0-20	6.24	-	-	0.06	0.60	0.00	1.61	0.26	0.10	0.01	1.98	3.76	0.50	52.56	0.35
20-35	5.99	-	1	0.02	0.40	0.00						8.02	0.26	63.18	3.46
35-92	6.70	-	-	0.03	0.20	0.00	5.45	0.31	0.10	0.22	6.09	9.90	0.21	61.48	2.24

Soil Series: Balapur (BPR), **Pedon:** RM-78 **Location:** 13⁰26'39"N, 76⁰35'03"E, (4D3D8G2c), Kasaba, Chikkanayakanahalli taluk, Tumakuru district **Analysis at:** NBSS&LUP, Regional Centre, Bengaluru **Classification:** Clayey-skeletal, mixed, isohype Classification: Clayey-skeletal, mixed, isohyperthermic, Typic Rhodustalfs

				Size clas	s and par	ticle diam	eter (mm)					0/ Ma	.:
			Total				Sand			Coarse	Texture	% IVIO	oisture
Depth (cm)	12 Ap	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0- 1.0)	Coarse (1.0-0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-12	Ap	65.66	18.66	15.68	4.14	6.16	13.33	21.82	20.20	-	sl	-	-
12-34	Bt1	61.91	11.52	26.57	2.36	6.78	12.53	21.36	18.89	-	scl	-	-
34-60	Bt2	51.81	11.24	36.94	4.66	5.70	12.23	15.96	13.26	30	sc	-	-
60-84	Bt3	46.61	9.02	44.37	14.70	6.88	7.51	8.97	8.55	55	sc	-	-
84-112	Bt4	48.75	12.92	38.33	15.73	8.13	6.87	8.23	9.79	60	sc	-	-
112-127	Вс	50.98	24.74	24.28	5.25	4.63	5.15	10.92	25.03	50	scl	-	-

Depth		JI (1.2 E	`	E.C.	O.C.	CaCO		Exch	angeabl	e bases		CEC	CEC/	Base	ESP
(cm)	ŀ	оН (1:2.5)	,	(1:2.5)	U.C.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Clay	satura tion	ESP
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%	cmol kg ⁻¹						%	%	
0-12	6.64	-	-	0.03	0.56	0.00	1.90	1.32	0.21	0.03	3.46	5.45	0.35	63.48	0.51
12-34	6.99	-	-	0.02	0.48	0.00	3.66 1.90 0.07 0.08 5.70				7.82	0.29	72.93	0.96	
34-60	7.29	-	1	0.02	0.40	0.00	5.13	2.08	0.11	0.20	7.52	11.19	0.30	67.18	1.75
60-84	7.50	-	1	0.02	0.32	0.00	5.83	6.36	0.13	0.23	12.55	12.38	0.28	101.43	1.83
84-112	7.54	-	1	0.02	0.24	0.00	6.02	6.59	0.11	0.25	12.96	12.77	0.33	101.49	1.97
112-127	7.90	-	-	0.02	0.20	0.00	8.04	3.62	0.07	0.32	12.04	12.47	0.51	96.56	2.55

Series Name: Lakshmangudda (LGD), **Pedon:** R-10 **Location:**15⁰18'26.5"N, 76⁰04'20.2"E, Narasapur village, Koppal taluk and district **Analysis at:** NBSS&LUP, Regional Centre, Bangalore. **Classification:** Fine smooth Classification: Fine smectitic, isohyperthermic Typic Haplusterts

				Size cla			0/ 1/4	•4					
Depth	Horizon		Total				Sand			Coarse	Texture	% Moisture	
(cm)	110112011	Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)	Coarse (1.0- 0.5)	Medium (0.5- 0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-28	Ap	35.98	16.46	47.56	4.83	8.16	6.77	9.67	6.55	-	c	29.56	20.34
28-58	BA	33.59	18.29	48.13	3.59	3.70	9.67	9.35	7.28	-	С	33.50	22.30
58-83	Bss1	31.72	18.41	49.86	3.18	5.93	6.48	9.33	6.81	-	С	34.07	23.63
83-119	Bss2	30.87	17.88	51.25	4.13	6.09	5.87	8.80	5.98	-	С	36.65	23.55

Depth	pH (1:2.5)		E.C.	O.C.	CaCO ₃		Exchangeable bases		e bases		CEC	CEC/ Clay	Base	ESP	
(cm)	pn (1:2.5)			(1:2.5)	o.c.	CaCO ₃	Ca	Mg	K	Na	Total	CEC	Ciay	satura tion	LSI
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%			cmo	ol kg ⁻¹			%	%	
0-28	8.07	-	1	0.257	0.12	4.08	ı	-	0.41	0.34	-	58.10	1.22	-	0.58
28-58	8.22	-	1	0.203	0.66	6.96	ı	-	0.24	0.20	-	40.30	0.84	-	0.49
58-83	8.32	-	ı	0.158	0.66	5.76	ı	-	0.21	0.37	-	46.20	0.93	-	0.80
83-119	8.3	-	-	0.211	0.78	6.36	-	-	0.36	0.57	-	47.20	0.92	-	1.21

Soil Series: Thondigere (TDG), **Pedon:** RM-24 **Location:** 13⁰28'21"N, 76⁰52'50"E, (4B3D3N1b), Sanabanahalli village, Gubbi taluk, Tumakuru district

Analysis at: NBSS&LUP, Regional Centre, Bengaluru Classification: Fine-loamy, mixed, isohyperthermic Fluventic Haplustepts

	Horiz on	, section ,		Size clas			%						
Depth (cm)		Total					Sand		Coarse	Texture	Moisture		
		Sand (2.0- 0.05)	Silt (0.05- 0.002)	Clay (<0.002)	Very coarse (2.0-1.0)	Coarse (1.0-0.5)	Medium (0.5-0.25)	Fine (0.25-0.1)	Very fine (0.1-0.05)	fragments w/w (%)	Class (USDA)	1/3 Bar	15 Bar
0-17	Ap	73.83	10.36	15.81	11.20	16.19	15.99	18.84	11.61	-	sl		
17-30	A2	77.02	9.01	13.97	10.12	18.83	18.72	19.43	9.92	-	sl		
30-39	A3	76.42	8.45	15.13	7.49	13.36	15.59	26.01	13.97	-	sl		
39-50	Bw1	63.75	9.90	26.35	5.80	9.27	10.49	18.53	19.65	-	scl		
50-71	Bw2	53.49	15.81	30.70	1.44	4.72	10.57	22.28	14.48	-	scl		
71-95	Bw3	36.35	22.32	41.33	1.46	5.83	16.25	6.25	6.56	-	С		
95-114	Bc1	57.96	13.88	28.16	4.39	12.35	14.18	16.94	10.10	-	scl		
114 - >150	Bc2	50.16	16.94	32.91	3.64	12.90	11.34	13.11	9.16	-	scl		

Depth	pH (1:2.5)			E.C. (1:2.5)	0.0	G. CO]	Excha	ngeabl	e base	S	CEC	CEC/CL	Base	ECD
(cm)					O.C.	CaCO ₃	Ca	Ca Mg K Na Total CEC CEC/C	CEC/Clay	saturation	ESP				
	Water	CaCl ₂	M KCl	dS m ⁻¹	%	%		cmol kg ⁻¹				%	%		
0-17	7.02	-	-	0.05	0.62	0.00	4.33	1.14	0.28	0.08	5.83	5.77	0.36	100.00	1.44
17-30	7.80	-	-	0.07	0.37	0.00	4.64	0.44	0.06	0.01	5.15	5.15	0.37	100.02	0.24
30-39	7.55	-	-	0.04	0.29	0.00	4.27	0.33	0.05	0.03	4.69	4.64	0.31	100.00	0.75
39-50	7.69	-	-	0.05	0.25	0.00	7.03	0.49	0.07	0.07	7.66	8.45	0.32	90.66	0.82
50-71	8.09	-	-	0.04	0.12	0.00	9.09	1.43	0.13	0.38	11.02	12.26	0.40	89.94	3.10
71-95	7.97	-	-	0.08	0.29	0.00	11.84	1.27	0.11	0.46	13.68	14.42	0.35	94.85	3.21
95-114	8.32	-	-	0.05	0.29	0.00	9.28	1.23	0.15	0.31	10.97	11.74	0.42	93.44	2.65
114 - >150	8.34	-	-	0.07	0.25	0.00	13.90	1.71	0.13	0.83	16.57	17.61	0.54	94.07	4.70

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect the land use and conservation needs of an area are land capability, soil depth, soil texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several thematic maps are generated. These would help in identifying the areas suitable for growing crops and, soil and water conservation measures and structures needed thus helping to maintain good soil health for sustained crop production. The various interpretative and thematic maps generated are described below.

5.1 Land Capability Classification

Land capability classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Soil Characteristics*: Depth, texture, gravelliness, calcareousness.

Land characteristics: Slope, erosion, drainage, rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The land capability classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

- Class I: They are very good lands that have no limitations or very few limitations that restrict their use.
- Class II: They are good lands that have minor limitations and require moderate conservation practices.
- Class III: They are moderately good lands that have moderate limitations that reduce the choice of crops or that require special conservation practices.
- Class IV: They are fairly good lands that have very severe limitations that reduce the choice of crops or that require very careful management.
- Class V: Soils in these lands are not likely to erode, but have other limitations like wetness that are impractical to remove and as such not suitable for agriculture, but suitable for pasture or forestry with minor limitations.
- Class VI: The lands have severe limitations that make them generally unsuitable for cultivation, but suitable for pasture or forestry with moderate limitations.
- Class VII: The lands have very severe limitations that make them unsuitable for cultivation, but suitable for pasture or forestry with major limitations.

Class VIII: Soil and other miscellaneous areas (rock lands) that have very severe limitations that nearly preclude their use for any crop production, but suitable for wildlife, recreation and installation of wind mills.

The land capability subclasses are recognised based on the dominant limitations observed within a given land capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkalinity or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam) (2), fine texture (cracking clay, silty clay (3), slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units thus identified have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 21 soil map units identified in the Kurubarahalli microwatershed are grouped under 4 land capability classes and 6 land capability subclasses. About 521 ha area (81%) in the microwatershed is suitable for agriculture and an area of 33 ha (5 %) is not suitable for agriculture (Fig. 5.1), but well suited for wildlife, recreation, installation of wind mills.

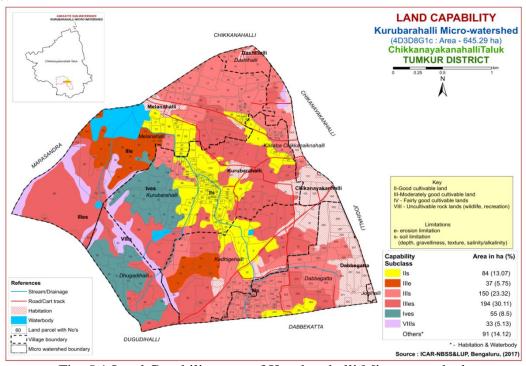


Fig. 5.1 Land Capability map of Kurubarahalli Microwatershed

Good cultivable lands (Class II) cover an area of about 13 per cent and are distributed in the central part of the microwatershed with minor problems of soil. Moderately good cultivable lands (Class III) cover an area of about 59 per cent and are distributed in all parts with moderate problems of erosion and soil. Fairly good lands (Class IV) cover an area of 9 per cent and distributed in the central and southwestern part of the microwatershed with very severe limitations of erosion and soil. Soil and other miscellaneous areas (rock lands) (VIII) covering about 5 per cent and distributed in a minor area in the western and southwestern part of the microwatershed. They have very severe limitations of soil that nearly preclude their use for any crop production.

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was generated. The area extent and their geographical distribution in the microwatershed is given in Fig. 5.2.

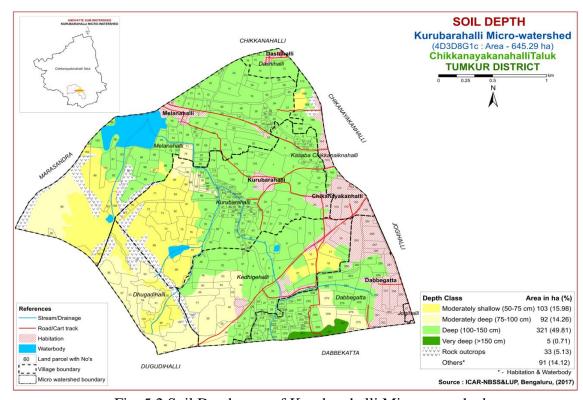


Fig. 5.2 Soil Depth map of Kurubarahalli Microwatershed

An area of 103 ha (16%) are moderately shallow (50-75 cm) and 92 ha (14%) are moderately deep and are distributed in the western, central, southwestern and a small area in the eastern part of the microwatershed. Deep (100-150 cm) soils cover an area of 321 ha (50%) and are distributed in the major part of the microwatershed, whereas very deep (>150 cm) soils occur in an area of 5 ha (<1%) and are distributed in the southeastern part of the microwatershed.

The most productive lands 326 ha (51%) with respect to soil rooting depth where all climatically adapted annual and perennial crops can be grown are very deep (>150 cm depth) and deep (100-150 cm) soils occurring in the major part of the microwatershed.

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behaviour, microbial activity and crop suitability. The textural classes used for LRI were used to classify and a surface soil texture map was generated. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.3.

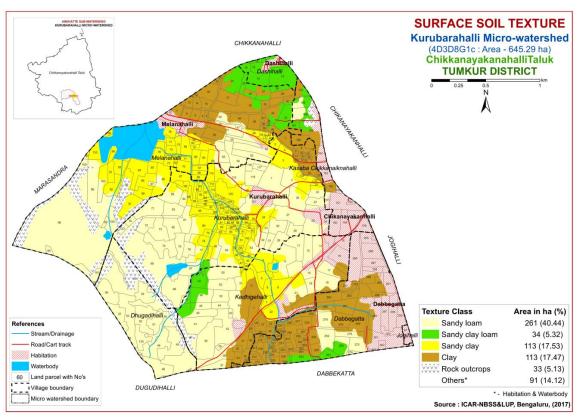


Fig. 5.3 Surface Soil Texture map of Kurubarahalli Microwatershed

An area of about 295 ha (46%) has soils that are loamy at the surface. They are distributed in the western, central, southeastern and northern part of the microwatershed. An area of about 226 ha (35%) is clayey at the surface and are distributed in the central, southeastern, eastern and northwestern part of the microwatershed. An area of 33 ha (5%) is under rock outcrops and are distributed in the western part of the microwatershed (Fig. 5.3).

The most productive lands (34%) with respect to surface soil texture are the clayey soils that have high potential for soil-water retention and availability, nutrient retention and availability, but have more problems of drainage, infiltration, workability and other physical problems. The other most productive lands (46%) are loamy soils which also have high potential for AWC, nutrient availability but have no drainage or other physical problems.

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage, drainage, infiltration and runoff, and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization. The gravelliness classes used in LRI were used to classify the soils and using these classes a gravelliness map was generated. The area extent and their geographic distribution in the microwatershed is shown in Figure 5.4.

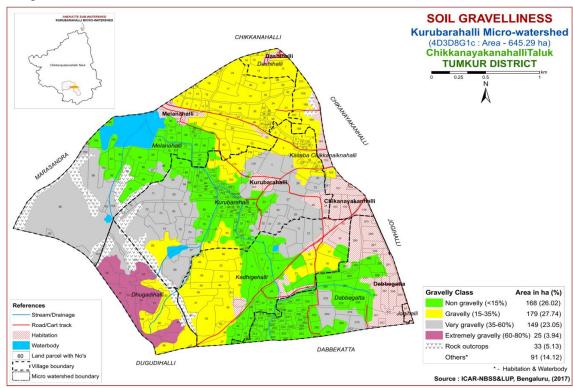


Fig. 5.4 Soil Gravelliness map of Kurubarahalli Microwatershed

An area of 179 ha (28%) are gravelly (15-35%) and are distributed in the northern, eastern and southern part of the microwaterhsed. Very gravelly soils (35-60%) occupy 149 ha (23%) area and is distributed in the central, western and small area of eastern part of the microwaterhsed. Extremely gravelly (60-80%) soils occur in an area of 25 ha (4%) and are distributed in the southwestern part of the microwaterhsed. An area of 33 ha (5%) is under rock outcrops and are distributed in the western part of the microwatershed (Fig. 5.4).

The most productive soils covering 168 ha (26%) are non gravelly (<15%) and are distributed in the northwestern, central and southeastern part of the microwatershed, where all climatically adapted long duration crops can be grown.

The most problem soils cover about 179 ha (28%) that are very gravelly (35-60%) and extremely gravelly (60-80%) where only short duration crops can be grown and that too probability of crop failure is very high.

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was generated. The area extent and their geographic distribution of different AWC classes in the microwatershed is given in Figure 5.5.

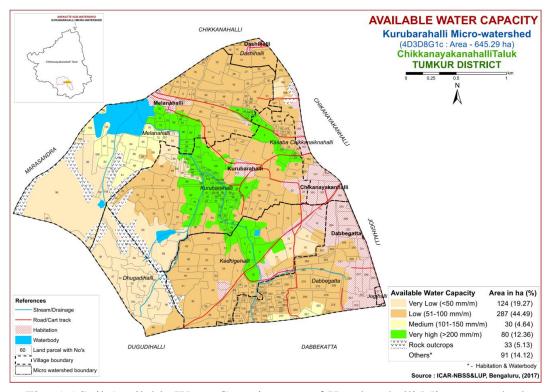


Fig. 5.5 Soil Available Water Capacity map of Kurubarahalli Microwatershed

An area of about 30 ha (5%) is medium (101-150 mm/m) in available water capacity and are distributed in the western and southeastern part of the microwateshed. An area of about 80 ha (12%) is very high (>200 mm/m) in available water capacity and are distributed in the central and northwestern part of the microwatershed. Very low (<50 mm/m) available water capacity soils occupy an area of 124 ha (19%) and are distributed in the southwestern and western part of the microwatershed. An area of about 287 ha (44%) is low (51-100 mm/m) in available water capacity and are distributed in the major part of the microwatershed. An area of 33 ha (5%) area under rock outcrops and are distributed in the small area of western part of the microwatershed (Fig. 5.5).

The most problem soils cover about 411 ha (64%) that have very low to low AWC and such suitable for growing only short duration crops. An area of about 80 ha (12%) has high potential with respect to AWC where all climatically adapted long duration annual and perennial crops can be grown.

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into four slope classes and a slope map was generated showing the area extent and their geographic distribution in the microwatershed (Fig. 5.6).

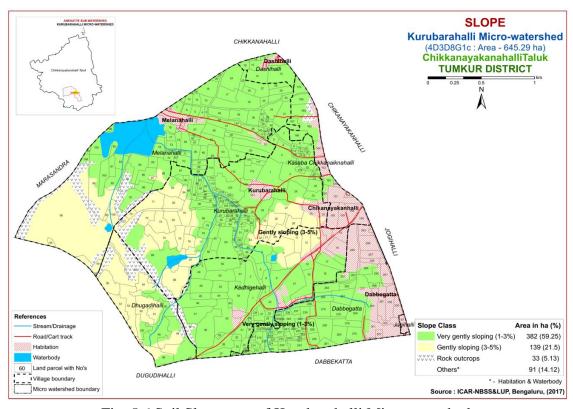


Fig. 5.6 Soil Slope map of Kurubarahalli Microwatershed

An area of about 382 ha (59%) falls under very gently sloping (1-3% slope) lands and are distributed in the major part of the microwatershed and about 139 ha (22%) is under gently sloping (3-5%) and are distributed in the western, central and eastern part of the microwatershed. An area of 33 ha (5%) is under rock outcrops and are distributed in the western part of the microwatershed.

Major area (59%) in the microwatershed has soils that have high potential in respect of soil slopes. In these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures. An area of about 139 ha (22%) requires appropriate soil snd water conservation measures because of the slopes.

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe erosion (e4) are recognized. The soil map units were grouped into different erosion classes and a soil erosion map generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

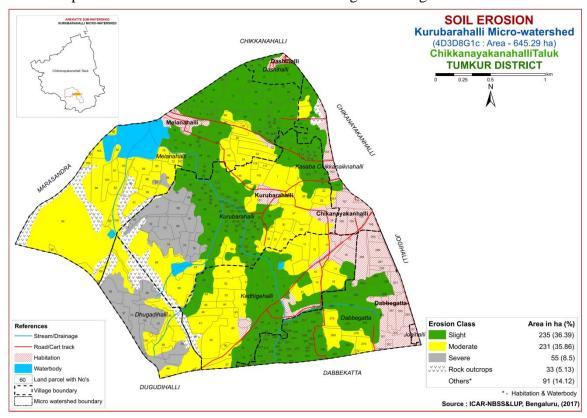


Fig. 5.7 Soil Erosion map of Kurubarahalli Microwatershed

Soils that are moderately eroded (Class e2) cover an area of about 231 ha (36%) in the microwatershed. They are distributed in the southern, western, northern and eastern part of the microwatershed. Slightly eroded (Class e1) soils cover an area of about 235 ha (36%) and are distributed in the southeastern, northern and central part of the microwatershed. An area of about 55 ha (9%) are severly eroded (Class e4) soils and are distributed in the southwestern and central part of the microwatershed.

An area of about 286 ha (44%) in the microwatershed is problematic because of moderate and severe erosion. These areas need soil and water conservation and other land development measures for restoring the soil health.

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status as the area is characterised by low rainfall and high temperatures. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected from the grid points (one soil sample at every 250 m interval) all over the microwatershed through land resource inventory in the year 2016 were analysed for pH, EC, organic carbon, available phosphorus and potassium, and for micronutrients like zinc, boron, copper, iron and manganese, and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been generated using Kriging method under GIS. The village/survey number wise fertility data for the microwatershed is given in Appendix-II.

6.1 Soil Reaction (pH)

The soil analysis of the Kurubarahalli microwatershed for soil reaction (pH) showed that an area of 225 ha (35%) is moderately to slightly acid (pH 5.5-6.5) and are distributed in the central, southern, southwestern and small area in the northern part of the microwatershed. Strongly acid (pH 5.0-5.5) soils occur in about 70 ha (11%) area and distributed in the southern, western and small area in the eastern part of the microwaterhed. An area of 190 ha (30%) is neutral (pH 6.5-7.3) and are distributed in the northern, northwestern and southeastern part of the microwatershed. About 36 ha (6%) is slightly alkaline (pH 7.3-7.8) and are distributed in the southeastern and northwestern part of the microwatershed (Fig. 6.1).

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is <2 dS m^{-1} (Fig. 6.2) and as such the soils and are nonsaline.

6.3 Organic Carbon

The soil organic carbon content of the microwatershed is low (<0.5%) covering an area of about 487 ha (75%) and are distributed in the major part of the microwatershed. Medium (0.5-0.75%) soil organic carbon occupy in an area of 34 ha (5%) and are distributed in the southeastern part of the microwatershed (Fig. 6.3).

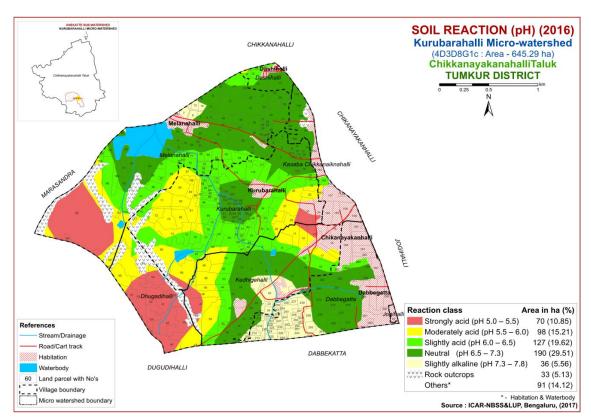


Fig. 6.1 Soil Reaction (pH) map of Kurubarahalli Microwatershed

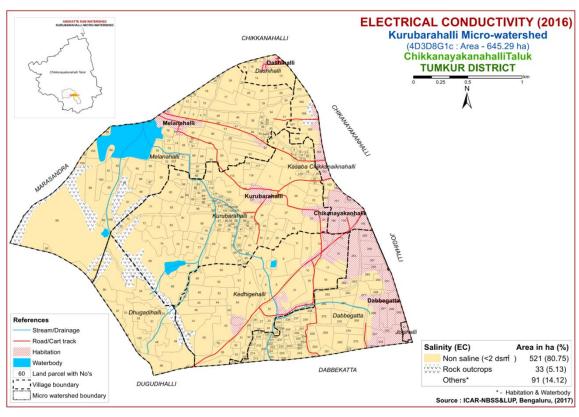


Fig. 6.2 Electrical Conductivity (EC) map of Kurubarahalli Microwatershed

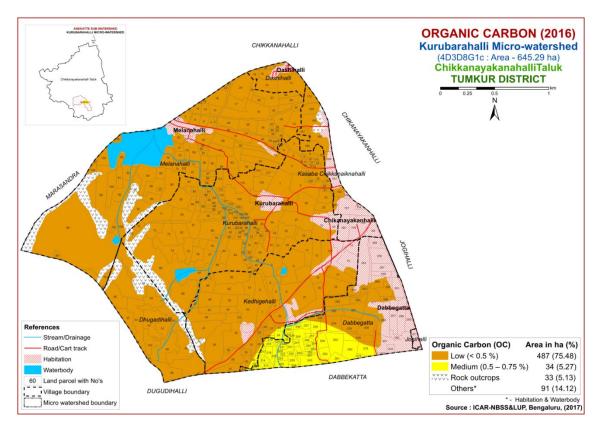


Fig. 6.3 Soil Organic Carbon map of Kurubarahalli Microwatershed

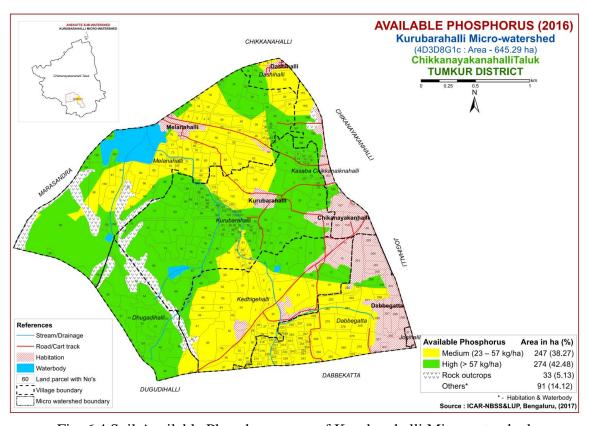


Fig. 6.4 Soil Available Phosphorus map of Kurubarahalli Microwatershed

6.4 Available Phosphorus

Available phosphorus content is medium (23-57 kg/ha) covering an area of about 247 ha (38%) and are distributed in the northern, northwestern, southern and southeastern part of the microwatershed, whereas high (>57 kg/ha) in an area of about 274 ha (42%) and are distributed in the major part of the microwaterhed (Fig. 6.4).

6.5 Available Potassium

Available potassium content is medium (145-337 kg/ha) in an area of about 405 ha (63%) and are distributed in the major part of the microwatershed (Fig. 6.5). Low available potassium (<145 kg/ ha) occupy an area of 112 ha (17%) and are distributed in the southern, southwestern and small area in the northern part of the microwatershed, where as high available potassium (>337 kg/ha) occupy an area of 4 ha (<1%) and are distributed in a minor area in the western part of the microwatershed (Fig. 6.5).

6.6 Available Sulphur

An area of about 320 ha (50%) is medium (10-20 ppm) in available sulphur and are distributed in the major part of the microwatershed and high (>20 ppm) in an area of 117 ha (18%) and are distributed in the northern and southeastern part of the microwatershed. Low (<10 ppm) in available sulphur occupy an area of 84 ha (13%) and are distributed in the central and western part of the microwatershed (Fig. 6.6).

6.7 Available Boron

Available boron content is low (<0.5 ppm) in an area of 321 ha (50%) and are distributed in all parts of the microwatershed. An area of about 200 ha (31%) is medium (0.5-1.0 ppm) in available boron and are distributed in the southern, southeastern, southwestern, northern and northwestern part of the microwatershed (Fig. 6.7).

6.8 Available Iron

Available iron content is sufficient (>4.5 ppm) in the entire area of the microwatershed (Fig. 6.8).

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig. 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig. 6.10).

6.11 Available Zinc

Available zinc content is sufficient (>0.6 ppm) in the entire microwatershed area (Fig. 6.11).

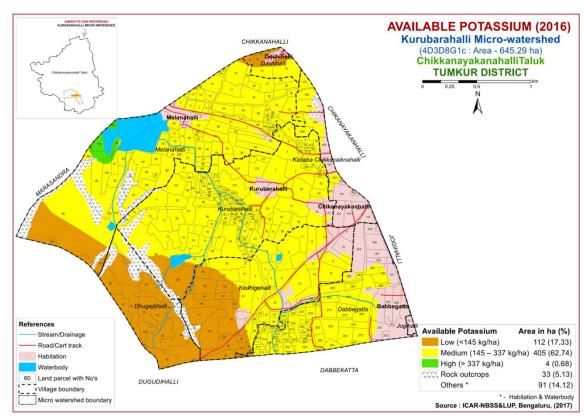


Fig. 6.5 Soil Available Potassium map of Kurubarahalli Microwatershed

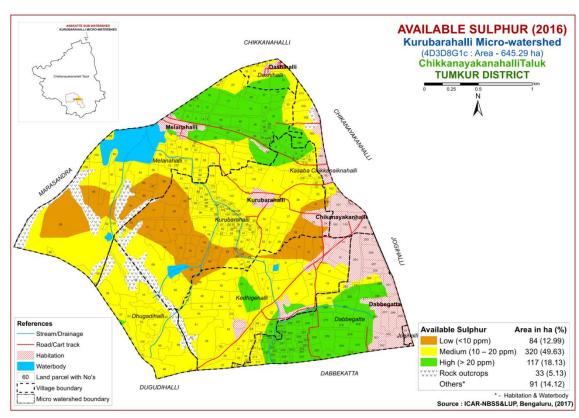


Fig. 6.6 Soil Available Sulphur map of Kurubarahalli Microwatershed

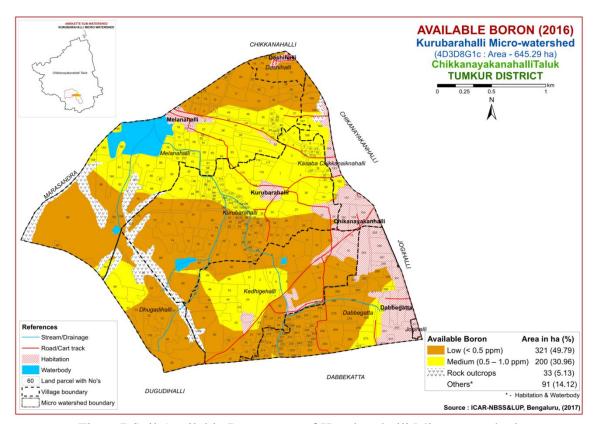


Fig. 6.7 Soil Available Boron map of Kurubarahalli Microwatershed

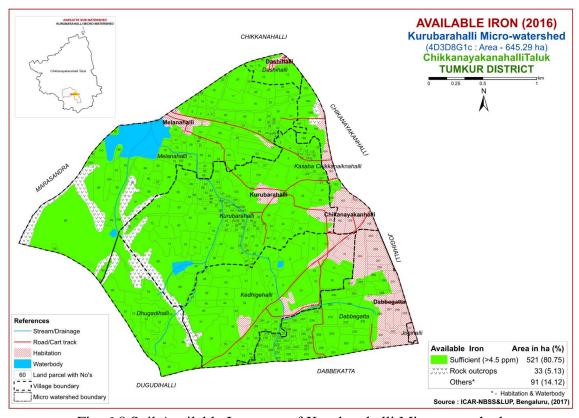


Fig. 6.8 Soil Available Iron map of Kurubarahalli Microwatershed

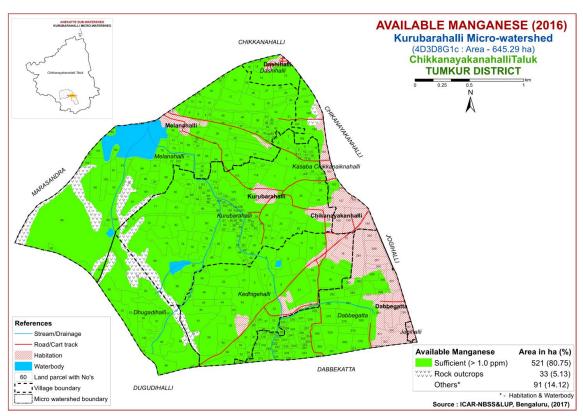


Fig. 6.9 Soil Available Manganese map of Kurubarahalli Microwatershed

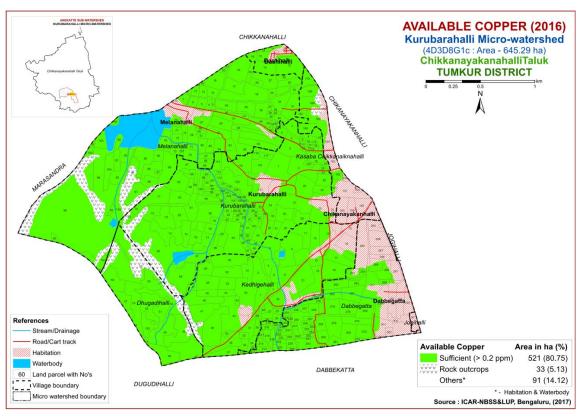


Fig. 6.10 Soil Available Copper map of Kurubarahalli Microwatershed

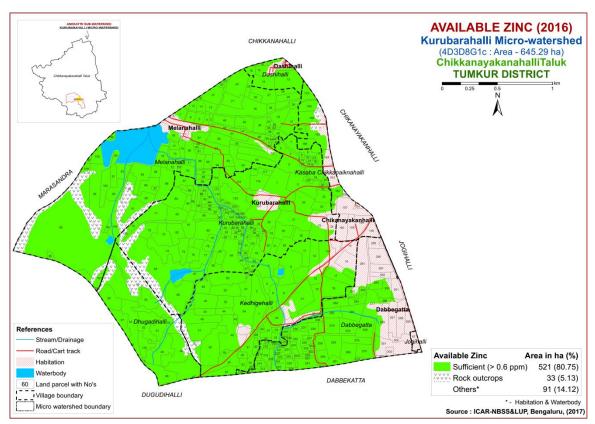


Fig. 6.11 Soil Available Zinc map of Kurubarahalli Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Kurubarahalli microwatershed were assessed for their suitability for growing food, fodder, fibre and other horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data and also by referring to Naidu et. al. (2006) and Natarajan et. al (2015). The crop requirements were matched with the soil and land characteristics (Table 7.1) to arrive at the crop suitability. In FAO land suitability classification, two orders are recognized. Order S-Suitable and Order N-Not suitable. The orders have classes, subclasses and units. Order-S has three Classes, Class S1-Highly Suitable, Class S2-Moderately Suitable and Class S3-Marginally Suitable. Order N has two classes, N1-Currently not Suitable and N2-Permanently not Suitable. There are no subclasses within the Class S1 as they will have very minor or no limitations for crop growth. Classes S2, S3, N1 and N2 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability and 'w' for drainage and 'z' for calcareousness. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable land with the limitations of soil depth and erosion is designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 34 major annual and perennial crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major crops grown in Karnataka in an area of 10.47 lakh ha in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad, Bellary, Chitradurga, Mysore and Tumakuru districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure. 7.1.

An area of about 37 ha (6%) is highly suitable (Class S1) for growing sorghum and are distributed in the southern and western part of the microwatershed. An area of about 256 ha (40%) is moderately suitable (Class S2) for growing sorghum and are distributed in the central, northern, southern and eastern part the microwatershed.

