

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

RANGANAHALLI (4D3D7B3a) MICROWATERSHED

Gubbi Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II **SUJALA – III**

World Bank funded Project

ICAR - NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT GOVT. OF KARNATAKA, BANGALORE

About ICAR - NBSS&LUP

The ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, a premier Institute of the Indian Council of Agricultural Research (ICAR), was set up during 1976 with the objective to prepare soil resource maps at national, state and district levels and to provide research inputs in soil resource mapping and its applications, land evaluation, land use planning, land resource management, and database management using GIS for optimising land use on different kinds of soils in the country.

The Bureau has been engaged in carrying out soil resource survey, agro-ecological and soil degradation mapping at the country, state and district levels for qualitative assessment and monitoring the soil health towards viable land use planning. The research activities have resulted in identifying the soil potentials and problems, and the various applications of the soil surveys with the ultimate objective of sustainable agricultural development. The Bureau has the mandate to correlate and classify soils of the country and maintain a National Register of all the established soil series. The Institute is also imparting in-service training to staff of the soil survey agencies in the area of soil survey, land evaluation and soil survey interpretations for land use planning. The Bureau in collaboration with Panjabrao Krishi Vidyapeeth, Akola is running post-graduate teaching and research programme in land resource management, leading to M.Sc. and Ph.D. degrees.

Citation:

Rajendra Hegde, Ramesh Kumar, S.C., K.V. Niranjana, S. Srinivas, M.Lalitha, B.A. Dhanorkar, R.S. Reddy and S.K. Singh (2019). "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of Ranganahalli (4D3D7B3a) Microwatershed, Gubbi Taluk, Tumkur District, Karnataka", ICAR-NBSS&LUP Sujala MWS Publ.118 ICAR – NBSS & LUP, RC, Bangalore. p.109& 31.

TO OBTAIN COPIES,

Please write to:

Director, ICAR - NBSS & LUP,

Amaravati Road, NAGPUR - 440 033, India

Phone : (0712) 2500386, 2500664, 2500545 (O)

Telefax : 0712-2522534

E-Mail : director@nbsslup.ernet.in

Website URL : nbsslup.in

Or

Head, Regional Centre, ICAR - NBSS&LUP, Hebbal, Bangalore - 560 024

Phone : (080) 23412242, 23510350 (O)

Telefax : 080-23510350

E-Mail : nbssrcb@gmail.com

LAND RESOURCE INVENTORY AND SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS FOR WATERSHED PLANNING AND DEVELOPMENT

RANGANAHALLI (4D3D7B3a) MICROWATERSHED

Gubbi Taluk, Tumkur District, Karnataka

Karnataka Watershed Development Project – II Sujala-III

World Bank funded Project

ICAR – NATIONAL BUREAU OF SOIL SURVEY AND LAND USE PLANNING

WATERSHED DEVELOPMENT DEPARTMENT, GOVT. OF KARNATAKA, BANGALORE

PREFACE

In Karnataka, as in other Indian States, the livelihoods of rural people are intertwined with farming pursuits. Thechallenges in agriculture are seriously threatening the livelihood of a large number of farmers as they have been practicing farming in contextual factors beyond their control. Climatic factors are the most important ones and have become much more significant in recent times due to rapid climate changes induced by intensive anthropogenic activities affecting our ecosystem in multiple ways. Climate change has become the reality, it is happening and efforts to evolve and demonstrate climate resilient technologies have become essential. Due to the already over stressed scenario of agrarian sector, the climate change is resulting in manifold increase in the complexities, pushing the rural mass to face more and more unpredictable situations. The rising temperatures and unpredictable rainfall patterns are going to test seriously the informed decisions farmers have to make in order to survive in farming and sustain their livelihood.

It is generally recognized that impacts of climate change shall not be uniform across the globe. It is said that impact of climate change is more severe in South Asia. Based on the analysis of meteorological data, it is predicted that in India, there will be upward trend in mean temperature, downward trend in relative humidity, annual rainfall and number of wet days in a year. Also, in general, phenomena like erratic monsoon, spread of tropical diseases, rise in sea levels, changes in availability of fresh water, frequent floods, droughts, heat waves, storms and hurricanes are predicted. Each one of these adverse situations are already being experienced in various parts of India and also at the global level. Decline in agricultural productivity of small and marginal farmers becoming more vulnerable is already witnessed.

In Karnataka, more than 60 per cent of the population live in rural areas and depend on agriculture and allied activities for their livelihood. Though the state has achieved significant progress in increasing the yield of many crops, there is tremendous pressure on the land resources due to the growing and competing demands of various land uses. This is reflected in the alarming rate of land degradation observed. Already more than 50 per cent of the area is affected by various forms of degradation. If this trend continues, the sustainability of the fragile ecosystem will be badly affected. The adverse effects of change in the climatic factors are putting additional stress on the land resources and the farmers dependent on this.

The natural resources (land, water and vegetation) of the state need adequate and constant care and management, backed by site-specific technological interventions and investments particularly by the government. Detailed database pertaining to the nature of the land resources, their constraints, inherent potentials and suitability for various land

based rural enterprises, crops and other uses is a prerequisite for preparing location-specific action plans, which are in tune with the inherent capability of the resources. Any effort to evolve climate resilient technologies has to be based on the baseline scientific database. Then only one can expect effective implementation of climate resilient technologies, monitor the progress, make essential review of the strategy, and finally evaluate the effectiveness of the implemented programs. The information available at present on the land resources of the state are of general nature and useful only for general purpose planning. Since the need of the hour is to have site-specific information suitable for farm level planning and detailed characterization and delineation of the existing land resources of an area into similar management units is the only option.

ICAR-NBSS&LUP, Regional Centre, Bangalore has taken up a project sponsored by the Karnataka Watershed Development Project-II, (Sujala-III), Government of Karnataka funded by the World Bank under Component -1 Land Resource Inventry. This study was taken up to demonstrate the utility of such a database in reviewing, monitoring and evaluating all the land based watershed development programs on a scientific footing. To meet the requirements of various land use planners at grassroots level, the present study on "Land Resource Inventory and Socio-Economic Status of Farm Households for Watershed Planning and Development of RanganahalliMicrowatershed, Gubbi Taluk and Tumakuru District, Karnataka" for integrated development was taken up in collaboration with the State Agricutural Universities, IISC, KSRSAC, KSNDMC as Consortia partners. The project provides detailed land resource information at cadastral level (1:7920 scale) for all the plots and socio-economic status of farm households covering thirty per cent farmers randomely selected representing landed and landless class of farmers in the micowatershed. The project report with the accompanying maps for the Microwatershed will provide required detailed database for evolving effective land use plan, alternative land use options and conservation plans for the planners, administrators, agricutural extention personnel, KVK officials, developmental departments and other land users to manage the land resources in a sustainable manner.

It is hoped that this database will be useful to the planners, administrators and developmental agencies working in the area in not only for formulating location specific developmental schemes but also for their effective monitoring at the village/watershed level.

Nagpur	S.K. SINGH
Date:	Director, ICAR - NBSS&LUP, Nagpur

Contributors

Dr. Rajendra Hegde	Dr. S.K.Singh
Principal Scientist, Head &	Director, ICAR-NBSS&LUP
Project Leader, Sujala-III Project	Coordinator, Sujala-III Project
ICAR-NBSS&LUP, Regional Centre,	Nagpur
Bangalore	
Soil Survey, Mapping &	Report Preparation
Dr. K.V. Niranjana	Sh. R.S. Reddy
Dr. B.A. Dhanorkar	Sh. Venkata Giriyappa
	Dr. Gayathri, B.
	Smt. Chaitra, S.P.
	Sh. Nagendra, B.R.
	Dr. Savitha, H.R.
	Dr. Gopali Bardhan
	Sh. Somashekar T.N
Field V	Vork
Sh. C.Bache Gowda	Sh. Rudresh, M.D.
Sh. Somashekar	Sh. Sunil Raj
Sh. M. Jayaramaiah	Sh. Yogesh Kumar, B.
Sh. Paramesha, K.	Sh. Veerabhadraswamy, R.
	Sh. Vinay
GIS W	Vork
Dr. S.Srinivas	Sh. A.G. Devendra Prasad
Sh. D.H.Venkatesh	Sh. Prakashanaik, M.K.
Smt.K.Sujatha	Sh. Abhijith Sastry, N.S.
Smt. K.V.Archana	Sh. Mahamad Ali, M.
Sh. N.Maddileti	Sh. Amar Suputhra, S.
	Sh. Avinash, K.N.
	Sh. Anudeep, Y.
	Sh. Sudip Kumar Suklabaidya
	Smt. K.Karunya Lakshmi
	Ms. Seema, K.V.
	Ms. A. Rajab Nisha

Laboratory Analysis				
Dr. K.M.Nair	Smt. Steffi Peter			
Smt. Arti Koyal	Smt. Thara, V.R.			
Smt. Parvathy, S.	Smt. Roopa, G.			
	Ms. Shwetha, N.K.			
	Smt. Ishrat Haji			
	Ms. Pavana Kumari, P.			
	Sh. Shanthaveeraswamy, H.M.			
	Sh. Ramesh, K.			
	Ms. Padmaja, S.			
	Ms. Veena, M.			
Soil & Wate	r Conservation			
Sh. Sunil P. Maske				
Socio-Econ	omic Analysis			
Dr. S.C. Ramesh Kumar	Sh. M. K. Prakashanaik			
	Ms. Sowmya K.B			
	Sh.Manjunath M			
	Sh.Veerabhadraswamy R			
	Sh.Lankesh RS			
	Sh.Kalaveerachari R Kammar			
	Sh.Pradyumma U			
	Sh.Yogesha HN			
	Sh.Vijay kumar lamani			
	Sh.Arun N Kambar			
	Sh.Vinay			
	Sh.Basavaraj.Biradar			
	Sh.Vinod R			
	Sh.Praveenkumar P Achalkar			
	Sh.Rajendra D			
	Department, GoK, Bangalore			
Sh. Rajeev Ranjan IFS	Dr. A. Natarajan			
Project Director & Commissioner, WDD	NRM Consultant, Sujala-III Project			
Dr. S.D. Pathak IFS				
Executive Director & Chief Conservator of	Forests, WDD			

PART-A LAND RESOURCE INVENTORY

Contents

Preface			
Contributor	rs		
Executive S	Summary		
Chapter 1	Introduction	1	
Chapter 2	Geographical Setting	3	
2.1	Location and Extent	3	
2.2	Geology	4	
2.3	Physiography	4	
2.4	Drainage	5	
2.5	Climate	5	
2.6	Natural Vegetation	6	
2.7	Land Utilization	7	
Chapter 3	Survey Methodology	11	
3.1	Base maps	11	
3.2	Image Interpretation for Physiography	11	
3.3	Field Investigation	14	
3.4	Soil Mapping	16	
3.5	Laboratory Characterization	16	
Chapter 4	The Soils	21	
4.1	Soils of Granite gneiss Landscape	21	
Chapter 5	Interpretation for Land Resource Management	29	
5.1	Land Capability Classification	29	
5.2	Soil Depth	31	
5.3	Surface Soil Texture	32	
5.4	Soil Gravelliness	33	
5.5	Available Water Capacity	34	
5.6	Soil Slope	35	
5.7	Soil Erosion	36	
Chapter 6	Fertility Status	39	
6.1	Soil Reaction (pH)	39	
6.2	Electrical Conductivity (EC)	39	
6.3	Organic Carbon (OC)	39	
6.4	Available Phosphorus	39	
6.5	Available Potassium	41	
6.6	Available Sulphur	42	
6.7	Available Boron	42	
6.8	Available Iron	42	
6.9	Available Manganese	42	
6.10	Available Copper	42	
6.11	Available Zinc	42	
Chapter 7	Land Suitability for Major Crops	47	
7.1	Land suitability for Sorghum	47	
7.2	Land suitability for Fodder sorghum	50	

7.3	Land suitability for Maize	51
7.3	·	52
	Land suitability for Finger millet	53
7.6		55
7.0	Land suitability for Horse gram	56
7.7	Land suitability for Field bean	57
7.8	Land suitability for Cowpea	58
7.10	Land suitability for Groundnut	59
7.10	Land suitability for Sunflower	60
7.11	Land suitability for Onion	62
7.12	Land suitability for Chilli	63
7.13	-	64
7.14	Land suitability for Tomato	65
7.15	·	67
7.10	Land suitability for Sapota	68
	Land suitability for Guava	70
	•	70
7.19	Land suitability for Pomegranate	72
7.20	Land suitability for Banana	
7.21	Land suitability for Jackfruit	74
7.22	Land Suitability for Jamun	75
7.23	Land Suitability for Musambi	76
7.24	Land Suitability for Lime	77
7.25	Land Suitability for Cashew	79
7.26	Land Suitability for Custard Apple	80
7.27	Land Suitability for Amla	81
7.28	Land Suitability for Tamarind	82
7.29	Land suitability for Marigold	83
7.30	Land suitability for Chrysanthemum	85
	Land suitability for Jasmine	86
7.32	Land suitability for Coconut	87
7.33	Land suitability for Arecanut	88
7.34	Land suitability for Mulberry	89
7.35	Land Management Units	91
7.36	Proposed Crop Plan	92
Chapter 8	Soil Health Management	95
Chapter 9	Soil and Water conservation Treatment Plan	101
9.1	Treatment Plan	101
9.2	Recommended Soil and Water Conservation measures	105
9.3	Greening of Microwatershed	106
	References	109
	Appendix I	
	Appendix II	
	Appendix III	

LIST OF TABLES

2.1	Mean Monthly Rainfall, PET, 1/2 PET at Gubbi Taluk, Tumakuru District	5
2.2	Land Utilization in Tumakuru District	7
3.1	Differentiating Characteristics used for Identifying Soil Series	15
3.2	Soil map unit description of Ranganahalli Microwatershed	17
7.1	Soil-Site Characteristics of Ranganahalli Microwatershed	48
7.2	Crop suitability for Sorghum	49
7.3	Crop suitability for Fodder sorghum	50
7.4	Crop suitability for Maize	51
7.5	Crop suitability for Upland Paddy	53
7.6	Crop suitability for Finger millet	54
7.7	Crop suitability for Red gram	55
7.8	Crop suitability for Horse gram	56
7.9	Crop suitability for Field bean	57
7.10	Crop suitability for Groundnut	60
7.11	Crop suitability for Sunflower	61
7.12	Crop suitability for Onion	62
7.13	Crop suitability for Chilli	63
7.14	Crop suitability for Brinjal	65
7.15	Crop suitability for Tomato	66
7.16	Crop suitability for Mango	67
7.17	Crop suitability for Sapota	69
7.18	Crop suitability for Guava	70
7.19	Crop suitability for Pomegranate	72
7.20	Crop suitability for Banana	73
7.21	Crop suitability for Jackfruit	74
7.22	Crop Suitability for Jamun	75
7.23	Crop Suitability for Musambi	77
7.24	Crop Suitability for Lime	78
7.25	Crop Suitability for Cashew	79

7.26	Crop Suitability for Custard Apple	80
7.27	Crop Suitability for Amla	81
7.28	Crop Suitability for Tamarind	83
7.29	Crop suitability for Marigold	84
7.30	Crop suitability for Chrysanthemum	85
7.31	Crop suitability for Jasmine	86
7.32	Crop suitability for Coconut	87
7.33	Crop suitability for Areca nut	89
7.34	Proposed Crop Plan for Ranganahalli Microwatershed	90

LIST OF FIGURES

2.1	Location map of Ranganahalli Microwatershed	3
2.2	Granite and granite gneiss rocks	4
2.3	Alluvium	4
2.4	Rainfall distribution in Gundlupet Taluk, Chamarajanagar District	6
2.5	Natural vegetation of Ranganahalli Microwatershed	6
2.6	Current Land use – Ranganahalli Microwatershed	8
2.7 a & b	Different crops and cropping systems in Ranganahalli Microwatershed	8
2.8	Location of Wells- Ranganahalli Microwatershed	9
3.1	Scanned and Digitized Cadastral map of Ranganahalli Microwatershed	13
3.2	Satellite image of Ranganahalli Microwatershed	13
3.3	Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Ranganahalli Microwatershed	14
3.4	Location of profiles in a transect	14
3.5	Soil phase or management units of Ranganahalli Microwatershed	19
5.1	Land Capability Classification of Ranganahalli Microwatershed	30
5.2	Soil Depth map of Ranganahalli Microwatershed	32
5.3	Surface Soil Texture map of Ranganahalli Microwatershed	33
5.4	Soil Gravelliness map of Ranganahalli Microwatershed	34
5.5	Soil Available Water Capacity map of Ranganahalli Microwatershed	35
5.6	Soil Slope map of Ranganahalli Microwatershed	36
5.7	Soil Erosion map of Ranganahalli Microwatershed	37
6.1	Soil Reaction (pH) map of Ranganahalli Microwatershed	40
6.2	Electrical Conductivity (EC) map of Ranganahalli Microwatershed	40
6.3	Soil Organic Carbon (OC) map of Ranganahalli Microwatershed	41
6.4	Soil Available Phosphorus map of RanganahalliMicrowatershed	41
6.5	Soil Available Potassium map of RanganahalliMicrowatershed	43
6.6	Soil Available Sulphur map of Ranganahalli Microwatershed	43
6.7	Soil Available Boron map of Ranganahalli Microwatershed	44
6.8	Soil Available Iron map of Ranganahalli Microwatershed	44
6.9	Soil Available Manganese map of Ranganahalli Microwatershed	45
6.10	Soil Available Copper map of Ranganahalli Microwatershed	45

6.11	Soil Available Zinc map of Ranganahalli Microwatershed	46
7.1	Land suitability for Sorghum	49
7.2	Land suitability for Fodder sorghum	51
7.3	Land suitability for Maize	52
7.4	Land suitability for Upland Paddy	53
7.5	Land suitability for Finger millet	54
7.6	Land suitability for Red gram	55
7.7	Land suitability for Horse gram	57
7.8	Land suitability for Field bean	58
7.9	Land suitability for Cowpea	59
7.10	Land suitability for Groundnut	60
7.11	Land suitability for Sunflower	61
7.12	Land suitability for Onion	63
7.13	Land suitability for Chilli	64
7.14	Land suitability for Brinjal	65
7.15	Land suitability for Tomato	66
7.16	Land suitability for Mango	68
7.17	Land suitability for Sapota	69
7.18	Land suitability for Guava	71
7.19	Land suitability for Pomegranate	72
7.20	Land suitability for Banana	73
7.21	Land suitability for Jackfruit	75
7.22	Land Suitability for Jamun	76
7.23	Land Suitability for Musambi	77
7.24	Land Suitability for Lime	78
7.25	Land Suitability for Cashew	79
7.26	Land Suitability for Custard Apple	81
7.27	Land Suitability for Amla	82
7.28	Land Suitability for Tamarind	83
7.29	Land suitability for Marigold	84
7.30	Land suitability for Chrysanthemum	85
7.31	Land suitability for Jasmine	87
7.32	Land suitability for Coconut	88
7.33	Land suitability for Areca nut	89
7.34	Land Suitability map of Mulberry	90
7.35	Land Management Units map of Ranganahalli Microwatershed	92
9.1	Soil and water conservation map of Ranganahalli Microwatershed	106

EXECUTIVE SUMMARY

The land resource inventory of Ranganahalli Microwatershed was conducted using village cadastral maps and IRS satellite imagery on 1:7920 scale. The false colour composites of IRS imagery were interpreted for physiographic and the physiographic delineations were used as base for mapping soils. The soils were studied in several transects and a soil map was prepared with phases of soil series as mapping units. Random checks were made all over the area outside the transects to confirm and validate the soil map unit boundaries. The soil map shows the geographic distribution and extent, characteristics, classification, behavior and use potentials of the soils in the microwatershed.