Table 7.1 Soil-Site Characteristics of Kurubarahalli Microwatershed

Sourigh	Growing	o Trainage	Drainage	- I Irainage	Soil depth(cm)	Soil	texture	Gra	velliness	AWC	Slope	English	TT	EC	ECD	CEC [Cmol	BS
Units	(P) (mm)	period (Days)	Class		Surface	Sub- surface	Surface (%)	Sub-surface (%)	(mm/m)	(%)	Erosion	pН	EC	ESP	(p ⁺)kg ⁻¹] (%)		
LKRcB2g1	700	150	WD	50-75	sl	gsc	15-35	40-60	50-100	1-3	Moderate	8.18	0.30	4.51	12.19	100	
LKRcB2g2	700	150	WD	50-75	sl	gsc	35-60	40-60	50-100	1-3	Moderate	8.18	0.30	4.51	12.19	100	
LKRcC2g2	700	150	WD	50-75	sl	gsc	35-60	40-60	50-100	3-5	Moderate	8.18	0.30	4.51	12.19	100	
KGHcC3g2	700	150	WD	50-75	sl	scl	35-60	15-35	100-150	3-5	Severe	-	-	-	-	-	
HDHcB2g1	700	150	WD	75-100	sl	gsc-gc	15-35	>35	50-100	1-3	Moderate	6.54	0.07	7.11	5.84	84	
GHTcB2g1	700	150	WD	75-100	sl	gscl	15-35	15-35	100-150	1-3	Moderate	5.70	0.06	4.10	3.17	73	
GHTcB2g2	700	150	WD	75-100	sl	gscl	35-60	15-35	100-150	1-3	Moderate	5.70	0.06	4.10	3.17	73	
BDGcC2g2	700	150	WD	75-100	sl	gc	35-60	35-60	< 50	1-5	Moderate	6.24	0.06	0.35	3.76	52	
BDGcC3g3	700	150	WD	75-100	sl	gc	60-80	35-60	< 50	1-5	Severe	6.24	0.06	0.35	3.76	52	
BDGiB1	700	150	WD	75-100	sc	gc	-	35-60	< 50	1-3	Slight	6.24	0.06	0.35	3.76	52	
JDGiB2	700	150	WD	100-150	sc	sc-c	-	<15	>200	1-3	Moderate	-	-	-	-	-	
BPRcB2g1	700	150	WD	100-150	sl	gsc-gc	15-35	>35	51-100	1-3	Moderate	6.64	0.03	0.51	5.45	63	
BPRcB2g2	700	150	WD	100-150	sl	gsc-gc	35-60	>35	51-100	1-3	Moderate	6.64	0.03	0.51	5.45	63	
BPRcC2g2	700	150	WD	100-150	sl	gsc-gc	35-60	>35	51-100	3-5	Moderate	6.64	0.03	0.51	5.45	63	
BPRhB1g1	700	150	WD	100-150	scl	gsc-gc	15-35	>35	51-100	1-3	Slight	6.64	0.03	0.51	5.45	63	
LGDiB1	700	150	WD	100-150	sc	c	-	<15	150-200	1-3	Slight	8.07	0.25	0.58	58	-	
LGDiB1g1	700	150	WD	100-150	sc	c	15-35	<15	150-200	1-3	Slight	8.07	0.25	0.58	58	-	
NGPmB1	700	150	WD	100-150	c	gsc-gc	_	>35	51-100	1-3	Slight	-	-	-	-	-	
NGPmB1g1	700	150	WD	100-150	c	gsc-gc	15-35	>35	51-100	1-3	Slight	-	-	-	-	-	
TDGhB1	700	150	WD	>150	scl	Sl, scl, sc	-	-	101-150	1-3	Slight	7.02	0.05	1.44	5.77	100	

^{*}Symbols and abbreviations are according to Field Guide for LRI under Sujala-III Project, Karnataka

They have minor limitations of gravelliness and rooting condition, texture and excess salt. Marginally suitable lands (Class S3) for growing sorghum occupy an area of about 203 ha (31%) and occur in the northeastern, southwestern and western part of the microwatershed and have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwaterheed with severe limitations of gravelliness and topography.

Table 7.2 Crop suitability criteria for Sorghum

Crop requir	ement		Rating						
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)				
Slope	%	2-3	3-8	8-15	>15				
LGP	Days	120-150	120-90	<90					
Soil drainage	Class	Well to mod. Well drained	Imperfect	Poorly/ excessively	V.poorly				
Soil reaction	pН	6.0-8.0	5.5-5.9,8.1-8.5	<5.5,8.6-9.0	>9.0				
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	Sl, ls	S, fragmental skeletal				
Soil depth	Cm	100-75	50-75	30-50	<30				
Gravel content	% vol.	5-15	15-30	30-60	>60				
Salinity (EC)	dS m ⁻¹	2-4	4-8	8-10	>10				
Sodicity (ESP)	%	5-8	8-10	10-15	>15				

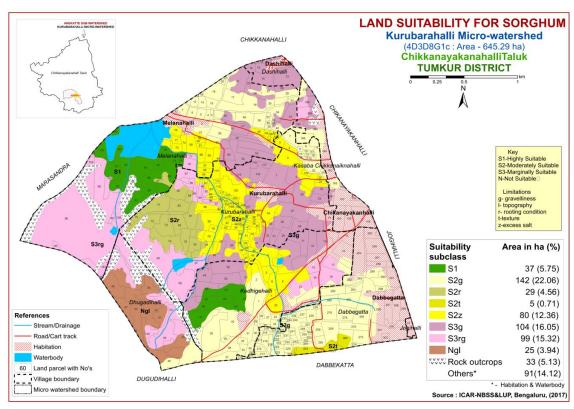


Fig. 7.1 Land Suitability map of Sorghum

7.2 Land Suitability for Fodder Sorghum (Sorghum bicolor)

Fodder Sorghum is one of the major fodder crop grown in South Karnataka in Tumakuru, Chikkaballapur, Mysore, Mandya, Bengaluru Rural and Kolar districts. The crop requirements for growing Fodder sorghum (Table 7.3) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.2.

Table 7.3 Crop suitability criteria for Fodder Sorghum

Crop requirement		Rating						
Soil -site	Unit	Highly	Moderately	Marginally	Not			
characteristics		suitable(S1)	suitable(S2)	suitable(S3)	suitable(N)			
Slope	%	2-3	3-8	8-15	>15			
LGP	Days	120-150	120-90	<90				
Cail duainaga	Class	Well to mod.	Immonfoot	Poorly/	V.poorly			
Soil drainage		Well drained	Imperfect	excessively				
Soil reaction	pН	6.0-8.0	5.5-5.9,8.1-8.5	<5.5,8.6-9.0	>9.0			
Surface soil	Class	Class C, cl, sicl, sc l, sil, sic	S1, 1s	S,fragmental				
texture	Class	C, CI, SICI, SC	1, 811, 810	51, 18	skeletal			
Soil depth	Cm	100-75	50-75	30-50	<30			
Gravel content	% vol.	5-15	15-30	30-60	>60			
Salinity (EC)	dS m ⁻¹	2-4	4-8	8-10	>10			
Sodicity (ESP)	%	5-8	8-10	10-15	>15			

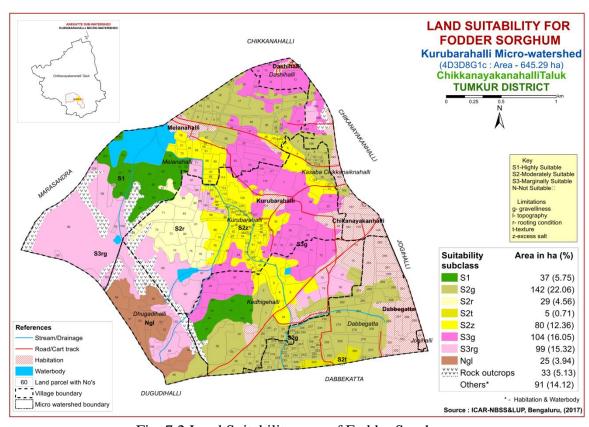


Fig. 7.2 Land Suitability map of Fodder Sorghum

An area of about 37 ha (6%) is highly suitable (Class S1) for growing fodder sorghum and are distributed in the southern and western part the microwatershed. An area of about 256 ha (40%) is moderately suitable (Class S2) for growing fodder sorghum and are distributed in the central, northern, southern and eastern part of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable lands (Class S3) for growing fodder sorghum occupy an area of about 203 ha (31%) and occur in the northeastern, southwestern and western part of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwaterheed with severe limitations of gravelliness and topography.

7.3 Land Suitability for Maize (Zea mays)

Maize is one of the most important food crop grown in an area of 13.37 lakh ha in almost all the districts of the State. The crop requirements for growing maize (Table 7.4) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.3.

An area of about 37 ha (6%) is highly suitable (Class S1) for growing maize and are distributed in the southern and western part of the microwatershed, whereas moderately suitable (Class S2) lands cover of about 171 ha (27%) are occur in the southern and northern part of the microwatershed. They have minor limitations of soil gravelliness and rooting condition. Marginally suitable lands (Class S3) for growing maize occupy major area of about 288 ha (44%) and occur in all parts of the microwatershed. They have moderate limitations of soil gravelliness, texture, rooting condition and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.4 Crop suitability criteria for Maize

Crop require	ment	Rating						
Soil-site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	<3	3.5	5-8				
LGP	Days	>100	100-80	60-80				
Soil drainage	Class	Well drained	Mod. to imperfectly	Poorly/ excessively	V.poorly			
Soil reaction	pН	5.5-7.5	7.6-8.5	8.6-9.0				
Surface soil texture	Class	l, cl, scl, sil	Sl, sicl, sic	C(s-s), 1s	S,fragmental			
Soil depth	Cm	>75	50-75	25-50	<25			
Gravel content	% vol.	<15	15-35	35-50	>50			
Salinity (EC)	dS m ⁻¹	<1.0	1.0-2.0	2.0-4.0				
Sodicity(ESP)	%	<10	10-15	>15				

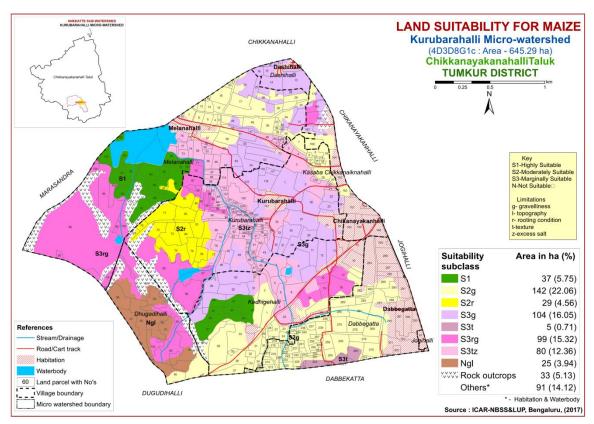


Fig. 7.3 Land Suitability map of Maize

7.4 Land Suitability for Upland Paddy (*Oryaza sativa*)

Upland paddy is one of the most important food crop grown in an area of 13.26 lakh ha in some parts of the State under rainfed condition. The crop requirements for growing Upland paddy (Table 7.5) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Upland paddy was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

An area of about 37 ha (6%) is highly suitable (Class S1) for growing Upland paddy and are distributed in the southern and western part of the microwatershed. An area of about 356 ha (55%) is moderately suitable (Class S2) for growing upland paddy and are distributed in all parts of the microwatershed. They have minor limitations gravelliness, rooting condition, texture and excess salt. An area of about 104 ha (16%) marginally suitable (Class S3) and are distributed in the central, northern and northeastern part of the microwatershed with moderate limitations of gravelliness, texture and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.5 Land suitability criteria for Upland paddy

Crop requirem	ent	Rating						
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	1-3	1-3	3-5	>5			
Soil drainage	class	Well to mod.	poorly	Very poorly				
Soil reaction	pН	5.5-6.5	6.5-7.3,4.5-5.4	7.3-8.4	>8.4			
Surface soil texture	Class	C,sic,cl,sicl,sc	Scl, sil, l	S1, ls	S			
Soil depth	Cm	>75	50-75	25-50	<25			
Gravel content	% vol.	<15	15-35	35-60	60-80			

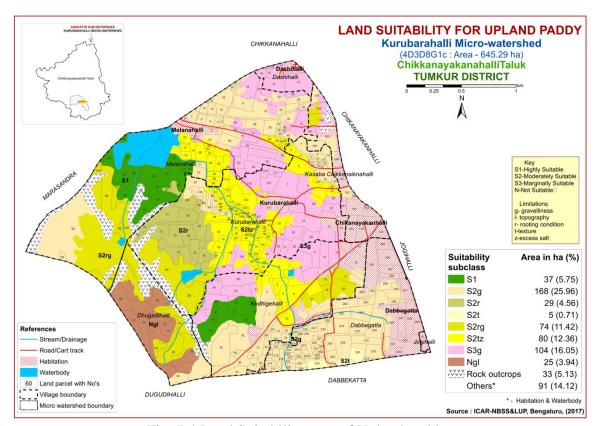


Fig. 7.4 Land Suitability map of Upland paddy

7.5 Land Suitability for Finger millet (*Eleusine coracana*)

Finger millet is one of the most important food crop grown in an area of 7.08 lakh ha in almost all the districts of south Karnataka. The crop requirements for growing Finger millet (Table 7.6) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Finger millet was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.5.

An area of about 37 ha (6%) is highly suitable (Class S1) for growing finger millet and are distributed in the southern and western part of the microwatershed. An area of about 271 ha (42%) is moderately suitable (Class S2) for growing finger millet and are distributed in the southern, western and northern part of the microwatershed. They have minor limitations of gravelliness and rooting condition. Marginally suitable lands (Class

S3) for growing finger millet occupy an area of about 189 ha (29%) and occur in the central and northern part of the microwatershed. They have moderate limitations of gravelliness, texture and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.6 Land suitability criteria for Finger millet

Crop require	ement	Rating						
Soil –site	Unit	Highly	Moderately	Marginally	Not			
characteristics		suitable(S1)	suitable(S2)	suitable(S3)	suitable(N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days	>110	90-110	60-90	<60			
Soil drainage	class	Well to	Imperfectly	Poorly/	V.poorly			
		mod.drained	drained	excessively				
Soil reaction	pН	5.5-7.3	7.3-8.4	8.4-9.0	>9.0			
Surface soil	Class	l, sil, sl, cl,	sic, c, sc	ls, s,c >60%				
texture		sicl, scl						
Soil depth	Cm	>75	50-75	25-50	<25			
Gravel content	% vol.	<15	15-35	35-60	>60			
Salinity (ECe)	dS m ⁻¹	<1.0	1.0-2.0	2.0-4.0				
Sodicity ESP)	%	<10	10-15	15-25	>25			

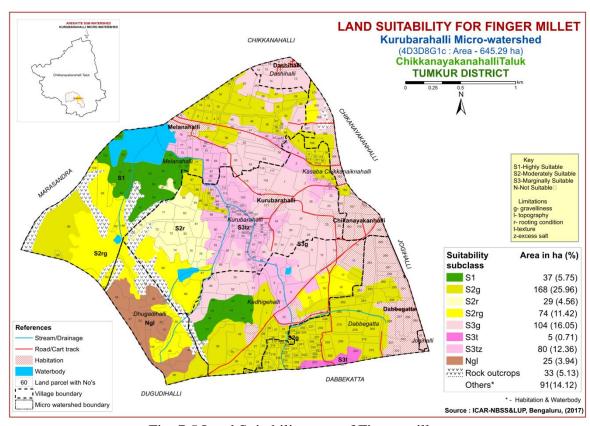


Fig. 7.5 Land Suitability map of Finger millet

7.6 Land suitability criteria for Red gram (Cajanus cajan)

Salinity (EC)

dS m⁻¹

%

Redgram is one of the most important pulse crop grown in an area of 7.28 lakh ha in almost all the districts of the State. The crop requirements for growing redgram (Table 7.7) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing redgram was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.6.

Crop requiren	nent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>210	180-210	150-180	<150		
Soil drainage	Class	Well drained	Mod. Well drained	Imperfectly drained	Poorly drained		
Soil reaction	pН	6.5-7.5	5.0-6.5,7.6-8.0	8.0-9.0	>9.0		
Sub Surface soil texture	Class	l, scl, sil, cl, sl	sicl, sic, c(m)	ls	-		
Soil depth	Cm	>100	75-100	50-75	< 50		
Gravel content	% vol.	<15	15-35	3-60	>60		

<1.0

<10

1.0-2.0

10-15

>2.0

>15

Table 7.7 Land suitability criteria for Red gram

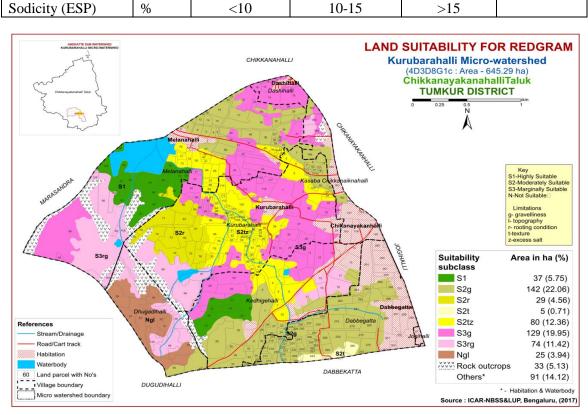


Fig. 7.6 Land Suitability map of Redgram

An area of about 37 ha (6%) is highly suitable (Class S1) for growing redgram and are distributed in the southern and western part of the microwatershed. An area of about 256 ha (40%) is moderately suitable (Class S2) for growing redgram and are distributed in the central, southern and northern part of the microwatershed. They have

minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable lands (Class S3) for growing redgram occupy major area of about 203 ha (31%) and occur in the eastern, western, central and northern part of the microwatershed. They have moderate limitations of soil gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.7 Land suitability for Horsegram (Macrotyloma uniflorum)

Horsegram is one of the most important pulse crop grown in an area of 1.81 lakh ha in almost all the districts of the State. The crop requirements for growing horsegram were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing horsegram (Table 7.8) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.7.

An area of about 37 ha (6%) is highly suitable (Class S1) for growing horsegram and are distributed in the major part of the microwatershed. An area of about 385 ha (60%) is moderately suitable (Class S2) for growing horsegram and are distributed in all parts of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. An area of about 74 ha (11%) is marginally suitable (Class S3) for growing horsegram and are distributed in the western and eastern part of the microwatershed with moderate limitations of rooting condition and gravelliness. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.8 Land suitability criteria for Horse gram

Crop requiren	nent	Rating						
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days							
Soil drainage	Class	Well drained/ mod.well drained	imperfectly drained	Poorly drained	Very Poorly drained			
Soil reaction	pН	6.0-8.5	8.5-9.0, 5.5-5.9	9.1-9.5,5.0-5.4	>9.5			
Surface soil texture	Class	l, sl, scl, cl, sc	Ls, sic, sicl, c, ls	Heavy clays (>60%)	-			
Soil depth	Cm	50-75	25-50	<25	-			
CaCO ₃ in root zone	% vol.	<15	15-25	25-30	>30			
Salinity (ECe)	dS m ⁻¹	<1.0	1.0-2.0	>2.0				
Sodicity (ESP)	%	<10	10-15	>15	-			

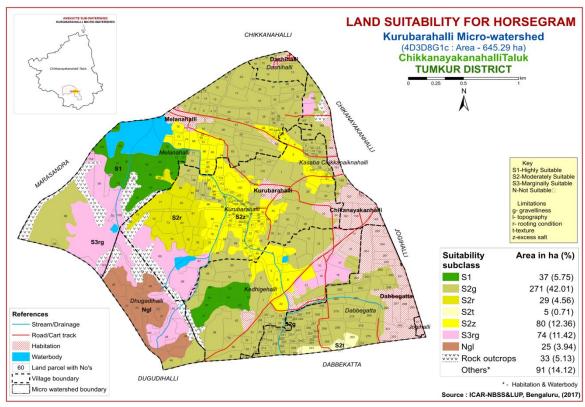


Fig. 7.7 Land Suitability map of Horsegram

7.8 Land suitability for Field Bean (Dolichos lablab)

Field Bean is one of the most important pulse crop grown in an area of 0.68 lakh ha in almost all the districts of the State. The crop requirements (Table 7.9) for growing field bean were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing field bean was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in the Figure 7.8.

Table 7.9 Land suitability criteria for Field Bean

Crop require	ment	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable (S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>120	90-120	70-90	< 70		
Soil drainage	Class	Well drained/ mod.welldrained	imperfectly drained	Poorly drained	V.Poorly drained		
Soil reaction	pН	6.0-8.5	8.5-9.0,5.5-5.9	9.1-9.5,5.0-5.4	>9.5		
Sub Surface soil texture	Class	l, sl, scl, cl, sc	sic, sicl, c	Heavy clays (>60%), ls	S		
Soil depth	Cm	>75	50-75	25-50	<25		
CaCO ₃ in root zone	% vol.	<15	15-35	35-50	>50		
Salinity (EC)	dS m ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	15-20	>20		

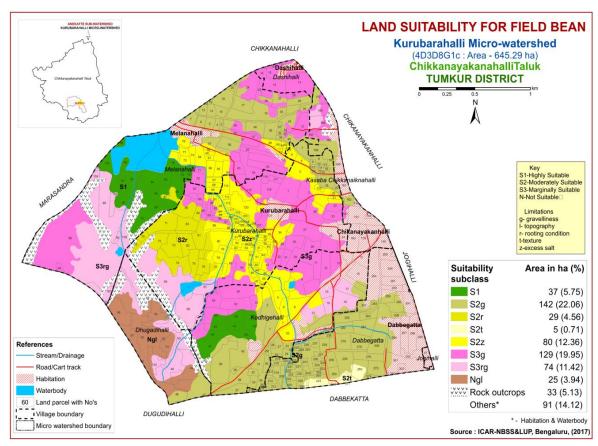


Fig. 7.8 Land Suitability map of Field Bean

An area of about 37 ha (6%) is highly suitable (Class S1) for growing field bean and are distributed in the southern and western part of the microwatershed. An area of about 256 ha (40%) is moderately suitable (Class S2) for growing field bean and are distributed in all parts of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable lands (Class S3) for growing field bean occupy an area of about 203 ha (31%) and occur in the central, northern, western and small area in the eastern part of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7. 9 Land Suitability for Cowpea (Vigna radiata)

Cowpea is one of the most important pulse crop grown in an area of 0.80 lakh ha in almost all the districts of the State. The crop requirements were matched with the soil-site characteristics (Table 7.1) for growing cowpea and a land suitability map for growing cowpea was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in (Fig. 7.9.).

An area of about 37 ha (6%) is highly suitable (Class S1) for growing Cowpea and are distributed in the southern and western part of the microwatershed. An area of about 256 ha (40%) is moderately suitable (Class S2) for growing Cowpea and are distributed in the

central, northern and southern part of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable lands (Class S3) for growing cowpea occupy an area of about 203 ha (31%) and occur in the central, northern, western and small area in the eastern part of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

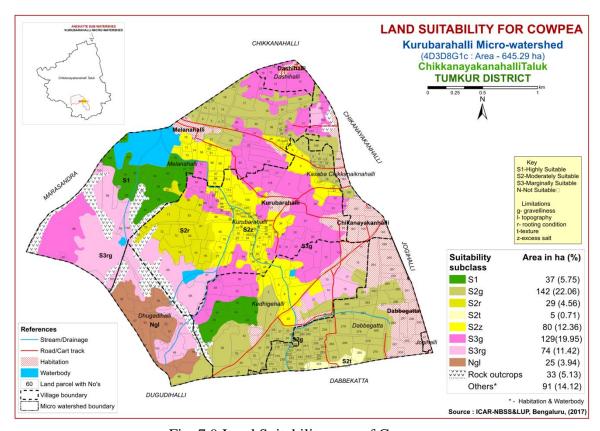


Fig. 7.9 Land Suitability map of Cowpea

7.10 Land Suitability for Groundnut (Arachis hypogaea)

Groundnut is one of the major oilseed crop grown in an area of 6.54 lakh ha in Karnataka in most of the districts either as rainfed or irrigated crop. The crop requirements for growing groundnut (Table 7.10) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing groundnut was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.10.

An area of about 37 ha (6%) is highly suitable (Class S1) for growing groundnut and are distributed in the southern and western part of the microwatershed. An area of about 374 ha (58%) is moderately suitable (Class S2) for groundnut and are distributed in all parts of the microwatershed. They have minor limitations of gravelliness, rooting condition and texture. Marginally suitable lands (Class S3) for growing groundnut occupy an area of about 85 ha (13%) and are distributed in the central, northern and southeastern

part of the microwatershed. They have moderate limitations of texture and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.10 Crop suitability criteria for Groundnut

Crop require	ment	Rating						
Soil—site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	<3	3-5	5-10	>10			
LGP	Days	100-125	90-105	75-90				
Soil drainage	Class	Well drained	Mod. Well drained	Imperfectly drained	Poorly drained			
Soil reaction	pН	6.0-8.0	8.1-8.5, 5.5-5.9	>8.5, <5.5				
Surface soil texture	Class	l, cl,sil,sc,sicl	sc, sic, c,	s,ls, sl,c(>60%)	S,fragmental			
Soil depth	Cm	>75	50-75	25-50	<25			
Gravel content	%vol.	<35	35-50	>50				
CaCO ₃ in root zone	%	high	Medium	Low				
Salinity (EC)	dS m ⁻¹	<2.0	2.0-4.0	4.0-8.0				
Sodicity (ESP)	%	<5	5-10	>10				

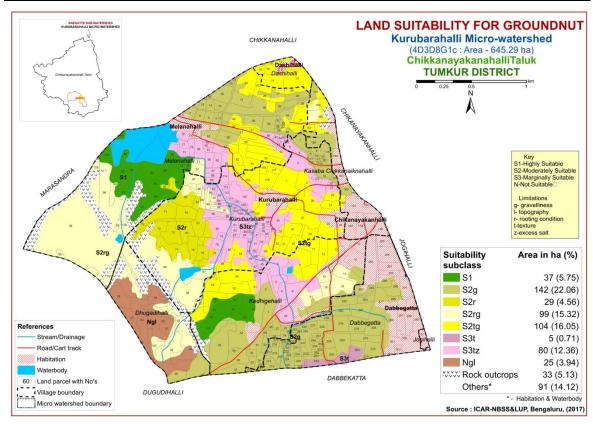


Fig. 7.10 Land Suitability map of Groundnut

7.11 Land Suitability for Sunflower (*Helianthus annus*)

Sunflower is one of the most important oilseed crop grown in an area of 3.56 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.11) were matched with the soil-site characteristics (Table 7.1) and a land suitability map

for growing sunflower was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

Table 7.11 Crop suitability criteria for Sunflower

Crop require	ment	Rating					
Soil-site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>90	80-90	70-80	< 70		
Soil drainage	Class	Well drained	Mod. well rained	Imperfectly drained	Poorly drained		
Soil reaction	pН	6.5-8.0	8.1-8.5,5.5-6.4	8.6-9.0;4.5-5.4	>9.0<4.5		
Surface soil texture	Class	l, cl, sil, sc	scl, sic, c,	c (>60%), sl	ls, s		
Soil depth	cm	>100	75-100	50-75	< 50		
Gravel content	% vol.	<15	15-35	35-60	>60		
Salinity (EC)	dS m ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	>15			

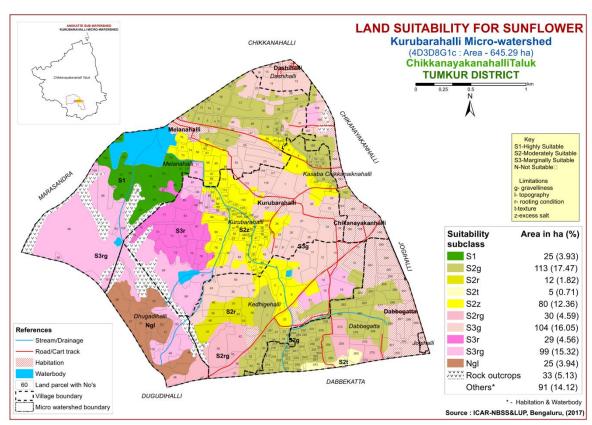


Fig. 7.11 Land Suitability map of Sunflower

An area of about 25 ha (4%) is highly suitable (Class S1) for growing sunflower and is distributed in the western part of the microwatershed. An area of about 240 ha (37%) is moderately suitable (Class S2) for sunflower and are distributed in the central, northern and southern part of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable lands (Class S3) occupy an

area of about 232 ha (36%) for growing sunflower and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.12 Land Suitability for Onion (Allium cepa)

Onion is one of the most important vegetable crop grown in Raichur, Dharwad, Belgaum, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Tumakuru districts. The crop requirements for growing onion (Table 7.12) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Onion was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.12.

An area of about 37 ha (6%) has soils that are highly suitable (Class S1) and are distributed in the southern and western part of the microwatershed. An area of about 176 ha (27%) has soils that are moderately suitable (Class S2) for growing onion with minor limitations of gravelliness, rooting condition and texture. They are distributed in the northern, central and southern part of the microwatershed. Marginally suitable lands (Class S3) for growing onion occupy an area of about 283 ha (44%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness, rooting condition, texture and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.12 Land suitability criteria for Onion

Crop requirem	ent	Rating					
Soil –site	Unit	Highly	Moderately	Marginally	Not suitable		
characteristics		suitable (S1)	suitable (S2)	suitable (S3)	(N)		
Mean temperature	0 C	20-30	30-35	35-40	>40		
in growing season							
Slope	%	<3	3-5	5-10	>10		
Soil drainage	Class	Well	Moderately	Poor drained	Very poorly		
		drained	/imperfectly		drained		
Soil reaction	pН	6.5-7.3	7.3-7.8,5.0-5.4	<5.0,7.8-8.4	>8.4		
Surface soil texture	Class	scl, sil, sl	sc,sicl,c(red soil)	sc,c(black soil)	Ls		
Soil depth	cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<15	15-35	35-60	60-80		
Salinity (ECe)	dS m ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4		
Sodicity (ESP)	%	<5	5-10	10-15	>15		

Fig. 7.12 Land Suitability map of Onion

7.13 Land Suitability for Chilli (Capscicum annuum L.)

Chilli is one of the most important commercial crop grown in an area of 0.89 lakh ha in all the districts of the State. The crop requirements for growing Chilli (Table 7.13) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Chilli was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.13.

Table 7.13 Land suitability criteria for chillies

Crop require	ment		Rati	ng	
Soil –site characteristics	Unit	Highly suitable (S1)	Moderately suitable (S2)	Marginally suitable (S3)	Not suitable (N)
Slope	%	<3	3-5	5-10	ı
LGP	Days	>150	120-150	90-120	<90
Soil drainage	class	Well drained	Mod. to imperf.drained	Poor drained/ excessively	V. poorly drained
Soil reaction	pН	6.0-7.0	7.1-8.0	8.1-9.0,5.0-5.9	>9.0
Surface soil texture	Class	L, scl, cl, sil	sl,sc,sic,c(m/k)	C(ss), ls, s	-
Soil depth	Cm	>75	50-75	25-50	<25
Gravel content	%vol.	<15	15-35	>35	-
Salinity (ECe)	dS m ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4
Sodicity (ESP)	%	<5	5-10	10-15	-

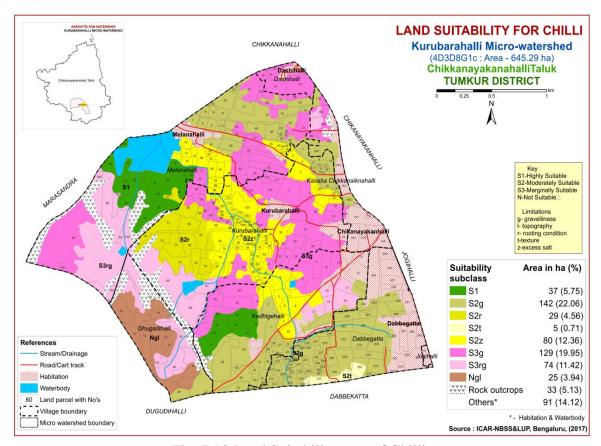


Fig. 7.13 Land Suitability map of Chilli

An area of about 37 ha (6%) has soils that are highly suitable (Class S1) and are distributed in the western and southern part of the microwatershed. An area of 256 ha (40%) has soils that are moderately suitable (Class S2) for growing Chilli and are distributed in the central, northern, eastern and southern part of the microwatershed with minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable lands (Class S3) for growing chilli occupy an area of about 203 ha (31%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.14 Land suitability for Brinjal (Solanum melongena)

Brinjal is one of the most important vegetable grown in all the districts. The crop requirements for growing Brinjal (Table 7.14) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing brinjal was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.14.

Table 7.14 Land suitability criteria for Brinjal

Crop	requiremen	ıt	Rating				
Soil -	-site		Highly	Moderately	Marginally	Not	
charact	eristics	Unit	suitable(S1)	suitable(S2)	suitable(S3)	suitable(N)	
Soil	Soil	Class	Well	Moderately	Poorly	V. Poorly	
aeration	drainage		drained	well drained	drained	drained	
Nutrient	Texture	Class	Sl, scl, cl, sc	c (red)	ls, c(black)	-	
availability	pН	1:2.5	6.0-7.3	7.3-8.4,5.5-6.0	8.4-9.0	>9.0	
Dooting	Soil depth	cm	>75	50-75	25-50	<25	
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60	
Erosion	Slope	%	0-3	3-5	5-10	>10	

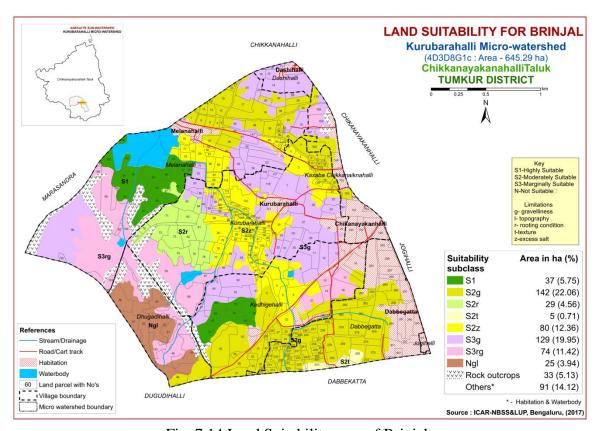


Fig. 7.14 Land Suitability map of Brinjal

An area of about 37 ha (6%) has soils that are highly suitable (Class S1) and are distributed in the southern and western part of the microwatershed. An area of about 256 ha (40%) has soils that are moderately suitable (Class S2) for growing brinjal with minor limitations of gravelliness, rooting condition, texture and excess salt. They are distributed in the northern, central and southern part of the microwatershed. Marginally suitable lands (Class S3) for growing brinjal occupy an area of about 203 ha (31%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.15 Land suitability for Tomato (Lycopersicon esculentum)

Tomato is one of the most important vegetable crop grown in all the districts. The crop requirements for growing Tomato (Table 7.15) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Tomato was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.15.

Table 7.15 Land suitability criteria for Tomato

Cro	p requirement		Rating				
		1					
So	il —site		Highly	Moderately	Marginally	Not	
chara	cteristics	Unit	suitable(S1)	suitable(S2)	suitable(S3)	suitable(N)	
Climata	Temperature in	⁰ с	25.20	29-32	15-19	<15	
Climate	growing season	C	25-28	20-24	33-36	>36	
Soil	Growing	D	. 150	120 150	00.120		
moisture	period	Days	>150	120-150	90-120		
Soil	Cail duainaga	class	Well	Moderately	Poorly	V. poorly	
aeration	Soil drainage	Class	drained	well drained	drained	drained	
	Texture	Class	l, sl, cl, scl	sic,sicl,sc,c(m/k)	c (ss), ls	S	
Nutrient	pН	1:2.5	6.0-7.3	5.5-6.0,7.3-8.4	8.4-9.0	>9.0	
availability	CaCO ₃ in root	%	Non	Slightly	Strongly		
	zone	%	calcareous	calcareous	calcareous		
Rooting	Soil depth	cm	>75	50-75	25-50	<25	
conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	ds/m	Non saline	slight	strongly		
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-	
Erosion	Slope	%	1-3	3-5	5-10	>10	

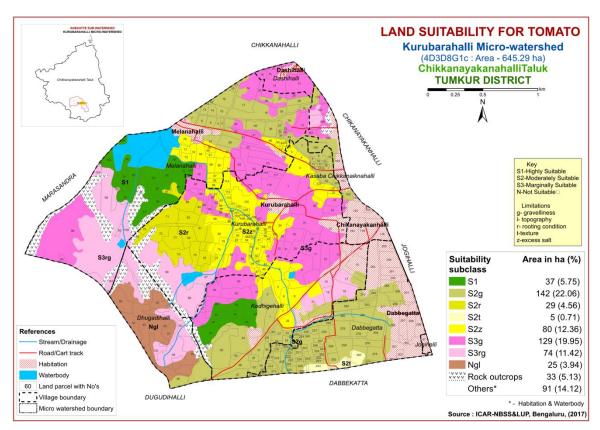


Fig. 7.15 Land Suitability map of Tomato

An area of about 37 ha (6%) has soils that are highly suitable (Class S1) and are distributed in the southern and western part of the microwatershed. An area of about 256 ha (40%) has soils that are moderately suitable (Class S2) for growing Tomato with minor limitations of gravelliness, rooting condition, texture and excess salt. They are distributed in the central, southern and northern part of the microwatershed. Marginally suitable lands (Class S3) for growing Tomato occupy an area of about 203 ha (31%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.16 Land suitability for Mango (Mangifera indica)

Mango is one of the most important fruit crop grown in an area of about 1.73 lakh ha in almost all the districts of the State. The crop requirements (Table 7.16) for growing mango were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.16.

Table 7.16 Crop suitability criteria for Mango

Cr	op requirement		Rating				
	oil-site acteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temp. in growing season	⁰ C	28-32	24-27 33-35	36-40	20-24	
Cilliate	Min. temp. before flowering	°C	10-15	15-22	>22		
Soil moisture	Growing period	Days	>180	150-180	120-150	<120	
Soil aeration	Soil drainage	Class	Well drained	Mod. To imperf.drained	Poor drained	V.poorly drained	
actation	Water table	M	>3	2.50-3.0	2.5-1.5	<1.5	
	Texture	Class	sc, l, sil, cl	sl, sc, sic, l,c	c (<60%)	c (>60%),	
Nutrient	pН	1:2.5	5.5-7.5	7.6-8.5,5.05.4	8.6-9.0,4.0-4.9	>9.0<4.0	
availability	OC	%	High	medium	low		
availability	CaCO ₃ in root zone	%	Non calcareous	<5	5-10	>10	
Rooting	Soil depth	cm	>200	125-200	75-125	<75	
conditions	Gravel content	%vol	Non-gravelly	<15	15-35	>35	
Soil	Salinity	dS/m	Non saline	<2.0	2.0-3.0	>3.0	
toxicity	Sodicity	%	Non sodic	<10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

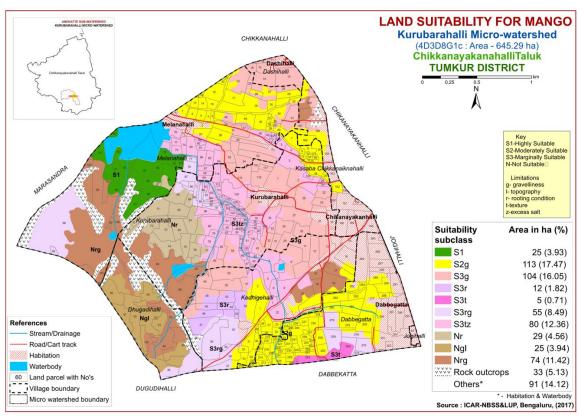


Fig. 7.16 Land Suitability map of Mango

An area of 25 ha (4%) in the microwatershed is highly suitable (Class S1) for growing mango and are distributed in the western part of the microwatershed. An area of 113 ha (17%) is moderately suitable (Class S2) for growing mango and are distributed in the northern and southeastern part the microwatershed. They have moderate limitation of gravelliness. An area of 256 ha (40%) is marginally suitable (Class S3) for growing mango and are distributed in all parts of the microwatershed with moderate limitations of gravelliness, rooting condition, texture and excess salt. An area of about 128 ha (20%) is not suitable (Class N) and are distributed in the southwestern, western, eastern and northeastern part of the microwatershed with severe limitations of gravelliness, rooting condition and topography.

7.17 Land suitability for Sapota (Manilkara zapota)

Sapota is one of the most important fruit crop grown in an area of 29373 ha in almost all the districts of the State. The crop requirements (Table 7.17) for growing sapota were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.17.

An area of about 25 ha (4%) in the microwatershed is highly suitable (Class S1) for growing sapota and are distributed in the western part of the microwatershed. An area of about 155 ha (24%) is moderately suitable (Class S2) for growing sapota and are distributed in the northern, southern and eastern part of the microwatershed. They have

minor limitations of gravelliness and rooting condition. An area of about 317 ha (49%) is marginally suitable (Class S3) for growing sapota and are distributed in all parts of the microwatershed with moderate limitations of gravelliness, rooting condition, texture and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.17 Crop suitability criteria for Sapota

Cr	op requirement		Rating			
	l —site cteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	>42 <18
Soil moisture	Growing period	Days	>150	120-150	90-120	<120
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained
	Texture	Class	scl, l, cl, sil	sl, sicl, sc	c (<60%)	ls,s,c(>60%)
Nutrient	pН	1:2.5	6.0-7.5	7.6-8.0,5.0-5.9	8.1-9.0,4.5-4.9	>9.0,<4.5
availability	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15
Rooting	Soil depth	cm	>150	75-150	50-75	< 50
conditions	Gravel content	% vol.	Non gravelly	<15	15-35	<35
Soil	Salinity	dS/m	Non saline	Up to 1.0	1.0-2.0	2.0-4.0
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25
Erosion	Slope	%	<3	3-5	5-10	>10

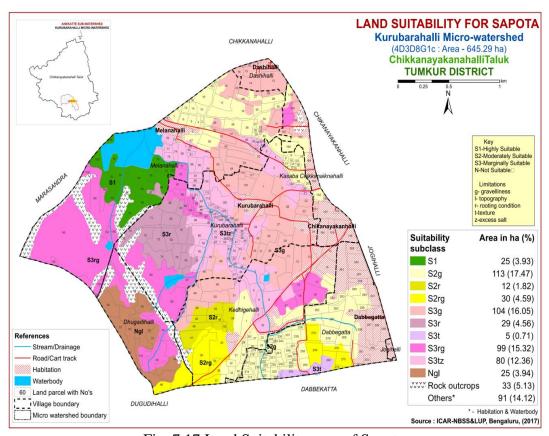


Fig. 7.17 Land Suitability map of Sapota

7.18 Land suitability for Guava (*Psidium guajava*)

Guava is one of the most important fruit crop grown in an area of 0.64 lakh ha in almost all the districts of the State. The crop requirements (Table 7.18) for growing guava were matched with the soil-site characteristics (7.1) and a land suitability map for growing guava was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.18.

Table 7.18 Crop suitability criteria for Guava

Cro	p requirement		Rating				
	—site eteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Femperature in growing season	°C	28-32	33-36 24-27	37-42 20-23		
Soil moisture	Growing period	Days	>150	120-150	90-120	<90	
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly	poor	Very poor	
	Texture	Class	scl, l, cl, sil	sl,sicl,sic.,sc,c	c (<60%)	c (>60%)	
Nutrient	pН	1:2.5	6.0-7.5	7.6-8.0:5.0-5.9	8.1-8.5:4.5-4.9	>8.5:<4.5	
availability	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15	
Rooting	Soil depth	cm	>100	75-100	50-75	< 50	
conditions	Gravel content	% vol.	<15	15-35	>35		
Soil tovioity	Salinity	dS/m	<2.0	2.0-4.0	4.0-6.0		
Soil toxicity	Sodicity	%	Non sodic	10-15	15-25	>25	
Erosion	Slope	%	<3	3-5	5-10	>10	

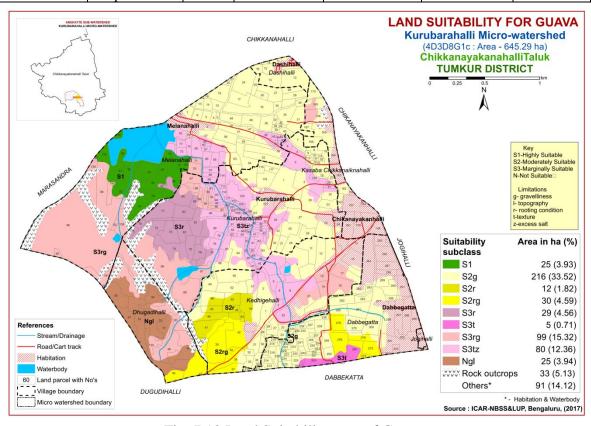


Fig. 7.18 Land Suitability map of Guava

An area of about 25 ha (4%) in the microwatershed is highly suitable (Class S1) for growing guava and are distributed in the western part of the microwatershed. An area of about 258 ha (40%) is moderately suitable (Class S2) for growing guava and are distributed in the central, northern, southern and eastern part of the microwatershed with minor limitations of gravelliness and rooting condition. Marginally suitable (Class S3) lands cover an area of about 213 ha (33%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness, rooting condition, texture and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.19 Land Suitability for Pomegranate (*Punica granatum*)

Pomegranate is one of the commercially grown fruit crop in Karnataka in an area of 0.16 lakh ha mainly in Bijapur, Bagalkot, Koppal, Gadag and Chitradurga districts. The crop requirements for growing pomegranate (Table 7.19) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing pomegranate was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.19.

An area of about 25 ha (4%) is highly suitable (Class S1) for growing pomegranate and are distributed in the western part of the microwatershed. An area of about 240 ha (37%) is moderately suitable (Class S2) for growing pomegranate and are distributed in the central, eastern, southern and northern part of the microwatershed with minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable (Class S3) lands cover an area of about 232 ha (36%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.19 Crop suitability criteria for Pomegranate

Cı	op requirement		Rating				
	il —site acteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
I Climate	Temperature in growing season	°C	30-34	35-38 25-29	39-40 15-24	-	
Soil moisture	Growing period	Days	>150	120-150	90-120	<90	
Soil aeration	Soil drainage	class	Well drained	imperfectly drained	-	-	
Nutrient availability	Texture	Class	sl, scl, l, cl	c, sic, sicl	cl, s, ls	S, fragmental	
Dooting	pН	1:2.5	5.5-7.5	7.6-8.5	8.6-9.0	-	
Rooting conditions	Soil depth	cm	>100	75-100	50-75	< 50	
conditions	Gravel content	% vol.	nil	15-35	35-60	>60	
Soil	Salinity	dS/m	Nil	<9	>9	< 50	
toxicity	Sodicity	%	nil	_	-	-	
Erosion	Slope	%	<3	3-5	5-10	-	

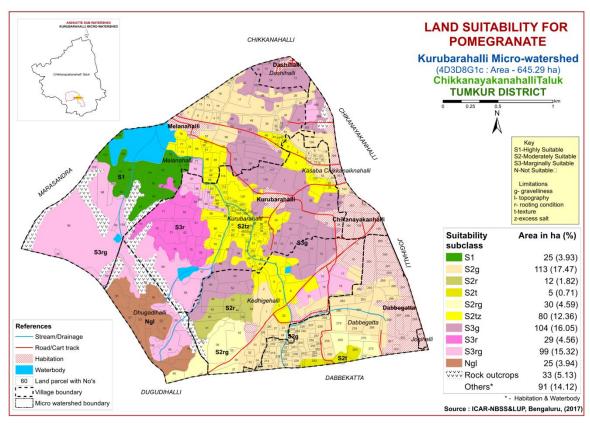


Fig. 7.19 Land Suitability map of Pomegranate

7.20 Land Suitability for Banana (Musa paradisiaca)

Banana is one of the major fruit crop grown in an area of 1.02 lakh ha in Karnataka State. The crop requirements for growing banana (Table 7.20) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing banana was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.20.

An area of about 25 ha (4%) is highly suitable (Class S1) for growing banana and are distributed in the western part of the microwatershed. An area of about 240 ha (37%) is moderately suitable (Class S2) for growing banana and are distributed in the central, northern, southern and eastern part of the microwatershed with minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable (Class S3) lands cover an area of about 232 ha (36%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.20 Crop suitability criteria for Banana

Croj	Crop requirement			Rating				
	l —site cteristics	Unit	Highly suitable(S1)	Moderately	Marginally	Not		
	1		suitable(51)	` ′	suitable(S3)	Sultable(N)		
(limate	Temperature in		26-33	34-36	37-38	>38		
Cilliate	growing season	Ò	20-33	24-25	37-30	/36		
Soil	Soil drainage	Class	Well	Moderately to	Poorly	V.poorly		
aeration	Soil drainage	Class	drained	imperf. drained	drained	drained		
Nutrient	Texture	Class	l,cl, scl,sil	sicl,sc,c(<45%)	sic,sl,c(>45%)	ls, s		
availability	pН	1:2.5	6.5-7.0	7.1-8.5,5.5-6.4	>8.5,<5.5	-		
Rooting	Soil depth	cm	>125	76-125	50-75	< 50		
conditions	Stoniness	%	<10	10-15	15-35	>35		
Soil	Salinity	dS/m	<1.0	1-2	>2	-		
toxicity	Sodicity	%	<5	5-10	10-15	>15		
Erosion	Slope	%	<3	3-5	5-15	>15		

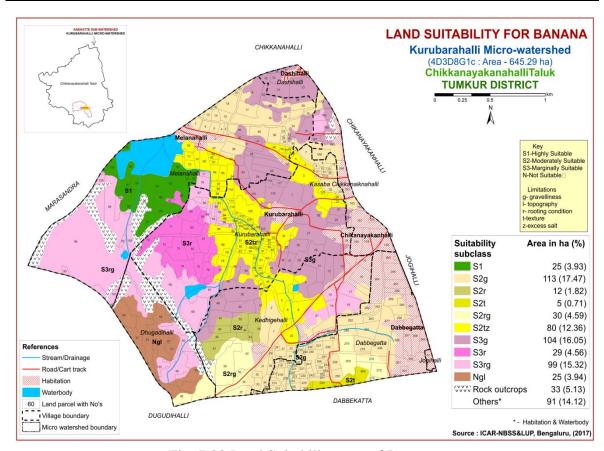


Fig. 7.20 Land Suitability map of Banana

7.21 Land Suitability for Jackfruit (Artocarpus heterophyllus)

Jackfruit is one of the most important fruit crop grown in almost all the districts of the State. The crop requirements for growing jackfruit were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jackfruit (Table 7.21) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.21.

Table 7.21 Land suitability criteria for Jackfruit

Crop	Crop requirement			Rating			
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Soil aeration	Soil drainage	class	well	Mod. well	Poorly	V. Poorly	
Nutrient	Texture	Class	scl,cl,sc,c(red)	-	sl,ls,c(black)	-	
availability	pН	1:2.5	5.5-7.3	5.0-5.5,7.3-7.8	7.8-8.4	>8.4	
Dooting	Soil depth	cm	>100	75-100	50-75	< 50	
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60	
Erosion	Slope	%	0-3	3-5	>5	_	

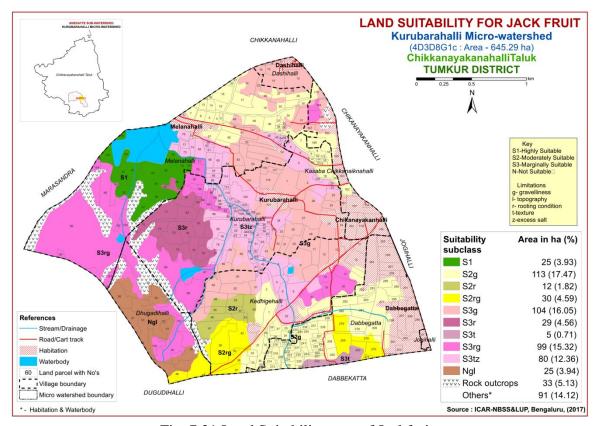


Fig. 7.21 Land Suitability map of Jackfruit

An area of about 25 ha (4%) is highly suitable (Class S1) for growing Jackfruit and are distributed in the western part of the microwatershed. An area of 155 ha (24%) is moderately suitable (Class S2) for growing jackfruit and are distributed in the northern, southern and eastern part of the microwatershed with minor limitations of gravelliness and rooting condition. Marginally suitable (Class S3) lands for growing Jackfruit occupy an area of 317 ha (49%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness, rooting condition, texture and excess salt. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.22 Land Suitability for Jamun (Syzygium cumini)

Jamun is an important fruit crop grown in almost all the districts of the State. The crop requirements for growing jamun were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jamun (Table 22) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.22.

			•				
Cro	p requirement		Rating				
Soi	Soil —site		Highly	Moderately	Marginally	Not suitable	
characteristics			suitable(S1)	suitable(S2)	suitable(S3)	(N)	
Soil aeration	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly	
Nutrient	Texture	Class	scl, cl, sc,	sl, c (black)	ls	-	
			c (red)				
availability	pН	1:2.5	6.0-7.8	5.0-6.0	7.8-8.4	>8.4	
Rooting	Soil depth	cm	>150	100-150	50-100	< 50	
conditions	Gravel content	% vol.	<15	15-35	35-60	>60	
Erosion	Slone	%	0-3	3-5	5-10	>10	

Table 7.22 Land suitability criteria for Jamun

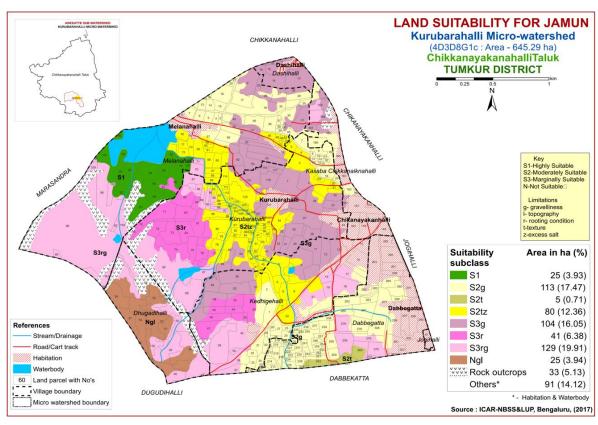


Fig. 7.22 Land Suitability map of Jamun

An area of about 25 ha (4%) is highly suitable (Class S1) for growing jamun and are distributed in the western part of the microwatershed. An area of 198 ha (31%) is moderately suitable (Class S2) for growing jamun and are distributed in the central, northern, eastern and southeastern part of the microwatershed. They have minor limitations of gravelliness and rooting condition. Marginally suitable (Class S3) lands for

growing jamun occupy an area of 274 ha (42%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.23 Land Suitability for Musambi (Citrus limetta)

Musambi is one of the important fruit crop grown in almost all the districts of the State. The crop requirements for growing musambi were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing musambi (Table 7.23) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.23.

Crop	requireme	nt	Rating						
Soil —site characteristics		Unit	Highly suitable(S1)						
Soil aeration	Soil drainage	Class	Well drained	Mod. to imp. drained	poorly	Very poorly			
Nutrient	Texture	Class	scl,l,sicl,cl,s	sc, sc, c	c (>70%)	s, ls			
availability	pН	1:2.5	6.0-7.5	5.5-6.4,7.6-8.0	4.0-5.4,8.1-8.5	<4.0,>8.5			
Dooting	Soil depth	Cm	>150	100-150	50-100	< 50			
Rooting conditions	Gravel content	% vol.	Non gravelly	15-35	35-55	>55			
Erosion	Slope	%	<3	3-5	5-10				

Table 7.23 Crop suitability criteria for Musambi

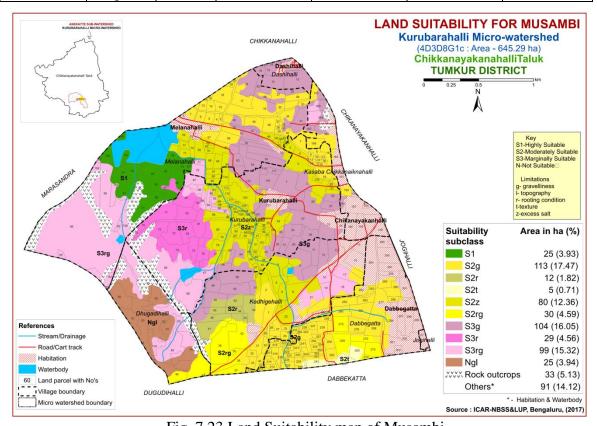


Fig. 7.23 Land Suitability map of Musambi

An area of about 25 ha (4%) is highly suitable (Class S1) for growing musambi and are distributed in the western part of the microwatershed. An area of about 240 ha (37%) is moderately suitable (Class S2) for growing musambi and are distributed in the central, southern, eastern and northern part of the microwatershed with minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable (Class S3) lands for growing musambi occupy an area of 232 ha (36%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.24 Land Suitability for Lime (Citrus sp)

Lime is one of the most important fruit crop grown in an area of 0.11 lakh ha in almost all the districts of the State. The crop requirements for growing lime (Table 7.24) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing lime was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7. 24.

An area of about 25 ha (4%) is highly suitable (Class S1) for growing lime and are distributed in the western part of the microwatershed. An area of about 240 ha (37%) is moderately suitable (Class S2) for growing lime and are distributed in the central, southern, eastern and northern part of the microwatershed with minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable (Class S3) lands for growing lime occupy an area of 232 ha (36%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. An area of about 25 ha (4%) is not suitable (Class N) and are distributed in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.24 Crop suitability criteria for Lime

Cro	p requirement		Rating			
Soil	-site	Unit	Highly	Moderately	Marginally	Not
charac	eteristics		suitable(S1)	suitable(S2)	suitable(S3)	suitable(N)
Climate	Temperature in growing season	- (28-30	31-35 24-27	36-40 20-23	>40 <20
Soil moisture	Growing period	Days	240-265	180-240	150-180	<150
Soil aeration	Soil drainage	Class	Well drained	Mod. to imp. drained	poorly	Very poorly
	Texture	Class	scl,l,sicl,cl,s	sc, sc, c	c (>70%)	s, 1s
Nutrient	pН	1:2.5	6.0-7.5	5.5-6.4,7.6-8.0	4.0-5.4,8.1-8.5	<4.0,>8.5
availability	CaCO ₃ in root zone	%	Non 34calcareous	Upto 5	5-10	>10
Rooting	Soil depth	cm	>150	100-150	50-100	< 50
conditions	Gravel content	% vol.	Non gravelly	15-35	35-55	>55
Coil torrigity	Salinity	dS/m	Non saline	Upto 1.0	1.0-2.5	>2.5
Soil toxicity	Sodicity	%	Non sodic	5-10	10-15	>15
Erosion	Slope	%	<3	3-5	5-10	

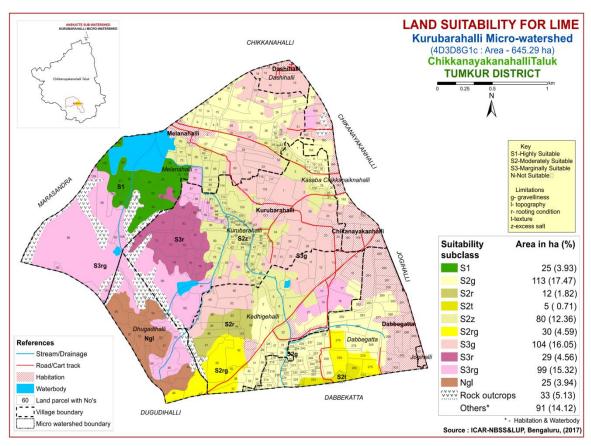


Fig. 7.24 Land Suitability map of Lime

7.25 Land Suitability for Cashew (Anacardium occidentale)

Cashew is one of the most important nut crop grown in an area of 1.24 lakh ha in almost all the districts of the State. The crop requirements for growing cashew were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cashew (Table 7.25) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.25.

An area of about 25 ha (4%) is highly suitable (Class S1) for growing cashew and are distributed in the western part of the microwatershed. An area of 258 ha (40%) is moderately suitable (Class S2) for growing cashew and are distributed in the eastern, southern and northern part of the microwatershed. They have minor limitations of gravelliness, rooting condition. Marginally suitable (Class S3) lands for growing cashew occupy an area of 128 ha (20%) and are distributed in the western, central, eastern and small area in the northern part of the microwatershed. They have moderate limitations of gravelliness and rooting condition. The not suitable (Class N) lands cover an area of about 110 ha (17%) and occur in the central, southwestern and northeastern part of the microwatershed with severe limitations of gravelliness, texture, excess salt and topography.

Table 7.25 Land suitability criteria for Cashew

Crop requirement			Rating				
Soil –site		Highly	Moderately	Marginally	Not		
characteristics		Unit	suitable(S1)	suitable(S2)	suitable(S3)	suitable(N)	
Soil	Soil	Class	Well	Mod. well	Poorly	V.Poorly	
aeration	drainage		drained	drained	drained	drainage	
Nutrient	Texture	Class	-	-	-	-	
availability	pН	1:2.5	5.5-6.5	5.0-5.5,6.5-7.3	7.3-7.8	>7.8	
Rooting	Soil depth	cm	>100	75-100	50-75	< 50	
conditions	Gravel content	%vol.	<15	15-35	35-60	>60	
Erosion	Slope	%	0-3	3-10	>10		

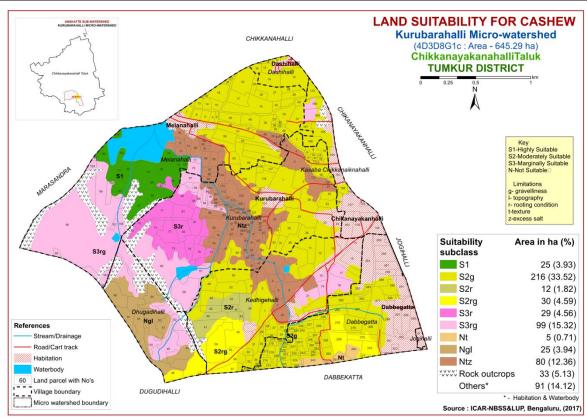


Fig. 7.25 Land Suitability map of Cashew

7.26 Land Suitability for Custard Apple (Annona reticulata)

Custard apple is one of the most important fruit crop grown in almost all the districts of the State. The crop requirements for growing custard apple were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing custard apple (Table 26) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.26.

An area of 37 ha (6%) is highly suitable (Class S1) for growing custard apple and are distributed in the southern and western part of the microwatershed. An area of 459 ha (71%) has soils that are moderately suitable (Class S2) for growing custard apple and are distributed in all parts of the microwatershed with minor limitations of gravelliness, rooting condition, texture and excess salt. The not suitable (Class N) lands cover an area

of about 25 ha (4%) and occur in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

	Table 7.26	Land suitability	criteria for (Custard apple
--	-------------------	------------------	----------------	---------------

Crop requirement			Rating				
Soil —site characteristics		Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Soil aeration	Soil drainage	Class	Well drained	Mod. well drained	Poorly drained	V. Poorly drained	
Nutrient availability	Texture	Class	scl, cl, sc, c (red), c (black)	-	sl, ls	-	
	pН	1:2.5	6.0-7.3	7.3-8.4	5.0-5.5,8.4-9.0	>9.0	
Rooting conditions	Soil depth	Cm	>75	50-75	25-50	<25	
	Gravel content	% vol.	<15-35	35-60	60-80	-	
Erosion	Slope	%	0-3	3-5	>5		

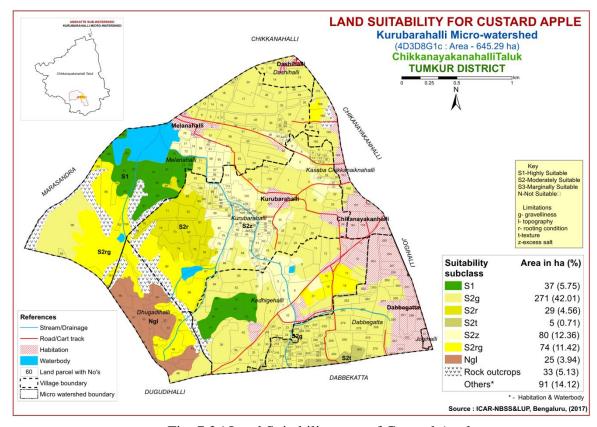


Fig. 7.26 Land Suitability map of Custard Apple

7.27 Land Suitability for Amla (*Phyllanthus emblica*)

Amla is one of the fruit and medicinal crop grown in 151 ha area in almost all the districts of the State. The crop requirements for growing amla were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing amla (Table 7.27) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.27.

An area of about 37 ha (6%) is highly suitable (Class S1) for growing Amla and are distributed in the western and southern part of the microwatershed. An area of about 385 ha (60%) has soils that are moderately suitable (Class S2) for growing Amla with minor limitations of gravelliness, rooting condition, texture and excess salt and are distributed in all parts of the microwatershed. Marginally suitable (Class S3) lands for growing Amla occupy an area of 74 ha (11%) and are distributed in the western, eastern and small area in the northern part of the microwatershed. They have moderate limitations of gravelliness and rooting condition. The not suitable (Class N) lands cover an area of about 25 ha (4%) and occur in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.27 Land suitability criteria for Amla

Cro	op requirement		Rating			
So	il —site	Unit	Highly	Moderately	Marginally	Not
chara	acteristics	Omt	suitable(S1)	suitable(S2)	suitable(S3)	suitable(N)
Soil	Soil drainage	Class	Well	Mod. well	Poorly	V. Poorly
aeration	Son dramage	Class	drained	drained	drained	drained
Nutrient	Texture	Class	scl,cl,sc,c(red)	c (black)	ls, sl	-
availability	pН	1:2.5	5.5-7.3	5.0-5.5	7.8-8.4	>8.4
Rooting	Soil depth	cm	>75	50-75	25-50	<25
conditions	Gravel content	% vol.	<15-35	35-60	60-80	
Erosion	Slope	%	0-3	3-5	5-10	>10

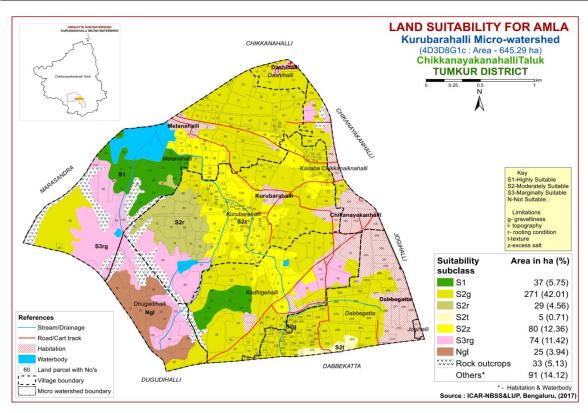


Fig. 7.27 Land Suitability map of Amla

7.28 Land Suitability for Tamarind (*Tamarindus indica*)

Tamarind is one of the most important spice crop grown in almost all the districts of the state. The crop requirements for growing tamarind were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing tamarind (Table 7.28) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Fig. 7.28.

Crop	requiremen	ıt	Rating				
Soil -		Unit	Highly	Moderately	Marginally	Not suitable	
characte	eristics		suitable (S1)	suitable (S2)	suitable (S3)	(N)	
Soil	Soil	Class	Well drained	Mod.well	Poorly	V.Poorly	
aeration	drainage			drained	drained	drained	
Nutrient	Texture	Class	scl,cl,sc,c(red)	sl, c (black)	ls	-	
availability	pН	1:2.5	6.0-7.3	5.0-6.0,7.3-7.8	7.8-8.4	>8.4	
Docting	Soil depth	cm	>150	100-150	75-100	< 50	
Rooting conditions	Gravel	% vol.	<15	15-35	35-60	60-80	
Conditions	content						
Erosion	Slope	%	0-3	3-5	5-10	>10	

Table 7.28 Land suitability criteria for Tamarind

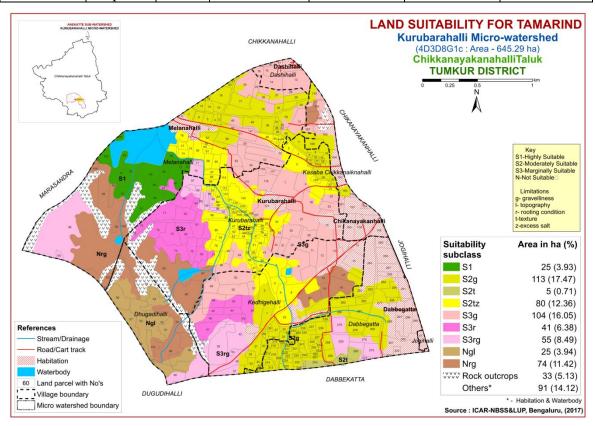


Fig. 7.28 Land Suitability map of Tamarind

An area of about 25 ha (4%) is highly suitable (Class S1) for growing Tamarind and are distributed in the western part of the microwatershed. An area of 198 ha (31%) is moderately suitable (Class S2) for growing Tamarind and are distributed in the central, southeastern and northern part of the microwatershed. They have minor limitations of

gravelliness, texture and excess salt. Marginally suitable (Class S3) lands for growing Tamarind occupy an area of 200 ha (31%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. Not suitable (Class N) lands cover an area of about 99 ha (15%) and occur in the southwestern, eastern and northeastern part of the microwatershed with severe limitations of gravelliness, rooting condition and topography.

7.29 Land suitability for Marigold (*Tagetes sps.*)

Marigold is one of the most important flower crop grown in an area of 1858 ha in almost all the districts of the State. The crop requirements (Table 7.29) for growing marigold were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing marigold was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.29.

Major area of about 37 ha (6%) is highly suitable (Class S1) for growing Marigold and are distributed in the southern and western part of the microwatershed. An area of about 256 ha (40%) is moderately suitable (Class S2) for growing Marigold and are distributed in the central, northern, southern and eastern part of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable (Class S3) lands for growing marigold occupy an area of 203 ha (31%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. Not suitable (Class N) lands cover an area of about 25 ha (4%) and occur in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.29 Land suitability criteria for Marigold

Cro	p requirement		Rating			
	il —site ecteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	>40 <10
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained
	Texture	Class	l,sl,scl,cl,sil	sicl,sc,sic,c	С	ls,s
Nutrient	pН	1:2.5	7.0-7.5	5.5-5.9,7.6-8.5	<5,>8.5	-
availability	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous	-
Rooting	Soil depth	cm	>75	50-75	25-50	<25
conditions	Gravel content	%vol.	<15	15-35	>35	-
Soil	Salinity	ds/m	Non saline	Slightly	Strongly	-
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-
Erosion	Slope	%	1-3	3-5	5-10	-

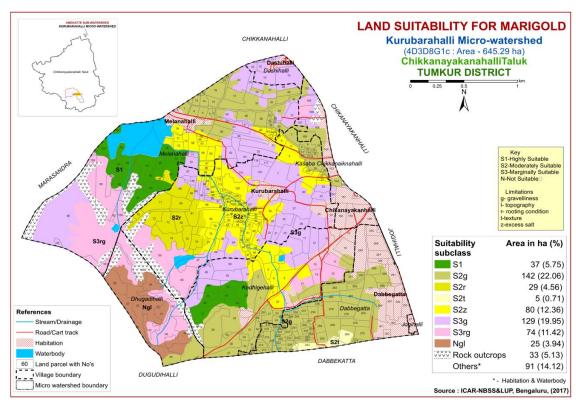


Fig. 7.29 Land Suitability map of Marigold

7.30 Land Suitability for Chrysanthemum (*Dendranthema grandiflora*)

Chrysanthemum is one of the most important flower crop grown in an area of 4978 ha in almost all the districts of the State. The crop requirements (Table 7.30) for growing chrysanthemum were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chrysanthemum was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.30.