The present study covers an area of 354 ha in Gubbi taluk of Tumakuru district, Karnataka. The climate is semiarid and categorized as drought-prone with an average annual rainfall of 813 mm, of which about 466 mm is received during south —west monsoon, 196 mm during north-east and the remaining 151 mm during the rest of the year. An area of about 95 per cent is covered by soils and 5 per cent by others. The salient findings from the land resource inventory are summarized briefly below.

- The soils belong to 11 soil series and 18 soil phases (management units) and 6 land use classes (LUCs).
- The length of crop growing period is about 150 days starting from 3rd week of June to third week of November.
- From the master soil map, several interpretative and thematic maps like land capability, soil depth, surface soil texture, soil gravelliness, available water capacity, soil slope and soil erosion were generated.
- Soil fertility status maps for macro and micronutrients were generated based on the surface soil samples collected at every 250 m grid interval.
- Land suitability for growing 34 major agricultural and horticultural crops were assessed and maps showing the degree of suitability along with constraints were generated.
- * About 95 per cent area is suitable for agriculture and 5 per cent is not suitable for agriculture
- About 88 per cent of the soils are moderately deep (75-100 cm) to very deep (>150 cm) and 7 per cent of the soils are shallow to moderately shallow.
- About 18 per cent of the area has clayey soils at the surface and 77 per cent loamy soils.
- About 73 per cent of the soils are non gravelly, 16 per cent of the soils are gravelly (<15-35%) and 6 per cent of area has very gravelly soils (35-60%).
- An area of about 11 per cent are very low (<50 mm/m), 26 per cent are low (51-100 mm/m, 43 per cent medium (101-150 mm/m) and an area of 15 per cent has very high (>200 mm/m) available water capacity.
- **♦** About 93 per cent of the area has nearly level (0-1%) to very gently sloping (1-3% slope) lands and about 2 per cent of the area is gently sloping (3-5%).

- An area of about 43 per cent has soils that are slightly eroded (e1) and 52 per cent moderately eroded (e2).
- * Maximum area of about 44 per cent has soils that are slightly acidic to strongly acid (pH 5.0-6.5), 44 per cent area has neutral (pH 6.5-7.3) and 7 per cent of the soils are slightly alkaline (pH 7.3-7.8).
- ❖ The Electrical Conductivity (EC) of the soils are dominantly <2 dsm⁻¹indicating that the soils are non-saline.
- * About 67 per cent of the soils are low (<0.5%), 28 per cent area of the soils are medium (0.5-0.75%) and <1 per cent of the area are high in organic carbon.
- About 30 per cent of the area is high (>57 kg/ha) in available phosphorus and 65 per cent area is medium (23-57 kg/ha).
- About 8 per cent of the soils are low (<145 kg/ha), medium (145-337 kg/ha) in 51 per cent area and 36 per cent of the soils are high (>337 kg/ha) in available potassium.
- ❖ Available sulphur is medium (10 -20 ppm) in an area of about 95 per cent.
- Available boron is low (0.5 ppm) in maximum area about 76 per cent area and medium (0.5-1.0 ppm) in 19 per cent area.
- ❖ Available iron is sufficient (>4.5 ppm) in an area of about 95 per cent.
- Available manganese and copper are sufficient in all the soils of the microwatershed.
- Available zinc is deficient (<0.6 ppm) in 62 per cent and sufficient (>0.6 ppm) in 33 per cent of soils of the microwatershed.
- The land suitability for 34 major crops grown in the microwatershed were assessed and the areas that are highly suitable (S1) and moderately suitable (S2) are given below. It is however to be noted that a given soil may be suitable for various crops but what specific crop to be grown may be decided by the farmer looking to his capacity to invest on various inputs, marketing infrastructure, market price and finally the demand and supply position.

Land suitability for various crops in the Microwatershed

	Suitability Area in ha (%)			Suitability Area in ha (%)	
Crop	Highly suitable (S1)	Moderately suitable (S2)	Crop	Highly suitable (S1)	Moderately suitable (S2)
Sorghum	314 (61)	30(6)	Guava	250(49)	95(18)
Fodder Sorghum	314 (61)	30(6)	Pomegranate	296 (58)	18(3)
Maize	190(37)	153(30)	Banana	296 (58)	18(3)
Upland paddy	314(61)	79(16)	Jackfruit	296 (58)	18(3)
Finger millet	314 (61)	85(16)	Jamun	246 (48)	51(10)
Redgram	314 (61)	30(6)	Musambi	296 (58)	18(3)
Horse gram	334(65)	147 (29)	Lime	296 (58)	18(3)
Field bean	314 (61)	30(6)	Cashew	250(64)	64(12)
Cowpea	314 (61)	30(6)	Custard apple	314 (61)	167 (33)
Groundnut	107(21)	327 (64)	Amla	314 (61)	167 (33)
Sunflower	296 (58)	18(3)	Tamarind	246 (48)	51(10)
Onion	236 (46)	108(21)	Marigold	314 (61)	87(17)
Chilli	314 (61)	30(6)	Chrysanthemum	314 (61)	87(17)
Brinjal	314 (61)	30(6)	Jasmine	314 (61)	87(17)
Tomato	314 (61)	30(6)	Coconut	250(49)	64(12)
Mango	246 (48)	51(10)	Arecanut	250(49)	64(12)
Sapota	296 (58)	18(3)			

Apart from the individual crop suitability, a proposed crop plan has been prepared for the 6 identified LUCs by considering only the highly and moderately suitable lands for different crops and cropping systems with food, fodder, fibre and horticulture crops.

- * Maintaining soil-health is vital to crop production and conserve soil and land resource base for maintaining ecological balance and to mitigate climate change. For this, several ameliorative measures have been suggested to these problematic soils like saline/alkali, highly eroded, sandy soils etc.,
- Soil and water conservation treatment plan has been prepared that would help in identifying the sites to be treated and also the type of structures required.
- As part of the greening programme, several tree species have been suggested to be planted in marginal and submarginal lands, field bunds and also in the hillocks, mounds and ridges that would help in supplementing the farm income, provide fodder and fuel and generate lot of biomass. This would help in maintaining an ecological balance and also contributes to mitigating the climate change.

INTRODUCTION

Land is a scarce resource and basic unit for any material production. It can support the needs of the growing population, provided they use the land in a rational and judicious manner. But what is happening in many areas of the state is a cause for concern to everyone involved in the management of land resources at the grassroots level. The area available for agriculture is about 51 per cent of the total geographical area and more than 60 per cent of the people are still dependant on agriculture for their livelihood. The limited land area is under severe stress and strain due to increasing population pressure and competing demands of various land uses. Due to this, every year there is significant diversion of farm lands and water resources for non-agricultural purposes. Apart from this, due to lack of interest in farmers for farming, large tracts of cultivable lands are turning into fallows in many areas and this trend is continuing at an alarming rate.

Further, land degradation has emerged as a serious problem which has already affected about 38 lakh ha of cultivated area in the state. Soil erosion alone has degraded about 35 lakh ha. Almost all the uncultivated areas are facing various degrees of degradation, particularly soil erosion. Salinity and alkalinity has emerged as a major problem more than 3.5 lakh ha in the irrigated areas of the state. Nutrient depletion and declining factor productivity is common in both rainfed and irrigated areas. The degradation is continuing at an alarming rate and there appears to be no systematic effort among the stakeholders to contain this process. In recent times, an aberration of weather due to climate change phenomenon has added another dimension leading to unpredictable situations to be tackled by the farmers.

In this critical juncture, the challenge before us is not only to increase the productivity per unit area which is steadily declining and showing a fatigue syndrome, but also to prevent or at least reduce the severity of degradation. If the situation is not reversed at the earliest, then the sustainability of the already fragile crop production system and the overall ecosystem will be badly affected in the state. The continued neglect and unscientific use of the resources for a long time has led to the situation observed at present in the state. It is a known fact and established beyond doubt by many studies in the past that the cause for all kinds of degradation is the neglect and irrational use of the land resources. Hence, there is urgent need to generate a detailed site-specific farm level database on various land resources for all the villages/watersheds in a time bound manner that would help to protect the valuable soil and land resources and also to stabilize the farm production.

Therefore, the land resource inventory required for farm level planning is the one which investigates not only the surface but also consider the other parameters which are critical for productivity *viz.*, soils, climate, water, minerals and rocks, topography, geology, hydrology, vegetation, crops, land use pattern, animal population, socio-

economic conditions, infrastructure, marketing facilities and various schemes and developmental works of the government etc. From the data collected at farm level, the specific problems and potentials of the area can be identified and highlighted, conservation measures required for the area can be planned on a scientific footing, suitability of the area for various uses can be worked out and finally viable and sustainable land use options suitable for each and every land holding can be prescribed.

The Land Resource Inventory is basically done for identifying the potential and problem areas, developing sustainable land use plans, estimation of surface run off and water harvesting potential, preparation of soil and water conservation plans, land degradation/desertification etc. The Bureau is presently engaged in developing an LRI methodology using high resolution satellite remote sensing data and Digital Elevation Model (DEM) data to prepare Landscape Ecological Units (LEU) map representing agroecosystem as a whole. The LEU is preferred over landform as the base map for LRI. LEU is the assemblage of landform, slope and land use.

The land resource inventory aims to provide site specific database for Ranganahalli microwatershed in Gubbi Taluk, Tumakuru District, and Karnataka state for the Karnataka Watershed Development Department. The database was generated by using cadastral map of the village as a base along with high resolution IRS LISS IV and Cartosat-1 merged satellite imagery. Later, an attempt will be made to uplink this LRI data generated at 1:7920 scale under Sujala-III Project to the proposed Landscape Ecological Units (LEUs) map.

The study was organized and executed by the ICAR- National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore under Generation of Land Resource Inventory Data Base Component-1 of the Sujala-III Project funded by the World Bank.

GEOGRAPHICAL SETTING

2.1 Location and Extent

Tumakuru District popularly known as *Kalpataru Nadu* (famous for production of Coconuts) is located in the south-eastern part of Karnataka State. The Ranganahalli microwatershed (Pillahalli Subwatershed) is located in the southern part of Karnataka in Gubbi Taluk, Tumakuru District, Karnataka State (Fig.2.1). It comprises parts of Malamachanakunte, Kallugudi, Thalekoppa, Ranganahalli and Ankasandra villages. It lies between 13° 28' and 13° 29' North latitudes and 76° 52' and 76° 54' East longitudes and covers an area of 511 ha. It is about 71 km south of Tumakuru and is surrounded by Malamachanakunte on the south-eastern, Ranganahalli on the north, Ankasandra on south, Kallugudi on northeastern and Thalekoppa on the western.

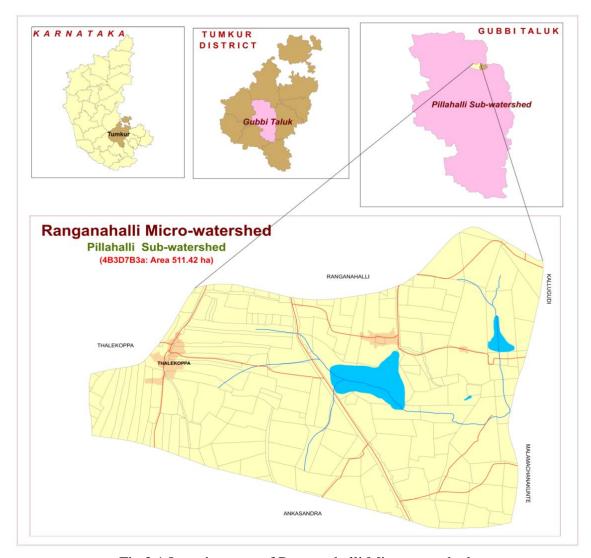


Fig.2.1 Location map of Ranganahalli Microwatershed

2.2 Geology

Major rock formations observed in the microwatershed are granite gneiss and alluvium (Figs.2.2 and 2.3). Granite and gneisses are essentially pink to gray and are coarse to medium grained. They consist primarily of quartz, feldspar, biotite and hornblende. The gray granite gneisses are highly weathered, fractured and fissured upto a depth of about 10 m. The most widespread and characteristic development of alluvium in the watershed region lying in the Suvarnamukhi is a wide belt, the underlying formation is gneiss and alluvial soils occur over gneiss. The thickness of the alluvium generally is limited to less than a meter, except in river valleys where it is very deep extending to tens of meters.

Fig.2.2 Granite and granite gneiss rocks

Fig. 2.3 Alluvium

2.3 Physiography

Physiographically, the area has been identified as granite gneiss and alluvial landscape based on geology. It has been further divided into three landforms *viz*; mounds/ridges, uplands and lowlands based on slope and other relief features. They have been further subdivided into four physiographic units, *viz;* summits, side slopes, very gently sloping uplands and lowlands/valleys. The elevation ranges from 835-851 m. The mounds and ridges are mostly covered by rock outcrops.

2.4 Drainage

There are no perennial rivers flowing in Gubbi taluk. However, the area is drained by several small seasonal streams like Hosa *kaluve* which joins river Shimsha along its course. Though, they are not perennial, during rainy season, it carries large quantities of rain water. The microwatershed area has only few small tanks which are not capable of storing water that flows during the rainy season. Due to this, the ground water recharge is very much affected in the villages. This is reflected in the failure of many bore wells in the villages. If the available rain water is properly harnessed by constructing new tanks and recharge structures at appropriate places in the villages, then the drinking and irrigation needs of the area can be easily met. The drainage network is dendritic to sub parallel.

2.5 Climate

The district falls under semiarid tract and is categorized as drought - prone with average annual rainfall of 813 mm (Table 2.1). Of the total rainfall, a maximum of 466 mm is received during south—west monsoon period from June to September, north-east monsoon from October to early December contributes maximum of about 196 mm and the remaining 151 mm is received during the rest of the year. The winter season is from December to February. During April and May, the temperatures reach up to 35°C and in December and January, the temperatures will go down to 20°C. Rainfall distribution is shown in Figure 2.4. The average Potential Evapo-Transpiration (PET) is 110 mm and varies from a low of 73 mm in December to 152 mm in the month of April. The PET is always higher than precipitation in all the months except in the last week of August, September and October. Generally, the Length of crop Growing Period (LGP) is 150 days and starts from 3rd week of June to third week of November.

Table 2.1 Mean Monthly Rainfall, PET, 1/2 PET in Gubbi Taluk, Tumakuru District

Sl. no.	Months	Rainfall	PET	1/2 PET
1	JAN	6.50	78.30	39.15
2	FEB	7.00	102.70	51.35
3	MAR	24.40	142.60	71.30
4	APR	40.50	151.60	75.80
5	MAY	72.50	149.70	74.85
6	JUN	78.50	121.10	60.55
7	JUL	99.20	107.60	53.80
8	AUG	119.70	105.80	52.90
9	SEP	168.30	101.20	50.60
10	OCT	141.90	100.20	50.10
11	NOV	47.00	85.00	42.50
12	DEC	7.30	73.00	36.50
Total		812.80	109.90	

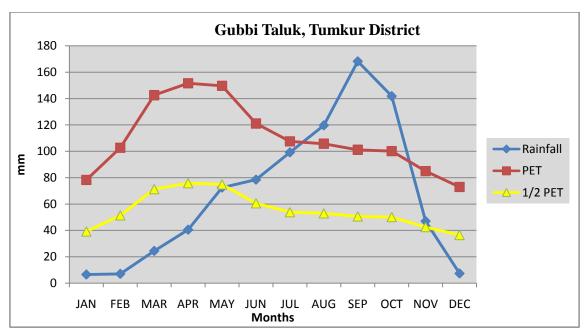


Fig 2.4 Rainfall distribution in Gubbi Taluk, Tumakuru District

2.6 Natural Vegetation

The natural vegetation is sparse comprising few tree species, shrubs and herbs. The mounds, ridges and boulders occupy very sizeable areas which are under thin to moderately thick forest vegetation. Still, there are some remnants of the past forest cover which can be seen in patches in some ridges and hillocks in the microwatershed.