Major area of about 37 ha (6%) is highly suitable (Class S1) for growing chrysanthemum and are distributed in the western and southern part of the microwatershed. An area of about 256 ha (40%) is moderately suitable (Class S2) for growing chrysanthemum and are distributed in the central, southern, eastern and northern part of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable (Class S3) lands for growing chrysanthemum occupy an area of 203 ha (31%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness and rooting condition. The not suitable (Class N) lands cover an area of about 25 ha (4%) and occur in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

Table 7.30 Land suitability criteria for Chrysanthemum

Cr	Crop requirement			Rating			
	il —site cteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	>40 <10	
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained	
	Texture	Class	l,sl,scl,cl,sil	sicl,sc,sic,c	c	ls, s	
Nutrient	pН	1:2.5	7.0-7.5	5.5-5.9,7.6-8.5	<5,>8.5		
availability	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous		
Rooting	Soil depth	cm	>75	50-75	25-50	<25	
conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	ds/m	Non saline	slightly	strongly		
toxicity	Sodicity(ESP)	%	<10	10-15	>15	-	
Erosion	Slope	%	1-3	3-5	5-10		

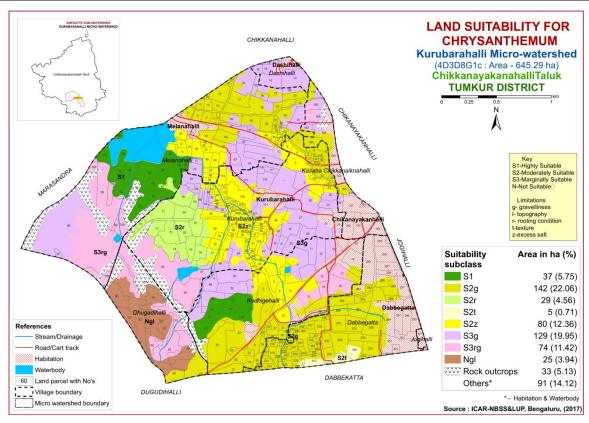


Fig. 7.30 Land Suitability map of Chrysanthemum

7. 31 Land Suitability for Jasmine (*Jasminum sp.*)

Jasmine is one of the most important flower crop grown in an area of 6146 ha in almost all the districts of the State. The crop requirements (Table 7.31) for growing Jasmine were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Jasmine was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.31.

Table 7.31 Land suitability criteria for jasmine (irrigated)

Cro	p requirement		Rating			
	il —site cteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	
Soil aeration	Soil drainage	Class	Well drained	Moderately drained	Imperfectly drained	Poorly drained
Nutrient	Texture pH	Class 1:2.5	scl,l,scl,cl,sil 6.0-7.5	sicl,sc,sic,c(m/k) 5.5-5.9,7.6-8.5	c(ss), <5,>8.5	ls, s
availability	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strong calcareous	
Rooting conditions	Soil depth Gravel content	cm % vol.	>75 <15	50-75 15-35	25-50 >35	<25
Soil	Salinity	ds/m	Non saline	Slight	Strongly	
toxicity Erosion	Sodicity Slope	%	Non sodic	Slight 3-5	Strongly 5-10	

Fig. 7.31 Land Suitability map of Jasmine

7.32 Land Suitability for Coconut (Cocos nucifera)

Coconut is one of the most important nut crop grown in almost all the districts of the State. The crop requirements (Table 7.32) for growing coconut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing coconut was

generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.32.

Crop requirement Rating Soil -site Unit **Highly Moderately** Marginally Not suitable characteristics suitable (S1) suitable (S2) suitable (S3) (N) Slope % 0 - 35-10 > 10Mod. drained Soil drainage class Well drained **Poorly** Very poorly Soil reaction pН 5.1-6.5 6.6-7.5 7.6-8.5 Surface soil Class c (black), ls sc, cl, scl c (red), sl texture Soil depth >100 75-100 50-75 < 50 cm Gravel content % vol. <15 15-35 35-60 >60

Table 7.32 Land suitability criteria for Coconut

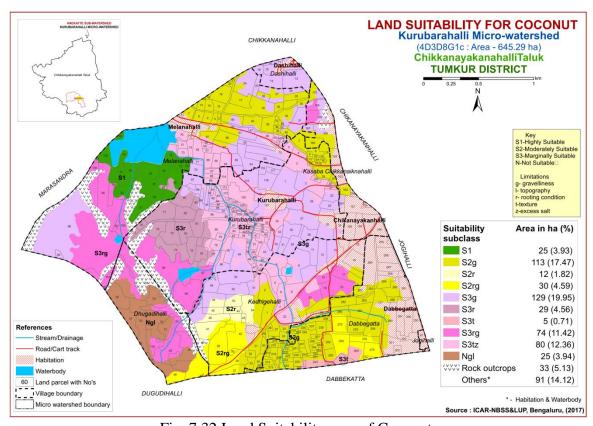


Fig. 7.32 Land Suitability map of Coconut

An area of about 25 ha (4%) is highly suitable (Class S1) for growing Coconut and are distributed in the western part of the microwatershed. An area of about 155 ha (24%) is moderately suitable (Class S2) for growing Coconut and are distributed in the eastern, southern and northern part of the microwatershed. They have minor limitations of gravelliness and rooting condition. Marginally suitable (Class S3) lands for growing coconut occupy an area of about 317 ha (49%) and are distributed in all parts of the microwatershed. They have moderate limitations of gravelliness, rooting condition, texture and excess salt. The not suitable (Class N) lands cover an area of about 25 ha

(4%) and occur in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.33 Land Suitability for Arecanut (*Areca catechu*)

Arecanut (Beetle nut) is one of the most important nut crop grown in almost all the districts of the State. The crop requirements (Table 7.33) for growing Arecanut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Arecanut was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.33.

Crop require	ement	Rating					
Soil –site characteristics	Unit	Highly Moderately suitable(S1) suitable(S2)		Marginally suitable(S3)	Not suitable (N)		
Slope	%	0-3	3-5	5-10	>10		
Soil drainage	class	Well drained	Mod. to poorly drained	-	Very poorly		
Soil reaction	pН	5.0-6.5	6.6-7.5	7.6-8.5			
Surface soil texture	Class	sc, cl, scl	c (red), sl	c (black), ls	-		
Soil depth	cm	>100	75-100	50-75	< 50		
Gravel content	% vol.	<15	15-35	35-60	>60		

Table 7.33 Land suitability criteria for Arecanut

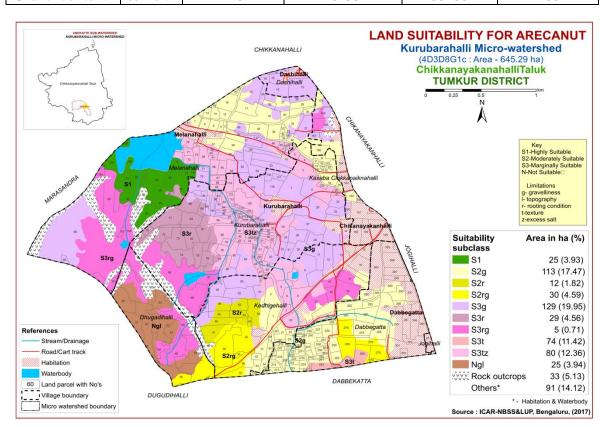


Fig. 7.33 Land Suitability map of Arecanut

An area of about 25 ha (4%) is highly suitable (Class S1) for growing Arecanut and are distributed in the southern and western part of the microwatershed. An area of

about 155 ha (24%) is moderately suitable (Class S2) for growing Arecanut and are distributed in the central, northern, southwestern and western part of the microwatershed. They have minor limitations of gravelliness, rooting condition, texture and excess salt. Marginally suitable (Class S3) lands for growing Arecanut occupy an area of about 317 ha (49%) and are distributed in the western and northern part of the microwatershed. They have moderate limitations of gravelliness and rooting condition. The not suitable (Class N) lands cover an area of about 25 ha (4%) and occur in the southwestern part of the microwatershed with severe limitations of gravelliness and topography.

7.34 Land Suitability for Mulberry (*Morus nigra*)

Mulbery is one of the most important leaf crop grown for rearing silkworms in about 1.66 lakh ha in all districts of the State. The crop requirements for growing mulberry (Table 7.34) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mulberry was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.34.

Highly suitable (Class S1) lands occupy an area of about 25 ha (4%) for growing mulberry and occur in the southern and western part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 308 ha (48%) and occur in the northern, eastern and central part of the microwatershed. They have minor limitations of rooting condition and gravelliness. Marginally suitable (Class S3) lands cover an area of about 188 ha (29%) and occur in all parts of the microwatershed. They have moderate limitations of rooting condition, texture and excess salt.

Table 7.34 Land suitability criteria for Mulberry

Crop 1	equiremen	ıt	Rating			
Soil -	site	Unit	Highly	Moderately	Marginally	Not suitable
characte	ristics	Omt	suitable (S1)	suitable (S2)	suitable (S3)	(N)
Soil	Soil	Class	Well	Moderately	Poorly	V. Poorly
aeration	drainage	Class	drained	well drained	drained	drained
Nutrient	Texture	Class	sc, cl, scl	c (red)	sl,ls,c(black),	-
availability	pН	1:2.5	-	-	-	-
Docting	Soil depth	cm	>100	75-100	50-75	< 50
Rooting conditions	Gravel	%	0-35	35-60	60-80	>80
Conditions	content	vol.	0-33	33-00	00-80	>00
Erosion	Slope	%	0-3	3-5	5-10	>10

Note: Suitability evaluation only for Mulberry leaf not for Silk worm rearing

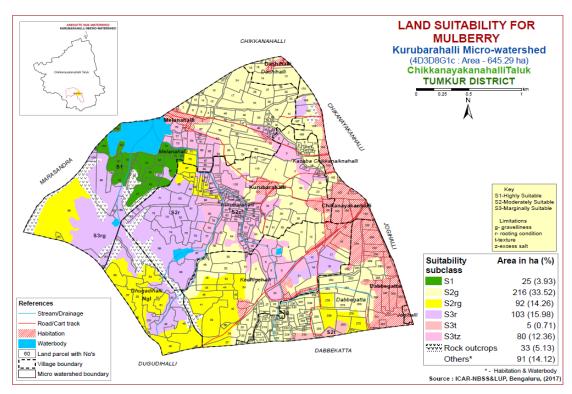


Fig. 7.34 Land Suitability map of Mulberry

7.35 Land Use Classes (LUCs)

The 21 soil map units identified in Kurubarahalli microwatershed have been regrouped into 5 Land Use Classes (LUC's) for the purpose of preparing a Proposed Crop Plan. Land Use Classes are grouped based on the similarities in respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Use Classes map (Fig. 7.35) has been generated. These Land Use Classes are expected to behave similarly for a given level of management.

LUCs	Soil map units	Soil and site characteristics
1	20 TDGhB1	Very deep (>150 cm), black sandy loam to sandy
		clay lowland soils with slopes of 1-3%, slight
		erosion
2	5 HDHcB2g1, 8 BDGcC2g2	Moderately deep to deep (75-150 cm), gravelly
	9 BDGcC3g3, 10 BDGiB1	red clay to loamy soils with slopes of 1-5%, slight
	12 BPRcB2g1, 13 BPRcB2g2	to severe erosion and gravelly to extremely
	14 BPRcC2g2, 15 BPRhB1g1	gravelly (60-80%)
	18 NGPmB1, 19 NGPmB1g1	
3	16 LGDiB1, 17 LGDiB1g1	Deep (100-150 cm), calcareous black clayey soils
		with slopes of 1-3%, slight erosion and gravelly
4	6 GHTcB2g1, 7 GHTcB2g2	Moderately deep to deep (75-150 cm), red clay to
	11 JDGiB2	loamy soils with slopes of 1-3%, moderate
		erosion and gravelly to very gravelly (35-60%)
5	1 LKRcB2g1, 2 LKRcB2g2	Moderately shallow (50-75 cm), red loamy soils
	3 LKRcC2g2, 4 KGHcC3g2	with slopes of 1 3-5%, moderate to severe
		erosion and gravelly to very gravelly (35-60%)

The map units that have been grouped into five land use classes along with brief description of soil and site characteristics are given below.

7.36 Proposed Crop Plan for Kurubarahalli Microwatershed

After assessing the land suitability for the 34 crops, the proposed crop plan has been prepared for the 5 identified LUCs by considering only the highly (Class S1) and moderately (Class S2) suitable lands for each of the 34 crops. The resultant proposed crop plan is presented below in Table 7.35.

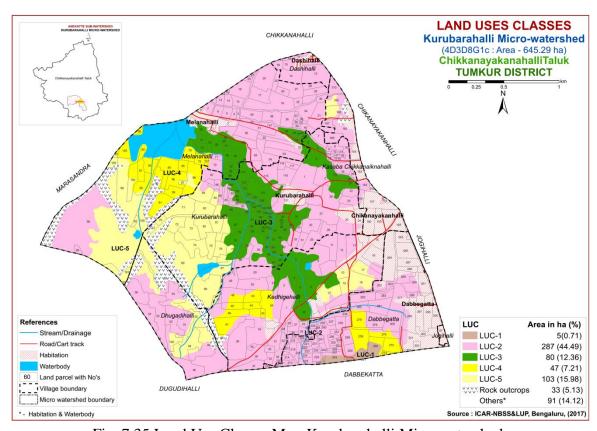


Fig. 7.35 Land Use Classes Map-Kurubarahalli Microwatershed

 Table 7.35 Proposed Crop Plan for Kurubarahalli Microwatershed

LUC No	Mapping Units	Survey Number	Soil Characters	Field Crops	Forestry/ Grasses	Horticulture Crops with suitable interventions	Suitable Interventions
LUC 1 5 ha (0.71%)	20 TDGhB1	Dabbegatta: 243,249,260,261	Very deep (>150 cm), black sandy loam to sandy clay soils and lowland soils	bean, Horse gram	Hebbevu, Silveroak Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid napier	Chrysanthemum Fruit crops/ Plantation crops:	Application of FYM and micronutrients, drip irrigation, Mulching, suitable conservation practises
LUC 2 287 ha (44%)	5 HDHcB2g1 8 BDGcC2g2 9 BDGcC3g3 10 BDGiB1 12 BPRcB2g1 13 BPRcB2g2 14 BPRcC2g2 15 BPRhB1g1 18 NGPmB1 19 NGPmB1g1	Dabbegatta:210,211,213,214,215,216,217,2 18,19,220,221,222,223,224,225,228,229,23 0,231,232,33,234,235,236,237,238,239,240, 241,242,250,251,52,253,254,255,256,257,2 58,277,278,280,281,282,83,289,290,298, 308 Dashihalli:11,13,14,15,16, 17,18 Dhugadihalli:44,46,47,49,51,52,53,54,56,57 Kasaba Chikkanaiknahalli:156,157,161, 162,163,164,165,166,167,168,169,170, Kedhigehalli:1,2,9,10,11,12,13,19,23,24,25, 26,27,28,29,30,31,3233,34,35,37,38,39,42,4 7,48,49,50,52,55 Kurubarahalli:1,6,7,8,9,10,11,12,13,14,15,1 6,17,18,19,20,22,23,25,26,27,28,29,30,31,3 2,33,43,64,66,86,87,88,89,90,92,96,97,115, 116,117,118	gravelly red clay to loamy soils	Sole crop: Upland paddy, Ragi, Maize, Sorghum, Groundnut, Fieldbean, Cowpea, Fodder sorghum, Horsegram	Glyricidia, Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid Napier	Vegetables: Tomato, Brinjal, Drumstick, Chillies, Curry leaf Flower crops: Chrysanthemum, Marigold, Crossandra, Fruit crops: Tamarind, Custard Apple, Amla, Lime, Musambi	Drip irrigation, Mulching, suitable conservation practices (Crescent Bunding with Catch Pit etc)

		Melanahalli:3,4,5,6,7,12,13,14,15,16,17,18, 19,20,21,24,25,26,27,28,2930,31,32,33,34,3 5,36,37,38,39,40,47,48,49,50,51,52,53,54,5 5,56,57,63, 64,70,71,95					
LUC 3 80 ha (12%)	16 LGDiB1 17 LGDiB1g1	Kedhigehalli:3,4_TANK,5,6,7,8,22,51 Kurubarahalli:2,3,4,5,21,34,35,36,37,38,39, 40,41,42,44,45,46,47,48,49,50,51,52,53,54, 55,56,57,58,59,60,61,62,63,65,77,78,79,80, 91,93,94,95,98,99,100,101,102,103, 104,105,106,107,108,109,110,111, 112,113,114,119, 120,122 Melanahalli:41,42,43,44,45,46,58,59,60,61, 62,65,66,67,68,69,73,74,76,77	Deep (100-150 cm), calcareous black clayey soils	Sole crop: Sorghum, Sunflower, Fodder sorghum, Redgram, Field bean, Horse gram Intercropping: Redgram +Fodder sorghum	Hebbevu, Silveroak Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid napier	Vegetables: Brinjal, Tomato, Chillies, Cucurbits Flower crops: Marigold, Chrysanthemum Fruit crops/ Plantation crops: Pomegranate, Tamarind, Custard Apple, Amla, Lime, Musambi Arecanut, Coconut	Application of gypsum, FYM and micronutrients, drip irrigation, Mulching, suitable conservation practises
LUC 4 47 ha (12%)	6 GHTcB2g1 7 GHTcB2g2 11 JDGiB2	Dabbegatta:259,274,275,276, 279 Kedhigehalli:41,43,44,45,46,53, 54 Melanahalli:72,78,80,81,82,83, 84,85,86,88,89,91,97,99,155,157,160	Moderately deep to deep (75-150 cm), red clay to loamy soils	Sole crop: Upland paddy, Ragi, Maize, Sorghum, Groundnut, Fieldbean, Cowpea, Fodder sorghum, Horsegram	Glyricidia, Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid Napier	Vegetables: Tomato, Brinjal, Drumstick, Chillies, Curry leaf Flower crops: Chrysanthemum, Marigold, Crossandra, Fruit crops: Tamarind, Custard Apple, Amla, Lime, Musambi	Drip irrigation, Mulching, suitable conservation practices (Crescent Bunding with Catch Pit etc)
LUC 5 103 (16%)	1 LKRcB2g1 2 LKRcB2g2 3 LKRcC2g2 4 KGHcC3g2	Dhugadihalli:48,50,130 Kedhigehalli:17,18,21 Kurubarahalli:67,68,70,71,72,73, 74,75,76,81,82,83, 84,85 Melanahalli:87,92,93,96,98,158,159,161	Moderately shallow (50-75 cm), red loamy soils	Sole crops: Ragi, Groundnut, Fodder sorghum, Cowpea, Horsegram	Glyricidia, Grasses Styloxanthes hamata, Styloxanthes scabra	leaf, Fruit crops: Custard	Drip irrigation, Mulching, suitable conservation practices (Crescent Bunding with Catch Pit etc)

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characteristics of a healthy soil are

- ➤ Good soil tilth
- > Sufficient soil depth
- Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- Large population of beneficial organisms
- > Small proportion of plant pathogens and insect pests
- > Low weed pressure
- Free of chemicals and toxins that may harm the crop
- > Resistance to degradation
- Resilience when unfavourable conditions occur

Characteristics of Kurubarahalli Microwatershed

- ❖ The soil phases identified in the microwatershed belonged to the soil series of Nagalapur (NGP) 112 ha (17%) followed by Balapur (BPR) 104 ha (16%), Lakshmangudda (LGD) 80 ha (12%), Lakkur (LKR) 74 ha (11%), Bidanagere (BDG) 50 ha (8%), Kutegoudanahundi (KGH) 29 ha (5%), Jedigere (JDG) 25 ha (4%), Gollarahatti (GHT) 21 ha (3%), and Hooradhahalli (HDH) 20 ha (3%), Thondigere (TDG) 5 ha (0.71%).
- ❖ As per land capability classification, major area in the microwatershed falls under arable land category (Class II, III & IV) and an area of 33 ha (5%) are not suitable for

- agriculture but well suited for recreation and installation of wind mills. The major limitations identified in the arable lands were soil and erosion.
- ❖ On the basis of soil reaction, an area of about 190 ha (30%) is neutral (pH 6.5-7.3), 36 ha (6%) area is slightly alkaline (pH 7.3-7.8), 70 ha (11%) area is strongly acid and about 225 ha (35%) is under slightly to moderately acid (pH 5.5-6.5).

Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Acid soils

- 1. Growing of crops suitable for a particular soil pH.
- 2. Ameliorating the soils through the application of amendments (liming materials).

Liming materials:

- 1. CaCO₃ (Calcium Carbonate). More than 90% use in India.
- 2. Dolomite [Ca Mg (Co₃)₂]
- 3. Quick lime (Cao)
- 4. Slaked lime [Ca (OH)₂]

For normal pH and pH-4.8 (35 t/ha) and pH 6.0-7.0 (4 t/ha) lime is required.

Alkaline soils

(Slightly alkaline to moderately alkaline soils)

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron -5kg/ha (once in three years).

Neutral soils

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers, (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is one of the major factor affecting the soil health in the microwatershed. Out of total 645 ha area in the microwatershed, an area of about 286 ha is suffering from moderate to severe erosion. The areas suffering from severe and moderate erosion need immediate soil and water conservation and, other land development and land husbandry practices for restoring soil health.

Dissemination of Information and Communication of Benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil-health especially by the Central Government on issuing Soil-Health Cards to all the farmers, media outlets like Regional, State and National Newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as Cellular phones and the Internet, which can be much more effective in reaching the younger farmers.

Inputs for Net Planning and Interventions needed

Net planning (Saturation Plan) in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Plan for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.

In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning (Saturation Plan) are briefly presented below.

- ❖ Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- ❖ Surface soil texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut, root vegetables (carrot, raddish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, Karnataka can be adopted.

- ❖ Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- ❖ Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these units. In general, erosion and soil are the major constraints in Kurubarahalli microwatershed.
- ❖ Organic Carbon: The OC content (an index of available Nitrogen) is medium (0.5-0.75%) in about 34 ha (5%) and low (<0.5%) in about 487 (75%) area. The areas that are low and medium in OC needs to be further improved by applying farmyard manure and rotating crops with cereals and legumes or mixed cropping.
- **♦ Promoting green manuring:** Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level in 521 ha area where OC is medium (0.5-0.75%) and low (<0.5%). For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.
- ❖ Available Phosphorus: Available Phosphorus is medium (23-57 kg/ha) in an area of 247 ha (38%) in the microwatershed. In 274 ha (42%) area, the available phosphorus is high (>57 kg/ha) in the microwatershed. In areas where available phosphorous is medium, 25% additional P needs to be applied for all the crops.
- ❖ Available Potassium: Available potassium is medium (145-337 kg/ha) in an area of 405 ha (63%) in the microwatershed and about 112 ha (17%) area is low (<145 kg/ha) in available potassium and an area of about 4 ha (0.68%) is high (>337 kg/ha) in available potassium. Hence, in all these plots, where available potassium is low and medium, for all the crops, additional 25 % potassium may be applied.
- ❖ Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. It is medium in 320 ha (50%) and low (<10 ppm) in 84 ha (13%) area. High (>20 ppm) in an area of about 117 ha (18%). The areas which are medium and low in available sulphur need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertitilizer (13% sulphur) for 2-3 years for the deficiency to be corrected.
- ❖ Available Boron: Available boron content is low in an area of 321 ha (50%) and medium in 200 ha (31%). For all these areas application of sodium borate @10 kg/ha as soil application or 0.2% borax as foliar application is recommended.
- **Available Iron:** Entire area is sufficient in available iron in the microwatershed.
- ❖ Available manganese: Entire area in the microwatershed is sufficient in available manganese.
- **Available copper:** Entire area is sufficient in available copper in the microwatershed.

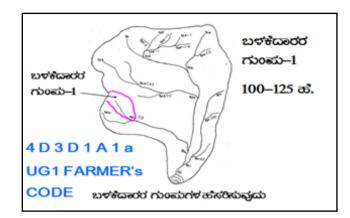
- **Available Zinc:** Entire area is sufficient in available zinc in the microwatershed.
- ❖ Soil acidity: The microwatershed has 295 ha (46%) area with soils that are strongly to slightly acid. These areas need application of lime (Calcium Carbonate).
- ❖ Soil Alkalinity: The microwatershed has 36 ha (6%) area with soils that are slightly alkaline. These areas need application of gypsum and wherever calcium is in excess, iron pyrites and element sulphur can be recommended. Management practices like treating repeatedly with good quality water to drain out the excess salts and provision of subsurface drainage and growing of salt tolerant crops like Casuarina, Acasia, Neem, Ber etc, are recommended.
- ❖ Land Suitability for various crops: Areas that are highly, moderately and marginally suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase the water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Kurubarahalli microwatershed, the land resource inventory database generated under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) generated were

- > Soil depth
- > Surface soil texture
- ➤ Soil gravelliness
- ➤ Available water capacity
- > Soil slope
- > Soil erosion
- ➤ Land capability
- > Present land use and land cover
- > Crop suitability
- > Rainfall
- > Hydrology
- ➤ Water Resources
- ➤ Socio-economic data
- ➤ Contour plan with existing features-network of waterways, pothissa boundaries, cut up/minor terraces etc.
- ➤ Cadastral map (1:7920 scale)
- > Satellite imagery (1:7920 scale)

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List to be collected.


Steps for Survey and Preparation of Treatment Plan

The boundaries of Land User Groups' and Survey No. boundaries are traced in the field.

- ➤ Naming of user groups and farmers
- ➤ Identification of arable and non arable lands
- ➤ Identification of drainage lines and gullies
- ➤ Identification of non treatable areas
- ➤ Identification of priority areas in the arable lands
- > Treatment plan for arable lands
- ➤ Location of water harvesting and recharge structures

9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment

A. BUNDING

Steps for Survey	and Preparation of Treatment	J	USER GROUP-1
	Plan		
Cadastral	map (1:7920 scale) is enlarged		CLASSIFICATION OF GULLIES
to a scale of 1:250	00 scale		ಕೊರಕಲಿನ ವರ್ಗೀಕರಣ
Existing no.	etwork of waterways, pothissa		• ಮೇಲ್ಇರ
boundaries, grass	belts, natural drainage lines/	UPPER REACH	15 Ha.
watercourse, cut u	ps/ terraces are marked on the	MIDDLE REACH	• ಮಧ್ಯಸ್ಥರ 15+10=25 ಹ.
cadastral map to the	he scale	WIDDEL REACH	• वैश्र तूर
• Drainage l	ines are demarcated into		25 ಹಕ್ಟೇರ್ ಗಿಂತ ಅಧಿಕ
Small gullies	(up to 5 ha catchment)	LOWER REACH	POINT OF CONCENTRATION
Medium gullies	(5-15 ha catchment)		TOTAL OF CONCENTIATION
Ravines	(15-25 ha catchment) and		
Halla/Nala	(more than 25 ha catchment)		

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand Level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department.

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance (m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

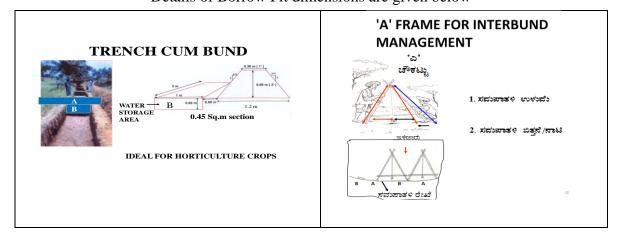
Note: i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1... A=0-1% slope, 1= slight erosion.) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class (bg₀ ...b=loamy sand, g_0 <15% gravel). The recommended Sections for different soils are given below.


Recommended Bund Section

Top width (m)	Base width (m)	Height (m)	Side slope (Z:1;H:V)	Cross section (sq m)	Soil Texture	Remarks
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetative
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soils	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow black clayey soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow black clayey soils	
0.6	3.1	0.7	1.78:1	1.29	Medium black clayey soils	
0.5	3 0.85		1.47:1	1.49		

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Size of Borrow Pit/ Trench recommended for Trench cum Bund (by machinery)

Bund section	Bund length	Earth quantity			Berm (pit to pit)	Soil depth Class		
m ²	m	m ³	L(m) W(m) D(m) QUANTITY (m³)		m			
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep

B. Waterways

- **1.** Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- **2.** Considering the contour plan of the MWS, additional waterways/ modernization of the existing ones can be thought of.
- 3. The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in Gokatte/ Recharge ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bund are formed in the field.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

- a) The cadastral map has to be updated as regards the network of drainge lines (gullies/nalas/hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.
- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- c) Considering the Catchment, *Nala* bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ *Nala* bund/ Percolation tank) will be decided considering the commitments and available runoff from the water budgeting and quality of water in the wells and site suitability.
- e) Detailed Leveling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from the available geological maps.
- g) Rainfall intensity data of the nearest Rain Gauge Station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge structures is reduced by providing vegetative, boulder and earthen checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/ survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type. The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of Bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been generated which shows the spatial distribution and extent of area. A maximum area of about 437 ha (68%) requires Trench cum Bunding and about 84 ha (13%) area requires graded Bunding. The conservation plan generated may be presented to all the stakeholders including the farmers and after considering their suggestions, the conservation plan for the microwatershed may be finalised in a participatory approach.

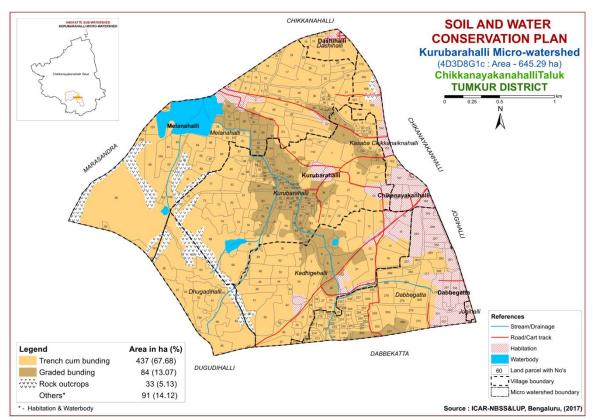


Fig. 7.36 Soil and Water Conservation Plan map of Kurubarahalli Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability classes V, VI, VII and VIII) and also the lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open pits during the 1st week of March along the contour and heap the dug out soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2nd or 3rd week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Nerale (*Sizyziumcumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry De	ciduous Species	Temp (°C)	Rainfall(mm)
1.	Bevu	Azadiracta indica	21–32	400 –1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 -50	500-2,500
5.	Kamara	Hardwikia binata	25 -35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 -2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 -2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist D	eciduous Species	Temp (°C)	Rainfall (mm)
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 -50	500 - 2000
19.	Shivane	Gmelina arboria	20 -50	500 -2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000
23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20 - 40	500 – 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- 2. FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- 3. IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- 4. Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Reaserch Gap and future needs. Fert. News 48 (4); 9-20.
- 5. Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS & LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- 7. Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015) Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- 8. Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull. 23, NBSS &LUP, Nagpur.
- 9. Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How?, National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- 10. Shivaprasad, C.R., Reddy, R.S., Sehgal, J. and Velayuthum, M. (1998) Soils of Karntaka for Optimising Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- 12. Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix I Kurubarahalli Microwatershed **Soil Phase Information**

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Dabbegatta	20	0.15	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available		Others
Dabbegatta	210	0.28	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	211	0.23	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	213	0.5	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	214	0.46	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	215	0.54	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	216	0.72	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Borewell	IIIs	тсв
Dabbegatta	217	0.25	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	218	0.36	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	219	0.35	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	220	0.28	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Borewell	IIIs	тсв
Dabbegatta	221	0.39	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Borewell, 1 Open well	IIIs	тсв
Dabbegatta	222	0.12	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	223	0.36	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	224	0.48	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	225	0.76	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	228	0.25	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	229	0.67	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	230	0.3	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	231	0.66	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	232	0.14	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	233	0.22	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	234	0.1	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Dabbegatta	235	0.36	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	236	0.35	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	237	0.56	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	238	0.74	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Borewell	IIIs	тсв
Dabbegatta	239	1.07	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	240	1.67	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	ТСВ
Dabbegatta	241	0.35	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	242	0.43	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	243	1.8	TDGhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIs	GB
Dabbegatta	249	0	TDGhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	GB
Dabbegatta	250	1.11	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	251	0.2	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	252	0.33	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	253	0.26	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	254	0.16	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	255	0.43	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	256	0.46	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	257	0.45	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	258	1.14	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%) Very gravelly (35-	Low (51-100 mm/m) Low (51-100	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dabbegatta	259	3.32	GHTcB2g2	LMU-4	Moderately deep (75-100 cm)	Sandy loam	60%)	mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Dabbegatta	260	2.23	TDGhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Rg)	Not Available	IIs	GB
Dabbegatta	261	1.16	TDGhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Dabbegatta	274	0.34	GHTcB2g2	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Dabbegatta	275	1.86	GHTcB2g2	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Dabbegatta	276	1.76	GHTcB2g2	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	Not Available	IIIes	тсв
Dabbegatta	277	3.17	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Areca nut (CN+Ar)	3 Borewell	IIIs	тсв
Dabbegatta	278	2.12	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Dabbegatta	279	1.92	GHTcB2g2	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Dabbegatta	280	1.51	NGPmB1	LMU-2	Deep (100-150 cm)	Clav	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Borewell	IIIs	тсв
Dabbegatta	281	2.52	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Borewell	IIIs	тсв
Dabbegatta	282	2.75	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	3 Borewell, 1 Open well	IIIs	тсв
Dabbegatta	283	1.45	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Borewell	IIIs	тсв
Dabbegatta	284	4.61	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	285	1.16	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Dabbegatta	286	2.4	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Dabbegatta	287	1.5	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Dabbegatta	288	0.84	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available		Others
Dabbegatta	289	1.51	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	290	1.96	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	291	1.61	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	295	1.43	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	296	2.43	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	297	2.25	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	298	0.5	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dabbegatta	299	3.22	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	300	1.19	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Dabbegatta	301	3.97	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	302	0.54	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dabbegatta	303	0.13	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Dabbegatta	308	2.61	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dashihalli	11	0.3	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Rg)	Not Available	IIIs	тсв
Dashihalli	12	1.44	Habitation		Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Dashihalli	13	4.18	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Rg)	Not Available	IIIs	тсв
Dashihalli	14	2.4	BPRhB1g1		Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Rg)	1 Borewell	IIIs	тсв
Dashihalli	15	1.61	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
		1 1	ni minist	PIAIO-7	CIII)	Sandy	draveny (13-3370)	Low (51-100	Very gently	Jugut	Coconat (CN)	1	1113	ICD