Apart from the continuing deforestation, the presence of large population of goats, sheep and other cattle in the microwatershed is causing vegetative degradation of whatever little vegetation left in the area. The uncontrolled grazing has left no time for the regeneration of the vegetative cover. This leads to the accelerated rate of erosion on the hill slopes resulting in the formation of deep gullies in the foot slopes that eventually result in the heavy siltation of tanks and reservoirs in the microwatershed.

Fig. 2.5 Natural vegetation of Ranganahalli Microwatershed

2.7 Land Utilization

About 64 per cent area (Table 2.2) in Gubbi taluk is cultivated at present. An area of about 4 per cent is currently barren. Forests occupy an area of about 8 per cent. Most of the mounds, ridges and bouldery areas have very poor vegetative cover. Major crops grown in the area are Ragi, Groundnut, Maize, Sorghum, Sunflower, Red gram, Horse gram, Field bean, Cowpea, Mango, Banana, Mulberry and Plantation crops like, Coconut and Arecanut. The cropping intensity is 116 per cent in the taluk. While carrying out land resource inventory, the land use/land cover particulars are collected from all the survey numbers and a current land use map of the Ranganahalli microwatershed is prepared. The current land use map generated shows the arable and non-arable lands, other land uses and different types of crops grown in the area Fig (2.6). The different crops and cropping systems adopted in the microwatershed is presented in Figures 2.8.a &b. Simultaneously, enumeration of wells (bore wells and open wells) and existing conservation structures in the microwatershed are made and their location in different survey numbers is located on the cadastral map. Map showing the location of wells and other water bodies in Ranganahalli microwatershed is given in Fig.2.7.

Table 2.2 Land Utilization in Gubbi Taluk

Sl. No.	Agricultural land use	Area (ha)	Per cent
1.	Total geographical area	122057	-
2.	Total cultivated area	78418	64.24
3.	Area sown more than once	12934	-
4.	Cropping intensity	-	116.49
5.	Trees and grooves	2811	2.30
6.	Forest	10090	8.26
7.	Cultivable wasteland	2731	2.23
8.	Permanent Pasture land	3850	3.15
9.	Barren land	4971	4.07
10.	Non- Agriculture land	17390	14.24

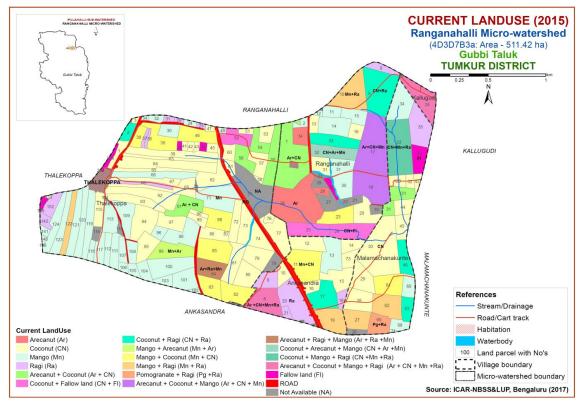


Fig. 2.6 Current Land Use – Ranganahalli Microwatershed

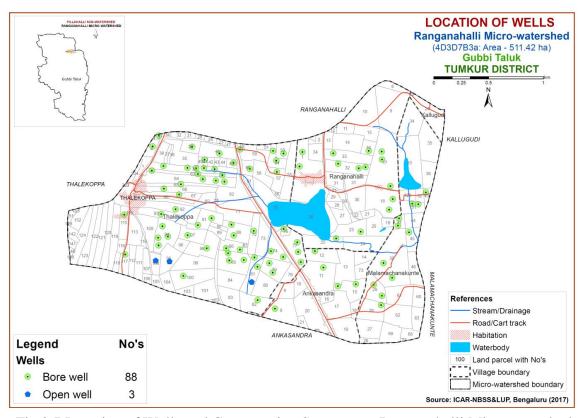


Fig.2.7 Location of Wells and Conservation Structures - Ranganahalli Microwatershed

Fig.2.8.b Different crops and cropping systems in Nandihalli Microwatershed

SURVEY METHODOLOGY

The purpose of land resource inventory is to delineate similar areas (soil series and phases), which respond or expected to respond similarly to a given level of management. This was achieved in Ranganahalli microwatershed by the detailed study of all the soil characteristics (depth, texture, color, structure, consistence, coarse fragments, porosity, soil reaction, soil horizons etc.) and site characteristics (slope of the land, erosion, drainage, occurrence of rock fragments etc.) and followed by grouping of similar areas based on soil-site characteristics into homogeneous (management units) units, and showing their extent and geographic distribution on the microwatershed cadastral map. The detailed survey at 1:7920 scales was carried out in an area of 511 ha. The methodology followed for carrying out land resource inventory was as per the guidelines given in Soil Survey Manual (IARI, 1971; Soil Survey Staff, 2006; Natarajan *et al.*, 2015) which is briefly described below.

3.1 Base Maps

The detailed survey of the land resources occurring in the microwatershed was carried out by using digitized cadastral map as a base. The cadastral map shows field boundaries with their survey numbers, location of tanks, streams and other permanent features of the area (Fig. 3.1). Apart from the cadastral map, remote sensing data products from Cartosat-1 and LISS IV merged at the scale of 1:7920 were used in conjunction with the cadastral map to identify the geology, landscapes, landforms and other surface features. The imagery helped in the identification and delineation of boundaries between hills, uplands and lowlands, water bodies, forest and vegetated areas, roads, habitations and other cultural features of the area (Fig.3.2). The cadastral map was overlaid on the satellite imagery (Fig.3.3) that helps to identify the parcel boundaries and other permanent features. Apart from cadastral maps and images, toposheet of the area (1:50,000 scale) were also used for initial traversing, identification of geology, landscapes, landforms, drainage features, present land use and also for selection of transects in the microwatershed.

3.2 Image Interpretation for Physiography

False Color Composites (FCCs) of Cartosat-I and LISS-IV merged satellite data covering the microwatershed area was visually interpreted using image interpretation elements along with the geology map and all the available collateral data with local knowledge. The delineated physiographic boundaries were transferred on to a cadastral map overlaid on satellite imagery. Physiographically, the area has been identified as granite gneiss landscape and is divided into land forms such as ridges, mounds, uplands and valleys based on slope and other relief features. They were further subdivided into physiographic/ image interpretation units based on image characteristics. The image interpretation legend for Physiography is given below.

Image Interpretation Legend for Physiography G- Granite gneiss landscape

G1	8	100 10011010	Hills/ Ridges/ Mounds
01	G11		Summits
	G12		Side slopes
		G121	Side slopes with dark grey tones
G2			Uplands
	G21		Summits
	G22		Gently sloping uplands
		G221	Gently sloping uplands, yellowish green (eroded)
		G222	Gently sloping uplands, yellowish white (severely eroded)
	G23		Very gently sloping uplands
		G231	Very gently sloping uplands, yellowish green
		G232	Very gently sloping uplands, medium green and pink
		G233	Very gently sloping uplands, pink and green (scrub land)
		G234	Very gently sloping uplands, medium greenish grey
		G235	Very gently sloping uplands, yellowish white (eroded)
		G236	Very gently sloping uplands, dark green
		G237	Very gently sloping uplands, medium pink (coconut garden)
		G238	Very gently sloping uplands, pink and bluish white (eroded)
	G24		Valleys/ lowlands
		G241	Valleys, pink tones
		G242	Valleys gray mixed with pink tones

DSe – Alluvial landscape

DSe 1 – Summit

DSe 11 –

DSe 12 –

DSe 2 – Very gently sloping

DSe 21 – Very gently sloping, dark gray tone

DSe 22 – Very gently sloping, medium gray tone

DSe 23 – Very gently sloping, yellowish grey tone

DSe 24 – Very gently sloping, whitish grey tone

DSe 25 – Very gently sloping, whitish/ eroded/ calcareous tone

DSe 26- Very gently sloping, medium pink

DSe 3 – Valley/ Lowland

DSe 31 – Whitish gray/Calcareous

DSe 32 – Gray with pink patches

DSe 33 – Medium gray tone

DSe 34 – Lightish gray tone

DSe 35 – Dark gray tone

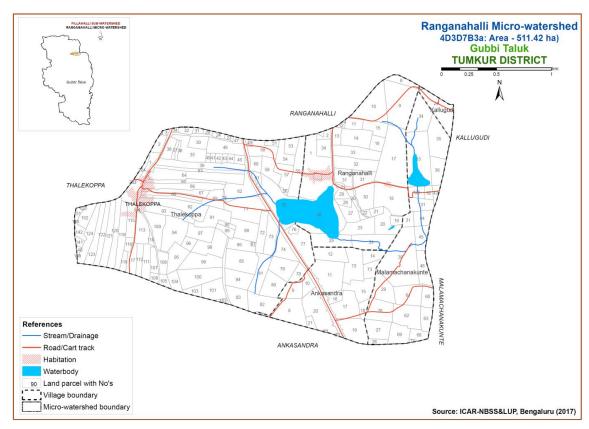


Fig 3.1 Scanned and Digitized Cadastral map of Ranganahalli Microwatershed

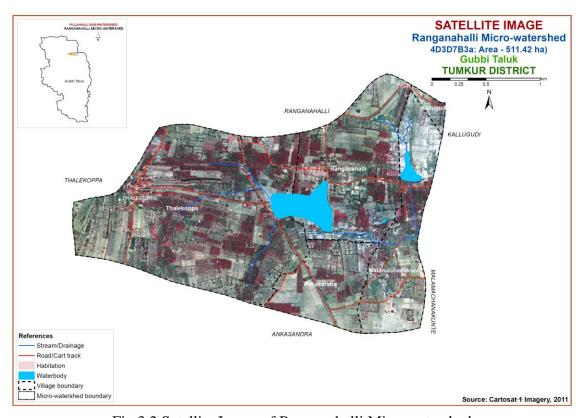


Fig.3.2 Satellite Image of Ranganahalli Microwatershed

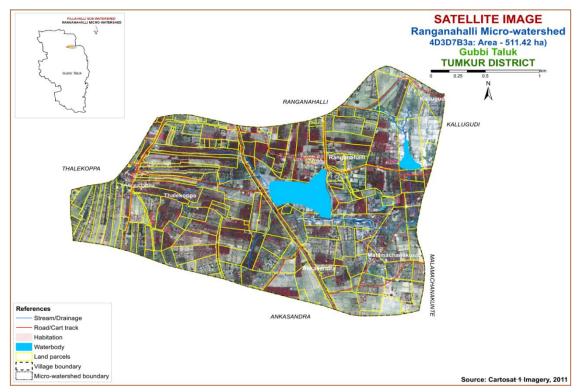


Fig.3.3 Cadastral map overlaid on IRS PAN+LISS IV merged imagery of Ranganahalli Microwatershed

3.3 Field Investigation

The field boundaries and survey numbers given on the cadastral sheet were located on the ground by following permanent features like roads, cart tracks, nallas, streams, tanks etc., and wherever changes were noticed, they were incorporated on the microwatershed cadastral map. Preliminary traverse of the microwatershed was carried out with the help of cadastral map, imagery and toposheet. While traversing, landforms and physiographic units identified were checked and preliminary soil legend was prepared by studying soils at few selected places. Then, intensive traversing of each physiographic unit like hills, ridges, uplands and valleys was carried out. Based on the variability observed on the surface, transects (Fig. 3.4) were selected across the slope covering all the landform units in the microwatershed (Natarajan and Dipak Sarkar, 2010).

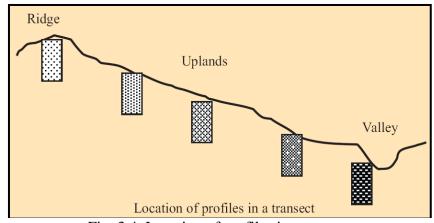


Fig: 3.4. Location of profiles in a transect

In the selected transect, soil profiles (Fig. 3.4) were located at closely spaced intervals to take care of any change in the land features like break in slope, erosion, gravel, stones etc. In the selected sites, profiles (vertical cut showing the soil layers from surface to the rock) were opened up to 200 cm or to the depth limited by rock or hard substratum and studied in detail for all their morphological and physical characteristics. The soil and site characteristics were recorded for all profile sites on a standard proforma as per the guidelines given in USDA Soil Survey Manual (Soil Survey Staff, 2012). Apart from the transect study, profiles were also studied at random, almost like in a grid pattern, outside the transect areas.

Based on soil characteristics, the soils were grouped into different soil series. Soil series is the most homogeneous unit having similar horizons and properties and behaves similarly for a given level of management. Soil depth, texture, colour, kind of horizon and horizon sequence, amount and nature of gravel present, nature of substratum etc, were used as the major differentiating characteristics for identifying soil series occurring in the area. The differentiating characteristics used for identifying the soil series are given in Table 3.1. Based on the above characteristics, 11 soil series were identified in the Ranganahalli microwatershed.

Table 3.1 Differentiating Characteristics used for identifying Soil Series (Characteristics are of Series Control Section)

	Soils of Granite gneiss Landscape						
Sl.No	Soil Series	Depth (cm)	Color (moist)	Texture (control section)	Gravel (%) (control section)	Horizon & Horizon sequence	Calcareo- usness
1.	Chikkasavanur (CSR)	50-75	7.5YR 3/2,3/3,3/4	scl	<15	Ap-Bw-Cr	-
2.	Kutegoudana Hundi (KGH)	50-75	7.5YR3/2,3/3,3\4	scl	15-35	Ap-Bt-Cr	-
3.	Chikkamegheri (CKM)	75-100	2.5YR 2.5/3, 3/4,3/6	sc	<15	Ap-Bt-Cr	-
4.	Bidanagere (BDG)	75-100	5YR3/3,3/4,4/3,5/4 2.5YR3/4	gc	35-60	Ap-Bt-Cr	-
5.	Mornal (MNL)	100-150	5YR3/4 2.5YR3/4,4/6	gsc-scl	15-35	Ap-Bt-Cr	e
6.	Jedigere (JDG)	100-150	5 YR4/6,3/4 7.5YR 3/4,4/6	sc-c	<15	Ap-Bt-Bc- Cr	-
7.	Balapur (BPR)	100-150	2.5YR 2.5/4,3/4	gsc-c	>35	Ap-Bt-Cr	-
8.	Hallikere (HLK)	>150	5YR3/3,3/4 7.5YR3/3,3/4	c	<15	Ap-Bt	-
9.	Ranatur (RTR)	>150	2.5YR2.5/3,2.5/4, 3/3,4/6	c	<15	Ap-Bt	-
10.	Niduvalalu (NDL)	>150	2.5YR2.5/3,2.5/4, 3/3,4/6	gsc	>35	Ap-Bt	-
Soils of Alluvial Landscape							
11.	Kadagathur (KDT)	>150	10 YR 3/1, 3/2, 3/3, 7.5YR 3/3, 3/4	sc-c	-	Ap-Bw	-

3.4 Soil Mapping

The area under each soil series was further separated into 11 soil phases and their boundaries delineated on the cadastral map based on the variations observed in the texture of the surface soil, slope, erosion, presence of gravel, stoniness etc. A soil phase is a subdivision of soil series based mostly on surface features that affect its use and management.

The soil mapping units are shown on the map (Fig.3.5) in the form of symbols. During the survey about 8 profile pits, few minipits and a few auger bores representing different landforms occurring in the microwatershed were studied. All the profile locations are indicated on the village cadastral map in the form of a triangle. In addition to the profile study, spot observations in the form of minipits, road cuts, terrace cuts etc., were studied to validate the soil boundaries on the soil map.

The soil map shows the geographic distribution of 18 mapping units representing 11 soil series occurring in the microwatershed. The soil map unit (soil legend) description is presented in Table 3.2. The soil phase map (management units) shows the distribution of 18 soil phases mapped in the microwatershed. Each mapping unit (soil phase) delineated on the map has similar soil and site characteristics. In other words, all the farms or survey numbers included in one phase will have similar management needs and they have to be treated accordingly.

The 18 soil phases identified and mapped in the microwatershed were regrouped into 6 Land Management Units (LMU's) for the purpose of preparing a proposed crop plan for sustained development of the microwatershed. The database (soil phases) generated under LRI was utilized for identifying Land Management Units (LMUs) based on the management needs. One or more than one soil site characteristic having influence on the management have been chosen for identification and delineation of LMUs. For Ranganahalli microwatershed, five soil and site characteristics, namely soil depth, soil texture, slope, erosion and gravel content have been considered for defining LMUs. The Land Management Units are expected to behave similarly for a given level of management.

3.5 Laboratory Characterization

Soil samples were collected from representative master profiles for laboratory characterization by following the methods outlined in the Laboratory Manual (Sarma *et al*, 1987). Surface soil samples collected in the year 2015 from farmer's fields (80 samples) for fertility status (major and micronutrients) at 250 m grid interval were analyzed in the laboratory (Katyal and Rattan, 2003). By linking the soil fertility data to the survey numbers through GIS, soil fertility maps were generated using Kriging method for the microwatershed.

Table 3.2 Soil map unit description of Ranganahalli Microwatershed (Soil Legend)

Call	0-21		(Son Legena)	Area in						
Soil No	Soil Series	Soil Phase Mapping Unit Description								
		SOILS	OF GRANITE GNEISS LANDSCAPE	ha (%)						
	CSR	dark brown	tr soils are shallow (25-50 cm), well drained, have to light yellowish brown sandy clay loam soils very gently sloping uplands under cultivation	6 (1.12)						
1		CSRhB2g1	Sandy clay loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	6 (1.12)						
	KGH	drained, have	Kutegoudanahundi soils are moderately shallow (50-75 cm), well rained, have brown to dark brown gravelly sandy clay loam soils occurring on very gently to gently sloping uplands under							
2		KGHcB2g2	Sandy loam surface, slope 1-3%, moderate erosion, very gravelly (35-60%)	20 (3.89)						
3		KGHcC2g2	Sandy loam surface, slope 3-5%, moderate erosion, very gravelly (35-60%)	10 (1.90)						
	CKM	drained, have	ri soils are moderately deep (75-100 cm), well dark brown to dark reddish brown sandy clay soils very gently sloping uplands under cultivation	18 (3.43)						
4		CKMhB2g1	Sandy clay loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	18 (3.43)						
	BDG	have dark red	Bidanagere soils are moderately deep (75-100 cm), well drained, have dark reddish brown gravelly sandy clay loam to sandy clay soils occurring on very gently sloping uplands under cultivation							
5		BDGhB2	Sandy clay loam surface, slope 1-3%, moderate erosion	43 (8.44)						
6		BDGhB2g1	Sandy clay loam surface, slope 1-3%, moderate erosion, gravelly (15-35%)	6 (1.09)						
	MNL	reddish brown	Mornal soils are deep (100-150 cm), well drained, have dark reddish brown to red sandy clay soils occurring on very gently sloping uplands under cultivation							
7		MNLhB2	Sandy clay loam surface, slope 1-3%, moderate erosion	51 (9.90)						
	JDG	brown to dark	Jedigere soils are deep (100-150 cm), well drained, have dark brown to dark reddish brown sandy clay to clay soils occurring on very gently sloping uplands under cultivation							
8		JDGhB1	Sandy clay loam surface, slope 1-3%, slight erosion	39 (7.63)						
	BPR	Balapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils occurring on very gently sloping uplands under cultivation								
9		BPRhB2	Sandy loam surface, slope 1-3%, moderate erosion	31 (6.04)						
	HLK	Hallikere soils are very deep (>150 cm), well drained, have dark brown to dark reddish brown clayey soils occurring on very gently sloping uplands under cultivation								

10		HLKcB2	Sandy loam surface, slope 1-3%, moderate erosion	66(12.88)					
		III VI-D2 - 1	Sandy clay loam surface, slope 1-3%, moderate	17					
11		HLKhB2g1	erosion, gravelly (15-35%)	(3.26)					
	RTR	reddish brow	Ranatur soils are very deep (>150 cm), well drained, have dark reddish brown to dark red clay soils occurring on very gently sloping uplands under cultivation						
12		RTRcB1	Sandy loam surface, slope 1-3%, slight erosion	8 (1.66)					
13		RTRhB1	Sandy clay loam surface, slope 1-3%, slight erosion	24 (4.67)					
14		RTRiB1	Sandy clay surface, slope 1-3%, slight erosion	14 (2.71)					
	NDL	to dark reddis	Niduvalalu soils are very deep (>150 cm), well drained, have red to dark reddish brown gravelly sandy clay soils occurring on very gently sloping uplands under cultivation						
15		NDLcB1	Sandy loam surface, slope 1-3%, slight erosion	(3.98)					
16		NDLiB1g1	Sandy clay surface, slope 1-3%, slight erosion, gravelly (15-35%)	37 (7.22)					
		SOI	LS OF ALLUVIAL LANDSCAPE						
	KDT	drained, have	soils are very deep (>150 cm), moderately well dark brown to very dark grayish brown sandy clay occurring on very gently sloping uplands under	77 (15.21)					
17		KDThB1	Sandy clay loam surface, slope 1-3%, slight erosion	35 (6.93)					
18		KDTiA1	Sandy clay surface, slope 0-1%, slight erosion	42 (8.28)					
	Others	Habitation &	Waterbody	25 (4.95)					

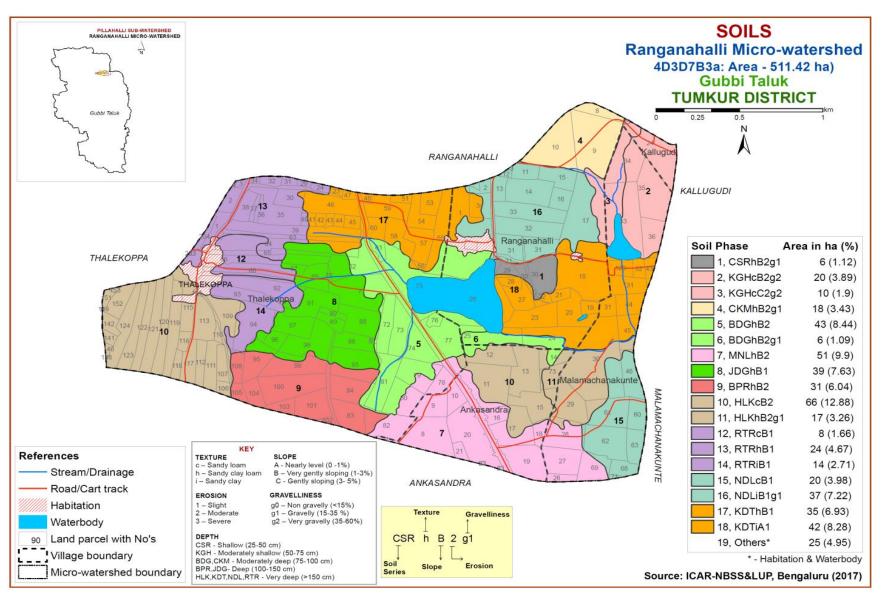


Fig 3.5 Soil Phase or Management Units Map - Ranganahalli Microwatershed

THE SOILS

Detailed information pertaining to the nature, extent and their distribution of different kinds of soils occurring in Ranganahalli microwatershed is provided in this chapter. The microwatershed area has been identifies as granite gneiss and alluvial landscape based on geology. In all, 11 soil series are identified. Soil formation is the result of the combined effect of environmental and terrain factors that are reflected in soil morphology. The soil formation is dominantly influenced by parent material, relief and climate.

A brief description of each of the 11 soil series identified followed by 18 soil phases (management units) mapped under each series (Fig. 3.5) are furnished below. The soils in any one map unit differ from place to place in their depth, texture, slope, gravelliness, erosion or any other site characteristics that affect management. The soil phase map can be used for identifying the suitability of areas for growing specific crops or for other alternative uses and also for deciding the type of conservation structures needed. The detailed information on soil and site-characteristics like soil depth, surface soil texture, slope, erosion, gravelliness, AWC, LCC etc, with respect to each of the soil phase identified is given village/survey number wise for the microwatershed in Appendix-I.

4.1 Soils of Granite gneiss Landscape

In this landscape, 10 soil series are identified and mapped. Of these, Hallikere (HLK) soil series occupies maximum area of about 83 ha (16%) and Niduvalalu (NDL) 57 ha (15%) area. The brief description of each soil series and number of phases identified in the microwatershed are given below. The mapping unit description (Soil Legend) of the phases identified and mapped under each series is given in Table 3.2.

4.1.1 Chikkasavanur (CSR) Series: Chikkasavanur soils are shallow (25-50 cm), well drained, have dark brown to light yellowish brown sandy clay loam soils. They have developed from granite gneiss and occur on very gently sloping uplands. The Chikkasavanur series has been tentatively classified as a member of the fine-loamy, mixed, isohyperthermic family of Typic Haplustepts.

The thickness of the solum ranges from 32 to 49 cm. The thickness of A horizon ranges from 12 to 23 cm. Its colour is in 7.5 YR and 10 YR hue with value 2.5 to 4 and chroma 3 to 6. The texture varies from sandy loam to clay with 10 to 20 per cent gravel. The thickness of B horizon ranges from 16 to 32 cm. Its colour is in 7.5 YR and 5 YR hue with value 3 and chroma 2 to 4. Its texture is sandy clay loam with gravel content of < 15 per cent. The available water capacity is low (50-100 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Chikkasavanur (CSR) Series

4.1.2 Kutegoudanahundi (**KGH**) **Series:** Kutegoudanahundi soils are moderately shallow (50-75 cm), well drained, have brown to dark brown sandy clay loam soils. They have developed from granite gneiss and occur on very gently to gently sloping uplands. The Kutegoudanahundi series has been tentatively classified as a member of the fine-loamy, mixed, isohyperthermic family of Typic Haplustalfs.

The thickness of the solum ranges from 50 to 74 cm. The thickness of A horizon ranges from 12 to 22 cm. Its colour is in 7.5 YR and 10 YR hue with value and chroma 3 to 4. The texture varies from loamy sand to sandy loam with 15 to 30 per cent gravel. The thickness of B horizon ranges from 40 to 62 cm. Its colour is in 7.5 YR hue with value and chroma 3 to 4. Its texture is sandy clay loam with gravel content of 15 to 35 per cent. The available water capacity is medium (100-150 mm/m). Two Phases were identified and mapped.

Landscape and soil profile characteristics of Kutegoudanahundi (KGH) Series

4.1.3 Chikkamegheri (CKM) Series: Chikkamegheri soils are moderately deep (75-100 cm), well drained, have dark brown to dark reddish brown and red sandy clay to clay soils. They have developed from granite gneiss and occur on nearly level to very gently

sloping uplands. The Chikkamegheri series has been classified as fine, mixed, isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum ranges from 76 to 100 cm. The thickness of A horizon ranges from 11 to 24 cm. Its colour is in 7.5 YR, 5YR and 2.5 YR hue with value 2 to 4 and chroma 3 to 6. The texture varies from sandy clay loam to sandy clay with 10 to 15 per cent gravel. The thickness of B horizon ranges from 65 to 86 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 3 to 6. Its texture is dominantly sandy clay to clay. The available water capacity is medium (100-150 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Chikkamegheri (CKM) Series

4.1.4 Bidanagere (BDG) Series: Bidanagere soils are moderately deep (75-100 cm), well drained, have dark reddish brown gravelly clay soils. They have developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The Bidanagere soil series has been classified as clayey-skeletal, mixed, isohyperthermic family of Rhodic, Paleustalfs.

The thickness of the solum ranges from 78 to 99 cm. The thickness of A-horizon ranges from 12 to 19 cm. Its colour is in 2.5 YR and 5 YR hue with value 2 to 3 and chroma 3 to 4. The texture varies from sandy clay loam to sandy clay with 10 to 20 per cent gravel. The thickness of B-horizon ranges from 68 to 85 cm. Its colour is in 5 YR and 2.5 YR hue with value 3 to 5 and chroma 3 to 4. Its texture is gravelly clay with gravel content of 35-60 per cent. The available water capacity is very low (<50 mm/m). Two phases were identified and mapped.

Landscape Soil Profile Characteristics of Bidanagere (BDG) Series

4.1.5 Mornal (MNL) Series: Mornal soils are deep (100-150 cm), well drained have dark reddish brown to dark red gravelly, sandy clay loam to sandy clay soils. They are developed from weathered granite gneiss and occur on very gently sloping uplands under cultivation. The Mornal soil series has been classified as fine mixed, isohyperthermic family of Typic Rhodustalfs.

The thickness of the solum ranges from 112 to 149 cm. The thickness of Ahorizon ranges from 15 to 25 cm. Its colour is in 5 YR, 10 YR hue with value 3 to 4 and chroma 2 to 4. The texture is sandy clay loam, sandy clay and clay with 15 to 30 per cent gravel. The thickness of B-horizon ranges from 103 to 131 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 4 and chroma 3 to 6. Texture is sandy clay loam to sandy clay with 15 to 35 per cent gravel. The available water capacity is medium (101-150 mm/m). Only one phase was identified and mapped.

Landscape and soil profile characteristics of Mornal (MNL) Series

4.1.6 Jedigere (JDG) Series: Jedigere soils are deep (100-150 cm) well drained, have yellowish red to strong brown soils. They have developed from granite gneiss and occur on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum ranges from 117 to 145 cm. The thickness of A horizon ranges from 13 to 21 cm. Its colour is in hue 5 YR and 7.5 YR with value 2 to 4 and chroma 2 to 6. Its texture is dominantly sandy clay and sand clay loam. The thickness of B horizon ranges from 104 to 124 cm. Its colour is in hue 10 YR and 7.5 YR with value 2 to 4 and chroma 3 to 6. Its texture is dominantly clay. The available water capacity is very high (>200mm/m). Only one phase was identified and mapped.

Landscape and Soil Profile Characteristics of Jedigere (JDG) Series

4.1.7 Balapur (BPR) Series: Balapur soils are deep (100-150 cm), well drained, have dark reddish brown to dark red gravelly sandy clay to clay soils. They are developed from weathered granite gneiss and occur on very gently to gently sloping uplands. The Balapur soil series has been classified as clayey-skeletal, mixed, isohyperthermic family of Typic Rhodustalfs

Landscape and soil profile characteristics of Balapur (BPR) Series

The thickness of the solum ranges from 102 to 147 cm. The thickness of A horizon ranges from 12 to 17cm. Its colour is in 5 YR and 2.5 YR hue with value and chroma 3 to 4. The texture ranges from loamy sand to sandy clay with 15 to 50 per cent gravel. The

thickness of B horizon ranges from 90 to 132 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 4 to 6. Texture is sandy clay to clay with 35 to 50 per cent gravel. The available water capacity is low (51-100 mm/m). Only one phase was identified and mapped.

4.1.8 Hallikere (HLK) Series: Hallikere soils are very deep (>150 cm), well drained, have dark brown and dark reddish brown clayey soils. They have developed from granite gneiss and occur on nearly level to very gently sloping uplands. The Hallikere series has been tentatively classified as a member of the fine, mixed, isohyperthermic family of Typic Paleaustalfs.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 11 to 14 cm. Its colour is in 7.5 YR and 5 YR hue with value 3 to 4 and chroma 3 to 4. The texture varies from sandy loam to sandy clay loam. The thickness of B horizon is more than 150 cm. Its colour is in 7.5 YR and 5 YR hue with value and chroma 3 to 4. Its texture is clay. The available water capacity is high (150-200 mm/m). Two phases were identified and mapped.

Landscape Soil Profile Characteristics of Hallikere (HLK) Series

4.1.9 Ranatur (RTR) Series: Ranatur soils are very deep (> 150 cm), well drained, have dark reddish brown to dark red clayey soils. They have developed from granite gneiss and occur on very gently sloping uplands. The Ranatur series has been classified as fine, mixed, isohyperthermic family of Rhodic Paleustalfs.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 8 to 14 cm. Its colour is in 5 YR and 2.5 YR hue with value 2.5 to 4 and chroma 3 to 6. The texture varies from sandy loam to sand clay. The thickness of B horizon is more than 150 cm. Its colour is in 2.5 YR hue with value 2.5 to 3 and chroma 3 to 6. Its texture is clay. The available water capacity is high (150-200 mm/m). Three phases were identified and mapped.

Landscape and soil profile characteristics of Ranatur (RTR) Series

4.1.10 Niduvalalu (NDL) Series: Niduvalalu soils are very deep (>150 cm), well drained, have dark red and dark reddish brown sandy clay soils. They have developed from granite gneiss and occur on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum is more than 150 cm. The thickness of A-horizon ranges from 11 to 15 cm. Its colour is in 5 YR hue with value 3 to 4 and chroma 4 to 6. The texture varies from sandy loam to sandy clay loam with 10 to 30 per cent gravel. The thickness of B-horizon ranges from 150 to 160 cm. Its colour is in 2.5 YR and 5 YR hue with value 2.5 to 4 and chroma 4 to 6. Its texture is sandy clay and ranges from gravelly sandy clay with 20 to 75 per cent gravel. The available water capacity is low (50-100 mm/m). Two phases were identified and mapped.

Landscape Soil Profile Characteristics of Niduvalalu (NDL) Series

4.2 Soils of Alluvial Landscape

In this landscape, only one soil series (Kadagathur) are identified and mapped. It covers about 77 ha in the microwatershed. The brief description of Kadagathur (KDT) series identified and mapped as one soil phase is given below.

4.2.1 Kadagathur (KDT) Series: Kadagathur soils are very deep (>150 cm), moderately well drained, have dark brown to very dark grayish brown sandy clay to clay soils. They have developed from weathered granite gneiss and occur on nearly level to very gently sloping uplands under cultivation.

The thickness of the solum is more than 150 cm. The thickness of A horizon ranges from 8 to 14 cm. Its colour is in 10 YR hue with value 3 and chroma 4. The texture varies is sandy loam. The thickness of B horizon is more than 150 cm. Its colour is in 10 YR and 7.5 YR hue with value 3 and chroma 1 to 4. Its texture is sandy clay to clay. The available water capacity is very high (>200 mm/m).nTwo phases were identified and mapped.

Landscape and soil profile characteristics of Kadagathur (KDT) Series

INTERPRETATION FOR LAND RESOURCE MANAGEMENT

The most important soil and site characteristics that affect the land use and conservation needs of an area are land capability, soil depth, soil texture, coarse fragments, available water capacity, soil slope, soil erosion, soil reaction etc. These are interpreted from the data base generated through land resource inventory and several thematic maps are generated. These would help in identifying the areas suitable for growing crops and, soil and water conservation measures and structures needed thus helping to maintain good soil health for sustained crop production. The various interpretative and thematic maps generated are described below.

5.1 Land Capability Classification

Land capability Classification is an interpretative grouping of soil map units (soil phases) mainly based on inherent soil characteristics, external land features and environmental factors that limit the use of land for agriculture, pasture, forestry, or other uses on a sustained basis (IARI, 1971). The land and soil characteristics used to group the land resources in an area into various land capability classes, subclasses and units are *Soil characteristics:* Depth, texture, gravel content, calcareousness.

Land characteristics: Slope, erosion, drainage, Rock outcrops.

Climate: Total rainfall and its distribution, and length of crop growing period.