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Dashihalli	17	0.03	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Dashihalli	18	0.28	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Dhugadihalli	44	0.07	HDHcB2g1	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	NA	Not Available	IIIes	тсв
Dhugadihalli	46	2.92	BDGcC3g3	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3- 5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв
Dhugadihalli	47	0.19	BDGcC3g3	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3- 5%)	Severe	NA	Not Available	Ives	тсв
Dhugadihalli	48	3.77	LKRcB2g1		Moderately shallow (50-75 cm)	Sandy loam	Gravelly (15-35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Dhugadihalli	49	4.06	BDGcC3g3	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Severe	Ragi+Brick Industry (Rg+BI)	Not Available	Ives	тсв
Dhugadihalli	50	1.43	LKRcB2g1		Moderately shallow (50-75 cm)	Sandy loam	Gravelly (15-35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Dhugadihalli	51	1.87	BDGcC3g3	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв
Dhugadihalli	52	3.49	BDGcC3g3		Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв
Dhugadihalli	53	4.34	BDGcC3g3		Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв
Dhugadihalli	54	2.36	BDGcC3g3	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв
Dhugadihalli	55	20.78	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops		Coconut+Ragi +Dyke(CN+Rg+Dy)	Not Available	VIIIs	Rock outcrops
Dhugadihalli	56	2.89	BDGcC3g3	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв
Dhugadihalli	57	2.11	BDGcC3g3	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Extremely gravelly (60-80%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв
Dhugadihalli	130	1.83	LKRcB2g1	LMU-5	Moderately shallow (50-75 cm)	Sandy loam	Gravelly (15-35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Ragi (CN+Rg)	Not Available	IIIes	тсв
Jogihalli	67	1.14	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kasaba Chik kanaiknahalli	148	1.42	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kasaba Chik kanaiknahalli	154	0.33	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Kasaba Chik kanaiknahalli	156	0.3	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Kasaba Chik kanaiknahalli	157	3.11	Habitation	Others	Others	Others	Others	Others	Others	Others	NA	Not Available	Others	Others
Kasaba Chik kanaiknahalli	158	1.68	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kasaba Chik kanaiknahalli	159	1.9	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kasaba Chik kanaiknahalli	160	2.42	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kasaba Chik kanaiknahalli	161	0.83	BPRcB2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	IIIes	тсв

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Kasaba Chik kanaiknahalli	162	0.89	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Kasaba Chik kanaiknahalli	163	1.66	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kasaba Chik kanaiknahalli	164	1.22	Habitation	Others	Others	Others	Others	Others	Others	Others	Coconut (CN)	Not Available	Others	Others
Kasaba Chik kanaiknahalli	165	3.41	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Rg)	1 Borewell	IIIs	тсв
Kasaba Chik kanaiknahalli	166	1.4	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Kasaba Chik kanaiknahalli	167	0.68	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Rg)	2 Borewell	IIIs	тсв
Kasaba Chik kanaiknahalli	168	2.99	LKRcB2g1	LMU-5	Moderately shallow (50-75 cm)	Sandy loam	Gravelly (15-35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Scrub land (Sl)	Not Available	IIIes	тсв
Kasaba Chik kanaiknahalli	169	1.78	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Habitation	Not Available	IIIs	тсв
Kasaba Chik kanaiknahalli	170	1.39	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Kedhigehalli	1	1.83	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	5 Borewell, 2 Open well	IIIs	тсв
Kedhigehalli	2	2.58	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Open well,1 Borewell	IIIs	тсв
Kedhigehalli	3	3.06	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kedhigehalli	4	0.91	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kedhigehalli	5	1.35	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Borewell, 1 Open well	IIs	GB
Kedhigehalli	6	1.12	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Road	Not Available	IIs	GB
Kedhigehalli	7	0.63	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIs	GB
Kedhigehalli	8	2.29	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Borewell	IIs	GB
Kedhigehalli	9	4.47	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35- 60%)	Low (51-100 mm/m)	Gently sloping (3- 5%)	Moderate	Coconut+Ragi (CN+Rg)	Not Available	IIIes	тсв
Kedhigehalli	10	3.6	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35- 60%)	Low (51-100 mm/m)	Gently sloping (3- 5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kedhigehalli	11	2.6	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35- 60%)	Low (51-100 mm/m)	Gently sloping (3- 5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kedhigehalli	12	2.3	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35- 60%)	Low (51-100 mm/m)	Gently sloping (3- 5%)	Moderate	Habitation	Not Available	IIIes	тсв
Kedhigehalli	13	2.43	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3- 5%)	Moderate	Habitation	Not Available	IIIes	тсв
Kedhigehalli	14	0.82	Habitation	Others	Others	Others	Others	Others	Others	Others	Waterbody	Not Available	Others	Others
Kedhigehalli	15	3.32	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kedhigehalli	16	2.49	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available		Others
Kedhigehalli	17	2.37	LKRcB2g1	LMU-5	Moderately shallow (50-75 cm)	Sandy loam	Gravelly (15-35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Kedhigehalli	18	3.31	LKRcB2g1	LMU-5	Moderately shallow (50-75 cm)	Sandy loam	Gravelly (15-35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Arecanut+Ragi (Ar+Rg)	Not Available	IIIes	тсв
Kedhigehalli	19	2.85	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut+Ragi (Ar+Rg)	Not Available	IIIs	тсв
Kedhigehalli	20	0.74	Habitation	Others	Others	Others	Others	Others	Others	Others	Habitation	Not Available	Others	Others
Kedhigehalli	21	5.53	LKRcB2g1	LMU-5	Moderately shallow (50-75 cm)	Sandy loam	Gravelly (15-35%)	Very Low (<50 mm/m)	Very gently sloping (1-3%)	Moderate	Arecanut (Ar)	1 Borewell	IIIes	тсв
Kedhigehalli	22	1.71	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Habitation	2 Borewell	IIs	GB
Kedhigehalli	23	0.41	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Open well	IIIs	тсв
Kedhigehalli	24	0.62	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Kedhigehalli	25	0.3	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	2 Borewell	IIIs	тсв
Kedhigehalli	26	0.25	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	1 Borewell	IIIs	тсв
Kedhigehalli	27	1.09	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Areca nut (CN+Ar)	2 Borewell	IIIs	тсв
Kedhigehalli	28	0.26	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Kedhigehalli	29	0.17	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Kedhigehalli	30	0.61	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Kedhigehalli	31	1.22	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Kedhigehalli	32	0.52	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Borewell	IIIs	тсв
Kedhigehalli	33	0.76	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	1 Open well	IIIs	тсв
Kedhigehalli	34	0.74	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Borewell	IIIs	тсв
Kedhigehalli	35	0.13	NGPmB1	LMU-2	Deep (100-150 cm)	Clay	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Borewell	IIIs	тсв
Kedhigehalli	37	1.83	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)		Coconut (CN)	1 Borewell	IIIes	тсв
Kedhigehalli	38	3.37	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)		Coconut (CN)	1 Borewell	IIIes	тсв
Kedhigehalli	39	5.39	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kedhigehalli	40	2.61	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Dyke (Dy)	Not Available	VIIIs	Rock outcrops
Kedhigehalli	41	3.25	GHTcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate		Not Available	IIIe	тсв
Kedhigehalli	42	5.19	HDHcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate		1 Borewell	IIIes	тсв
Kedhigehalli	43	0.34	GHTcB2g1		Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate		Not Available	IIIe	тсв

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Kedhigehalli	44	0.97	GHTcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIe	тсв
Kedhigehalli	45	1.18	GHTcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIe	тсв
Kedhigehalli	46	3.06	GHTcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIe	тсв
Kedhigehalli	47	0.51	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Kedhigehalli	48	2.7	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Rg)	Not Available	IIIs	тсв
Kedhigehalli	49	1.65	BPRhB1g1	LMU-2	Deep (100-150 cm)	Sandy clay loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Kedhigehalli	50	3.51	BPRcB2g1	LMU-2	Deep (100-150 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	1 Borewell	IIIes	тсв
Kedhigehalli	51	1.87	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Rg)	1 Borewell	IIs	GB
Kedhigehalli	52	2.71	BPRcB2g1	LMU-2	Deep (100-150 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kedhigehalli	53	1.67	GHTcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	Not Available	IIIe	тсв
Kedhigehalli	54	4.46	GHTcB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut (CN)	4 Borewell	IIIe	тсв
Kedhigehalli	55	0.33	HDHcB2g1	LMU-2	Moderately deep (75-100 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Habitation	Not Available	IIIes	тсв
Kurubarahalli	1	5.28	BPRcB2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35- 60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	2	4.35	LGDiB1g1	LMU-3	Deep (100-150 cm)	Sandy clay	Gravelly (15-35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Rg)	Not Available	IIs	GB
Kurubarahalli	3	2.6	LGDiB1g1	LMU-3	Deep (100-150 cm)	Sandy clay	Gravelly (15-35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Open well, 1 Borewell	IIs	GB
Kurubarahalli	4	0.6	LGDiB1g1	LMU-3	Deep (100-150 cm)	Sandy clay	Gravelly (15-35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Borewell	IIs	GB
Kurubarahalli	5	0.65	LGDiB1g1	LMU-3	Deep (100-150 cm)	Sandy clay	Gravelly (15-35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	6	1.08	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Waterbody	Not Available	IIIs	тсв
Kurubarahalli	7	1.36	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Open well, 2 Borewell	IIIs	тсв
Kurubarahalli	8	0.68	NGPmB1g1		Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	2 Borewell	IIIs	тсв
Kurubarahalli	9	0.21	NGPmB1g1		Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Borewell	IIIs	тсв
Kurubarahalli	10	0.18	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Borewell	IIIs	ТСВ
Kurubarahalli	11	0.1	NGPmB1g1		Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	ТСВ
Kurubarahalli	12	0.11	. Tor morgi	шч о -2	Deep (100-150	ditty	Graveny (13-33-70)	Low (51-100	Very gently sloping (1-3%)	Jugut	mecunut (m)	Not Available	1113	-
			NGPmB1g1	LMU-2	cm)	Clay	Gravelly (15-35%)	mm/m)		Slight	Arecanut (Ar)		IIIs	TCB

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Kurubarahalli	13	0.25	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Kurubarahalli	14	0.08	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIIs	тсв
Kurubarahalli	15	0.38	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Kurubarahalli	16	0.16	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Kurubarahalli	17	0.11	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	1 Open well	IIIs	тсв
Kurubarahalli	18	1.3	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIIs	тсв
Kurubarahalli	19	1.48	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Open well,1 Borewell	IIIs	тсв
Kurubarahalli	20	0.58	NGPmB1g1	LMU-2	Deep (100-150 cm)	Clay	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Kurubarahalli	21	0.25	LGDiB1g1	LMU-3	Deep (100-150 cm)	Sandy clay	Gravelly (15-35%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	22	1.45	BPRcB2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	23	1.42	BPRcB2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	24	2.06	Habitation	Others	Others	Others	Others	Others	Others	Others	Arecanut (Ar)	Not Available	Others	Others
Kurubarahalli	25	3.99	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Habitation	Not Available	IIIes	тсв
Kurubarahalli	26	4.36	BPRcB2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	27	3.77	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	28	1.37	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	29	2.06	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	30	1.95	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	31	0.95	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	32	0.87	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	33	0.53	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	34	2.69	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	35	0.6	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	36	0.27	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	37	0.5	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Kurubarahalli	38	0.15	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	GB
Kurubarahalli	39	0.26	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	40	0.39	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	41	0.25	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	42	0.78	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	4 Borewell	IIs	GB
Kurubarahalli	43	1.27	BPRcC2g2	LMU-2	Deep (100-150 cm)	Sandy loam	Very gravelly (35- 60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moderate	Coconut+Ragi (CN+Rg)	Not Available	IIIes	тсв
Kurubarahalli	44	0.42	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	45	0.45	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	46	0.16	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	47	0.3	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	48	0.42	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	49	0.17	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	50	0.17	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	51	0.6	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	52	0.22	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	53	0.21	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	54	0.53	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	55	0.13	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Borewell, 1 Open well	IIs	GB
Kurubarahalli	56	0.25	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	57	0.18	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Borewell, 1 Open well	IIs	GB
Kurubarahalli	58	0.37	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	GB
Kurubarahalli	59	0.25	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Habitation	Not Available	IIs	GB
Kurubarahalli	60	0.28	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clav	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Borewell	IIs	GB
Kurubarahalli	61	0.44	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	3 Borewell	IIs	GB

Village	Sy.No	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conserva tion Plan
Kurubarahalli	62	0.5	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	GB
Kurubarahalli	63	0.26	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	NA	Not Available	IIs	GB
Kurubarahalli	64	4.4	BPRcB2g1	LMU-2	Deep (100-150 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Ragi (CN+Rg)	1 Borewell	IIIes	тсв
Kurubarahalli	65	1.7	LGDiB1	LMU-3	Deep (100-150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut+Ragi (CN+Rg)	Not Available	IIs	GB
Kurubarahalli	66	1.45	BPRcB2g1	LMU-2	Deep (100-150 cm)	Sandy loam	Gravelly (15-35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moderate	Coconut+Ragi (CN+Rg)	Not Available	IIIes	тсв
Kurubarahalli	67	1.96	LKRcC2g2		Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35- 60%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Moderate	Coconut (CN)	Not Available	IIIes	тсв
Kurubarahalli	68	5.09	LKRcC2g2		Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35- 60%)	Very Low (<50 mm/m)	Gently sloping (3-5%)	Moderate	Ragi (Rg)	Not Available	IIIes	тсв
Kurubarahalli	69	17.92	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Coconut+Ragi +Dyke (CN+Rg+Dy	Not Available	VIIIs	Rock outcrops
Kurubarahalli	70	0.57	KGHcC3g2	LMU-5	Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3- 5%)	Severe	Ragi (Rg)	Not Available	Ives	тсв

Appendix II

Kurubarahalli Microwatershed Soil Fertility Information

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Dabbegatta	20	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	210	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	211	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Medium (0.5 – 0.75 %)	Medium (23 – 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	213	Slightly alkaline (pH 7.3 – 7.8)	Non saline (<2 dsm)	Medium (0.5 - 0.75 %)	Medium (23 - 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	214	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Medium (0.5 - 0.75 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	215	Slightly alkaline (pH 7.3 - 7.8) Slightly alkaline	Non saline (<2 dsm) Non saline	Medium (0.5 - 0.75 %) Medium (0.5	Medium (23 – 57 kg/ha) Medium (23 –	Medium (145 – 337 kg/ha) Medium (145 –	High (> 20 ppm) Medium (10 -	Low (< 0.5 ppm) Low (< 0.5	Sufficient (>4.5 ppm) Sufficient	Sufficient (> 1.0 ppm) Sufficient (>	Sufficient (> 0.2 ppm) Sufficient (>	Sufficient (> 0.6 ppm) Sufficient (>
Dabbegatta	216	(pH 7.3 - 7.8) Neutral	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	217	(pH 6.5 - 7.3) Neutral	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	218	(pH 6.5 - 7.3) Neutral	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 –	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	219	(pH 6.5 - 7.3) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	220	(pH 7.3 – 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	221	(pH 7.3 – 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	222	(pH 7.3 – 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	223	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 –	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	224	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	225	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	228	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	229	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	230	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	231	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	232	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	233	(pH 7.3 - 7.8) Slightly alkaline	(<2 dsm) Non saline	- 0.75 %) Medium (0.5	57 kg/ha) Medium (23 –	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	234	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Dabbegatta	235	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Medium (0.5 - 0.75 %)	Medium (23 - 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	233	Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -		Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	236	(pH 7.3 – 7.8)	(<2 dsm)	– 0.75 %)	57 kg/ha)	337 kg/ha)	High (> 20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	237	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	238	(pH 7.3 - 7.8)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	239	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	240	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	241	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	242	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	243	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	249	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
<u> </u>		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	250	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
J		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	251	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	252	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	253	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	254	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	255	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	256	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	257	(pH 7.3 – 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	258	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	259	- 7.3)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	260	-7.3)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	261	(pH 7.3 – 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	274	- 7.3)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	275	- 7.3)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Dabbegatta	276	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	277	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	278	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dabbegatta	279	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20	Low (< 0.5	Sufficient	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (>
Dabbegatta	280	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient (>4.5 ppm)	Sufficient (>	Sufficient (> 0.2 ppm)	0.6 ppm) Sufficient (>
Dabbegatta	281	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	ppm) High (> 20 ppm)	ppm) Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	1.0 ppm) Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	0.6 ppm) Sufficient (> 0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	282	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dabbegatta	283	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Dabbegatta	284	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	285	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	286	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	287	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	288	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	289	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
		Neutral	Non saline	Low	Medium (23 -	Medium (145 -	High	Low	Sufficient	Sufficient	Sufficient	Sufficient
Dabbegatta	290	(pH 6.5 - 7.3)	(<2 dsm)	(< 0.5 %)	57 kg/ha)	337 kg/ha)	(> 20 ppm)	(< 0.5 ppm)	(>4.5 ppm)	(> 1.0 ppm)	(> 0.2 ppm)	(> 0.6 ppm)
Dabbegatta	291	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	295	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	296	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	297	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	High (> 20	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dabbegatta	298	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Dabbegatta	299	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	300	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	301	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	302	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	303	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dabbegatta	308	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dashihalli	11	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dashihalli	12	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Dashihalli	13	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dashihalli	14	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Dashihalli	15	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dashihalli	16	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Dashihalli	17	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dashihalli	18	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Low (<145 kg/ha)	Medium (10 – 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
		Moderately acid	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Dhugadihalli	44	(pH 5.5 - 6.0) Strongly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dhugadihalli	46	5.0 - 5.5) Strongly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dhugadihalli	47	5.0 - 5.5) Strongly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dhugadihalli	48	5.0 - 5.5) Strongly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dhugadihalli	49	5.0 - 5.5)	(<2 dsm)	%)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Dhugadihalli	50	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dhugadihalli	51	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dhugadihalli	52	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dhugadihalli	53	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Dhugadihalli	54	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
		_	Rock	Rock			Rock		Rock	Rock	Rock	Rock
Dhugadihalli	55	Rock outcrops Moderately acid	outcrops Non saline	outcrops Low (< 0.5	Rock outcrops High (> 57	Rock outcrops Low (<145	outcrops Medium (10 -	Rock outcrops Medium (0.5 -	outcrops Sufficient	outcrops Sufficient (>	outcrops Sufficient (>	outcrops Sufficient (>
Dhugadihalli	56	(pH 5.5 - 6.0) Strongly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dhugadihalli	57	5.0 - 5.5) Strongly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10 -	1.0 ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Dhugadihalli Jogihalli	130 67	5.0 - 5.5) Others	(<2 dsm) Others	%) Others	kg/ha) Others	kg/ha) Others	20 ppm) Others	ppm) Others	(>4.5 ppm) Others	1.0 ppm) Others	0.2 ppm) Others	0.6 ppm) Others
Kasaba Chik												
kanaiknahalli Kasaba Chik	148	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
kanaiknahalli Kasaba Chik	154	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kanaiknahalli Kasaba Chik	156	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
kanaiknahalli Kasaba Chik	157	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
kanaiknahalli Kasaba Chik	158	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
kanaiknahalli	159	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kasaba Chik kanaiknahalli	160	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kasaba Chik kanaiknahalli	161	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Others	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kasaba Chik	1101	Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
kanaiknahalli	162	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kasaba Chik						<i>g,</i> ,						
kanaiknahalli	163	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kasaba Chik												
kanaiknahalli	164	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kasaba Chik		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
kanaiknahalli	165	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kasaba Chik		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	High (> 20	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
kanaiknahalli	166	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kasaba Chik	4	Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	High (> 20	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
kanaiknahalli	167	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kasaba Chik	4.00	Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
kanaiknahalli	168	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kasaba Chik	160	Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
kanaiknahalli	169	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kasaba Chik kanaiknahalli	170	Neutral (pH 6.5 – 7.3)	Non saline	Low (< 0.5	Medium (23 -	Medium (145 – 337 kg/ha)	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kallalkilallalli	1/0	Slightly alkaline	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	Medium (145 -	20 ppm) High (> 20	ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm)	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	1	(pH 7.3 - 7.8)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	Sufficient (> 1.0 ppm)	0.2 ppm)	0.6 ppm)
Keunigenam		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 –	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	2	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Reunigenam		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	3	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
neumgenum		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	4	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
	-	Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	5	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	6	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	7	(pH 7.3 - 7.8)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	8	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	9	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	10	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Moderately acid	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Low (<10	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	11	(pH 5.5 - 6.0)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
** 11 ' 1 11'	40	Moderately acid	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Low (<10	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	12	(pH 5.5 - 6.0)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Vodhinoballi	13	Strongly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Low (<10	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	13	5.0 - 5.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kedhigehalli	14	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kedhigehalli	15	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kedhigehalli	16	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kedhigehalli	17	Moderately acid (pH 5.5 - 6.0)	Non saline	Low (< 0.5 %)	High (> 57	Medium (145 – 337 kg/ha)	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Keunigenam	17	(hu 2.2 - 6.0)	(<2 dsm)	70]	kg/ha)	55/ Kg/IIaJ	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kedhigehalli	18	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kedhigehalli	19	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kedhigehalli	20	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	21	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	22	(pH 7.3 - 7.8)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	23	(pH 7.3 - 7.8)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	24	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
<u> </u>		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	25	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Medium (0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	26	- 7.3)	(<2 dsm)	- 0.75 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	27	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	28	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	29	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	30	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	31	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	32	- 7.3)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	33	- 7.3)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	34	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	35	(pH 7.3 - 7.8)	(<2 dsm)	- 0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	37	- 7.3)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	38	- 7.3)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Moderately acid	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	39	(pH 5.5 - 6.0)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
			Rock	Rock			Rock		Rock	Rock	Rock	Rock
Kedhigehalli	40	Rock outcrops	outcrops	outcrops	Rock outcrops	Rock outcrops	outcrops	Rock outcrops	outcrops	outcrops	outcrops	outcrops
** 11		Strongly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	41	5.0 - 5.5)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
** 11. 1 ***	4.5	Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	42	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
W-31.1. 1 111	40	Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kedhigehalli	43	- 7.3)	(<2 dsm)	%)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kedhigehalli	44	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kedhigehalli	45	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kedhigehalli	46	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kedhigehalli	47	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (> 0.2 ppm)	Sufficient (>
		Moderately acid	Non saline	%) Low (< 0.5	Medium (23 -	Low (<145	Medium (10 -	ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	48	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) High (> 57	kg/ha) Low (<145	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	49	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) Medium (23 -	kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	50	(pH 5.5 - 6.0) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) High (> 20	ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	51	- 7.3) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	52	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Low (<145	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	53	6.0 - 6.5) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kedhigehalli	54	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kedhigehalli	55	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	1	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	2	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	3	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	4	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	5	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	6	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	7	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	8	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	High (> 20	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	9	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) High (> 20	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	10	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	11	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	12	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kurubarahalli	13	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	14	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	15	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	16	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	17	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	18	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	19	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	20	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	21	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	22	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	23	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	24	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Kurubarahalli	25	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	26	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	27	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	28	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	29	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha).	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	30	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	31	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	32	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	33	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	34	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	35	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	36	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	37	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
	NO.	Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	38	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
11414041411411		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	39	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	40	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	41	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	42	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	43	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Low (<10	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	44	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	45	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	46	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	47	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
	40	Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Low (<10	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	48	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Vhawahalli	40	Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Low (<10	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	49	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Vhamahalli	F0	Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	50	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	51	0 0	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kui ubai aiiaiii	31	Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 –	Medium (145 -	Low (<10	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	52	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Trui ubui uiiuiii	- 02	Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	53	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	54	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	55	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	56	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	57	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 –	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	58	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	59	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	60	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
** 1		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	61	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kurubarahalli	62	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	63	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	64	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	65	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	66	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	67	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	68	Moderately acid	Non saline	Low (< 0.5	High (> 57	Low (<145	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli		(pH 5.5 - 6.0)	(<2 dsm) Rock	%) Rock	kg/ha)	kg/ha)	20 ppm) Rock	ppm)	(>4.5 ppm) Rock	1.0 ppm) Rock	0.2 ppm) Rock	0.6 ppm) Rock
	69	Rock outcrops Slightly acid (pH	outcrops Non saline	outcrops Low (< 0.5	Rock outcrops High (> 57	Rock outcrops Medium (145 -	outcrops Low (<10	Rock outcrops Low (< 0.5	outcrops Sufficient	outcrops Sufficient (>	outcrops Sufficient (>	outcrops Sufficient (>
Kurubarahalli	70	6.0 - 6.5) Moderately acid	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	71	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	72	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	73	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	74	(pH 5.5 - 6.0) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	75	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	76	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	77	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Low (<10	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	78	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kurubarahalli	79	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	80	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	81	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	82	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	83	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	84	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	85	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
	140.	Moderately acid	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	86	(pH 5.5 - 6.0)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Moderately acid	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	87	(pH 5.5 - 6.0)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Moderately acid	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	88	(pH 5.5 - 6.0)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Moderately acid	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	89	(pH 5.5 - 6.0)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	90	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	91	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	92	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	93	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	94	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
** 1 1 11	0.5	Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	95	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
77 1 1 11	0.6	Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	96	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Vuunuk amak alli	07	Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	97	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Vh awah alli	00	Slightly acid (pH	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	98	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	99	6.0 - 6.5)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Kui ubai ailalli	77	Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 –	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	100	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
nui ubui unuiii	100	Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	101	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	102	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	103	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	104	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	105	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	106	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	107	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	108	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli	109	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Kurubarahalli	110	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	111	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	112	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	113	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Kurubarahalli	114	Slightly acid (pH 6.0 - 6.5)	Non saline	Low (< 0.5	Medium (23 – 57 kg/ha)	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (> 0.2 ppm)	Sufficient (>
		Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	115	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	116	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	117	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	118	6.0 - 6.5) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli	119	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Kurubarahalli Kurubarahalli	120 121	- 7.3) Others	(<2 dsm) Others	%) Others	57 kg/ha) Others	337 kg/ha) Others	20 ppm) Others	1.0 ppm) Others	(>4.5 ppm) Others	1.0 ppm) Others	0.2 ppm) Others	0.6 ppm) Others
	122	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5	High (> 57	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Kurubarahalli			Rock	%) Rock	kg/ha)	337 kg/ha)	20 ppm) Rock	1.0 ppm)	(>4.5 ppm) Rock	1.0 ppm) Rock	0.2 ppm) Rock	0.6 ppm) Rock
Kurubarahalli	123	Rock outcrops	outcrops	outcrops	Rock outcrops	Rock outcrops	outcrops	Rock outcrops	outcrops	outcrops	outcrops	outcrops
Melanahalli	1	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Melanahalli	2	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Melanahalli	3	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	High (> 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	4	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	5	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	6	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	7	Slightly alkaline (pH 7.3 – 7.8)	Non saline	Low (< 0.5 %)	High (> 57	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Melanahalli	8	Others	(<2 dsm) Others	%) Others	kg/ha) Others	337 kg/ha) Others	ppm) Others	ppm) Others	(>4.5 ppm) Others	1.0 ppm) Others	0.2 ppm) Others	0.6 ppm) Others
MEIAHAHAHI	O	Slightly alkaline	Non saline	Low (< 0.5	Medium (23 –	Medium (145 –	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Melanahalli	12	(pH 7.3 - 7.8)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Melanahalli	13	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	14	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	15	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Melanahalli	16	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	17	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
		Neutral (pH 6.5	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Melanahalli	18	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	19	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) Medium (10 -	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	20	- 7.3)	(<2 dsm)	%)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Melanahalli	21	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	24	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	25	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	26	Neutral (pH 6.5 - 7.3)	Non saline	Low (< 0.5	High (> 57	Medium (145 -	High (> 20	Low (< 0.5	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
		Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) High (> 57	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	27	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) Medium (23 -	337 kg/ha) Medium (145 –	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	28	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Low (< 0.5	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	29	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Melanahalli	30	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	31	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	32	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	33	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	34	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20	Medium (0.5 -	Sufficient (>4.5 ppm)	Sufficient (>	Sufficient (>	Sufficient (>
		Neutral (pH 6.5	Non saline	Low (< 0.5	High (> 57	Medium (145 -	ppm) High (> 20	1.0 ppm) Low (< 0.5	Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	35	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	ppm) High (> 20	ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	36	- 7.3) Neutral (pH 6.5	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 –	ppm) High (> 20	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	37	- 7.3)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Melanahalli	38	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	39	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	40	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	41	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Melanahalli	42	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	43	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	44	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	45	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	46	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	47	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	48	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	49	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	50	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	51	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	52	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	53	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	54	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	55	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	56	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	57	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	High (> 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	58	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	59	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	60	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	61	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	62	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 – 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	63	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 – 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	64	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	65	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Melanahalli	66	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	67	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
		Slightly acid (pH	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
Melanahalli	68	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	69	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Melanahalli	70	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	71	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	72	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	73	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	74	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	75	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Melanahalli	76	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	77	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	78	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	79	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Melanahalli	80	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	High (> 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	81	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	82	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	83	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 – 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	84	Neutral (pH 6.5 – 7.3)	Non saline	Low (< 0.5	Medium (23 -	Medium (145 -	Medium (10 -	Medium (0.5 -	Sufficient	Sufficient (>	Sufficient (>	Sufficient (>
		Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Medium (10 -	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	85	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	%) Low (< 0.5	57 kg/ha) Medium (23 -	337 kg/ha) Medium (145 -	20 ppm) Low (<10	1.0 ppm) Medium (0.5 -	(>4.5 ppm) Sufficient	1.0 ppm) Sufficient (>	0.2 ppm) Sufficient (>	0.6 ppm) Sufficient (>
Melanahalli	86	6.0 - 6.5)	(<2 dsm)	%)	57 kg/ha)	337 kg/ha)	ppm)	1.0 ppm)	(>4.5 ppm)	1.0 ppm)	0.2 ppm)	0.6 ppm)
Melanahalli	87	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 – 337 kg/ha)	Low (<10 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	88	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	89	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	90	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops	Rock outcrops

Village	Survey No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Melanahalli	91	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	92	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	93	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	95	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	96	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	97	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	High (> 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	98	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Low (<10 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	99	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	High (> 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	101	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Melanahalli	102	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others	Others
Melanahalli	155	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	High (> 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	157	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 – 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	158	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Low (< 0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	159	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5 %)	High (> 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	160	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (< 0.5 %)	Medium (23 - 57 kg/ha)	Medium (145 - 337 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)
Melanahalli	161	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (< 0.5	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10 - 20 ppm)	Medium (0.5 - 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient (> 1.0 ppm)	Sufficient (> 0.2 ppm)	Sufficient (> 0.6 ppm)

Appendix III

Kurubarahalli Microwatershed Soil Suitability Information

Grou Onio Chilly Chrys Pome Bana Fodd Upla Custa Hor Fin Man | Mai Sap Sorg Coco Gua Tama Sunfl Red **Iack** Cash Iam Musa Tom Mari Field-Areca Brini Ias Cow Mul Village Lime Amla rdanthe gra se ger-Mil erSor ndfruit apple ota ham nut va rind ower gram ato gold bean nut mine pea berry ew un mbi ghum Paddy nut mum nate gram Oth 0th Oth Oth Oth Dabbegatta 20 ers Dabbegatta S2g Dabbegatta 211 S2g Dabbegatta 213 S2g Dabbegatta S2g 214 S2g Dabbegatta 215 S2g Dabbegatta 216 S2g Dabbegatta S2g 217 S2g Dabbegatta 218 S2g Dabbegatta 219 S2g Dabbegatta 220 S2g Dabbegatta 221 S2g Dabbegatta 222 S2g Dabbegatta 223 S2g Dabbegatta 224 S2g Dabbegatta 225 S2g Dabbegatta 228 S2g Dabbegatta 229 S2g Dabbegatta 230 S2g Dabbegatta 231 S2g Dabbegatta 232 S2g Dabbegatta 233 S2g Dabbegatta 234 S2g Dabbegatta S2g 235 S2g Dabbegatta S2g S2g S2g S2g S2g S2g 236 S2g Dabbegatta 237 S2g S2g S2g S2g S2g S2g S2g **S2g S2g S2g** S2g Dabbegatta 238 S2g Dabbegatta 239 S2g Dabbegatta S2g 240 S2g Dabbegatta 241 S2g Dabbegatta 242 S2g S2t Dabbegatta 243 S3t S3t S2t S3t S3t S2t S2t S2t S2t S2t S3t S2t Nt S2t S3t S2t S3t S3t S3t Dabbegatta S2t S2t S2t S2t S2t S2t S2t S2t S2t 249 S3t S3t S2t S3t S3t S2t S2t S2t S2t S3t S2t Nt S2t S3t S2t S2t S2t S2t S2t S2t S3t S2t S3t Dabbegatta 250 S2g Dabbegatta 251 S2g Dabbegatta S2g S2g S2g S2g S2g S2g S2g S2g S2g 252 S2g Dabbegatta S2g S2g S2g S2g S2g 253 S2g S2g **S2g S2g S2g** S2g Dabbegatta 254 S2g Dabbegatta S2g Dabbegatta S2g S2g S2g 256 S2g Dabbegatta S2g S2g S2g S2g S2g S2g S2g Dabbegatta 258 S2g S2g