The Land capability Classification system is divided into land capability classes, subclasses and units based on the level of information available. Eight land capability classes are recognized. They are

- Class I: They are very good lands that have no limitations or very few limitations that restrict their use.
- Class II: They are good lands that have minor limitations and require moderate conservation practices.
- Class III: They are moderately good lands that have moderate limitations that reduce the choice of crops or that require special conservation practices.
- Class IV: They are fairly good lands that have very severe limitations that reduce the choice of crops or that require very careful management.
- Class V: Soils in these lands are not likely to erode, but have other limitations like wetness that are impractical to remove and as such not suitable for agriculture, but suitable for pasture or forestry with minor limitations.
- Class VI: The lands have severe limitations that make them generally unsuitable for cultivation, but suitable for pasture or forestry with moderate limitations.
- Class VII: The lands have very severe limitations that make them unsuitable for cultivation, but suitable for pasture or forestry with major limitations.
- Class VIII: Soil and other miscellaneous areas (rock lands) that have very severe limitations that nearly preclude their use for any crop production, but suitable for wildlife, recreation and installation of wind mills.

The land capability subclasses are recognised based on the dominant limitations observed within a given land capability class. The subclasses are designated by adding a lower case letter like 'e', 'w', 's', or 'c' to the class numeral. The subclass "e" indicates that the main hazard is risk of erosion, "w" indicates drainage or wetness as a limitation for plant growth, "s" indicates shallow soil depth, coarse or heavy textures, calcareousness, salinity/alkalinity or gravelliness and "c" indicates limitation due to climate.

The land capability subclasses have been further subdivided into land capability units based on the kinds of limitations present in each subclass. Ten land capability units are used in grouping the soil map units. They are stony or rocky (0), erosion hazard (slope, erosion) (1), coarse texture (sand, loamy sand, sandy loam) (2), fine texture (cracking clay, silty clay) (3), slowly permeable subsoil (4), coarse underlying material (5), salinity/alkali (6), stagnation, overflow, high ground water table (7), soil depth (8) and fertility problems (9). The capability units thus identified have similar soil and land characteristics that respond similarly to a given level of management. The soils of the microwatershed have been classified upto land capability subclass level.

The 18 soil map units identified in the Ranganahalli microwatershed are grouped under 2 land capability classes and 5 land capability subclasses. About 95 per cent in the microwatershed is suitable for agriculture and an area of about 5 percent is not suitable for agriculture (Fig. 5.1).

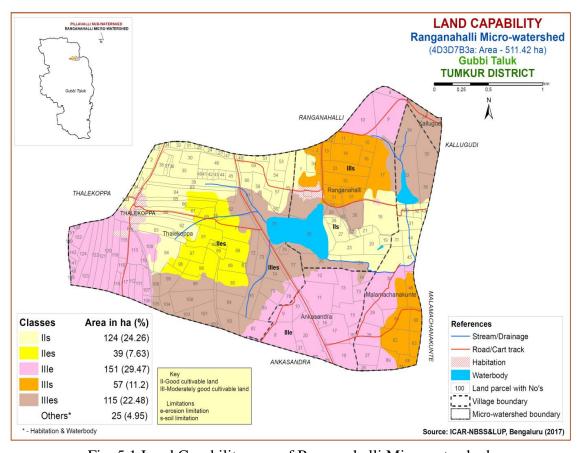


Fig. 5.1 Land Capability map of Ranganahalli Microwatershed

Good cultivable lands (Class II) cover maximum area of about 163 ha (32%) and are distributed in the northwestern, central and eastern part of the microwatershed with minor problem of soil and erosion. Moderately good cultivable lands (Class III) cover an area of about 323 ha (63%) and are distributed in major parts of the microwatershed with moderate problems of erosion and soil.

5.2 Soil Depth

Soil depth refers to the depth of the soil occurring above the parent material or hard rock. The depth of the soil determines the effective rooting depth for plants and in accordance with soil texture, mineralogy and gravel content, the capacity of the soil column to hold water and nutrient availability. Soil depth is one of the most important soil characteristic that is used in differentiating soils into different soil series. The soil depth classes used in identifying soils in the field are very shallow (<25 cm), shallow (25-50 cm), moderately shallow (50-75 cm), moderately deep (75-100 cm), deep (100-150 cm) and very deep (>150 cm). They were used to classify the soils into different depth classes and a soil depth map was generated. The area extent and their geographical distribution in the microwatershed are given in Fig. 5.2.

A very small area of about 6 ha (1%) is shallow (25-50 cm) and are distributed in the central part of the microwatershed. An area of about 30 ha (6%) is moderately shallow (50-75 cm) soils and occur in the northwestern part of the microwatershed. Moderately deep (75-100 cm) soils occupy an area of about 66 ha (13%) and are distributed in the northeastern and central part of the microwatershed. Deep (100-150 cm) soils occupy an area of 121 ha (24%) and are distributed in the southern part of the microwatershed. Very deep (>150 cm) soils cover maximum area of about 264 ha (52%) and are distributed in the western, northern and eastern part of the microwatershed.

The most productive lands 385 ha (75%) with respect to soil rooting depth where all climatically adapted annual and perennial crops can be grown are very deep (>150 cm depth) and deep (100-150 cm) occurring in the major part of the microwatershed.

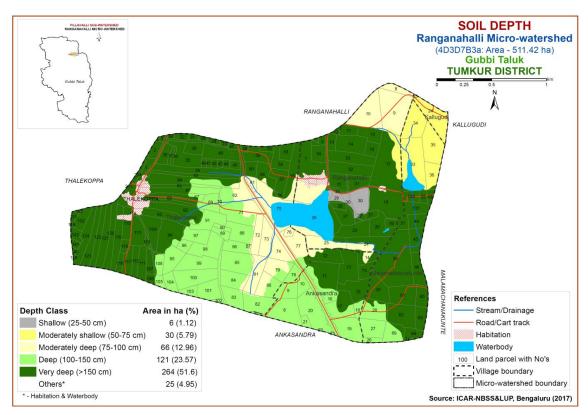


Fig. 5.2 Soil Depth map of Ranganahalli Microwatershed

5.3 Surface Soil Texture

Texture is an expression to indicate the coarseness or fineness of the soil as determined by the relative proportion of primary particles of sand, silt and clay. It has a direct bearing on the structure, porosity, adhesion and consistence. The surface layer of a soil to a depth of about 25 cm is the layer that is most used by crops and plants. The surface soil textural class provides a guide to understanding soil-water retention and availability, nutrient holding capacity, infiltration, workability, drainage, physical and chemical behaviour, microbial activity and crop suitability. The textural classes used for LRI were used to classify and a surface soil texture map was generated. The area extent and their geographical distribution in the microwatershed is shown in Figure 5.3.

Maximum area of about 393 ha (77%) has soils that are loamy soils. They are distributed in major parts of the microwatershed and an area of 93 ha (18%) has soils that are clayey at the surface and are distributed in the central and eastern part of the microwatershed (Fig. 5.3).

The most productive lands (18%) with respect to surface soil texture are the clayey soils that have high potential for soil-water retention and availability, and nutrient retention and availability, but have problems of drainage, infiltration, workability and other physical problems. The other most productive lands (77%) are loamy soils which also have high potential for AWC, nutrient availability but have no drainage or other physical problems.

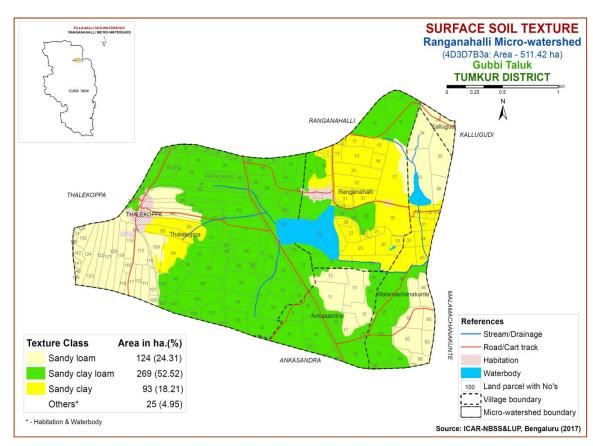


Fig. 5.3 Surface Soil Texture map of Ranganahalli Microwatershed

5.4 Soil Gravelliness

Gravel is the term used for describing coarse fragments between 2 mm and 7.5 cm diameter and stones for those between 7.5 cm and 25 cm. The presence of gravel and stones in soil reduces the volume of soil responsible for moisture and nutrient storage, drainage, infiltration and runoff, and hinders plant growth by impeding root growth and seedling emergence, intercultural operations and farm mechanization. The gravelliness classes used in LRI were used to classify the soils and using these classes a gravelliness map was generated. The area extent and their geographic distribution in the microwatershed is shown in Figure 5.4.

Maximum area of about 374 ha (73%) land covered with non gravelly (<15%) soils and occur in all parts of the microwatershed. An area of about 82 ha (16%) is gravelly (15-35%) and occur in the northeastern and eastern part of the microwatershed. An area of about 30 ha (6%) is covered with very gravelly (35-60%) and is distributed in the northeastern part of the microwatershed (Fig 5.4).

The problem soils (22%) that are gravelly to very gravelly (15-60%) where only short duration crops can be grown and are distributed in the northwestern part of the microwatershed.

The most productive soils (73%) that are non gravelly (<15%) and are distributed in all parts of the microwatershed where all climatically adopted crops can be grown.

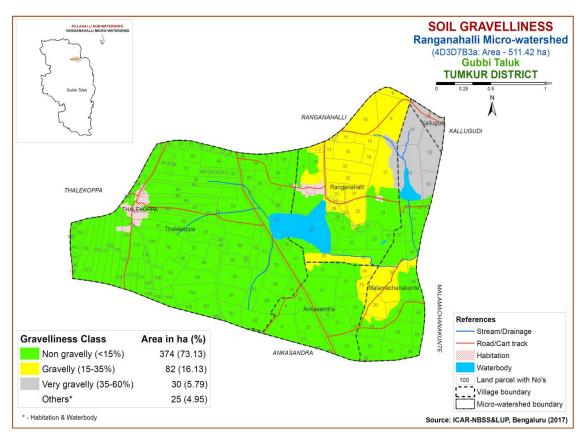


Fig. 5.4 Soil Gravelliness map of Ranganahalli Microwatershed

5.5 Available Water Capacity

The soil available water capacity (AWC) is estimated based on the ability of the soil column to retain water between the tensions of 0.33 and 15 bar in a depth of 100 cm or the entire solum if the soil is shallower. The AWC of the soils (soil series) as estimated by considering the soil texture, mineralogy, soil depth and gravel content (Sehgal *et al.*, 1990) and accordingly the soil map units were grouped into five AWC classes *viz*, very low (<50 mm/m), low (50-100 mm/m), medium (100-150 mm/m), high (150-200 mm/m) and very high (>200 mm/m) and using these values, an AWC map was generated. The area extent and their geographic distribution of different AWC classes in the microwatershed is given in Figure 5.5.

Very low (<50 mm/m) in available water capacity occupy an area of about 54 ha (11%) and are occur in the central part of the microwatershed. An area of about 135 ha (26%) that are low (51-100 mm/m) in available water capacity and are distributed in the northeastern, south-eastern and southwestern part of the microwatershed. An area of about 218 ha (43%) is medium (101-150 mm/m) in available water capacity and are distributed in the western, southern and northwestern part of the microwatershed. An area of 78 ha (15%) is very high (>200 mm/m) and are distributed in the northern and eastern part of the microwatershed.

About 189 ha (37%) area in the microwatershed has soils that are problematic with regard to available water capacity. Here, only short or medium duration crops can be grown and the probability of crop failure is very high. These areas are best put to other alternative uses.

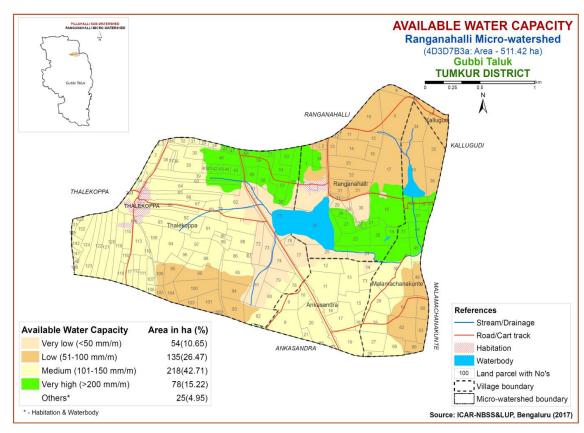


Fig. 5.5 Soil Available Water Capacity map of Ranganahalli Microwatershed

5.6 Soil Slope

Soil slope refers to the inclination of the surface of the land. It is defined by gradient, shape and length, and is an integral feature of any soil as a natural body. Slope is considered important in soil genesis, land use and land development. The length and gradient of slope influences the rate of runoff, infiltration, erosion and deposition. The soil map units were grouped into four slope classes and a slope map was generated showing the area extent and their geographic distribution in the microwatershed (Fig. 5.6).

Major area of about 434 ha (85%) falls under very gently sloping (1-3% slope) lands and is distributed in major parts of the microwatershed and an area of about 42 ha (8%) is under nearly level (0-1%) and distributed in the eastern part of the microwatershed. A very small area of about 10 ha (2%) is gently sloping (3-5%) and occur in the northeastern part of the microwatershed.

About 93 per cent area in the microwatershed has soils that have high potential in respect of soil slopes. In these areas, all climatically adapted annual and perennial crops can be grown without much soil and water conservation and other land development measures.

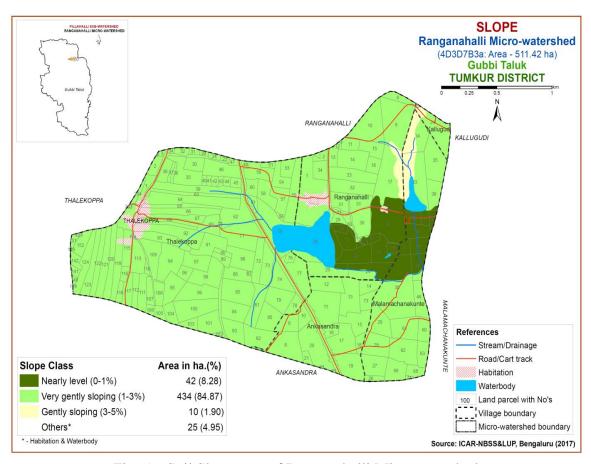


Fig. 5.6 Soil Slope map of Ranganahalli Microwatershed

5.7 Soil Erosion

Soil erosion refers to the wearing away of the earth's surface by the forces of water, wind and ice involving detachment and transport of soil by raindrop impact. It is used for accelerated soil erosion resulting from disturbance of the natural landscape by burning, excessive grazing and indiscriminate felling of forest trees and tillage, all usually by man. The erosion classes showing an estimate of the current erosion status as judged from field observations in the form of rills, gullies or a carpet of gravel on the surface are recorded. Four erosion classes, viz, slight erosion (e1), moderate erosion (e2), severe erosion (e3) and very severe erosion (e4) are recognized. The soil map units were grouped into different erosion classes and soil erosion map generated. The area extent and their spatial distribution in the microwatershed is given in Figure 5.7.

Soils that are moderately eroded (e2 class) cover maximum area of about 266 ha (52%) in the microwatershed. They are distributed in the western, southern, central and northeastern part of the microwatershed. Slightly eroded (e1 class) soils cover a maximum area of about 220 ha (43%) and are distributed in the northern, central and eastern part of the microwatershed.

An area of about 266 ha (52%) in the microwatershed is problematic because of moderate erosion. For these areas taking up soil and water conservation and other land development measures is needed.

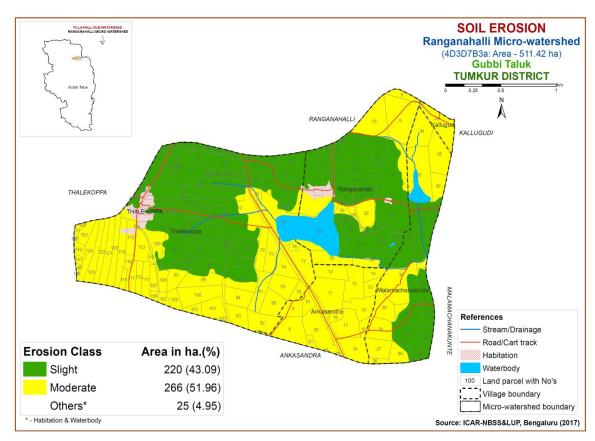


Fig. 5.7 Soil Erosion map of Ranganahalli Microwatershed

FERTILITY STATUS

Soil fertility plays an important role in increasing crop yield. The adoption of high yielding varieties that require high amounts of nutrients has resulted in deficiency symptoms in crops and plants due to imbalanced fertilization and poor inherent fertility status as the area is characterised by low rainfall and high temperatures. Hence, it is necessary to know the fertility (macro and micro nutrients) status of the soils of the watersheds for assessing the kind and amount of fertilizers required for each of the crop intended to be grown. For this purpose, the surface soil samples collected from the grid points (one soil sample at every 250 m interval) all over the microwatershed through land resource inventory in the year 2015 were analysed for pH, EC, organic carbon, available phosphorus and potassium, and for micronutrients like zinc, boron, copper, iron and manganese, and secondary nutrient sulphur.

Soil fertility data generated has been assessed and individual maps for all the nutrients for the microwatershed have been generated using Kriging method under GIS. The village/survey number wise fertility data for the microwatershed is given in Appendix-II.

6.1 Soil Reaction (pH)

The soil analysis of the Ranganahalli microwatershed for soil reaction (pH) showed that an area of about 79 ha (15%) is moderately acidic (pH 5.5-6.0) and are distributed in the south-eastern, western and northeastern part of the microwatershed. An area of 44 ha (8%) is strongly acid (pH 5.0-5.5) and are distributed in the south-eastern part of microwatershed. An area of 103 ha (20%) is slightly acid (pH 6.0-6.5) and are distributed in the southwestern, northeastern and south-eastern part of the microwatershed and neutral (pH 6.5-7.3) occupy maximum area of about 225 ha (44%) and are distributed in the western, northern, central and eastern part of the microwatershed (Fig.6.1).

6.2 Electrical Conductivity (EC)

The Electrical Conductivity of the soils of the entire microwatershed area is <2 dSm⁻¹ (Fig 6.2) and as such the soils and are non-saline.

6.3 Organic Carbon

The soil organic carbon (an index of available Nitrogen) content in the microwatershed is low (<0.5%) covering a maximum area of about 341 ha (67%) and is distributed in all parts of the microwatershed and medium (0.5-0.75%) in an area of about 142 ha (28%) area and are distributed in the northern and southern part of the microwatershed. A very small area of about 3 ha (<1%) is high in organic carbon and occurring in the northern part of the microwatershed (Fig.6.3).

6.4 Available Phosphorus

Available phosphorus content is high (>57 kg/ha) in an area of about 154 ha (30%) and are distributed in the southwestern, central and eastern part of the microwatershed. Maximum area of about 333 ha (65%) is medium (23-57 kg/ha) in available phosphorous and occurs in the major part of the microwatershed (Fig 6.4).

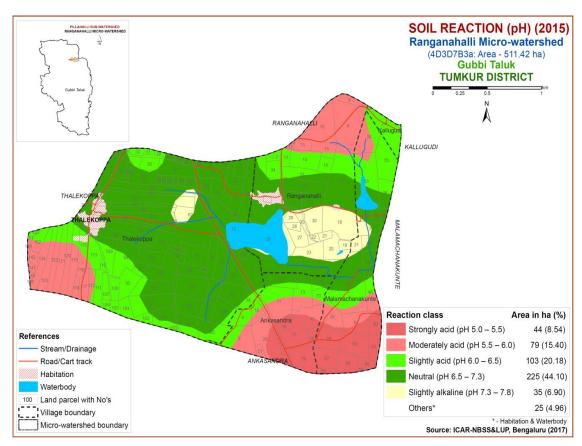


Fig.6.1 Soil Reaction (pH) map of Ranganahalli Microwatershed

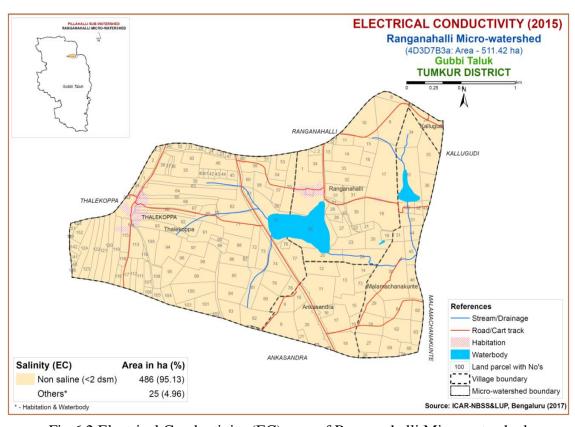


Fig. 6.2 Electrical Conductivity (EC) map of Ranganahalli Microwatershed

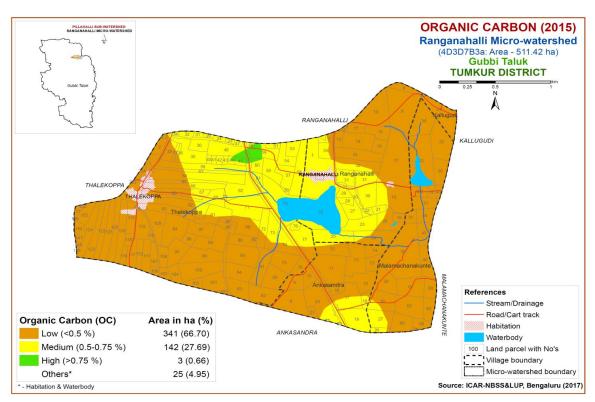


Fig. 6.3 Soil Organic Carbon map of Ranganahalli Microwatershed

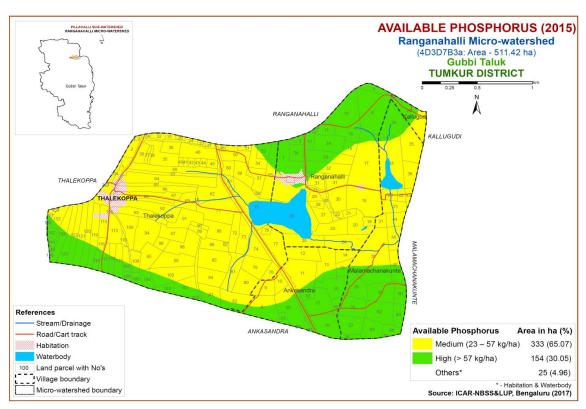


Fig. 6.4 Soil Available Phosphorus map of Ranganahalli Microwatershed

6.5 Available Potassium

Available potassium content is medium (145-337 kg/ha) in maximum area of about 262 ha (51%) and is distributed in the southwestern, northeastern and eastern part

of the microwatershed (Fig.6.5). An area of about 41 ha (8%) is low in available potassium (< 145 kg/ha) and is distributed in the western and south-eastern part of the microwatershed. High available potassium (>337 kg/ ha) occupy an area of about 183 ha (36%) and is distributed in the northwestern and central part of the microwatershed.

6.6 Available Sulphur

Available sulphur content is medium (10-20 ppm) in the entire area of the microwatershed (Fig.6.6).

6.7 Available Boron

Available boron content is medium (0.5-1.0 ppm) in an area of 96 ha (19%) and is distributed in the northwestern and eastern part of the microwatershed. Maximum area of about 390 ha (76%) is low (<0.5 ppm) in available boron and is distributed in all parts of the microwatershed (Fig.6.7).

6.8 Available Iron

Available iron content is sufficient (>4.5 ppm) in entire area in the microwatershed (Fig 6.8).

6.9 Available Manganese

Available manganese content is sufficient (>1.0 ppm) in the entire microwatershed area (Fig 6.9).

6.10 Available Copper

Available copper content is sufficient (>0.2 ppm) in the entire microwatershed area (Fig 6.10).

6.11 Available Zinc

Available zinc content is deficient (<0.6 ppm) in maximum area of 315 ha (61%) and are distributed in the major part of the microwatershed and an area of 171 ha (33%) is sufficient (>0.6 ppm) and are distributed in the northern and central part of the microwatershed (Fig 6.11).

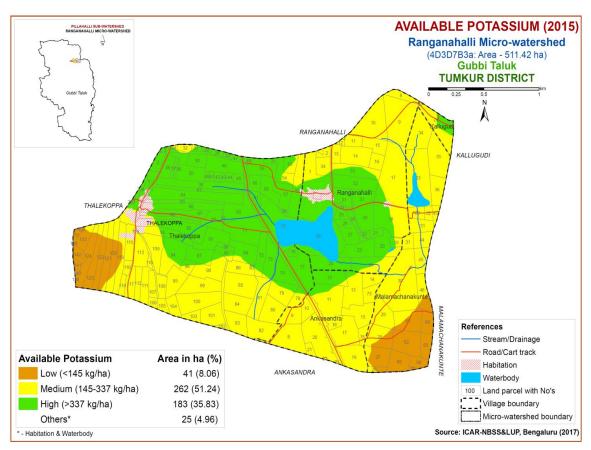


Fig. 6.5 Soil Available Potassium map of Ranganahalli Microwatershed

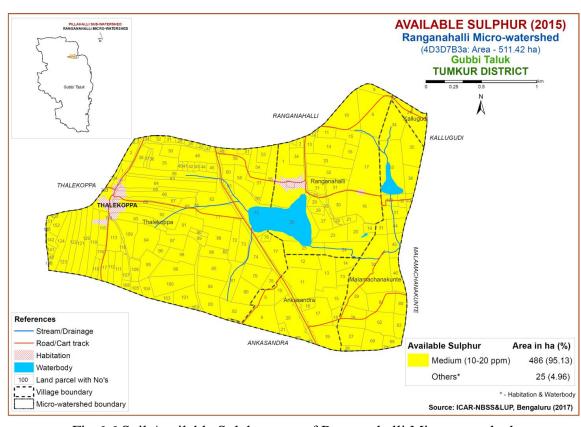


Fig. 6.6 Soil Available Sulphur map of Ranganahalli Microwatershed

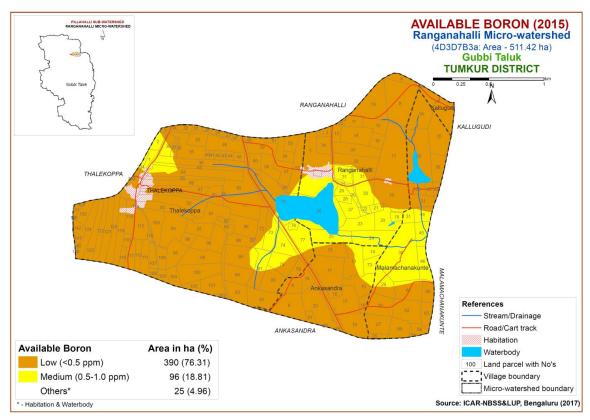


Fig. 6.7 Soil Available Boron map of Ranganahalli Microwatershed

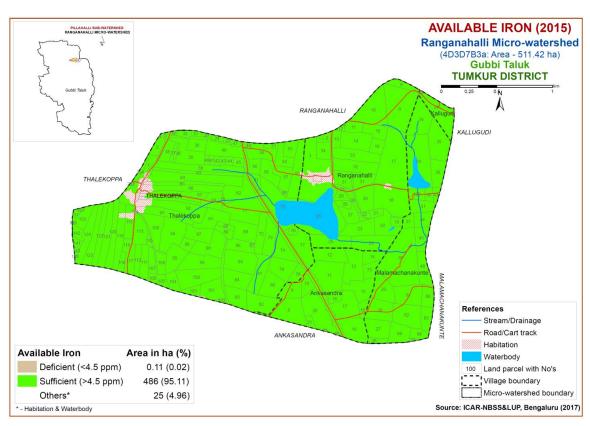


Fig. 6.8 Soil Available Iron map of Ranganahalli Microwatershed

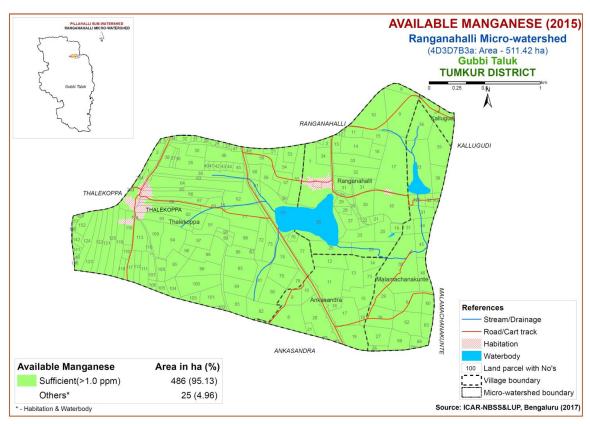


Fig. 6.9 Soil Available Manganese map of Ranganahalli Microwatershed

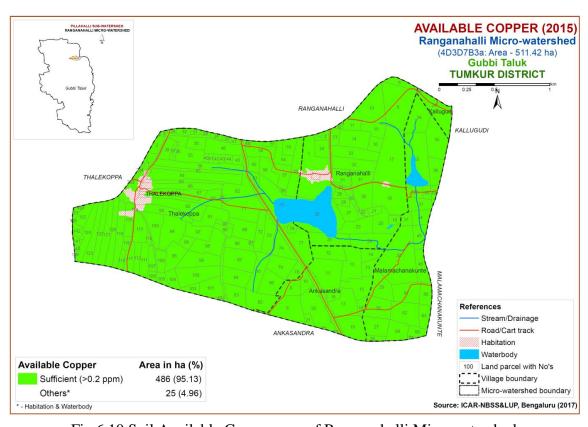


Fig.6.10 Soil Available Copper map of Ranganahalli Microwatershed

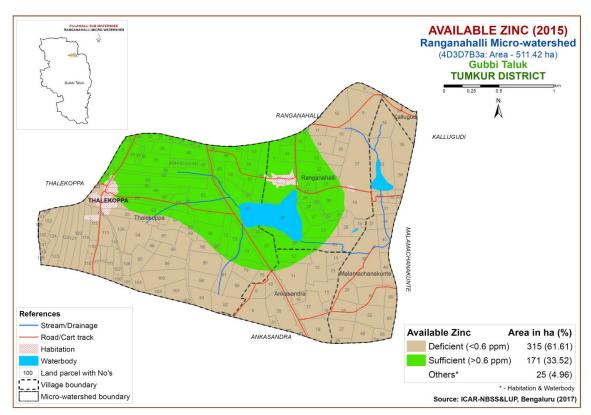


Fig.6.11 Soil Available Zinc map of Ranganahalli Microwatershed

LAND SUITABILITY FOR MAJOR CROPS

The soil and land resource units (soil phases) of Ranganahalli microwatershed were assessed for their suitability for growing food, fodder, fibre and other horticulture crops by following the procedure as outlined in FAO, 1976 and 1983. Crop requirements were developed for each of the crop from the available research data and also by referring to Naidu et. al. (2006) and Natarajan et. al (2015). The crop requirements were matched with the soil and land characteristics (Table 7.1) to arrive at the crop suitability. In FAO land suitability classification, two orders are recognized. Order S- Suitable and Order N-Not suitable. The orders have Classes, subclasses and units. Order-S has three classes, Class S1- Highly Suitable, Class S2- Moderately Suitable and Class S3- Marginally Suitable. Order N has two classes, N1- Currently not Suitable and N2- Permanently not Suitable. There are no subclasses within the Class S1 as they will have very minor or no limitations for crop growth. Classes S2 and S3 are divided into subclasses based on the kinds of limitations encountered. The limitations that affect crop production are 'c' for erratic rainfall and its distribution and length of growing period (LGP), 'e' for erosion hazard, 'r' for rooting condition, 't' for lighter or heavy texture, 'g' for gravelliness or stoniness, 'n' for nutrient availability, 'l' for topography, 'm' for moisture availability, 'w' for drainage and 'z' for calcareousness. These limitations are indicated as lower case letters to the class symbol. For example, moderately suitable land with the limitations of soil depth and erosion is designated as S2re. For the microwatershed, the soil mapping units were evaluated and classified up to subclass level.

Using the above criteria, the soil map units of the microwatershed were evaluated and land suitability maps for 34 major annual and perennial crops were generated. The detailed information on the kind of suitability of each of the soil phase for the crops assessed are given village/ survey number wise for the microwatershed in Appendix-III.

7.1 Land Suitability for Sorghum (Sorghum bicolor)

Sorghum is one of the major crops grown in Karnataka in an area of 10.47 lakh ha in Bijapur, Gulbarga, Raichur, Bidar, Belgaum, Dharwad, Bellary, Chitradurga, Mysore and Tumakuru districts. The crop requirements for growing sorghum (Table 7.2) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure. 7.1.

An area of about 314 ha (61%) is highly suitable (Class S1) for growing sorghum and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 30 ha (6%) for growing sorghum and are distributed in the northeastern part the microwatershed.

Table 7.1 Soil-Site Characteristics of Ranganahalli Microwatershed

Soil Map Units	Climate	Growing	Growing Drainage	Soil	Soil	texture	Gra	velliness	AWC	Slope (%) Erosi	ono			ESP	[Cmol	BS
	' ' -	period	Class	depth	Sur-	Sub-		Subsurface	(mm/m)		Erosion	pН	EC			(%)
	(mm)	(Days)		(cm)	face	surface	(%)	(%)		1 1					(p ⁺)kg ⁻¹]	
CSRhB2g1	813	150	WD	25-50	scl	scl	15-35	<15	50-100	1-3	moderate					
KGHcB2g2	813	150	WD	50-75	sl	scl	35-60	15-35	100-150	1-3	moderate					
KGHcC2g2	813	150	WD	50-75	sl	scl	35-60	15-35	100-150	3-5	moderate					
CKMhB2g1	813	150	WD	75-100	scl	sc	15-35	-	100-150	1-3	moderate					
BDGhB2	813	150	WD	75-100	scl	scl-sc	-	35-60	< 50	1-3	moderate					
BDGhB2g1	813	150	WD	75-100	scl	scl-sc	15-35	35-60	< 50	1-3	moderate					
MNLhB2	813	150	WD	100-150	scl	sc-scl	-	15-35	100-150	1-3	moderate					
JDGhB1	813	150	WD	100-150	scl	sc-c	-	<15	>200	1-3	slight					
BPRhB2	813	150	WD	100-150	sl	sc-c	-	>35	100-150	1-3	moderate					
HLKcB2	813	150	WD	>150	sl	c	-	<15	150-200	1-3	moderate					
HLKhB2g1	813	150	WD	>150	scl	c	15-35	<15	150-200	1-3	moderate					
RTRcB1	813	150	WD	>150	sl	c	-	-	150-200	1-3	slight					
RTRhB1	813	150	WD	>150	scl	c	-	-	150-200	1-3	slight					
RTRiB1	813	150	WD	>150	sc	c	-	-	150-200	1-3	slight					
NDLcB1	813	150	WD	>150	sl	sc	-	>35		1-3	slight					
NDLiB1g1	813	150	WD	>150	sc	sc	15-35	>35		1-3	slight					
KDThB1	813	150	MWD	>150	scl	sc-c	-	-	>200	1-3	slight					
KDTiA1	813	150	MWD	>150	sc	sc-c	-	_	>200	0-1	slight					

^{*}Symbols and abbreviations are according to Field Guide for LRI under Sujala-III Project, Karnataka

They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable lands (Class S3) for growing sorghum occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

Table 7.2 Crop suitability criteria for Sorghum

Crop require	ment	Rating						
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	2-3	3-8	8-15	>15			
LGP	Days	120-150	120-90	<90				
Soil drainage	Class	Well to mod. Well drained	impertect	Poorly/excessively	V.poorly			
Soil reaction	рН	6.0-8.0	5.5-5.9 8.1-8.5	<5.5 8.6-9.0	>9.0			
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	Sl, ls	S, fragmental skeletal			
Soil depth	Cm	100-75	50-75	30-50	<30			
Gravel content	% vol.	5-15	15-30	30-60	>60			
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10			
Sodicity (ESP)	%	5-8	8-10	10-15	>15			

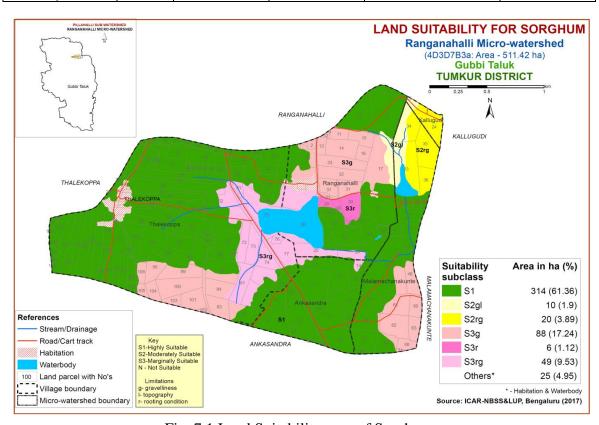


Fig. 7.1 Land Suitability map of Sorghum

7.2 Land Suitability for Fodder (Sorghum bicolor)

Fodder Sorghum is one of the major fodder crops grown in Southern Karnataka in Tumakuru, Chikkaballapur, Mysore, Mandya, Bengaluru Rural and Kolar districts. The crop requirements for growing Fodder sorghum (Table 7.3) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing sorghum was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.2.