Village	Sy.No	Man go	Mai ze	Sap ota	Sorg ham	Coco	Gua va	Tam:	Lime	Sunf	Red gran		Jack fruit	ra-	Casn	Jam un	Musa mbi	Grou nd nut	Onio n	Chilly	Ton ato	m Mar	anth	sPome e gra n nate	Bana	Hor se gran	hean	-Areca	Fin ger-Mil let	Brinj al	erSor	Upla nd- Paddy	Jas mine		Mul berry
Dabbegatta	259	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Dabbegatta	260	S3t	S3t	S3t	S2t	S3t	S3t	S2t	S2t	S2t	S2t	S2t	S3t	S2t	Nt	S2t	S2t	S3t	S2t	S2t	S2t	S2t	S2t	S2t	S2t	S2t	S2t	S3t	S3t	S2t	S2t	S2t	S2t	S2t	S3t
Dabbegatta	261	S3t	S3t	S3t	S2t	S3t	S3t	S2t	S2t	S2t	S2t	S2t	S3t	S2t	Nt	S2t	S2t	S3t	S2t	S2t	S2t	S2t	S2t	S2t	S2t	S2t	S2t	S3t	S3t	S2t	S2t	S2t	S2t	S2t	S3t
Dabbegatta	274	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Dabbegatta	275	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Dabbegatta	276	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Dabbegatta	277	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Dabbegatta	278	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Dabbegatta	279	S3rg			S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g								S2g	S2g	S2g	S2g		S2rg			S2g	S2rg	S2g	S2g				S2g	S2rg
Dabbegatta		S2g				_		S2g	S2g					S2g		_	_				S2g					S2g		S2g	_	_		S2g		S2g	_
Dabbegatta		S2g			1		I	S2g		I										1	S2g					S2g		S2g				S2g	S2g		
Dabbegatta	282							S2g			_		S2g						S2g		S2g		S2g			S2g		S2g				S2g			S2g
Dabbegatta		S2g											S2g								S2g		S2g			S2g	S2g	S2g				S2g		S2g	
Dabbegatta			Oth	Oth	Oth	Oth		Oth			Oth	Oth	Oth	Oth	Oth	Oth			Oth	Oth	Oth	Oth	Oth			Oth	Oth		Oth			Oth			Oth
	284		ers	ers	ers	ers		ers		ers	ers	ers	ers	ers	ers	ers			ers	ers	ers	ers	ers	ers		ers	ers		ers			ers			ers
Dabbegatta	285		Oth	Oth	Oth	Oth		Oth	1		Oth	Oth	Oth	Oth	Oth						Oth	Oth	Oth	1 -		Oth	Oth	1	Oth			Oth		1	Oth
			ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	_	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth	ers Oth		ers Oth	ers Oth		ers Oth		ers Oth	ers Oth	_	ers Oth	ers Oth
Dabbegatta	286		ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers	ers			ers	ers	ers	ers	ers	ers		ers	ers		ers			ers			ers
			Oth	Oth	Oth	Oth		Oth			Oth	Oth	Oth	Oth	Oth	Oth		Ot	Oth		Oth	Oth	Oth	Oth		Oth	Oth		Oth			Oth			Oth
Dabbegatta	287		ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers	ers		hers		ers	ers	ers	ers	ers		ers	ers		ers		ers	ers		ers	ers
			Oth	Oth	Oth	Oth		Oth			Oth	Oth	Oth	Oth	Oth	Oth	_		Oth		Oth	Oth	Oth	Oth		Oth	Oth		Oth			Oth			Oth
Dabbegatta	288		ers	ers		ers		ers		ers	ers	ers	ers	ers	ers				ers	ers	ers	ers	ers	ers		ers	ers		ers			ers		ers	ers
Dabbegatta	289	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Dabbegatta	290	S2g	_	S2g	_		_	S2g		_	S2g	S2g		S2g		S2g		_	S2g		S2g		S2g	S2g	S2g	S2g	S2g	S2g	S2g		S2g	S2g			S2g
Dahhagatta		0th	Oth	Oth	Oth	Oth	Oth	Oth			Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth			Oth	Oth	Oth	Oth	0th	Oth	Oth	Oth	Oth	Oth	Oth	Oth		Oth	Oth
Dabbegatta	291	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers
Dabbegatta		Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth
Dubbeguttu	295	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers
Dabbegatta			Oth	Oth	Oth	Oth		Oth		Oth	Oth	Oth	Oth	Oth	Oth	Oth			Oth	Oth	Oth	Oth	Oth	Oth		Oth	Oth		Oth			Oth			Oth
g	296		ers	ers	ers	ers		ers		ers	ers	ers	ers	ers	ers	ers			ers	ers	ers	ers	ers	ers		ers	ers		ers			ers			ers
Dabbegatta			Oth	Oth	Oth	Oth		Oth		Oth	Oth	Oth	Oth	Oth	Oth	Oth			Oth	Oth	Oth	Oth	Oth	Oth		Oth	Oth		Oth			Oth		1	Oth
D - l- l	297		ers	ers		ers		ers		ers	ers	ers	ers	ers	ers	_			ers	ers	ers	ers	ers	ers		ers	ers		ers			ers	_	_	ers
Dabbegatta	298							S2g			S2g	S2g	S2g						S2g		S2g		S2g			S2g	S2g		S2g			S2g			S2g
Dabbegatta	299		Oth ers	Oth ers	Oth ers	Oth ers		Oth ers		Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers			Oth ers	Oth ers	Oth ers	Oth	Oth			Oth ers	Oth ers	1	Oth ers			Oth ers			Oth ers
			Oth	Oth	Oth	Oth	_	Oth			Oth	Oth	Oth	Oth	Oth	Oth	_		Oth		Oth	ers Oth	ers Oth	ers Oth		Oth	Oth		0th			Oth	_		Oth
Dabbegatta	300		ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers		ers	ers		ers		ers	ers			ers
			Oth	Oth	Oth	Oth	-	Oth		Oth	Oth	Oth	Oth	Oth	Oth	Oth			Oth	Oth	Oth	Oth	Oth	Oth		Oth	Oth		Oth			Oth			Oth
Dabbegatta	301		ers	ers	ers	ers		ers		ers	ers	ers	ers	ers	ers	ers			ers	ers	ers	ers	ers	ers		ers	ers		ers			ers			ers
			Oth	Oth	Oth	Oth		Oth	_	Oth	Oth	Oth	Oth	Oth	Oth	Oth	_		Oth		Oth	Oth	Oth	Oth		Oth	Oth	_	Oth			Oth			Oth
Dabbegatta	302		ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers		ers	ers		ers		ers	ers		ers	ers
D 11		Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	0th	Oth	Oth	0th	Oth	Oth	0th	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth
Dabbegatta	303		ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers	ers			ers	ers	ers	ers	ers	ers		ers	ers		ers			ers			ers
Dabbegatta	308	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Dashihalli	11	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Dashihalli		Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth		Oth
Dasiiiiaiii	12	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers

			1		1	_	1			1					1	_	1			1	_		01	- n	1			1	771	1		** 1		_	
Village	Sv.No	Man	Mai	Sap	Sorg	Coco	Gua	Tam	a Lime	Sunf	l Red	Amla	Jack	Custa rd-	⊣t acn	Jam	Musa	Grou	Onio	Chill	Ton	Mar	1 -	sPome	∃Kana	Hor	Field	-Areca	Fin	Brinj	Fodd	Upla nd-	Jas	Cow	Mul
village	Sy.NO	go	ze	ota	ham	nut	va	rind	Lillie	owe	r gran	1 Allila	frui	t apple	ew.		mbi	Hu	n	Cilling	ato	gold	1	e gra 1 nate	na	se gran	bean	nut	ger-Mi let	al	ghum	Paddy	, mine	pea	berry
Dashihalli	13	ς3σ	ς3α	ς3α	ς3α	ς3σ	\$2σ	ς3σ	S3g	ς3σ	ς3π	\$2σ	ς3σ	· F F	-	ς3σ	ς3α		ς3σ	ς3σ	ς3α	ς3σ			_	0		ς3σ		S3g	_	_	S3g	ς3σ	\$2σ
Dashihalli			S3g		S3g				S3g																			S3g		S3g				S3g	
Dashihalli		S3g			S3g			_	S3g	_			_				_	_		_	_					_		S3g		S3g				S3g	
Dashihalli		-	S3g		S3g				S3g																			S3g			S3g			S3g	
Dashihalli		S3g				S3g		_		_			_				_	_		_	_	S3g		S3g				S3g		S3g				S3g	_
Dashihalli		_	S3g	_			_		S3g											_								S3g			S3g			S3g	
Dhugadihalli		S3rg	-	S2rg					S2rg					S2g							S2g	S2g		S2rg			S2g	S2rg				S2g			S2rg
Dhugadihalli		Ngl			-				Ngl							Ngl					Ngl	Ngl				Ngl	Ngl	Ngl				Ngl			S2rg
Dhugadihalli			-	-	-		-	Ngl		Ngl		-			Ngl		Ngl		-		Ngl	Ngl			-	Ngl		Ngl	-	Ngl		Ngl			S2rg
Dhugadihalli									S3rg																					S3rg			S3rg		
-																																			
Dhugadihalli	49		Ngl	-	Ngl	-			Ngl			Ngl											Ngl					Ngl			Ngl			Ngl	
Dhugadihalli									S3rg																					S3rg			S3rg		
Dhugadihalli	51		-	-	-		-	Ngl			-			Ngl						Ngl		Ngl		Ngl	-	Ngl		Ngl	-		Ngl			Ngl	_
Dhugadihalli	52	-			-			Ngl			Ngl		-		-						Ngl	Ngl				Ngl		Ngl			Ngl			Ngl	
Dhugadihalli	53	-	-	Ngl	-	-	Ngl	Ngl		Ngl	Ngl	-	-				-		-	Ngl	Ngl	Ngl				Ngl		-	Ngl		Ngl				S2rg
Dhugadihalli		Ngl		-		-		Ngl		_	Ngl								-	-	Ngl	Ngl		-		Ngl		-	Ngl		Ngl				S2rg
Dhugadihalli									Rock r outcr																					Rock					Rock
Dhugadihalli			outei		1	ontci	1	ops			ons		ops	ops	1							ops	ops	ontci							ontci	outcro		ops	
Dhugadihalli	56	-	Ngl	ops Ngl	Ngl	Ngl	ops Ngl	Ngl		ops Nal			Ngl	Ngl	Ngl		•	ops Ngl	ops Ngl	Ngl	ops Nal		Ngl	Ngl	Ngl	ops Ngl	ops Ngl	•	ps Ngl		Ngl	•	-	-	S2rg
Dhugadihalli	57	-	-	Ngl	-	-	Ngl	Ngl		Ngl	Ngl		Ngl	Ngl			-	-	-		Ngl	Ngl				Ngl		-	Ngl	Ngl		Ngl		-	
Dhugadihalli	130	-	-	-	-	_	_	-	S3rg	Ngl	Ngl		-		-	_		_	-	_	Ngl	Ngl	Ngl	-	-	_	_	-	-		S3rg		S3rg	Ngl	
Diiugauilialii			Oth	Oth	Oth			Oth		Oth	Oth		Oth							Oth		Oth	Ot	Ot	Ot	Oth	Oth	Oth			Oth			Oth	
Jogihalli	67	1	ers	ers	ers	ers		ers		ers	ers		ers	ers	ers						ers	ers		hers	L .		ers	1	ers			ers			ers
Kasaba Chik	_		Oth	Oth	Oth	Oth	_	Oth		Oth	Oth		Oth	Oth	Oth		Ot			Ot	Oth	Oth	Oth			Oth	Oth		Oth			Oth			Oth
kanaiknahalli	148		ers	ers	ers	ers	ers	ers		ers	ers		ers	ers	ers	1	hers	1	1	hers		ers	ers	ers	ers	ers	ers		ers	1		ers	1	ers	ers
Kasaba Chik			Oth	Oth	Oth	Oth	Ot	Oth		Oth	Oth		Oth	Oth	Oth	_	_	_	_		Oth	Oth	Ot	Ot	_	Oth	Oth	_	Oth	_	_	Oth		_	Oth
kanaiknahalli			ers	ers	ers		hers			ers	ers		ers	ers	ers	ers	ers		ers	ers	ers	ers	1 -	hers	1	ers	ers	1	ers			ers		ers	ers
Kasaba Chik			Oth	Oth	Oth	Oth		Oth		Oth	Oth		Oth	Oth	Oth	Oth	Oth				Oth	Oth	Ot	Oth	Oth	Oth	Oth	-	Oth			Oth			Ot
kanaiknahalli			ers	ers	ers	ers	ers	ers		ers	ers		ers	ers	ers	ers	ers			ers	ers	ers	hers	1	ers	ers	ers	1	ers			ers		1	ers
Kasaba Chik	_	_	Oth	Oth	Oth	Oth	_	Oth		Oth	Oth		Oth	Oth	Oth	Oth	Oth	_			Oth	Oth	Oth	Oth	Oth	Oth	Oth	_	Oth		_	Oth		_	Oth
kanaiknahalli			ers	ers	ers	ers		ers		ers	ers		ers	ers	ers		ers			ers	ers	ers	ers	ers	ers	ers	ers		ers			ers		ers	ers
Kasaba Chik		Oth	Oth	Oth	Oth	Oth	-	Oth		Oth	Oth		Oth	Oth	Oth	Oth	Oth	_		_	Oth	Oth	0t	Oth	Oth	Oth	Oth		Oth	_		Oth			Ot
	158		ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	hers	1	ers	ers	ers	1	ers			ers	hers		hers
Kasaba Chik			Oth	Oth	Oth	Oth		Oth		Oth	Oth		Oth	Oth	0th	Oth	Oth	_	_	_	Oth	Oth	Oth	Oth	Oth	Oth	Oth		Oth	_	_	Othe			Oth
			ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers		ers	1 -		rs		ers	ers
Kasaba Chik	-		Oth	Oth	Oth	Oth	_	Oth		Oth	Oth	-	Oth	0t	Oth	Oth		_	_	_	Oth	Oth	Oth	Oth	Oth	Oth	Oth		Oth			Oth			Ot
kanaiknahalli			ers	ers	ers	ers	1	ers		ers	ers		ers	hers			1	1		ers	ers	ers	ers	ers	ers	ers	ers	1	ers			ers		1	hers
Kasaba Chik																																			
kanaiknahalli	161	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kasaba Chik																																			
kanaiknahalli	162	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Kasaba Chik			Oth	Oth	Oth	Oth		Oth		Oth	Oth		Oth							Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	0t	Oth	Oth	Oth	Oth		0t	Oth
kanaiknahalli	163	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	hers	ers	rs	ers	ers	hers	hers	ers
Kasaba Chik		Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	0th	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Ot
kanaiknahalli	164	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	hers
Kasaba Chik																																			
kanaiknahalli	165	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g

Village	Sy.No	Man go	Mai ze	Sap	Sorg ham	Cocc	Gua va	Tam:	a Lime	Sunf	l Red	Amla	Jacl frui	ra-	Cash	Jam un	Musa mbi	Grou nd	Onio	Chilly	Tom	Mari		Pome gra	Bana	Hor se		-Areca	Fin ger-Mil	Brinj al	Fodd erSor	Upla nd-	Jas		Mul berry
		go	Ze	Uta	IIaiii	Hut	Va	Tillu	1	owei	gran	1	II ui	appl	e ew	un	IIIDI	nut	n		ato	goiu	mum	nate	na	gram	Dean	Hut	let	aı	ghum	Paddy	mme	pea	Derry
Kasaba Chik	1.00		60	60	CO	-	60	60	60		60	-	60	60	60	60		60	60	60	60		60	CO	co	60	CO	CO	co	60	co	60	60	60	60
kanaiknahalli	166	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	SZg	52g	52g	SZg	SZg	SZg	SZg	SZg	52g	SZg	SZg	52g	SZg	S2g	S2g	S2g	SZg	SZg
Kasaba Chik kanaiknahalli	167	23 a	ς3α	ς3α	ς3α	ς3α	ς2α	ς3α	ς3α	ς3α	ς3α	ς2σ	23 a	ς2 σ	ς2π	23 a	ς2α	ς2tσ	ς3α	23 a	C3 a	ς3α	ς2π	ς3α	C3 a	ς2α	ς3α	ς3α	ς2α	ς3 α	S3g	63 a	S3g	ς3α	S2a
Kasaba Chik	107	JJg	JJg	JJg	JJg	JJg	34g	JJg	JJg	JJg	JJg	32g	JJg	32g	34g	JJg	JJg	JZIg	JJg	JJg	JJg	JJg	JJg	JJg	JJg	32g	JJg	JJg	JJg	JJg	JJg	JJg	JJg	JJg	32g
kanaiknahalli	168	Nrø	S3rg	S3rg	S3rg	S3rg	S3rg	Nrø	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Kasaba Chik	100		5518	50.5	5518	JUIG	Joig		Joig	5518	Doig	5518	501	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jorg	5018	5518	J_16	DOIG	5018	DOIG	Join	Jorg	5018	Join	DUIS	Jorg	borg	218	DUIS	5515	J_18	5518	JUIS	
kanaiknahalli	169	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kasaba Chik																																			
kanaiknahalli	170	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Kedhigehalli	1	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Kedhigehalli	2	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Kedhigehalli	_	_	_	_	_	_	_	_		_	_	_	_			_	_	_	_	_	_		S2z	_	_	_	_	_		_	S2z		S3tz		
Kedhigehalli		_											_										S2z							_	S2z		S3tz		
Kedhigehalli					_				S2z				_		_			_	_	_	_		S2z	_			_	S3tz		_	S2z		S3tz		
Kedhigehalli	_	_	_	_	_	_		_		_			_			_	_	_	_	_	_		S2z	_		_	_	S3tz		_	S2z		S3tz		
Kedhigehalli	_	_	_	_	_	_	_	_	S2z	_	_	_	_			_	_	_	_	_	_		S2z	_	_	_	_	S3tz		_	S2z		S3tz		_
Kedhigehalli	_	_	_	_	_	_		_		_			_			_	_	_	_	_	_		S2z	_		_	_	S3tz		_	S2z		S3tz	_	
Kedhigehalli																							S3g					S3g			S3g		S3g		
Kedhigehalli		S3g													S2g								S3g			-		S3g			S3g		S3g		
Kedhigehalli Kedhigehalli	_	S3g	S3g			_		_	S3g	_			_		S2g			S2tg	_	_	_		S3g S3g	_				S3g S3g	_	_	S3g S3g		S3g S3g	_	_
Kedhigehalli		S3g							S3g									S2tg					S3g		S3g			S3g			S3g		S3g		
						0th		Oth					0th	Ot							Oth	Oth						0th			Oth		0th		
Kedhigehalli	14		ers	ers		ers		ers		ers			ers	hers							ers	ers		ers		ers	ers	ers				ers	ers		
		_	Oth	Oth	Oth	Oth		Oth	_	Oth	Oth		0t	Oth	Oth	0t		_	_	_	Oth	Oth		Oth		Oth	_	_		_		Oth	Oth		
Kedhigehalli	15		ers	ers		ers		ers	ers			hers	L	ers		hers						ers		ers		ers						ers		ers	
Vadhiashalli		Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	0t	Oth	Oth	Oth	Oth	Oth	0t	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth
Kedhigehalli	16	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	hers	ers	ers	ers	ers	ers	hers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers
Kedhigehalli	17	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Kedhigehalli	18	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg		
Kedhigehalli	19																						S2g				S2g	S2g			S2g		S2g		
Kedhigehalli			Oth	1											Oth										Oth			Oth			Oth		Oth		
													_	ers						hers								_		_	_	ers	ers		
Kedhigehalli													_										S3rg								S3rg		S3rg		
Kedhigehalli		_					_	_		_	_	_	_			_	_	_	_	_	_		S2z	_	_	_		S3tz			S2z		S3tz		
Kedhigehalli	_	S2g			S2g	-																	S2g					S2g			S2g		S2g		
Kedhigehalli			S2g		S2g			_		_			_		S2g			_	_	_	_		S2g	_		_		S2g			S2g		S2g	_	_
Kedhigehalli Kedhigehalli			S2g S2g			S2g S2g									S2g S2g								S2g S2g					S2g S2g			S2g S2g		S2g S2g		
Kedhigehalli		52g 52g						S2g			S2g				S2g													S2g			S2g		S2g		
Kedhigehalli	_	S2g				_		S2g	S2g	_			_	S2g			S2g	_	_	S2g	_			S2g				S2g	_	_	S2g		S2g	_	_
Kedhigehalli	_	S2g		_				S2g			S2g				S2g		S2g											S2g			S2g		S2g		
Kedhigehalli		S2g						S2g			S2g		S2g									S2g						S2g			S2g		S2g		
	_	-	-	-		-							_																_	_	_				-
Kedhigehalli		S2g	-																							-		S2g							
Kedhigehalli	_	-	-	-	-	-							_														-	-							
Kedhigehalli Kedhigehalli	31 32	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g		S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g	S2g S2g S2g S2g	S2g S2g	S2g S2g		S2g S2g S2g S2g

Village	Sv.No	Man	Mai	Sap	Sorg	Coco	Gua	Tam	a Lime	Sunf	l Red	Amla	Jack	Custa	⊣t acn	Jam	Musa	Grou	Onio	Chilly	Ton	Mar	Chry	sPome	Bana	Hor	Field	-Areca	Fin	Brinj	Fodd erSor	Upla	Jas	Cow	Mul
village	Sy.Nu	go	ze	ota	ham	nut	va	rind	l	owe	rgran	AIIIIa	frui	rd-	OXAZ	un	mbi	nd nut	n	Cilling	y ato	gold	1 4111111	e gra 1 nate	na	se gram	bean	nut	ger-Mil	al	ghum	Paddy	mine	pea	berry
Kedhigehalli	34	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g		_	S2g	S2g	_	S2g	S2g	S2g	S2g			S2g	_	_	S2g		S2g	S2g		S2g	S2g	S2g
Kedhigehalli									S2g																		S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Kedhigehalli	37	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Kedhigehalli	38	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Kedhigehalli	39	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Kedhigehalli	40	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC
Kedhigehalli	41	S3r	S1	S2r	S1	S2r	S2r	S3r	S2r	S2r	S1	S1	S2r	S1	S2r	S3r	S2r	S1	S1	S1	S1	S1	S1	S2r	S2r	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S2rg
Kedhigehalli	42	S3rg	S2g	S2rg	S2g	S2rg	S2rg	S3rg	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2rg	S3rg	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg	S2rg	S2g	S2g	S2rg	S2g	S2g	S2g	S2g	S2g	S2g	S2rg
Kedhigehalli	43	S3r	S1	S2r	S1	S2r	S2r	S3r	S2r	S2r	S1	S1	S2r	S1	S2r	S3r	S2r	S1	S1	S1	S1	S1	S1	S2r	S2r	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S2rg
Kedhigehalli	44	S3r	S1	S2r	S1	S2r	S2r	S3r	S2r	S2r	S1	S1	S2r	S1	S2r	S3r	S2r	S1	S1	S1	S1	S1	S1	S2r	S2r	S1	S1	S2r	S1	S1	-	S1	S1	S1	S2rg
Kedhigehalli	45	S3r	S1	_	S1	S2r	S2r	S3r		S2r		_	S2r	S1		_	S2r	_	_	S1	S1	S1	S1	-	_	S1	S1	S2r		_	-	S1		_	S2rg
Kedhigehalli	_	_	S1		S1				_	S2r			S2r	S1		_	_		_	S1	S1	S1	S1	_		_	S1	S2r	S1		-	S1		_	S2rg
Kedhigehalli	_			S3g					S3g				_		S2g						S3g			S3g			_	S3g			S3g		S3g		_
Kedhigehalli									S3g															S3g				S3g			S3g		S3g		
Kedhigehalli	_								S3g				_											S3g				S3g			S3g			S3g	_
Kedhigehalli									S3g																			S3g			S3g		S3g		_
Kedhigehalli									S2z				_						_									S3tz		_	S2z		S3tz		
Kedhigehalli									S3g																			S3g			S3g		S3g		
Kedhigehalli	_	S3r	_	S2r	_				S2r	_		_	S2r		S2r	_	_			S1	S1	S1	S1	S2r		S1	S1	_			_	S1		_	S2rg
Kedhigehalli			S1	_	S1		_		S2r				S2r		S2r				_	S1	S1	S1	S1			S1	S1	S2r		_	_	S1		_	S2rg
Kedhigehalli									S2rg				_											S2rg				S2rg			S2g		S2g		
Kurubarahalli									S3g																			S3g			S3g		S3g		
Kurubarahalli	_	_	_	_	_	_	_		S2z	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	S3tz	_	_	S2z		S3tz		
Kurubarahalli	_	_							S2z	_			_		_	_	_		_	_	_				_	_	_	S3tz			S2z		S3tz	_	
Kurubarahalli									S2z				_	_	_	_	_	_	_	_	_						_	S3tz		_	S2z		S3tz		
Kurubarahalli									S2z				_		Ntz				_					S2tz			_	S3tz		_	S2z		S3tz		
Kurubarahalli		-	S2g	-	S2g				S2g				_		S2g			S2g		S2g				S2g			S2g	S2g			S2g			S2g	_
Kurubarahalli		-		S2g		S2g																S2g		S2g	-			S2g			S2g			S2g	
Kurubarahalli				S2g					S2g															S2g				S2g			S2g		S2g		
Kurubarahalli									S2g				_							_	_			S2g		_		S2g			S2g			S2g	_
Kurubarahalli Kurubarahalli									S2g													S2g		S2g S2g				S2g S2g			S2g S2g		S2g S2g		
Kurubarahalli																				_			_	S2g				S2g			S2g		S2g		-
Kurubarahalli	_	_	_	_	_		S2g													_	_			S2g			_	S2g			S2g		S2g		_
Kurubarahalli						S2g																S2g			S2g			S2g			S2g		S2g		
Kurubarahalli																													_		S2g		S2g		
Kurubarahalli									S2g														S2g				1	S2g			S2g		S2g		
Kurubarahalli									S2g																			S2g			S2g				S2g
Kurubarahalli		_	S2g			S2g			S2g			_	_					_			_	_	S2g					S2g			S2g		S2g		_
Kurubarahalli									S2g																			S2g			S2g		S2g		
Kurubarahalli	_		S2g	_		S2g			S2g			_	_					_	_	_	_			S2g				S2g	-		S2g		S2g		
Kurubarahalli	_								S2z				_															S3tz			S2z		S3tz		
Kurubarahalli			S3g						S3g				_						_					S3g			_	S3g	_		S3g		S3g		
Kurubarahalli		_		_	S3g	S3g			S3g				_					S2tg						S3g				S3g			S3g		S3g		_
			Oth	Oth	Oth			Oth		Oth			0th	Oth							0th	Oth	Oth			Oth	0th		Oth		_	Oth			Oth
Kurubarahalli		ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers	ers
Kurubarahalli	25	S 3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g

Village	Sy.No	Man	Mai	Sap	Sorg	Coco	Gua	Tam	a Lime	Sunf	l Red	AIIII	Jack	Custa rd-	Cash	Jam	Musa	Grou nd	Unio	Chilly	Ton	Mar	1 anth	sPome e gra	Bana	Hor se	Field	-Areca	Fin ger-Mi	Brinj		Upla nd-	1 1	Cow	
		go	ze	ota	nam	nut	va	rind	ı	owei	gran	1	fruit	appl	ew	un	mbi	nut	n		ato	gold	¹ mun	nate	na	gran	bear	nut	let	al	ghum	Paddy	mine	pea	berry
Kurubarahalli	26	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g			S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kurubarahalli	27	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kurubarahalli	28	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kurubarahalli	29	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kurubarahalli	30	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kurubarahalli																												S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Kurubarahalli																												S3g		S3g			S3g		
Kurubarahalli																														S3g			S3g	S3g	S2g
Kurubarahalli		_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_			S2tz	_	_	_	_		S2z			S3tz		
Kurubarahalli	_	_	_	_				_					_	_		_	_	_	_	_	_			S2tz	_	_	_	_		S2z			S3tz		
Kurubarahalli																								S2tz				S3tz		S2z			S3tz		
Kurubarahalli		_	_	_				_					_	_		_	_	_	_	_	_			S2tz	_	_	_	S3tz		S2z	-		S3tz		
Kurubarahalli		_	_	_				_					_	_		_	_	_	_	_	_			S2tz	_	_	_	S3tz	_	S2z		_	S3tz		
Kurubarahalli		_	_	_				_					_	_		_	_	_	_	_	_			S2tz	_	_		_		S2z			S3tz		
Kurubarahalli		_	_	_	_	_	_	_	S2z	_	_	_	_	_	_	_	_	_	_	_	_			S2tz	_	_	S2z	S3tz	_	S2z		_	S3tz		
Kurubarahalli				_		_	_	_			_		_	_	_			_		_	_			S2tz	_			S3tz		S2z			S3tz		
Kurubarahalli		_	_	_				_					_	_		_	_	_	_	_	_			S2tz	_	_	_			S2z			S3tz		
Kurubarahalli																								S3g					-	S3g			S3g		
Kurubarahalli				_		_	_	_			_		_	_	_			_		_	_			S2tz	_			S3tz	_	S2z			S3tz		
Kurubarahalli																	_							S2tz						S2z			S3tz		
Kurubarahalli			_	_									_	_						_	_			S2tz	_		S2z	S3tz		S2z		S2tz	S3tz		
Kurubarahalli		_	_	_				_					_	_		_	_	_	_	_	_			S2tz	_	_		S3tz		S2z		-	S3tz		
Kurubarahalli				_		_	_	_			_		_	_	_			_		_	_			S2tz	_			S3tz		S2z			S3tz		
Kurubarahalli		_	_	_				_					_	_		_	_	_	_	_	_			S2tz	_	_	_			S2z			S3tz		
Kurubarahalli																	_													S2z			S3tz		
Kurubarahalli		_	_	_				_					_	_	_	_	_		_	_	_			S2tz	_	_	_			S2z	-		S3tz		
Kurubarahalli		_	_	_				_					_	_	_	_	_		_	_	_			S2tz	_	_	_			S2z			S3tz		
Kurubarahalli				_		_	_	_			_		_	_	_			_		_	_			S2tz	_				_	S2z			S3tz		
Kurubarahalli Kurubarahalli																	_							S2tz S2tz				S3tz		S2z S2z			S3tz		
Kurubarahalli		_											_			_				_				S2tz	_	_	_	S3tz	_	S2z		_	S3tz S3tz		
Kurubarahalli	_	_	_	_				_					_	_	_	_	_		_	_	_			S2tz	_	_	_	S3tz		S2z			S3tz		
Kurubarahalli	_	_	_	_				_					_	_	_	_	_		_	_	_			S2tz	_	_	_	S3tz	_	S2z		_	S3tz		
Kurubarahalli	_	_	_	_				_					_	_	_	_	_		_	_	_			S2tz	_	_	_	S3tz		S2z			S3tz		
Kurubarahalli		_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_			S2tz	_	_		S3tz		S2z	-		S3tz		
Kurubarahalli	_	_	_	_				_			_		_	_		_	_	_	_	_	_			S2tz	_	_	_	S3tz	_	S2z			S3tz		
Kurubarahalli	_	_	_	_				_					_	_	_	_	_		_	_	_			S2tz	_	_	_	S3tz	_	S2z		_	S3tz		
Kurubarahalli																	_							S2tz			S2z	S3tz		S2z			S3tz		
Kurubarahalli				_		_	_	_			_		_	_	_			_		_	_			S3g	_		-			S3g			S3g		
Kurubarahalli																								S2tz				S3tz		S2z	-		S3tz		
Kurubarahalli	_	_	_	_				_					_	_		_	_	_	_	_	_			S3g	_	_	_		_	S3g			S3g		
Kurubarahalli																								S3rg						S3rg			S3rg		
Kurubarahalli																								S3rg						S3rg			S3rg		
Kurubarahalli																														ROC	_		ROC		
Kurubarahalli		_	_	_				_					_	_		_	_	_	_	_	_			S3r	_	_	_			S2r			S2r		
Kurubarahalli																	_							S3r				S3r		S2r		S2r	S2r		
Kurubarahalli				_		_	_	_			_		_	_	_			_		_	_			S3r	_			_	_	S2r			S2r		
ixui uvai ailalli	,,,	141	341	551	341	551	551	931	931	551	541	341	931	341	551	931	931	541	541	941	341	941	341	551	931	541	541	931	541	<i>3</i> 21	541	541	J41	<i>5</i> 4 1	551

Village	Sv.No	Man	Mai	Sap	Sorg	Coco	Gua	Tam	a Lime	Sunf	l Red		Jack	Custa rd-	Cash	Jam	Musa	Grou nd	Onio	Chilly	Ton	Mar	anth	sPome e gra	Bana	Hor se	Field	-Areca	Fin ger-Mil	Brinj	Fodd erSor	Upla nd-	1.		Mul
		go	ze	ota	ham	nut	va	rind	l	owei	gran	1	fruit	apple		un	mbi	nut	n		ato	gold		nate	na	gran	bean	nut	let	al	ghum	Paddy	mine	pea	berry
Kurubarahalli	73	Nr	S2r	S3r	S2r	S3r	S3r	S3r	S3r	S3r	S2r	S2r	S3r	S2r	S3r	S3r	S3r	S2r	S2r	S2r	S2r	S2r	S2r	S3r	S3r	S2r	S2r	S3r	S2r	S2r	S2r	S2r	S2r	S2r	S3r
Kurubarahalli	74	Nr	S2r	S3r	S2r	S3r	S3r	S3r	S3r	S3r	S2r	S2r	S3r	S2r	S3r	S3r	S3r	S2r	S2r	S2r	S2r	S2r	S2r	S3r	S3r	S2r	S2r	S3r	S2r	S2r	S2r	S2r	S2r	S2r	S3r
Kurubarahalli	75	Nr	S2r	S3r	S2r	S3r	S3r	S3r	S3r	S3r	S2r							S2r					S2r	S3r	S3r	S2r	S2r	S3r	S2r	S2r	S2r	S2r	S2r	S2r	S3r
Kurubarahalli	_		_		S2r				S3r				_					S2r			_			S3r		_	_		S2r	-	-	S2r	S2r	S2r	S3r
Kurubarahalli																												S3tz			S2z	_	S3tz	_	
Kurubarahalli	_		_	_						_			_		_	_	_		_	_	_				_	_		S3tz			S2z		S3tz		
Kurubarahalli	_		_	_					S2z	_			_		_	_	_		_	_	_				_	_		S3tz	S3tz		S2z	_	S3tz	_	
Kurubarahalli	80	_	_	_					S2z	_			_			_	_		_	_				_	_	_		S3tz		S2z		S2tz	S3tz	_	
Kurubarahalli	_				_				S3r	_			_		_	_	_		_	_	_							_		-	S2r		S2r	_	
Kurubarahalli	82	_	_	_	S2r				S3r	_			_		_	_	_		_	_	_			S3r	_	_	_	S3r	_		S2r	_	S2r	_	
Kurubarahalli					_				S3r	_			_		_	_	_		_	_	_							S3r		_	S2r		S2r	_	
Kurubarahalli	84	_	S2r		-				S3r	_			_		_	_	_		_	_	_			S3r	_	-	-	S3r	-	_	S2r		S2r	_	
Kurubarahalli			_	_					S3r	_			_		_	_	_		_	_	_				_	_		S3r			S2r	_	S2r	_	S3r
Kurubarahalli	_								S3rg																						S3rg		S3g		-
Kurubarahalli	_	_	_	_	_		_	_	S3rg	_			_		_	_	_	_							_			S3g			S3rg		S3g		
Kurubarahalli									S3rg																			S3g			S3rg		S3g		_
Kurubarahalli									S3rg																		l	S3g			S3rg		S3g		
Kurubarahalli		_							S3rg				_															S3g			S3rg		S3g		-
Kurubarahalli					_									_	_			_	_		_		_					S3tz			S2z		S3tz	_	
Kurubarahalli									S3rg																						S3rg		S3g		-
Kurubarahalli							_		S2z						_				_		_			_	_			S3tz			S2z		S3tz	_	
Kurubarahalli	_		_	_					S2z	_			_		_	_	_		_	_	_				_	_		_		_	S2z		S3tz		
Kurubarahalli													_															S3tz			S2z		S3tz	_	
Kurubarahalli	_	_	_	_	_		_	_	S3rg	_			_		_	_	_	_							_						S3rg		S3g	_	
Kurubarahalli									S2z																						S3rg		S3g		
Kurubarahalli Kurubarahalli	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_			S2z S2z		S3tz S3tz	_	
Kurubarahalli	_		_	_						_			_		_	_	_		_	_	_				_	_					S2z	_	S3tz	_	
Kurubarahalli		_			_									_	_			_	_		_		_					S3tz			S2z		S3tz		
Kurubarahalli													_															_			S2z		S3tz	_	
Kurubarahalli		_	_	_						_			_			_	_		_	_				_	_	_		S3tz			S2z	_	S3tz	_	
Kurubarahalli	_		_	_						_			_		_		_		_	_	_				_	_		S3tz		_	S2z		S3tz		
Kurubarahalli	_		_	_						_			_		_		_		_	_	_				_	_					S2z	_	S3tz	_	
Kurubarahalli	_		_	_						_			_		_		_		_	_	_				_	_		S3tz			S2z	_	S3tz		
Kurubarahalli																												S3tz		-	S2z		S3tz		
Kurubarahalli																												S3tz		_	S2z		S3tz	_	
Kurubarahalli	_		_	_						_			_		_		_		_	_	_				_	_		S3tz			S2z	_	S3tz		
Kurubarahalli													_															S3tz			S2z		S3tz		
Kurubarahalli	_		_	_						_			_		_	_	_	_	_	_	_				_	_	-	S3tz		-	S2z	-	S3tz		
Kurubarahalli	_		_	_						_			_		_	_	_	_	_	_	_				_	_		S3tz		-	S2z		S3tz	_	
Kurubarahalli		_	_	_						_			_			_	_		_	_				_	_	_		S3tz			S2z	_	S3tz	_	
Kurubarahalli	_		_	_						_			_		_	_	_	_	_	_	_				_	_		S3tz	_		S2z	_	S3tz		
Kurubarahalli													_															_			S3g		S3g		
Kurubarahalli																												S3g			S3g		S3g		_
	_																											S3g			S3g		S3g		_
Kurubarahalli																												S3g			S3g				
Kurubarahalli	_																														S2z		S3tz		
	118	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S2g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S

		Man	Mai	San	Sore	Cocc	Gua	Tam	a Lime	Sunfl	Red	Amla	Jack	Cust	Lasn	Jam	Musa	Grou	Onio		Ton	ı Mar	1 .	sPome	Bana	Hor	Field	-Arec	Fin	Brini	Fodd	Upla	Ias	Cow	Mul
Village	Sy.No	go	ze	ota	ham	nut	va	rind	Lime	ower	gran	Amla	fruit	ra-	ew.	1.	mbi	na	Onio n	Chilly	ato		_i antn	e gra	na	se	hean	nut	ger-Mi	al	erSoi	nd-	mino		berry
Kurubarahalli	120	\$3t7	\$3t7	\$3t7	\$27	\$3t7	\$3t7	\$2±7	\$27	\$27	\$2tz	\$27	\$3t7	appl	-	\$2t7	\$27	nut S3tz	\$3t7	\$27	\$27	-	IIIuII	n nate		gran S27	_	\$3t7	let S3tz		gnun S2z	Paddy	S3tz	\$27	\$3tz
Kui ubai aiiaiii	120		Oth	Oth	Oth	Oth		_	Oth	_	_	_		Oth				Oth				Oth	Oth			Oth	Oth	Oth				Oth	Oth		
Kurubarahalli	121		ers	ers	ers	ers		ers		ers				ers	ers						ers	ers	ers			ers	ers		ers			ers			ers
Kurubarahalli	122	S3tz	S3tz	S3tz	S2z	S3tz	S3tz	S2tz	S2z	S2z	S2tz	S2z	S3tz	S2z	Ntz	S2tz	S2z	S3tz	S3tz	S2z	S2z	S2z	S2z	S2tz	S2tz	S2z	S2z	S3tz	S3tz	S2z	S2z	S2tz	S3tz	S2z	S3tz
Kurubarahalli	123	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC
Melanahalli		Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth	Oth
Melananan	1	ers	ers	ers	ers	ers	ers	ers		ers	_	ers	ers	ers	ers	_	_	_		ers	ers	ers	ers	ers	_	ers	ers	-	ers	_		ers	_	_	ers
Melanahalli	_	Oth	Oth	Oth	Oth	Oth		Oth		Oth	Oth	Oth	Oth	Oth	Oth						Oth	Oth	Oth	Oth		Oth	Oth		Oth			Oth			Oth
Molonoballi		ers	ers	ers	ers	ers	ers	ers		ers		ers	ers	ers	ers		ers			ers	ers	ers	ers	ers	_	ers	ers	-	ers	ers	-	ers			ers
Melanahalli Melanahalli		S2g S2g	S2g	S2g S2g	S2g S2g	S2g S2g		S2g	S2g		S2g										S2g		S2g			S2g S2g	S2g S2g	S2g				S2g		S2g	
Melanahalli		-						S2g S2g							S2g						S2g	S2g S2g						S2g S2g			S2g S2g		S2g S2g		S2g
Melanahalli									S2g																			S2g			S2g		S2g		
Melanahalli			S2g						S2g																			S2g			S2g		S2g		_
			Oth	Oth	Oth	Oth								Oth				Oth			Oth	Oth	Oth			0th	Oth	Oth				Oth		0th	
Melanahalli	8	ers	ers	ers	ers	ers	ers	ers		ers			ers	ers	ers					ers	ers	ers	ers	ers		ers	ers	ers	ers			ers			ers
Melanahalli	12	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Melanahalli	13	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Melanahalli	14	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Melanahalli	15	S2g	- 0			S2g		S2g	S2g								S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Melanahalli	16	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g					S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g			S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Melanahalli		-	- 0		S2g			S2g		S2g					S2g						S2g		S2g			S2g	S2g	S2g			-	S2g			S2g
Melanahalli					S2g			S2g		_	_	_			S2g		S2g			S2g	_		S2g			S2g	S2g	S2g				S2g		S2g	
Melanahalli								S2g														S2g						S2g			S2g			S2g	
Melanahalli						_		_	S2g	_	_	_					_			_	_	S2g				S2g	S2g	S2g			S2g			S2g	
Melanahalli		_			_				S2g																		_	S2g			S2g		_	S2g	
Melanahalli			S3g		S3g				S3g															S3g		S2g	S3g	S3g			S3g		S3g		
Melanahalli Melanahalli		_			S3g			_	S3g	_	_	_					_	_		_	_					_		S3g			S3g		S3g		
Melanahalli			S3g	S3g				S3g	S3g S3g															S3g S3g			S3g S3g	S3g S3g			S3g S3g		S3g S3g	S3g	
Melanahalli									S3g															S3g		_	S3g	S3g			S3g		S3g		
Melanahalli	_								S2g																			S2g			S2g		S2g		
Melanahalli									S2g																			S2g			S2g		S2g		
Melanahalli					S3g				S3g																			S3g			S3g		S3g		
Melanahalli									S2g																			S2g			S2g		S2g		
Melanahalli									S2g																						S2g		S2g		
Melanahalli	_								S2g																						S2g	_	S2g		
Melanahalli					S2g		S2g																								S2g		S2g		
Melanahalli	36	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g		
Melanahalli	37	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g		
Melanahalli	38	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g		
Melanahalli	39	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g	S2g
Melanahalli									S2g																			S2g			S2g		S2g		
Melanahalli									S2z																						S2z		S3tz		
Melanahalli	_	_	_	_				_	S2z	_	_	_	_				_		_	_	_				_	_				_	S2z		S3tz	_	
Melanahalli		_							S2z																	_		S3tz		S2z		S2tz	S3tz		S3tz
Melanahalli	44	S3tz	S3tz	S3tz	S2z	S3tz	S3tz	S2tz	S2z	S2z	S2tz	S2z	S3tz	S2z	Ntz	S2tz	S2z	S3tz	S3tz	S2z	S2z	S2z	S2z	S2tz	S2tz	S2z	S2z	S3tz	S3tz	S2z	S2z	S2tz	S3tz	S2z	S3tz

Village	Sv.No	Man	Mai	Sap	Sorg	Cocc	Gua	Tam	a Lime	Sunf	l Red	Amla	Jack	Custa rd-	Cash	Jam	Musa	Grou	Onio	Chilly	Ton	n Mar	1 .	sPome e gra	Bana	Hor se	Field	-Areca	Fin ger-Mi	Brin		Upla nd-	Jas	Cow	Mul
Village	Sy.No	go	ze	ota	ham	nut	va	rinc	l	owei	gran	1 711111	frui	apple	ew	un	mbi	nut	n	Cilling	ato	gold	1	n nate	na	gran	bean	nut	let	" al		Paddy	mine	pea	berry
Melanahalli	45	S3tz	S3tz	S3tz	S2z	S3tz	S3tz	S2tz	S2z	S2z	S2tz	S2z	S3tz			S2tz	S2z		S3tz	S2z	S2z	S2z				-		S3tz		S2z	S2z			S2z	S3tz
Melanahalli									S2z																						S2z	_		S2z	
Melanahalli		_	_						S3g	_			_			_		_	_	_						_	_	_		S3g	S3g	S3g		S3g	
Melanahalli									S2g																						S2g			S2g	
Melanahalli		S2g							S2g				_															S2g			S2g			S2g	
Melanahalli									S3g																						S3g			S3g	_
Melanahalli		S3g			S3g				S3g																			S3g			S3g		_	S3g	
Melanahalli		S3g							S3g				_															S3g			S3g			S3g	_
Melanahalli		S3g							S3g																		S3g				S3g			S3g	
Melanahalli									S3g																			S3g			S3g			S3g	
Melanahalli		S3g							S3g																	1		S3g			S3g			S3g	
Melanahalli		S2g							S2g																			S2g			S2g			S2g	
Melanahalli		S2g		_					S2g																		S2g				S2g			S2g	_
Melanahalli									S2z	_		_	_							_	_					_					S2z			S2z	_
Melanahalli									S2z																		1	S3tz			S2z			S2z	
Melanahalli		_	_						S2z	_			_			_		_	_	_						_		S3tz		S2z		S2tz		S2z	_
Melanahalli		_	_		_				S2z		_	_			_		_	_			_				_		_	S3tz		_	S2z			S2z	
Melanahalli									S2z																			S3tz			_	S2tz		S2z	
Melanahalli									S3g	_			_														_				S3g	_		S3g	
Melanahalli									S3g																		1	S3g	1		S3g			S3g	
Melanahalli									S2z																						S2z			S2z	
Melanahalli		_	_	_	_	_	_	_	S2z	_	_	_	_		_	_	_	_	_	_	_			_	_	_		S3tz		S2z		S2tz		S2z	
Melanahalli				_	_	_	_		S2z	_	_				_		_		_	_				_			_				S2z	_		S2z	
Melanahalli		_	_	_	_	_	_	_	S2z	_	_	_	_		_	_	_	_	_	_	_			_	_	_	S2z				S2z	_		S2z	
Melanahalli		_	_	_	_	_	_	_	S2z	_	_	_	_		_	_	_	_	_	_	_			_	_	_				_	S2z			S2z	
Melanahalli									S3rg	_			_															S3g			S3rg			S3g	
Melanahalli									S3rg																			S3g			S3rg			S3g	
Melanahalli		S1	_	_	_		_	_	S1	_	S1		_	S1	_	_	_	_		_	S1	S1	S1		_	S1	_		S1			S1			S1
Melanahalli		-	-	-	_	_	_	_	S2z	_	_	_	_	_	_	_	_	_	_	_	_			_	-	-	_	_	-	_	S2z	-		S2z	-
Melanahalli									S2z	_			_															S3tz			S2z	_		S2z	
		Oth			_				Oth		Oth	_			_		_	Oth			_		Oth		Oth		Oth	Oth			_	Oth		Oth	
Melanahalli		ers	ers	ers	ers	ers		ers		ers			ers	ers	ers		ers				ers	ers	ers	ers		ers	ers	1	ers	ers	1	ers			ers
Melanahalli		_	_		_				S2z	_			_					S3tz							S2tz			S3tz				S2tz		S2z	
Melanahalli		_	_					_	S2z	_		_	_	S2z		_		S3tz	_	_			_	_	S2tz	_	_	S3tz				S2tz		S2z	_
Melanahalli	78	_	S1	S1	S1	S1		S1		S1	S1	_	S1	S1	S1		S1	_		S1	S1	S1	S1		_	S1	S1	_	S1	S1	_	S1		_	S1
		_	Oth	Oth	Oth			Oth		_	Oth	-	Oth	Oth				_			Oth	Oth	Oth		_	Oth	Oth	Oth		_		Oth		Oth	-
Melanahalli	79		ers	ers	ers	ers		ers		ers	ers		ers	ers	ers	ers	ers		ers	ers	ers	ers	ers	ers		ers	ers	ers	ers	ers		ers			ers
Melanahalli	80	_	S1	S1	S1	S1	S1	S1		S1	S1		S1	S1	S1	S1	S1		S1	S1	S1	S1	S1	S1	_	S1	S1		S1	S1		S1			S1
Melanahalli	81	_	S1	S1	S1	S1	S1	S1		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1		S1	S1		S1	S1	_	S1			S1
Melanahalli	82	-	S1	S1	S1	S1		S1	-	S1	S1	-	S1	S1	S1	S1	S1	_	S1	S1	S1	S1	S1	S1	-	S1	S1	_	S1	S1	_	S1			S1
Melanahalli	83	_	S1	S1	S1	S1	S1	S1		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	_	S1	S1	_	S1		_	S1
Melanahalli	84	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1		S1	S1	_	S1			S1
Melanahalli	85	_	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1		S1	S1		S1	S1	_	S1		_	S1
Melanahalli	86	_	S1	S1	S1	S1	S1	S1		S1	S1	_	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	_	S1	S1		S1			S1
Melanahalli	87	-	S2r	S3r				S3r	-	S3r	S2r	S2r	S3r	S2r	S3r	-		_	_	S2r	S2r	S2r	S2r	S3r		S2r	-		S2r	S2r	_	S2r			S3r
Melanahalli	88	_	S1	S1	S1	S1		S1		S1	S1	S1	S1	S1	S1	S1	S1		S1	S1	S1	S1	S1	S1	_	S1	S1		S1	S1	_	S1		_	S1
Melanahalli	89	-	S1	-	S1	S1		S1		S1	S1		S1	S1		S1	S1	_	S1	S1	S1	S1	S1	S1		S1			S1	S1		S1			S1

Village	Sy.No	Man go	Mai ze	Sap ota	Sorg ham	Coco	Gua va	Tama rind	Lime	Sunfl ower	Red gram	Amla	Jack fruit	Custa rd- apple	Cash ew	Jam un	Musa mbi	Grou nd nut	Onio n	Chilly	Tom ato	Mari gold	anun	sPomo e gra 1 nate	na	Hor se gram	Field- bean	-Areca	Fin ger-Mil let	Brinj al	erSor	Upla nd- Paddy	Jas mine	Cow pea	Mul berry
Melanahalli	90	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC
Melanahalli	91	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Melanahalli	92	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Melanahalli	93	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Melanahalli	95	S3rg	S3rg	S3rg	S3rg	S3g	S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
Melanahalli	96	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Melanahalli	97	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Melanahalli	98	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Melanahalli	99	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Melanahalli	101					Oth ers	-										-				1	Oth ers	Oth ers	1 -	-	Oth ers			Oth ers			Oth ers		Oth ers	Oth ers
Melanahalli	102																					Oth ers	Oth ers						Oth ers			Oth ers			Oth ers
Melanahalli	155	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Melanahalli	157	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Melanahalli	158	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Melanahalli	159	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r
Melanahalli	160	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Melanahalli	161	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	Nrg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S3rg	S2rg	S3rg	S3rg	S2rg	S3rg	S3rg	S3r

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1.	Executive summary	1-3
2.	Introduction	5
3.	Methodology	7-11
4.	Results and discussions	13-30

LIST OF TABLES

1 Human population among sample households 13 2 Basic needs of sample households 14 3 Institutional participation among the sample population 16 II. Economic status 16 4 Occupational pattern in sample households 16 5 Domestic assets among samples households 16 6 Farm assets among samples households 17 7 Livestock assets among sample households 18 8 Milk produced and Fodder availability of sample households 18 9 Women empowerment of sample households 19 10 Per capita daily consumption of food among the sample households 19 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 24 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 15 Present cropping pattern among samples households 22 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers 25 <th>I. Soc</th> <th>ial status</th> <th></th>	I. Soc	ial status	
Institutional participation among the sample population 16	1	Human population among sample households	13
### II. Economic status 4	2	Basic needs of sample households	14
4 Occupational pattern in sample households 5 Domestic assets among samples households 16 6 Farm assets among samples households 17 7 Livestock assets among sample households 18 8 Milk produced and Fodder availability of sample households 19 10 Per capita daily consumption of food among the sample households 19 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 29 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 29 23 Ecosystem services of water supply for crop production 29	3	Institutional participation among the sample population	16
5 Domestic assets among samples households 6 Farm assets among samples households 7 Livestock assets among sample households 8 Milk produced and Fodder availability of sample households 9 Women empowerment of sample households 19 10 Per capita daily consumption of food among the sample households 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 26 27 28 29 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of fodder production 28 22 23 Ecosystem services of water supply for crop production 29	II. Ec	onomic status	
6 Farm assets among samples households 7 Livestock assets among sample households 8 Milk produced and Fodder availability of sample households 18 9 Women empowerment of sample households 19 10 Per capita daily consumption of food among the sample households 19 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 1V. Economic land evaluation 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 26 27 28 29 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 29 23 Ecosystem services of water supply for crop production 29	4	Occupational pattern in sample households	16
7 Livestock assets among sample households 8 Milk produced and Fodder availability of sample households 18 9 Women empowerment of sample households 19 10 Per capita daily consumption of food among the sample households 19 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 26 27 28 29 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of fooder production 29 23 Ecosystem services of water supply for crop production 29	5	Domestic assets among samples households	16
8 Milk produced and Fodder availability of sample households 9 Women empowerment of sample households 10 Per capita daily consumption of food among the sample households 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 26 27 28 29 Ecosystem services of food production 29 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of fodder production 29 20 Ecosystem services of water supply for crop production	6	Farm assets among samples households	17
9 Women empowerment of sample households 19 10 Per capita daily consumption of food among the sample households 19 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 25 19 Economics Land evaluation and bridging yield gap for different crops 26 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 28 22 Ecosystem services of fodder production 29 23 Ecosystem services of water supply for crop production 29	7	Livestock assets among sample households	18
10 Per capita daily consumption of food among the sample households 11 Annual average Income from various sources 20 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 29 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of food production 22 Ecosystem services of fodder production 23 Ecosystem services of water supply for crop production 29	8	Milk produced and Fodder availability of sample households	18
11 Annual average Income from various sources 12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 26 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 28 22 Ecosystem services of water supply for crop production 29 20 Ecosystem services of water supply for crop production	9	Women empowerment of sample households	19
12 Average annual expenditure of sample households 21 13 Land holding among samples households 22 III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 26 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 28 22 Ecosystem services of fodder production 29 23 Ecosystem services of water supply for crop production 29	10	Per capita daily consumption of food among the sample households	19
13 Land holding among samples households 14 Number of tree/plants covered in sample farm households 25 15 Present cropping pattern among samples households 26 16 Distribution of soil series in the watershed 27 17 Cropping pattern on major soil series 28 18 Alternative land use options for different size group of farmers 29 (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of food production 22 Ecosystem services of water supply for crop production 23 Ecosystem services of water supply for crop production 29 Ecosystem services of water supply for crop production	11	Annual average Income from various sources	20
III. Resource use pattern 14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 26 27 28 Economics Land evaluation and bridging yield gap for different crops 26 27 28 Ecosystem services of food production 29 20 Ecosystem services of water supply for crop production 29 20 Ecosystem services of water supply for crop production 29	12	Average annual expenditure of sample households	21
14 Number of tree/plants covered in sample farm households 22 15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 26 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 28 22 Ecosystem services of fodder production 23 Ecosystem services of water supply for crop production 29	13	Land holding among samples households	22
15 Present cropping pattern among samples households 22 16 Distribution of soil series in the watershed 24 IV. Economic land evaluation 17 Cropping pattern on major soil series 25 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 26 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 28 22 Ecosystem services of fodder production 29 23 Ecosystem services of water supply for crop production 29	III. R	desource use pattern	
16 Distribution of soil series in the watershed 17 Cropping pattern on major soil series 18 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of food production 22 Ecosystem services of fodder production 23 Ecosystem services of water supply for crop production 29 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of fodder production 22 Ecosystem services of water supply for crop production 23 Ecosystem services of water supply for crop production	14	Number of tree/plants covered in sample farm households	22
IV. Economic land evaluation17Cropping pattern on major soil series2518Alternative land use options for different size group of farmers (Benefit Cost Ratio)2519Economics Land evaluation and bridging yield gap for different crops2620Estimation of onsite cost of soil erosion2721Ecosystem services of food production2822Ecosystem services of fodder production2923Ecosystem services of water supply for crop production29	15	Present cropping pattern among samples households	22
17 Cropping pattern on major soil series 25 Alternative land use options for different size group of farmers (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of food production 22 Ecosystem services of fodder production 23 Ecosystem services of water supply for crop production 29 25 26 27 28 28 29	16	Distribution of soil series in the watershed	24
Alternative land use options for different size group of farmers (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of food production 22 Ecosystem services of fodder production 23 Ecosystem services of water supply for crop production 29 20 Ecosystem services of water supply for crop production 29	IV. E	conomic land evaluation	
18 (Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 20 Estimation of onsite cost of soil erosion 21 Ecosystem services of food production 22 Ecosystem services of fodder production 23 Ecosystem services of water supply for crop production 29 25 26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	17	Cropping pattern on major soil series	25
(Benefit Cost Ratio) 19 Economics Land evaluation and bridging yield gap for different crops 26 20 Estimation of onsite cost of soil erosion 27 21 Ecosystem services of food production 28 22 Ecosystem services of fodder production 29 23 Ecosystem services of water supply for crop production 29	18	Alternative land use options for different size group of farmers	25
20Estimation of onsite cost of soil erosion2721Ecosystem services of food production2822Ecosystem services of fodder production2923Ecosystem services of water supply for crop production29	10	(Benefit Cost Ratio)	23
21 Ecosystem services of food production 28 22 Ecosystem services of fodder production 29 23 Ecosystem services of water supply for crop production 29	19	Economics Land evaluation and bridging yield gap for different crops	26
22 Ecosystem services of fodder production 29 23 Ecosystem services of water supply for crop production 29	20	Estimation of onsite cost of soil erosion	27
23 Ecosystem services of water supply for crop production 29	21	Ecosystem services of food production	28
	22	Ecosystem services of fodder production	29
24 Farming constraints 30	23	Ecosystem services of water supply for crop production	29
	24	Farming constraints	30

LIST OF FIGURES

1	Location of study area	8
2	ALPES Framework	9
3	Basic needs of sample households	15
4	Domestic assets among the sample households	17
5	Livestock assets among sample households	18
6	Per capita daily consumption of food among the sample farmers	20
7	Average annual expenditure of sample households	21
8	Present cropping pattern	23
9	Estimation of onsite cost of soil erosion	27
10	Ecosystem services of food production	28
11	Ecosystem services of water supply	29

EXECUTIVE SUMMARY

Baseline socioeconomic characterisation is prerequisite to prepare action plan for program implementation and to assess the project performance before making any changes in the watershed development program. The baseline provides appropriate policy direction for enhancing productivity and sustainability in agriculture.

Methodology: Kurubarahalli Micro-watershed (Anekatte sub-watershed, Chikkanayaka-nahalli taluk, Tumkur district) is located in between 13°23' – 13°25' North latitudes and 76°35' – 76°37' East longitudes, covering an area of about 645.29 ha, bounded by Kedhigehalli, Marasandra, Chikkanahalli, Chikkanayakanahalli, Dugudihalli, Dabbekatta and Jogihalli villages with length of growing period (LGP) 120-150 days. We used soil resource map as basis for sampling farm households to test the hypothesis that soil quality influence crop selection, and conservation investment of farm households. The level of technology adoption and productivity gaps and livelihood patterns were analyses. The cost of soil degradation and ecosystem services were quantified.

Results: The socio-economic outputs for the Kurubarahalli Microwatershed Anekatte sub-watershed, Chikkanayakanahalli taluk, Tumkur district) are presented here.

Social Indicators;

- ❖ *Male and female ratio is 57.4 to 42.6 per cent to the total sample population.*
- * Younger age 18 to 50 years group of population is around 51.1 per cent to the total population.
- ❖ Literacy population is around 80.9 per cent.
- Social groups belong to other backward caste (OBC) is around 50 per cent.
- ❖ Liquefied petroleum gas (LPG) is the source of energy for a cooking among all sample households.
- ❖ About 66.6 per cent of households have a yashaswini health card.
- * Majority of farm households (50 %) are having MGNREGA card for rural employment.
- ❖ Dependence on ration cards for food grains through public distribution system is around 80 per cent.
- Swach bharath program providing closed toilet facilities around 90 per cent of sample households.
- ❖ *Institutional participation is only 2.1 per cent of sample households.*
- ❖ Women participation in decisions making are around 36 per cent of households were found.

Economic Indicators;

- * The average land holding is 0.44 ha indicates that majority of farm households are belong to marginal farmers. The dry land account for 90.9 % and irrigated land 9.1 % of total cultivated land area among the sample farmers.
- Agriculture is the main occupation among 63.8 per cent and agriculture is the main and non agriculture labour is subsidiary occupation for 30.5 per cent of sample households.
- * The average value of domestic assets is around Rs.14420 per household. Mobile and Mixer/grinder are popular media mass communication.
- * The average value of farm assets is around Rs.1004 per household, about 70 per cent of sample farmers own plough.
- * The average value of livestock is around Rs.22810 per household; about 79 per cent of household are having livestock.
- The average per capita food consumption is around 694.5 grams (1481.6 kilo calories) against national institute of nutrition (NIN) recommendation at 827.7 gram. Around 90 per cent of sample households are consuming less than the NIN recommendation.
- ❖ The annual average income is around Rs. 25543 per household. Above 90 per cent of farm households are below poverty line.
- ❖ The per capita average monthly expenditure is around Rs.1228.

Environmental Indicators-Ecosystem Services;

- * The value of ecosystem service helps to support investment to decision on soil and water conservation and in promoting sustainable land use.
- * The onsite cost of different soil nutrients lost due to soil erosion is around Rs. 790 per ha/year. The total cost of annual soil nutrients is around Rs. 411588 per year for the total area of 445.72 ha.
- ❖ The average value of ecosystem service for food grain production is around Rs 28081/ ha/year. Per hectare food grain production services is maximum in coconut (Rs. 74436) followed by ragi (Rs. 6316) and green gram (Rs. 3490).
- ❖ The average value of ecosystem service for fodder production is around Rs. 3647/ ha/year. Per hectare fodder production services is maximum in maize (Rs. 5325) followed by ragi (Rs. 1968).
- ❖ The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum in coconut (Rs. 265476) followed by green gram (Rs. 43584) and ragi (Rs. 13608).

Economic Land Evaluation;

- ❖ The major cropping pattern ragi (50.2 %) followed by green gram (45.2 %) and coconut (4.6 %).
- ❖ In Kurubarahalli Microwatershed, major soil is Kutegoudanahundi (KGH) series is having moderately shallow soil depth cover around 50 % of area. On this soil farmers are presently growing green gram (50 %) and ragi (4.56 %), soils of Bidanagere (BDG) are also having moderately deep soil depth cover 7.84 % of area, the crops are green gram (50 %) and ragi (50 %). Balapur (BPR) soil series having deep soil depth cover around 16.05 % of areas, crops are green gram (44.5 %) and ragi (55.5 %). Lakshmanagudda (LGD) soil series having deep soil depth cover around 12.37 % of area, crops are coconut (16.7 %), green gram (33.3 %) and ragi (50 %).
- ❖ The cost of cultivation and benefit cost ratio (BCR) of ragi range between Rs.60787/ha in BDG soil (with BCR of 1.06) and Rs 12124/ha in LDG soil (with BCR of 1.87).
- ❖ In green gram the cost of cultivation ranges between Rs.54821/ha in BDG soil (with BCR of 1.13) and Rs. 16307/ha in LGD soil (with BCR of 1.88).
- ❖ In coconut the cost of cultivation in LGD soil is Rs 44124/ha (with BCR of 2.69).
- The land management practices reported by the farmers are crop rotation, tillage practices, fertilizer application and use of farm yard manure (FYM). Due to higher wages farmer are following labour saving strategies is not prating soil and water conservation measures. Less ownership of livestock limiting application of FYM.
- It was observed soil quality influences on the type and intensity of land use. More fertilizer applications in deeper soil to maximize returns.

Suggestions;

- Involving farmers is watershed planning helps in strengthing institutional participation.
- The per capita food consumption and monthly income is very low. Diversifying income generation activities from crop and livestock production in order to reduce risk related to drought and market prices.
- Majority of farmers reported that they are not getting timely support/extension services from the concerned development departments.
- By strengthing agricultural extension for providing timely advice improved technology there is scope to increase in net income of farm households.
- By adopting recommended package of practices by following the soil test fertiliser recommendation, there is scope to increase yield in ragi (71.7 to 30.6 %), green gram (42.2 to 27.4 %), and coconut (45.8 %).

INTRODUCTION

Watershed Development program aim to restore degraded watersheds in rainfed regions to increase their capacity to capture and store rain water, reduce soil erosion, and improved soil nutrients and carbon contents so they can produce greater agricultural yields and other benefits. As majority of rural poor live in these regions and dependent on natural resources for their livelihood and sustenance, improvements in agricultural yields improve human welfare and simultaneously improve national food security.

Sujala–III watershed development project conceptualised and implemented by the Watershed Development Department of Government of Karnataka with tripartite cost-sharing arrangements. The World Bank through International Development Association provided major portion of plan outlay as a loan to Government of India and in turn loan to Government of Karnataka.

The objectives of Sujala-III is to demonstrate more effective watershed management through greater integration of programs related to rain fed agriculture, innovative and science based approaches and strengthened institutions and capacities. The project is implemented in 11 districts of Bidar, Vijayapura, Gulbarga, Yadgir, Koppal, Gadag, Raichur, Davanagere, Tumkur, Chikkamangalur and Chamarajanagar which have been identified by the Watershed Development Department based on rainfall and socioeconomic conditions. The project will be implemented over six years and linked with the centrally financed integrated watershed management programme.

Economic evaluations can better guide in watershed planning and implementation, as well as raise awareness of benefits of ecosystem restoration for food security and poverty alleviation program. The present study aims to characterize socio-economic status of farm households, assess the land and water use status, evaluate the economic viability of land use, prioritize farming constraints and suggest the measures for soil and water conservation for sustainable agriculture.

Objectives of the study

- 1. To characterize socio-economic status of farm households
- 2. To evaluate the economic viability of land use and land related constraints
- 3. To estimate the ecosystem service provided by the watershed and
- 4. To suggest alternatives for sustainable agriculture production.

METHODOLOGY

Study area

Kurubarahalli Microwatershed is located in Central Dry Zone of Karnataka (Figure 1): The zone covers the entire Chitradurga district, parts of Tumkur (6 taluks) and one taluk each in Chikmagalur and Hassan districts. The zone has an area of 1.98 M ha with 0.93 M ha under cultivation of which 0.18 M ha enjoys irrigation facilities. The major soil type is red loam with sporadic occurrence of shallow to deep black soils in Chitradurga district. The elevation ranges from 450 to 900 m MSL with most parts lying at an elevation of 800-900 m MSL. This is the driest zone in the state with annual average rainfall ranging from 450 to 715 mm. More than 55 per cent of the rains in this zone are received during pre-monsoon period and southwest monsoon making it a predominantly kharif area. Ragi, sorghum, rice, oilseeds and pulses are the major crops cultivated in the zone. It's represented Agro Ecological Sub Region (AESR) 8.2 having LGP 120-150 days.

Kurubarahalli Microwatershed (Anekatte sub-watershed, Chikkanayakanahalli taluk, Tumkur district) is located in between 13^o23' – 13^o25' North latitudes and 76^o35' – 76^o37' East longitudes, covering an area of about 645.29 ha, bounded by Kedhigehalli, Marasandra, Chikkanahalli, Chikkanayakanahalli, Dugudihalli, Dabbekatta and Jogihalli villages.

Sampling Procedure:

In this study we have followed soil variability as criterion for sampling the farm households. In each Microwatershed the survey numbers and associated soil series are listed. Minimum three farm households for each soil series were taken and summed up to arrive at total sample for analysis.

Sources of data and analysis:

For evaluating the specific objectives of the study, primary data was collected from the sample respondents by personal interview method with the help of pre-tested questionnaire. The data on socio-economic characteristics of respondents such as family size and composition, land holdings, asset position, occupational pattern and education level was collected. The present cropping pattern and the level of input use and yields collected during survry. The data collected from the representative farm households were analysed using Automated Land Potential Evalution System (Figure 2).

LOCATION MAP OF KURUBARAHALLI MICRO-WATERSHED

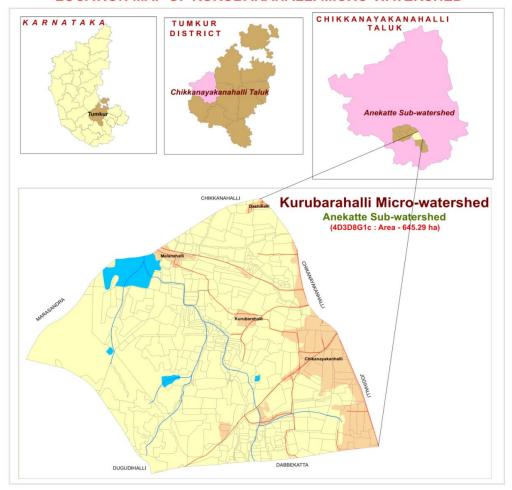


Figure 1: Location of study area

Steps followed in socio-economic assessment

- •After the completion of soil profile study link the cadastral number to the soil profile in the micro watershed.
- Download the names of the farmers who are owning the land for each cadastral number in the Karnataka BHOOMI Website.
- Compiling the names of the farmers representing for all the soil profiles studied in the micro watershed for socio-economic Survey.
- Conducting the socioeconomic survey of selected farm households in the micro watershed .
- Farm households database created using the Automated Land Potential Evaluation System (ALPES) for analysis of socio economic status for each micro watershed.
- Synthesis of tables and preparation of report for each micro watershed .

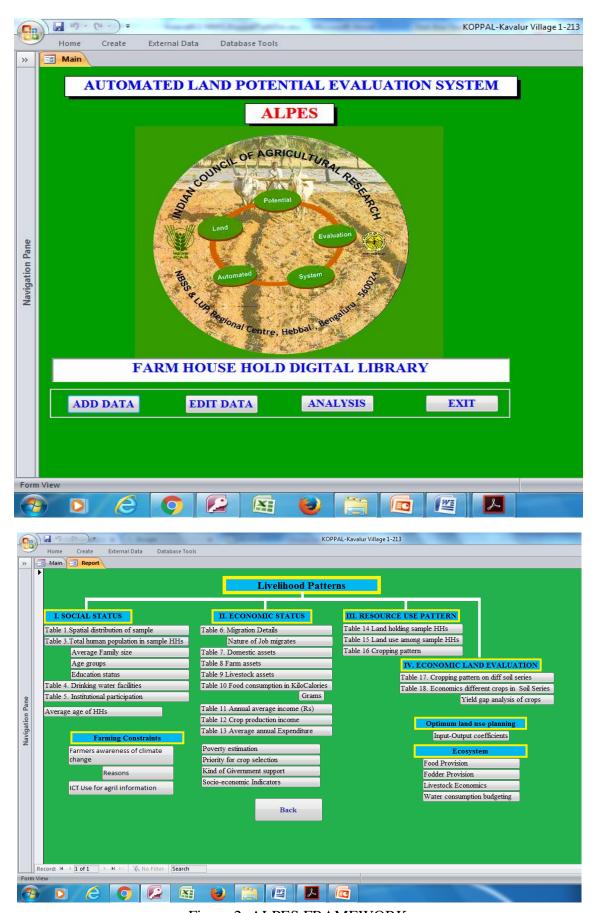


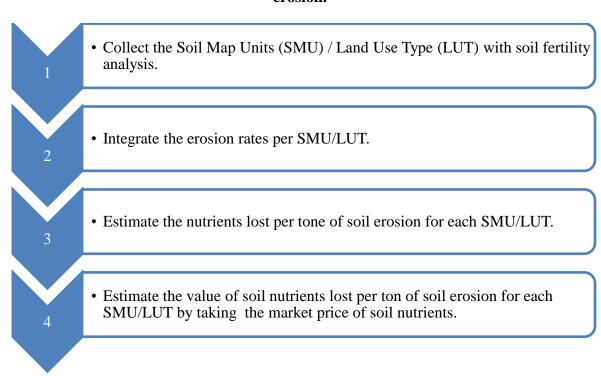
Figure 2: ALPES FRAMEWORK

The sample farmers were post classified in to marginal and small (0.0 to <=2 ha), medium and semi medium (>2 to <=10 ha) and large (>10 ha). The steps involved in estimation of soil potential involve estimation of total cost of cultivation, the yield/gross returns and net income per hectare. The cost of inputs such seed, manure and fertilizer, plant protection chemicals, payment towards human and bullock labour and interest on working capita are included under operational costs. In the case of perennial crops, the cost of establishment was estimated by using actual physical requirements and prevailing market prices. Estimation cost included maintenance cost up to bearing period. The value of main product and by product from the crop enterprise at the market rates were the gross returns of the crop. Net returns were worked out by deducting establishment and maintained cost from gross returns.