Highly suitable (Class S1) lands for growing fodder sorghum occupies an area of about 314 ha (61%) is and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 30 ha (6%) is for growing fodder sorghum and are distributed in the northeastern part the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable lands (Class S3) for growing fodder sorghum occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

Table 7.3 Crop suitability criteria for Fodder Sorghum

Crop requiren	nent	Rating						
Soil –site characteristics	I nif		Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	2-3	3-8	8-15	>15			
LGP	Days	120-150	120-90	<90				
Soil drainage	Class	Well to mod. Well drained	impertect	Poorly/excessively	V.poorly			
Soil reaction	рН	6.0-8.0	5.5-5.9 8.1-8.5	<5.5 8.6-9.0	>9.0			
Surface soil texture	Class	C, cl, sicl, sc	l, sil, sic	Sl, ls	S, fragmental skeletal			
Soil depth	Cm	100-75	50-75	30-50	<30			
Gravel content	% vol.	5-15	15-30	30-60	>60			
Salinity (EC)	dSm ⁻¹	2-4	4-8	8-10	>10			
Sodicity (ESP)	%	5-8	8-10	10-15	>15			

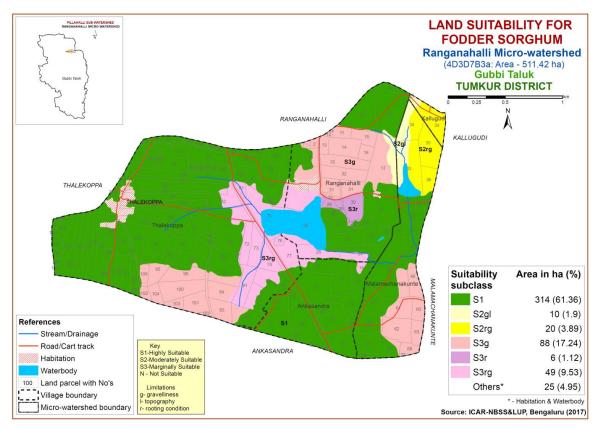


Fig. 7.2 Land Suitability map of Fodder Sorghum

7.3 Land Suitability for Maize (Zea mays)

Maize is the most important food crop grown in an area of 13.37 lakh ha in almost all the districts of the State. The crop requirements for growing maize (Table 7.4) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing maize was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.3.

Table 7.4 Crop suitability criteria for Maize

Crop requirer	nent	Rating						
Soil-site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Slope	%	<3	3.5	5-8				
LGP	Days	>100	100-80	60-80				
Soil drainage	Class	Well drained	Mod. to imperfectly	Poorly/excessively	V.poorly			
Soil reaction	pН	5.5-7.5	7.6-8.5	8.6-9.0				
Surface soil texture	Class	l, cl, scl, sil	Sl, sicl, sic	C(s-s), ls	S,fragmental			
Soil depth	Cm	>75	50-75	25-50	<25			
Gravel content	% vol.	<15	15-35	35-50	>50			
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	2.0-4.0				
Sodicity (ESP)	%	<10	10-15	>15				

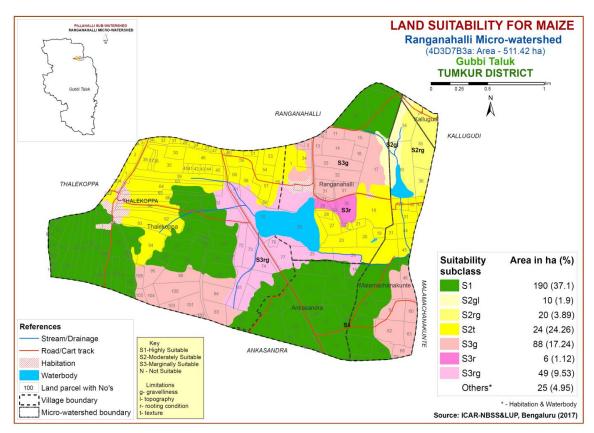


Fig. 7.3 Land Suitability map of Maize

Highly suitable lands occupy maximum area of about 190 ha (37%) and are distributed in the northern, western, central and south-eastern part of the microwatershed. An area of about 153 ha (30%) is moderately suitable (Class S2) for growing maize and are distributed in the northwestern and northeastern part the microwatershed. They have minor limitations gravelliness, topography, rooting depth and texture. Marginally suitable (Class S3) for growing maize occupy an area of about 143 ha (28%) and occurs in the southwestern, central and northern parts of the microwatershed with moderate limitations of gravelliness and rooting depth.

7.4 Land Suitability for Upland Paddy (Oryaza Sativa)

Upland paddy is the most important food crop grown in many district of the State under rain fed conditions. The crop requirements for growing Upland paddy (Table 7.5) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Upland paddy was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.4.

Highly suitable (Class S1) for growing upland paddy occupy major area of about 314 ha (61%) is and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 79 ha (11%) and are distributed in the northeastern and central part the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 94 ha (18%) and occur in the northern, southwestern and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

Table 7.5 Land suitability criteria for Upland paddy

Crop requiren	nent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	1-3	1-3	3-5	>5		
Soil drainage	class	Well to mod.	poorly	Very poorly			
Soil reaction	pН	5.5-6.5	6.5-7.3,4.5-5.4	7.3-8.4	>8.4		
Surface soil texture	Class	C, sic, cl, sicl, sc	Scl, sil, l	Sl, ls	S		
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<15	15-35	35-60	60-80		

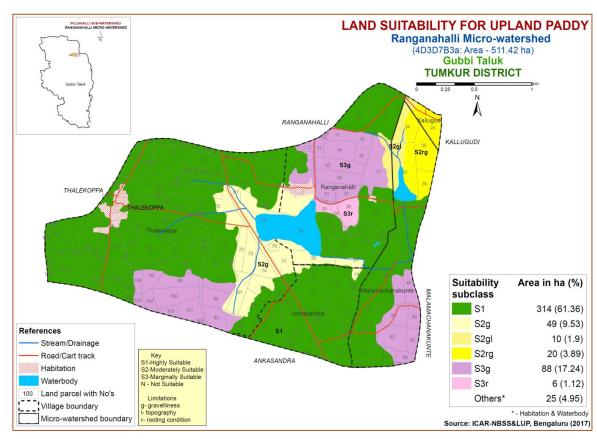


Fig. 7.4 Land Suitability map of Upland paddy

7.5 Land Suitability for Finger millet (*Eleusine Coracana*)

Finger millet is the most important food crop grown in an area of 7.08 lakh ha in almost all the districts of south Karnataka. The crop requirements for growing Finger millet (Table 7.6) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Finger millet was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.5.

Table 7.6 Land suitability criteria for Finger millet

Crop requiren	nent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>110	90-110	60-90	<60		
Soil drainage	class	Well to mod. drained	Imperfectly drained	Poorly/excessively	V.poorly		
Soil reaction	pН	5.5-7.3	7.3-8.4	8.4-9.0	>9.0		
Surface soil texture	Class	l, sil, sl, cl, sicl, scl	sic, c, sc	ls, s,c >60%			
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<15	15-35	35-60	>60		
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0			
Sodicity (ESP)	%	<10	10-15	15-25	>25		

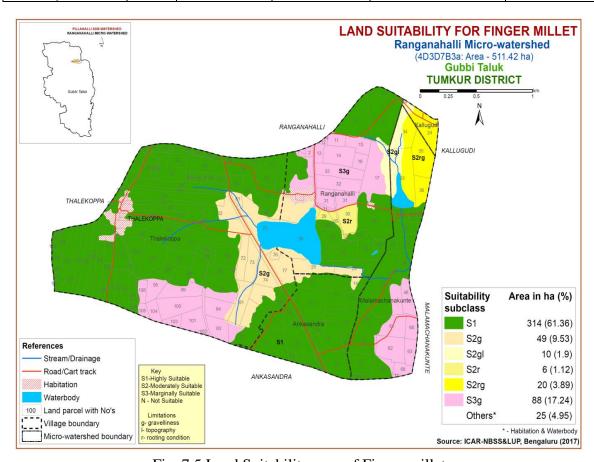


Fig. 7.5 Land Suitability map of Finger millet

An area of about 314 ha (61%) is highly suitable (Class S1) for growing finger millet and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 85 ha (16%) and are distributed in the northeastern and central part the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 88 ha (17%) and occur in the northern, southwestern and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

7.6 Land suitability criteria for Red gram (Cajanus cajan)

Red gram is the most important food crop grown in an area of 8.23 lakh ha in almost all the districts of the State. The crop requirements for growing red gram (Table 7.7) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing red gram was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.6.

Crop require	ment	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>210	180-210	150-180	<150		
Soil drainage	Class	Well	Mod. well	Imperfectly	Poorly		
Son dramage	Class	drained	drained	drained	drained		
Soil reaction	pН	6.5-7.5	5.0-6.5,7.6-8.0	8.0-9.0	>9.0		
Sub Surface soil	Class	l, scl, sil, cl,	sicl, sic,	ls			
texture	Ciass	sl	c(m)	18			
Soil depth	Cm	>100	75-100	50-75	< 50		
Gravel content	% vol.	<15	15-35	3-60	>60		
Salinity (EC)	dsm ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	>15			

Table 7.7 Land suitability criteria for Red gram

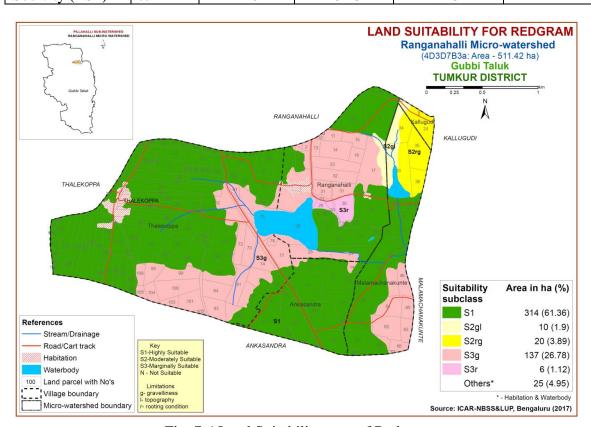


Fig. 7.6 Land Suitability map of Red gram

An area of about 314 ha (61%) is highly suitable (Class S1) for growing red gram and are distributed in all parts of the microwatershed. Moderately suitable (Class S2)

lands occupy an area of about 30 ha (6%) is for growing red gram and are distributed in the northeastern part of the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

7.7 Land suitability for Horse gram (*Macrotyloma uniflorum*)

Horse gram is the most important pulse crop grown in an area of 1.8 lakh ha in almost all the districts of the State. The crop requirements for growing horse gram were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing horse gram (Table 7.8) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.7.

Major area of about 334 ha (65%) is highly suitable (Class S1) for growing horse gram and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 147 ha (29%) for growing horse gram and are distributed in the southwestern, south-eastern and northern part of the microwatershed with minor limitations of gravelliness and topography. A very small area of about 6 ha (1%) is marginally suitable (Class S3) and is distributed in the small patches in central and western part of the microwatershed and moderate limitation of rooting depth.

Table 7.8 Land suitability criteria for Horse gram

Crop requirer	nent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days						
Soil drainage	Class	Well drained/ mod.welldrained	imperfectly drained	Poorly drained	V.Poorly drained		
Soil reaction	pН	6.0-8.5	8.5-9.0,5.5-5.9	9.1-9.5,5.0-5.4	>9.5		
Surface soil texture	Class	l, sl, scl, cl, sc	Ls, sic, sicl, c, ls	Heavy clays (>60%)	-		
Soil depth	Cm	50-75	25-50	<25	-		
CaCO ₃ in root zone	% vol.	<15	15-25	25-30	>30		
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	>15	-		

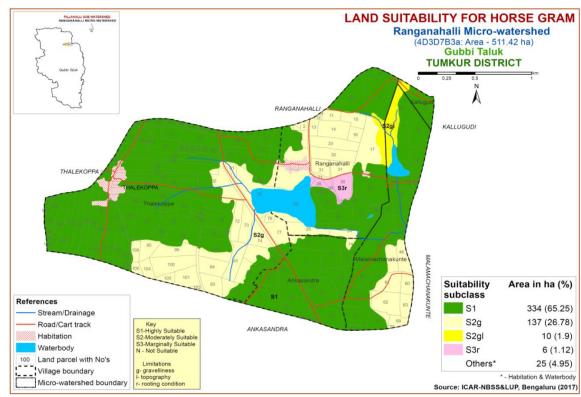


Fig. 7.7 Land Suitability map of Horse gram

7.8 Land suitability for Field Bean (Dolichos lablab)

Field Bean is the most important pulse crop grown in an area of 0.68 lakh ha in almost all the districts of the State. The crop requirements (Table 7.9) for growing field bean were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing field bean was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Fig. 7.8.

Table 7.9 Land suitability criteria for Field Bean

Crop requirem	ent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>120	90-120	70-90	< 70		
Soil drainage	Class	Well drained/ mod.Well drained	imperfectly drained	Poorly drained	V.Poorly drained		
Soil reaction	pН	6.0-8.5	8.5-9.0 5.5-5.9	9.1-9.5 5.0-5.4	>9.5		
Sub Surface soil texture	Class	l, sl, scl, cl, sc	sic, sicl, c	Heavy clays (>60%), ls	S		
Soil depth	Cm	>75	50-75	25-50	<25		
CaCO ₃ in root zone	% vol.	<15	15-35	35-50	>50		
Salinity (EC)	dsm ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	15-20	>20		

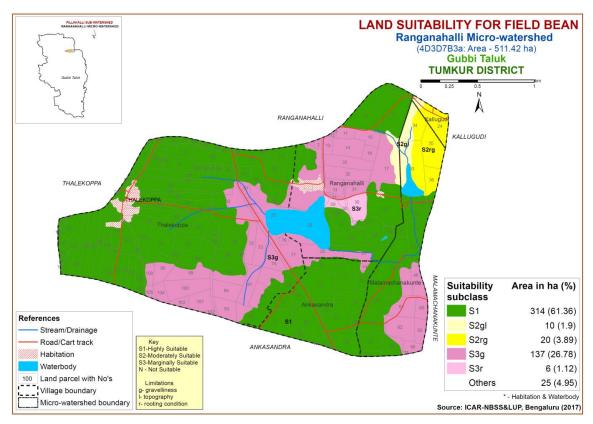


Fig. 7.8 Land Suitability map of Field bean

An area of about 314 ha (61%) is highly suitable (Class S1) for growing field bean and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 30 ha (6%) is for growing field bean and are distributed in the northeastern part of the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

7. 9 Land Suitability for Cowpea (Vigna radiata)

Cowpea is the most important pulse crop grown in an area of 0.80 lakh ha in almost all the districts of the State. The crop requirements for growing field bean were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cowpea was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Fig. 7.9.

An area of about 314 ha (61%) is highly suitable (Class S1) for growing cowpea and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 30 ha (6%) and are distributed in the northeastern part the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

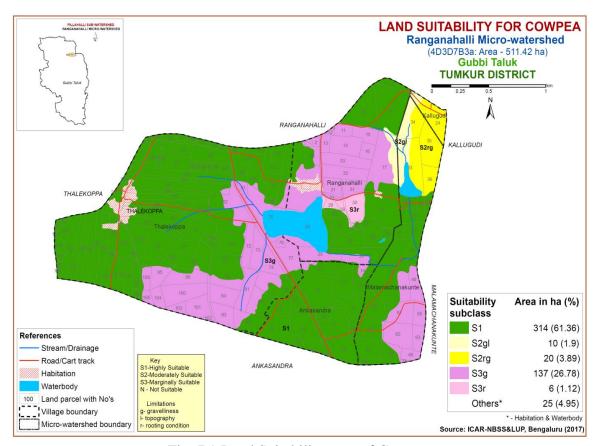


Fig. 7.9 Land Suitability map of Cowpea

7.10 Land Suitability for Groundnut (*Arachis hypogaea*)

Groundnut is one of the major oilseed crop grown in an area of 6.54 lakh ha in Karnataka in most of the districts either as rain fed or irrigated crop. The crop requirements for growing groundnut (Table 7.10) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and land suitability map for growing groundnut was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.10.