Operational Cost = cost of seeds, fertilizers, pesticides. Cost of human and bullock labour, cost of machinery, cost of irrigation water + interest on working capital.

Gross returns = Yield (Quintals/hectare)*Price (Rs/Quintal)

Net returns = Gross returns-Operational cost.


Benefit Cost Ratio = Net returns/Total cost.

Economic suitability classes: once each land use —land area combination has been assigned an economic value by the land evaluation, the question arises as to its 'suitability', that is, the degree to which it satisfies the land user. The FAO framework defines two suitability orders: 'S'(suitable if benefit cost ratio (BCR)>1) and 'N'(not suitable if (BCR<1), which are dived into five economic suitability classes: 'S1'(highly suitable if BCR>3), 'S2'(suitable if BCR>2 and <3), 'S3'(Marginally suitable if BCR>1 and <2), 'N1'(Not suitable for economic reasons but physically suitable) and 'N2'(not suitable for physical reasons). The limit between 'S3' and 'N1'must be at least at the point of financial feasibility (i.e. net returns, NPV, or IRR>0 and BCR>1). The other limits depend on social factors such as farm size, family size, alternative employment or investment possibilities and wealth expectations; these need to be specified for the Soil series.

Economic Valuation of Soil ecosystem services:

The replacement cost approach was followed for estimating the onsite cost of soil erosion, Market price method was followed for estimating the value of food and fodder production. Value transfer menthods was followed for estimating the value of water demand by different crops in the micro watershed.

Steps followed in Replacement cost methods for estimation of onsite cost of soil erosion.

RESULTS AND DISCUSSIONS

The demographic information shows that the household population dynamics encompasses the socioeconomic status of the farmer. For a rural family, the household size should be optimal to earn a comfortable livelihood through farm and non-farm wage earning. The total number of population in watershed area was 47, out of which 57.4 per cent were males and 42.6 per cent females. Average family size of the households is 4.7. Age is an important factor, which affects the potential employment and mobility status of respondents. The data on age wise distribution of farmers in the sample households indicated that majority of the farmers are coming under the age group of 30 to 50 years (29.8 %) followed by 18 to 30 years (21.3 %), 0 to 18 years (21.3 %) and more than 50 years (27.1 %). Hence, in the study area in general, the respondents were of young and middle age, indicating thereby that the households had almost settled with whatever livelihood options they were practicing and sample respondents were young by age who could venture into various options of livelihood sources. Data on literacy indicated that 19.1 per cent of respondents were illiterate and 80.9 per cent literate (Table 1).

Table 1: Human population among sample households in Kurubarahalli Micro watershed

Particulars	Units	Value
Total human population in sample HHs	Number	47
Male	% to total Population	57.4
Female	% to total Population	42.6
Average family size	Number	4.7
Age group		
0 to 18 years	% to total Population	21.3
18 to 30 years	% to total Population	21.3
30 to 50 years	% to total Population	29.8
>50 years	% to total Population	27.7
Average age	Age in years	37.1
Education Status		
Illiterates	% to total Population	19.1
Literates	% to total Population	80.9
Primary School (<5 class)	% to total Population	21.3
Middle School (6- 8 class)	% to total Population	6.4
High School (9- 10 class)	% to total Population	36.2
Others	% to total Population	17.0

The ethnic groups among the sample farm households found to be 50.0 per cent belonging to other backward caste (OBC) followed by 50.0 per cent belonging to general castes (Table 2 and Figure 3). About 100 per cent of sample households are using LPG gas as source of fuel for cooking. All the sample farmers are having electricity connection. About 66.6 per cent are sample households having health cards. Majority (50 %) are having MNREGA job cards for employment generation. About 80.0 per cent of farm households are having ration cards for taking food grains from public distribution system. About 90.0 per cent of farm households are having toilet facilities.

Table 2: Basic needs of sample households in Kurubarahalli Microwatershed

Particulars	Units	Value
Social groups	•	
OBC	% of Households	50.0
Others	% of Households	50.0
Types of fuel use for coo	oking	<u> </u>
Gas	% of Households	100.0
Energy supply for home	2	
Electricity	% of Households	100.0
Number of households l	naving Health card	<u> </u>
Yes	% of Households	66.6
No	% of Households	33.3
MGNREGA Card	,	
Yes	% of Households	50.0
No	% of Households	50.0
Ration Card		<u> </u>
Yes	% of Households	80.0
No	% of Households	20.0
Households with toilet		•
Yes	% of Households	90.0
No	% of Households	10.0
Drinking water facilities	s	1
Tube well	% of Households	100.0

The data collected on the source of drinking water in the study area is presented in Table 2. Majority of the sample respondents are having Tube well source for water supply for domestic purpose (100.0 %).

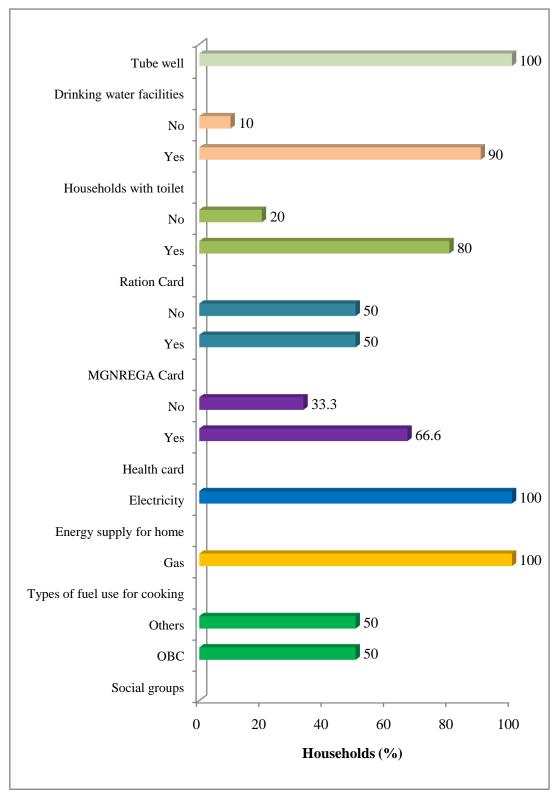


Figure 3: Basic needs of sample households in Kurubarahalli Microwatershed

Only 2.1 percent of the farmers are participating in community based organizations (Table 3). All of them were participating in credit co-operatives societies.

Table 3: Institutional participation among the sample population in Kurubarahalli Microwatershed

Particulars	Units	Value
No. of people participating	% to total	2.1
Co-operative Societies - Credit	% of total	2.1
No. of people not participating	% to total	97.9

The occupational pattern (Table 4) among sample households shows that agriculture is the main occupation around 63.8 per cent of farmers followed by subsidiary occupations like agricultural labour (30.5%) and private services is (2.5%) each.

Table 4: Occupational pattern in sample population in Kurubarahalli Microwatershed

Occupation		% to total
Main	Subsidiary	/o to total
	Agriculture	63.8
Agriculture	Agriculture Labour	30.5
	Private service	2.7
Private service		2.7
Grand total		100
Family labour avails	ability	Man days/month
Male		37.5
Female		25.0
Total		62.5

The important assets especially with reference to domestic assets were analyzed and are given in Table 5 and Figure 4. The important domestic assets possessed by all categories of farmers are mobile phones (100 %) followed by mixer/grinder (100 %), television (90%) and motorcycle (40 %). The average value of domestic assets is around Rs 14420 per households.

Table 5: Domestic assets among the sample households in Kurubarahalli Microwatershed

Particulars	% of households	Average value in Rs
Mixer/grinder	100.0	3000
Mobile Phone	100.0	2900
Motorcycle	40.0	45000
Television	90.0	6778
Average Value	14420	

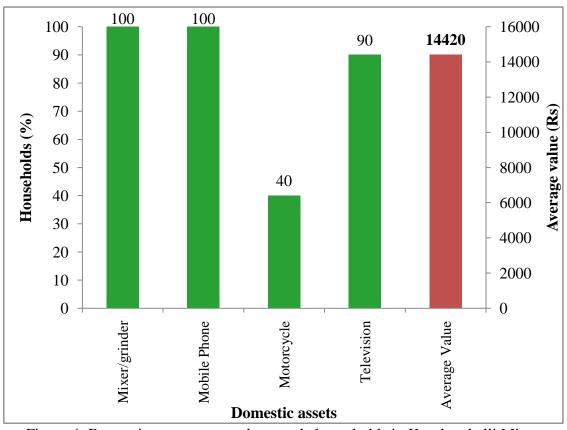


Figure 4: Domestic assets among the sample households in Kurubarahalli Micro watershed

The most popularly owned farm equipments were sickles, plough, cattle shed; pump sets, chaff cutter, bullock cart, sprayer and thresher. Plough and sickle were commonly present in all the sampled farmers; these were primary implements in agriculture. The per cent of households owned plough (70 %) and weeder (80 %) was found highest among the sample farmers. The average value of farm assets is around Rs. 1004 per households (Table 6).

Table 6: Farm assets among samples households in Kurubarahalli Microwatershed

Particulars	% of households	Average value in Rs
Plough	70.0	1929
Weeder	80	78
Average value		1004

Livestock is an integral component of the conventional farming systems (Table 7 and Figure 5). The highest livestock population is crossbred milching cow were around 27.3 per cent followed by crossbred bullocks (18.2 %), mulching buffalos (18.2 %), local dry cow (9.1 %), local mulching cow (9.1 %), crossbred dry cow (9.1 %) and dry buffalo is (9.1 %). The average value of livestock was Rs 22810 per household.

Table 7: Livestock assets among sample households in Kurubarahalli Microwatershed

Particulars	% of livestock population	Average value in Rs
Local Dry Cow	9.1	5000
Local Milching Cow	9.1	20000
Crossbred Dry Cow	9.1	18000
Crossbred Milching Cow	27.3	36667
Dry Buffalos	9.1	15000
Milching Buffalos	18.2	25000
Bullocks	18.2	40000
Average value	22810	

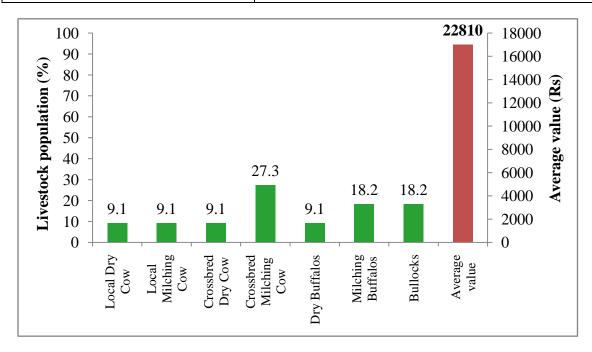


Figure 5: Livestock assets among sample households in Kurubarahalli Micro-watershed

Table 8: Milk produced and fodder availability of sample households in Kurubarahalli Microwatershed

Particulars	
Name of the Live stock	Ltr./Lactation/anima
Crossbred Milching Cow	780
Local Milching Cow	360
Milching Buffalos	630
Average Milk Produced	590
Fodder produces	Fodder yield (kg/ha.)
Ragi	1250
Livestock having households (%)	79.0
Livestock population (Numbers)	16

Average milk produced in sample households is 590 litters/ annum. Among the farm households, ragi is the main crops for domestic food and fodder for animals. About 1250 kg/ha of average fodder is available per season for the livestock feeding (Table 8).

A woman participation in decision making is in this Microwatershed is presented in Table 9. About 100 per cent of women taking decision in her family and agriculture related activities, 22.2 per cent of women participation in local organization activities and 11.1 per cent of women elected as panchayat member

Table 9: Women empowerment of sample households in Kurubarahalli Microwatershed% to Grand Total

Particulars	Yes	No
Women participation in local organization activities	22.2	77.8
Women elected as panchayat member	11.1	88.9
Women earning for her family requirement	11.1	88.9
Women taking decision in her family and agriculture related activities	100	0.0

The food intake in terms of kilo calorie (kcal) per person per day was calculated and presented in the Table 10 and Figure 6. More quantity of cereals is consumed by sample farmers which accounted for 997.5 kcal per person. The other important food items consumed was pulses 87.3 kcal followed by cooking oil 175.43 kcal, milk 163.84 kcal, vegetables 15.6 kcal, egg 35 kcal and meat 7 kcal. In the sampled households, farmers were consuming less (1481.6 kcal) than NIN- recommended food requirement (2250 kcal).

Table 10: Per capita daily consumption of food among the sample households in Kurubarahalli Microwatershed

Particulars	NIN recommendation (gram/ per day/ person)	Present level of consumption (gram/ per day/ person)	Kilo Calories /day/person
Cereals	396	293.4	997.5
Pulses	43	25.4	87.3
Milk	200	252.1	163.8
Vegetables	143	64.8	15.6
Cooking Oil	31	30.8	175.4
Egg	0.5	23.3	35.0
Meat	14.2	4.7	7.0
Total	827.7	694.5	1481.6
Threshold of	NIN recommendation	827 gram*	2250 Kcal*
% Below NIN	1	90	90
% Above NIN	1	10	10

Note: * day/person

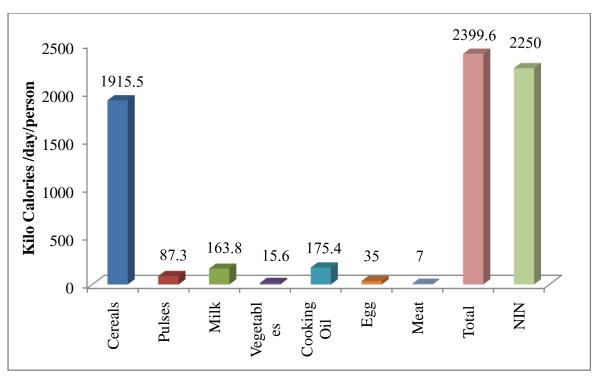


Figure6: Per capita daily consumption of food among the sample households in Kurubarahalli Microwatershed

Annual income of the sample HHs: The average annual household income is around Rs 25543. Major source of income to the farmers in the study area is from followed by livestock (Rs 13944) followed by the crop production (Rs. 11599). The monthly per capita income is Rs.452.90 for considering above poverty line. Due to the fact that erratic rainfall and shortage of water, farmers are diverting from crop production activities to enable the household for a comfortable livelihood. The incomes from the other aforesaid sources are very meagre (Table 11).

Table 11: Annual average income of HHs from various sources in Kurubarahalli Microwatershed

Particulars	Income *	
Nonfarm income (Rs)	0 (0)	
Livestock income (Rs)	13944 (50)	
Crop Production (Rs)	11599 (100)	
Total Annual Income (Rs)	25543	
Average monthly per capita income (Rs)	453	
Threshold for Poverty level (Rs 975 per month/person)		
% of households below poverty line	90.0	
% of households above poverty line	10.0	

The average annual expenditure of farm households indicated that farmers in the study area spend highest on food (Rs. 52308) followed by education, clothing, social

function and health. Now a day's education is most important among all of us. In today's competitive world, education is a necessity for man after food, clothing, and shelter. It is the only fundamental way by which a desired change in the society can happen. The average per capita monthly expenditure is around Rs 1228 and about 90 per cent of farm households are below poverty line and 10 per of farm households are above poverty line (Table 12 and Figure 7).

Table 12: Average annual expenditure of sample HHs in Kurubarahalli Microwatershed

Particulars	Value in Rupees	Per cent
Food	52308	75.5
Education	4700	6.8
Clothing	3350	4.8
Social functions	3000	4.3
Health	5900	8.5
Total Expenditure (Rs/year)	69258	100.0
Monthly per capita expenditure (Rs)	1228	

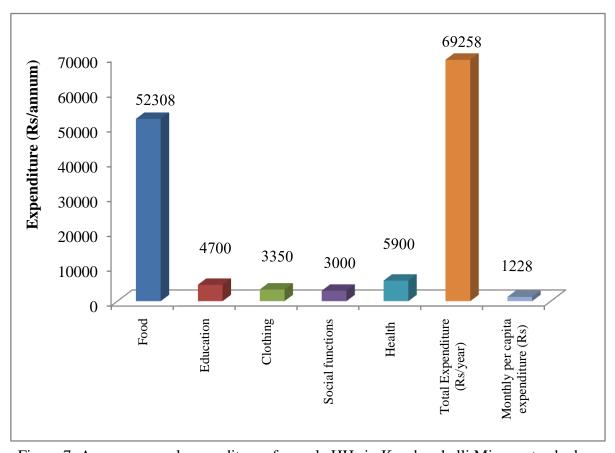


Figure 7: Average annual expenditure of sample HHs in Kurubarahalli Microwatershed

Land use: The total land holding in the Kurubarahalli Microwatershed is 4.4 ha (Table 13). Of which 4.0 ha is rain fed land and 0.4 ha is irrigated land. The average land holding per household is worked out to be 0.4 ha.

Table 13: Land use among samples households in Kurubarahalli Microwatershed

Particulars	Per cent	Area in ha		
Irrigated land	9.1	0.4		
Rain fed Land	90.9	4.0		
Fallow Land	0.0	0.0		
Total land holding	100.0	4.4		
Average land holding	0.4			

In the Microwatershed, the prevalent present land uses under perennial plants are coconut (61.5%) followed by neem trees (33.8 %) and teak (4.6 %) (Table14).

Table 14: Number of trees/plants covered in sample farm households in Kurubarahalli Microwatershed

Particulars	Number of Plants/trees	Per cent
Coconut	40	61.5
Neem trees	22	33.8
Teak	3	4.6
Grand Total	65	100.0

The land use decisions are usually based on experience of farmers, tradition, expected profit, personal preferences, resources and social requirements.

The present dominant crops grown in dry lands in the study area were by green gram (45.2 %), followed by ragi (5.1 %) and coconut 4.6 per cent which are taken during kharif, ragi 45.2 per cent during ragi season, receptivity. The cropping intensity was 182.4 per cent (Table 15 and Figure 8).

Table 15: Present cropping pattern and cropping intensity in Kurubarahalli Microwatershed% to Grand Total

crops	Kharif	Rabi	Grand Total		
Coconut	4.6	0.00	4.6		
Green gram	45.2	0.0	45.2		
Ragi	5.1	45.2	50.2		
Grand Total	54.8	45.2	100.0		
Cropping intensity	182.4				

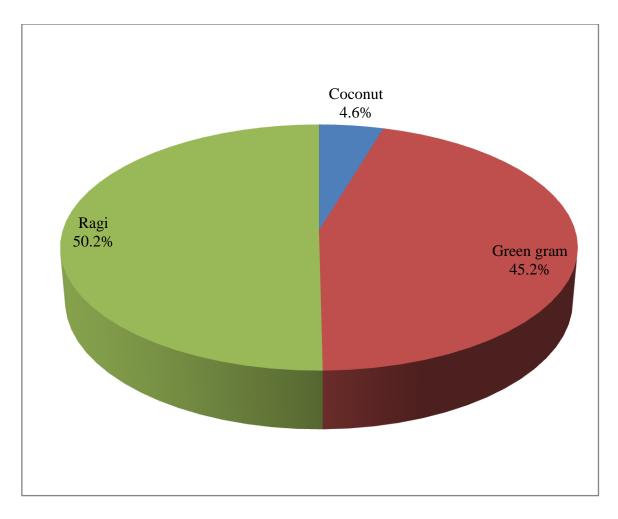


Figure8: Present cropping pattern in Kurubarahalli Microwatershed

Economic land evaluation

The main purpose to characterise the socio-economic systems in the watershed is to identify the existing production constraints and propose the potential/alternate options for agro-technology transfer and for bridging the adoption and yield gap.

In Kurubarahalli Microwatershed, 10 soil series are identified and mapped (Table 16). The distribution of major soil series are Lakkur covering an area around 74 ha (11.4 %) followed by Kotegoudanahundi 29 ha (4.5%), Hooradahalli 20 ha (3.1 %), Gollarahatti 21 ha (3.2 %), Bidanagere 50 ha (7.8 %), Jedigere 25 ha (3.9 %), Balapur 104 ha (16.0 %), Lakshmangudda 80 ha (12.3 %), Nagalapur 112 (17.3 %) and Thondigere 5 ha (0.7 %).

Table 16: Distribution of soil series Kurubarahalli Microwatershed

Soil	Soil	Mapping Unit Description	Area in
No	Series		ha (%)
		RANITE GNEISS LANDSCAPE	
1	LKR	Lakkur soils are moderately shallow (50-75 cm), well drained,	74
		have reddish brown to dark red gravelly sandy clay loam to	(11.4)
		sandy clay soils occurring on very gently to gently sloping	
		uplands under cultivation	
2	KGH	Kutegoudanahundi soils are moderately shallow (50-75 cm),	29
		well drained, have brown to dark brown gravelly sandy clay	(4.5)
		loam soils occurring on very gently to gently sloping uplands	
		under cultivation	
3	HDH	Hooradhahalli soils are moderately deep (75-100 cm), well	20
		drained, have red to dark red and reddish brown gravelly sandy	(3.1)
		clay loam to sandy clay soils occurring on very gently sloping	
		uplands under cultivation	
4	GHT	Gollarahatti soils are moderately deep (75-100 cm), well	21
		drained, have dark reddish brown to dark red gravelly sandy	(3.2)
		clay loam soils occurring on very gently sloping uplands under	
_		cultivation	
5	BDG	Bidanagere soils are moderately deep (75-100 cm), well	50
		drained, have dark reddish brown gravelly sandy clay loam to	(7.8)
		sandy clay soils occurring on very gently to gently sloping	
	IDC	uplands under cultivation	2.5
6	JDG	Jedigere soils are deep (100-150 cm), well drained, have dark	25
		brown to dark reddish brown sandy clay to clay soils occurring	(3.9)
7	DDD	on very gently sloping uplands under cultivation	104
7	BPR	Balapur soils are deep (100-150 cm), well drained, have dark	104
		reddish brown to dark red gravelly sandy clay to clay soils	(16.0)
		occurring on very gently to gently sloping uplands under	
8	LGD	Cultivation Lakshmangudda, soils, ara, doon (100, 150, am), wall drained	80
0	LGD	Lakshmangudda soils are deep (100-150 cm), well drained, have light olive brown to very dark gray calcareous clay soils	
			(12.3)
9	NGP	occurring on very gently uplands under cultivation	112
]	NOP	Nagalapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils	(17.3)
		_ , , , , , ,	(17.3)
10	TDG	occurring on very gently sloping uplands under cultivation Thondigere soils are very deep (>150 cm), well drained, have	5
10	100	dark brown to dark yellowish brown sandy loam to sandy clay	(0.7)
		soils occurring on very gently sloping lowlands under	(0.7)
		cultivation	
Rock	outcrops	cultivation	33(5.1)
Others	-		91(14.1)
Julions	•		/ 1 (1 1 1 1)

Present cropping pattern on different soil series are given in Table 17. Crops grown on Kutegoudanahundi soils are green gram and ragi. Green gram and ragi are grown on Bidanagere soils. Green gram and ragi on Balapur soils are grow. Coconut, green gram and ragi on Lakshmangudda soils are grow.

Table 17: Cropping pattern on major soil series in Kurubarahalli Microwatershed(Area in per cent)

Soil Series	Soil Depth	Crops	Dry		Irrigated	Grand
Son Series	Son Depth	Crops	Kharif	Rabi	Kharif	total
KGH	Moderately	Green gram	50	0.0	0.0	50
KOII	shallow (50-75 cm)	Ragi	0.0	50	0.0	50
BDG	Moderately	Green gram	50	0.0	0.0	50
ВОО	deep (75-100 cm)	Ragi	0.0	50	0.0	50
BPR	Deep (100-150 cm)	Green gram	44.5	0.0	0.0	44.5
DI K	Deep (100-130 cm)	Ragi	11.0	44.5	0.0	55.5
		Coconut	0.0	0.0	16.7	16.7
LGD	Deep (100-150 cm)	Green gram	33.3	0.0	0.0	33.3
		Ragi	0.0	33.3	16.7	50

Land is used for agricultural use for growing cereals, pulse, oilseeds and agricultural crops. The soil/land potential are measures in terms of physical yield and net income. The alternative land use options for each Microwatershed are given below (Table 18).

Table 18: Alternative land use options for different size group of farmers (Benefit Cost Ratio) in Kurubarahalli Microwatershed.

Soil Series	Small Farmers
KGH	Green gram (1.2),Ragi (1.80)
BDG	Green gram (1.03), Ragi (1.44)
BPR	Green gram (1.01), Ragi (1.85)
LGD	Coconut (2.53), Green gram (1.18), Ragi (1.98) Sorghum (1.39)

The productivity of different crops grown in Kurubarahalli micro-watershed under potential yield of the crops is given in Table 19.

The data on cost of cultivation and benefit cost ratio (BCR) of different crops is given in Table 19. The total cost of cultivation in study area ragi range between Rs.60787/ha in BDG soil (with BCR of 1.06) and Rs 12124/ha in LDG soil (with BCR of 1.87), green gram the cost of cultivation ranges between Rs.54821/ha in BDG soil (with BCR of 1.13) and Rs. 16307/ha in LGD soil (with BCR of 1.88) and coconut the cost of cultivation in LGD soil is Rs.44124/ha (with BCR of 2.69).

The data on FYM, Nitrogen, Phosphorus and Potash application by the farmers to different crops and recommended FYM for different crops is given in Table 19. There is a huge gap between FYM application by farmers and recommended FYM in all the crops across the soils. There is a larger yield gap in crops grown across different soil series. Adequate knowledge about recommended package of practices is the pre-requisite for

their use in cultivation of crops. It is a fact that, recommended practices are major contributing factors to yield. Inadequate knowledge about recommended practices leads to their improper adoption. Strengthening of extension services by concerned agency is required to increase adoption of recommended cultivation practices and ultimately reducing the gap. By adopting soil-test fertiliser recommendation, there is scope to increase yield and income to a maximum of Rs 89253 in coconut and a minimum of Rs 7493 in green gram cultivation.

Table 19: Economic land evaluation and bridging yield gap for different crops in Kurubarahalli Microwatershed

	K() (50-7:		BE (75-10		BI (100-1:			LGD 0-150 c	m)
Particulars	Green gram	Ragi	Green gram	Ragi	Green gram	Ragi	1	Green gram	
Total cost (Rs/ha)	24846	19626	54821	60787	26286	15045	44124	16307	12124
Gross Return (Rs/ha)	38948	28764	61750	64220	30636	23740	118560	30628	22724
Net returns (Rs/ha)	14102	9137	6929	3433	4350	8695	74436	14321	10600
BCR	1.57	1.46	1.13	1.06	1.24	1.62	2.69	1.88	1.87
Farmers Practices (FP)									
FYM (t/ha)	2.2	0.0	7.1	0.0	2.9	0.4	5.0	1.3	1.9
Nitrogen (kg/ha)	34.6	34.6	62.5	62.5	28.0	24.0	11.3	31.9	21.6
Phosphorus (kg/ha)	59.2	59.2	112.5	112.5	38.5	33.0	28.8	35.0	31.9
Potash (kg/ha)	3.5	3.5	30.4	30.4	18.0	15.4	37.5	6.3	21.9
Grain (Qtl/ha)	6.3	11.8	12.5	21.4	4.9	9.9	100.0	5.0	8.8
Price of Yield (Rs/Qtl)	5000	2333	5000	2500	5000	2357	1200	5000	2500
Soil test based fertilizer Re	comme	ndatio	n (STE	R)					
FYM (t/ha)	7.4	8.6	7.4	8.6	7.4	8.6	10.0	7.4	8.6
Nitrogen (kg/ha)	23.2	92.6	23.2	92.6	23.2	92.6	128.1	23.2	92.6
Phosphorus (kg/ha)	27.8	32.4	27.8	32.4	30.9	35.5	65.0	27.8	37.8
Potash (kg/ha)	37.1	44.5	37.1	44.5	37.1	44.5	245.0	37.1	44.5
Grain (Qtl/ha)	8.6	30.9	8.6	30.9	8.6	30.9	184.5	8.6	30.9
% of Adoption/yield gap (S	TBR-I	FP) / (S	TBR)						
FYM (%)	69.9	100.0	3.6	100.0	61.2	95.9	50.0	83.1	78.3
Nitrogen (%)	-49.6	62.6	-169.9	32.5	-20.9	74.1	91.2	-37.7	76.7
Phosphorus (%)	-113.2	-82.7	-304.9	-247.0	-24.8	7.0	55.8	-26.0	15.7
Potash (%)	90.6	92.2	18.1	31.7	51.5	65.4	84.7	83.1	0.0
Grain (%)	27.4	61.7	-44.6	30.6	43.1	68.1	45.8	42.2	71.7
Value of yield and Fertilize	Value of yield and Fertilizer (Rs)								
Additional Cost (Rs/ha)	4332	8981	-3798	5765	4520	9802	12148	6354	8336
Additional Benefits (Rs/ha)	11825	44426	-19275	23616	18622	49526	101400	18225	55313
Net change Income (Rs/ha)	7493	35446	-15477	17851	14102	39724	89253	11871	46976

Economic valuation of Ecosystem Services (ES) was aimed at combining use and non-use values to determine Total Economic Value (TEV) of ES. Ecosystem Services (ES) were valued based on their annual flow or utilization in common monetary units, Rs/year. The valuation of ES was based on market price in 2017 or market cost approaches whichever is applicable, and in other cases on value or benefit transfer from previous valuation studies.

The onsite cost of different soil nutrients lost due to soil erosion is given in Table 20 and Figure 9. The average value of soil nutrient loss is around Rs 790 per ha/year. The total cost of annual soil nutrients is around Rs 411588 per year for the total area of 445.72 ha.

Table 20: Estimation of onsite cost of soil erosion in Kurubarahalli Microwatershed

Particulars	Quantity((kg)	Value	e (Rs)
Faruculars	Per ha	Total	Per ha	Total
Organic matter	96.64	50349	608.83	317200
Phosphorus	0.48	253	21.33	11113
Potash	1.09	568	21.81	11365
Iron	0.23	118	10.88	5670
Manganese	0.40	210	110.70	57674
Cupper	0.02	8	8.50	4429
Zinc	0.01	5	0.39	203
Sulphur	0.18	95	7.31	3810
Boron	0.01	3	0.24	123
Total	99.06	51609	790.00	411588

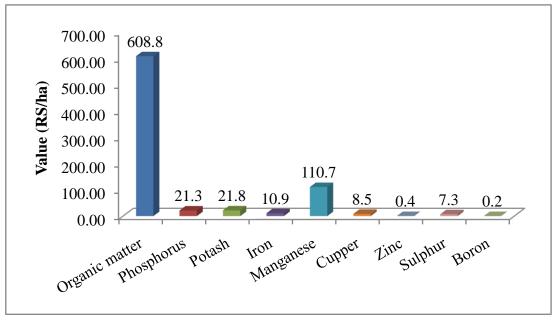


Figure 9: Estimation of onsite cost of soil erosion in Kurubarahalli Microwatershed

The average value of ecosystem service for food grain production is around Rs. 28081/ ha/year (Table 21 and Figure 10). Per hectare food grain production services is maximum in coconut (Rs 74436) followed by ragi (Rs. 6316) and green gram (Rs. 3490).

Table 21: Ecosystem services of food grain production in Kurubarahalli Microwatershed

Production items	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Gross Returns (Rs/ha)	Cost of Cultivation (Rs/ha)	Net Returns (Rs/ha)
Cereals	Ragi	4.8	11.1	2400	26725	20409	6316
Pulses	Green gram	4.0	6.3	5000	31555	28065	3490
Oil seeds	Coconut	0.4	98.8	1200	118560	44124	74436
Averag	e value	9.2	38.7	2866	58946	30866	28081

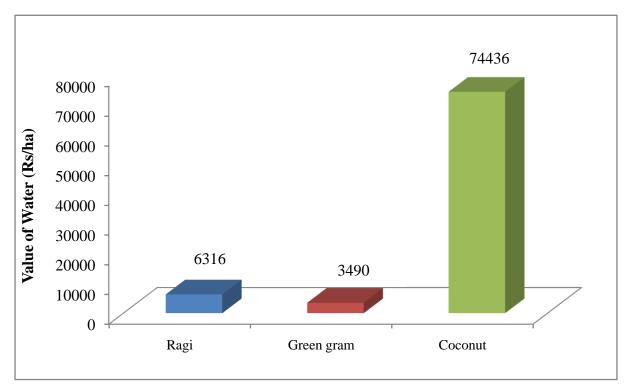


Figure 10: Ecosystem services of food grain production in Kurubarahalli Microwatershed

The average value of ecosystem service for fodder production is around Rs 3647/ha/year (Table 22). Per hectare fodder production services is maximum in ragi (Rs 1968) followed by green gram (Rs 5325).

Table 22: Ecosystem services of fodder production in Kurubarahalli Microwatershed

Production	Crops	Area	Yield	Price	Net Returns
items		in ha	(Qtl/ha)	(Rs/Qtl)	(Rs/ha)
Cereals	Ragi	4.8	2.6	760	1968
Pulses	Green gram	4.0	5.1	1050	5325
Average value		8.8	3.9	905	3647

The water demand for production of different crops was worked out in arriving at the ecosystem services of water support to crop growth. The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. Per hectare value of water used and value of water was maximum (Table 23 and Figure 11) in coconut (Rs. 265476), green gram (Rs. 43584) and ragi (Rs. 13608).

Table 23: Ecosystem services of water supply in Kurubarahalli Microwatershed

Crops	Yield	Virtual water	Value of Water	Water consumption
	(Qtl/ha)	(cubic meter) per ha	(Rs/ha)	(Cubic meters/Qtl)
Coconut	98.8	26548	265476	269
Green gram	6.3	4358	43584	691
Ragi	11.1	1361	13608	122
Average value	116.2	10755.7	107556	361

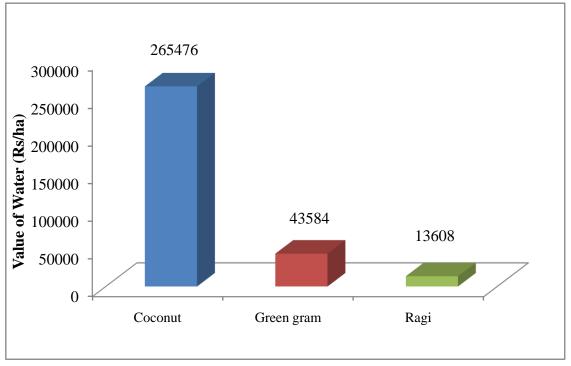


Figure 11: Ecosystem services of water supply in Kurubarahalli Microwatershed

The main farming constraints in Kurubarahalli Microwatershed to be found are less rainfall, lack of good quality seeds, lack of storage, damage of crops by wild animals and non availability of plant protection chemicals. Majority of farmers depend up on money lender of the sources of loan for purpose of crop production. Farmers to sell the agriculture produce through village market and the farmers getting the agriculture related information on newspaper. Farmers reported that they are not getting timely support/extension services from the concerned development department (Table 24).

Table 24: Farming constraints related land resources of sample households in Kurubarahalli Micro-watershed

Sl. No.	Particulars	Per cent
1	Less Rainfall	100.0
2	Non availability Fertilizers	11.1
3	Damage of crops by Wild Animals	100.0
4	Non availability of Plant Protection Chemicals	11.1
5	Source of loan	
	Money Leander	100.0
6	Market for selling	
	Village market	100.0
7	Sources of Agri-Technology information	•
	Newspaper	100.0

The findings of the study would be very much useful to the planners and policy makers of the study area to identify the irrationality in the existing production pattern and to suggest appropriate production plans for efficient utilization of their scarce resources resulting in increased net farm incomes and employment. The study also throws light on future potentialities of increasing net farm income and employment under different situations viz., with existing and recommended technology.