An area of about 107 ha (21%) is highly suitable (Class S1) for growing Groundnut and are distributed in the northeastern, southern and central part of the microwatershed. Maximum area of about 327 ha (67%) is moderately suitable (Class S2) for groundnut and are distributed in all parts of the microwatershed. They have minor limitations of gravelliness, topography and rooting depth and texture. Marginally suitable (Class S3) lands occupy an area of about 52 ha (10%) and are distributed in the northwestern and central part of the microwatershed with moderate limitations of rooting depth and texture.

Table 7.10 Crop suitability criteria for Groundnut

Crop require	ment	Rating					
Soil-site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	100-125	90-105	75-90			
Soil drainage	Class	Well drained	Mod. Well drained	Imperfectly drained	Poorly drained		
Soil reaction	pН	6.0-8.0	8.1-8.5,5.5-5.9	>8.5,<5.5			
Surface soil texture	Class	l, cl, sil, sc, sicl	Sc, sic, c,	S, ls, sl c (>60%)	S, fragmental		
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<35	35-50	>50			
CaCO ₃ in root zone	%	high	Medium	low			
Salinity (EC)	dSm ⁻¹	<2.0	2.0-4.0	4.0-8.0			
Sodicity (ESP)	%	<5	5-10	>10			

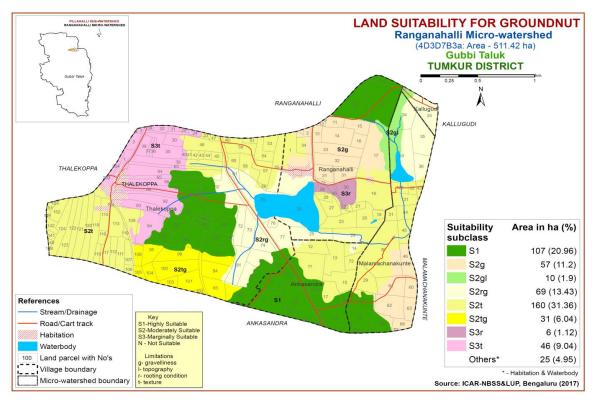


Fig. 7.10 Land Suitability map of Groundnut

7.11 Land Suitability for Sunflower (Helianthus annus)

Sunflower is the most important oilseed crop grown in an area of 3.56 lakh ha in the State in all the districts. The crop requirements for growing sunflower (Table 7.11) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sunflower was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.11.

Table 7.11 Crop suitability criteria for Sunflower

Crop requirer	nent	Rating					
Soil—site characteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Slope	%	<3	3-5	5-10	>10		
LGP	Days	>90	80-90	70-80	< 70		
Soil drainage	Class	Well drained	Mod. well rained	Imperfectly drained	Poorly drained		
Soil reaction	pН	6.5-8.0	8.1-8.55.5-6.4	8.6-9.0 4.5-5.4	>9.0<4.5		
Surface soil texture	Class	l, cl, sil, sc	Scl, sic, c,	c (>60%), sl	ls, s		
Soil depth	Cm	>100	75-100	50-75	< 50		
Gravel content	% vol.	<15	15-35	35-60	>60		
Salinity (EC)	dSm ⁻¹	<1.0	1.0-2.0	>2.0			
Sodicity (ESP)	%	<10	10-15	>15			

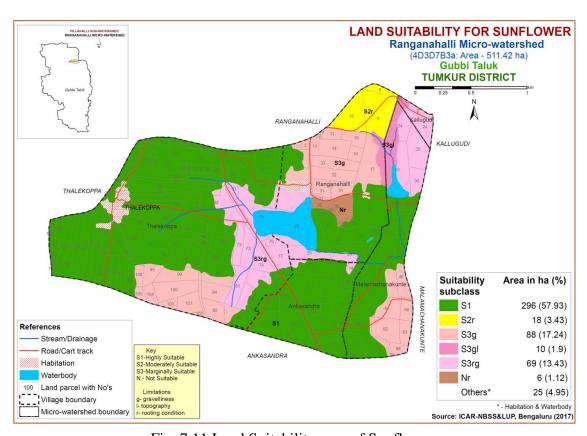


Fig. 7.11 Land Suitability map of Sunflower

Maximum area of about 296 ha (58%) is highly suitable (Class S1) for growing sunflower and are distributed in major part of the microwatershed. An area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the northern part the microwatershed with minor limitation of rooting depth. Marginally suitable lands (Class S3) for growing sunflower occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography. A very small area of

about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

7.12 Land Suitability for Onion (Allium cepa)

Onion is the most important vegetable crop grown in Raichur, Dharwad, Belgaum, Gulbarga, Bijapur, Bidar, Bellary, Chitradurga and Tumakuru districts. The crop requirements for growing onion (Table 7.12) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Onion was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.12.

Highly suitable (Class S1) lands occupy maximum area of about 236 ha (58%) and are distributed in the western, northern and southern part of the microwatershed. An area of about 108 ha (21%) has soils that are moderately suitable (Class S2) with minor limitations of gravelliness, rooting depth, texture and topography. They are distributed in the northern and northeastern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 143 ha (28%) and occur in the southwestern, southeastern and northern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

Table 7.12 Land suitability criteria for Onion

Crop requires	ment	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable (N)		
Mean temperature in growing season	0 c	20-30	30-35	35-40	>40		
Slope	%	<3	3-5	5-10	>10		
Soil drainage	Class	Well drained	Moderately /imperfectly	Poor drained	Very poorly drained		
Soil reaction	pН	6.5-7.3	7.3-7.8,5.0-5.4	7.8-8.4,<5.0	>8.4		
Surface soil texture	Class	Scl, sil, sl	sc,sicl,c(red soil)	sc,c(blacksoil)	ls		
Soil depth	Cm	>75	50-75	25-50	<25		
Gravel content	% vol.	<15	15-35	35-60	60-80		
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4		
Sodicity (ESP)	%	<5	5-10	10-15	>15		

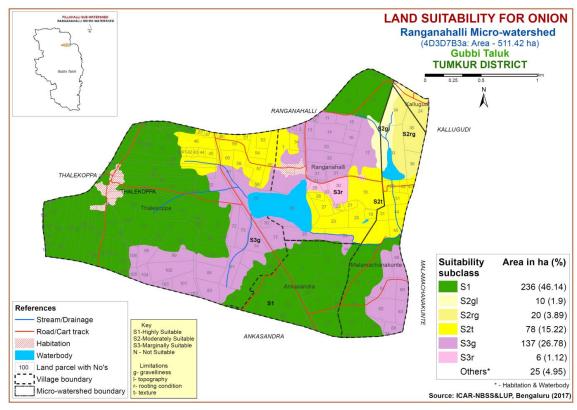


Fig. 7.12 Land Suitability map of Onion

7.13 Land Suitability for Chilli (Capscicum annuum L.)

Chilli is the most important commercial crop grown in an area of 0.42 lakh ha in the State in all the districts. The crop requirements for growing chilli (Table 7.13) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chilli was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.13.

Table 7.13 Land suitability criteria for chillies

Crop requires	quirement Rating				
Soil –site characteristics	Unit	Highly Moderate suitable(S1) Suitable(S		Marginally suitable(S3)	Not suitable(N)
Slope	%	<3	3-5	5-10	
LGP	Days	>150	120-150	90-120	<90
Soil drainage	class	Well	Mod. to imperf.	Poor	V.poorly
		drained	drained	drained/excessively	drained
Soil reaction	pН	6.0-7.0	7.1-8.0	8.1-9.0,5.0-5.9	>9.0
Surface soil	Class	L, scl, cl, sil	sl, sc,	C(ss), ls, s	
texture			sic,c(m/k)		
Soil depth	Cm	>75	50-75	25-50	<25
Gravel content	% vol.	<15	15-35	>35	
Salinity (ECe)	dsm ⁻¹	<1.0	1.0-2.0	2.0-4.0	<4
Sodicity (ESP)	%	<5	5-10	10-15	

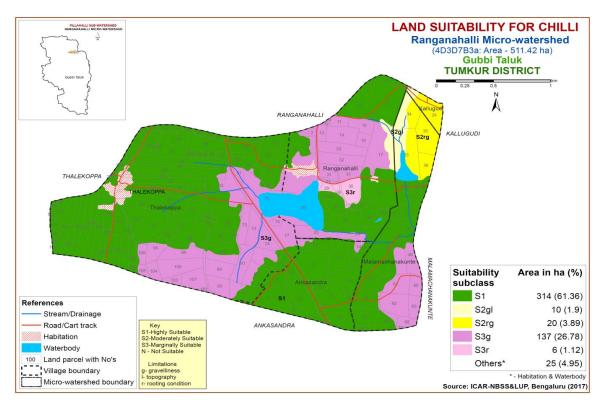


Fig. 7.13 Land Suitability map of Chilli

An area of about 314 ha (61%) is highly suitable (Class S1) for growing chilli and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 30 ha (6%) is for growing chilli and are distributed in the northeastern part the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

7.14 Land suitability for Brinjal (Solanum melongena)

Brinjal is the most important vegetable crop grown in all the districts. The crop requirements for growing Brinjal (Table 7.14) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Brinjal was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.14.

An area of about 314 ha (61%) is highly suitable (Class S1) for growing brinjal and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 30 ha (6%) and are distributed in the northeastern part the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

Table 7.14 Land suitability criteria for Brinjal

Crop	requiremen	t	Rating				
Soil -	-site	Unit	Highly	Moderately	Marginally	Not	
charact	eristics	Omt	suitable(S1)	Suitable(S2)	suitable(S3)	suitable(N)	
Soil	Soil	Class	Well	Moderately	Poorly	V. Poorly	
aeration	drainage	Class	drained	well drained	drained	drained	
Nutrient	Texture	Class	Sl, scl, cl, sc	C (red)	Ls, c (black)	-	
availability	pН	1:2.5	6.0-7.3	7.3-8.4,5.5-6.0	8.4-9.0	>9.0	
Dooting	Soil depth	Cm	>75	50-75	25-50	<25	
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60	
Erosion	Slope	%	0-3	3-5	5-10	>10	

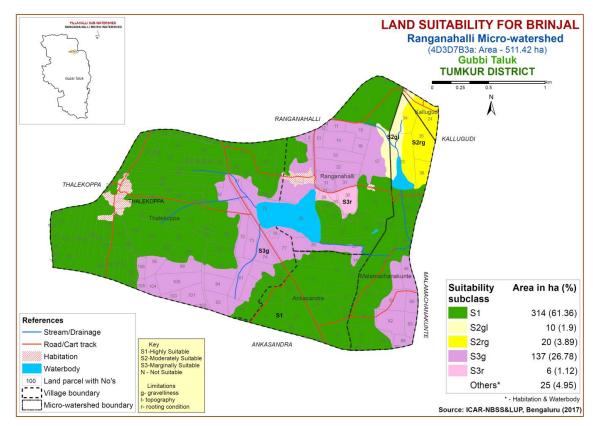


Fig. 7.14 Land Suitability map of Brinjal

7.15 Land suitability for Tomato (Lycopersicon esculentum)

Tomato is the most important vegetable crop grown in an area of 0.65 lakh ha in almost all the districts of the State. The crop requirements for growing Tomato (Table 7.15) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Tomato was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.15.

Table 7.15 Land suitability criteria for Tomato

Crop	requirement		Rating				
Soil –site cl	naracteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
climate	Femperature in growing season	⁰ c	25-28	29-32 20-24	15-19 33-36	<15 >36	
Soil moisture	Growing period	Days	>150	120-150	90-120		
Soil aeration	Soil drainage	class	Well drained	Moderately well drained	Poorly drained	V. poorly drained	
Nataiont	Texture	Class	l, sl, cl, scl	Sic, sicl, sc, c(m/k)	C (ss), ls	S	
Nutrient	pН	1:2.5	6.0-7.3	5.5-6.0,7.3-8.4	8.4-9.0	>9.0	
availability	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous		
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	ds/m	Non saline	slight	strongly		
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-	
Erosion	Slope	%	1-3	3-5	5-10	>10	

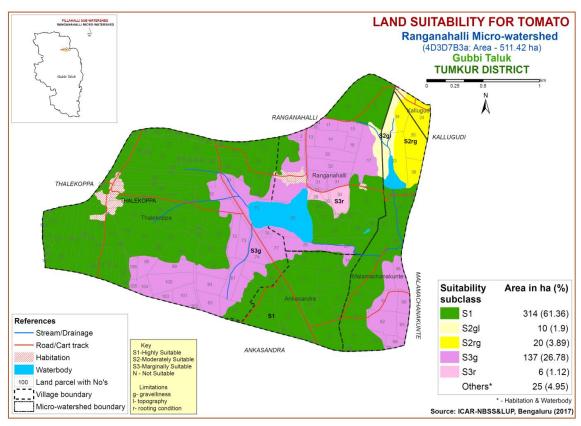


Fig. 7.15 Land Suitability map of Tomato

Highly suitable (Class S1) lands occupy an area of about 314 ha (61%) for growing tomato and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 30 ha (6%) and are distributed in the

northeastern part the microwatershed. They have minor limitations of gravelliness, topography and rooting depth. Marginally suitable (Class S3) lands occupy an area of about 143 ha (28%) and occur in the northern, southwestern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness and rooting depth.

7.16 Land suitability for Mango (Mangifera indica)

Mango is the most important fruit crop grown in about 1.73 lakh ha area in almost all the districts of the State. The crop requirements (Table 7.16) for growing mango were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mango was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed is given in Figure 7.16.

Table 7.16 Crop suitability criteria for Mango

Cro	p requirement		Rating				
	haracteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temp. in growing season	⁰ C	28-32	24-27 33-35	36-40	20-24	
	Min. temp. before flowering	0 C	10-15	15-22	>22		
Soil moisture	Growing period	Days	>180	150-180	120-150	<120	
Soil aeration	Soil drainage	Class	Well drained	Mod. To imperfectly drained	Poor drained	Very poorly drained	
	Water table	M	>3	2.50-3.0	2.5-1.5	<1.5	
	Texture	Class	Sc, l, sil, cl	Sl, sc, sic, l, c	C (<60%)	C (>60%),	
Nutrient	рН	1:2.5	5.5-7.5	7.6-8.55.0-5.4	8.6-9.0, 4.0-4.9	>9.0, <4.0	
availability	OC	%	High	medium	low		
	CaCO ₃ in root zone	%	Non calcareous	<5	5-10	>10	
Rooting	Soil depth	cm	>200	125-200	75-125	<75	
conditions	Gravel content	%vol	Non- gravelly	<15	15-35	>35	
Soil	Salinity	dS/m	Non saline	<2.0	2.0-3.0	>3.0	
toxicity	Sodicity	%	Non sodic	<10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

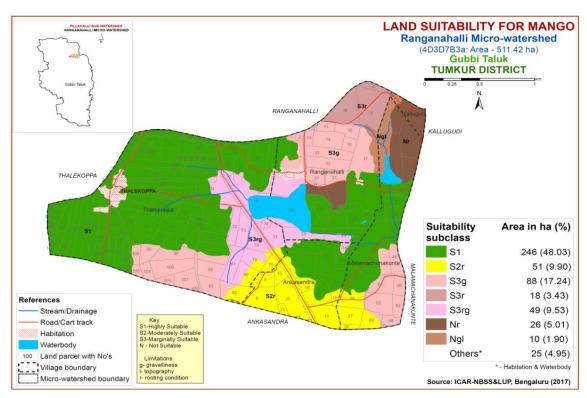


Fig. 7.16 Land Suitability map of Mango

Major area of about 246 ha (48%) in the microwatershed is highly suitable (Class S1) for growing mango and are distributed in the western, northwestern and eastern part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 51 ha (10%) and are distributed in the southern part the microwatershed. They have minor limitation of rooting depth. The marginally suitable (Class S3) lands occupy an area of about 155 ha (30%) and are distributed in the south-eastern, northern, northeastern and southwestern part of the microwatershed and they have moderate limitations of gravelliness and rooting depth. An area of about 36 ha (7%) is not suitable (Class N) and is distributed in the central and northeastern part of the microwatershed with severe limitations of rooting depth, gravelliness and topography.

7.17 Land suitability for Sapota (*Manilkara zapota*)

Sapota is the most important fruit crop grown in an area of 29373 ha in almost all the districts of the State. The crop requirements (Table 7.17) for growing sapota were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing sapota was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.17.

Maximum area of about 296 ha (58%) is highly suitable (Class S1) for growing sapota and are distributed in major part of the microwatershed. An area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the northern part the microwatershed with minor limitation of rooting depth.

Table 7.17 Crop suitability criteria for Sapota

Croj	p requirement		Rating			
Soil –site cl	haracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23	>42 <18
Soil moisture	Growing period	Days	>150	120-150	90-120	<120
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained
	Texture	Class	Scl, l, cl, sil	Sl, sicl, sc	C (<60%)	ls,s,C(>60%)
Nutrient	pН	1:2.5	6.0-7.5	7.6-8.0,5.0-5.9	8.1-9.0,4.5-4.9	>9.0,<4.5
availability	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15
Dooting	Soil depth	Cm	>150	75-150	50-75	< 50
Rooting conditions	Gravel content	% vol.	Non gravelly	<15	15-35	<35
Soil	Salinity	dS/m	Non saline	Up to 1.0	1.0-2.0	2.0-4.0
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25
Erosion	Slope	%	<3	3-5	5-10	>10

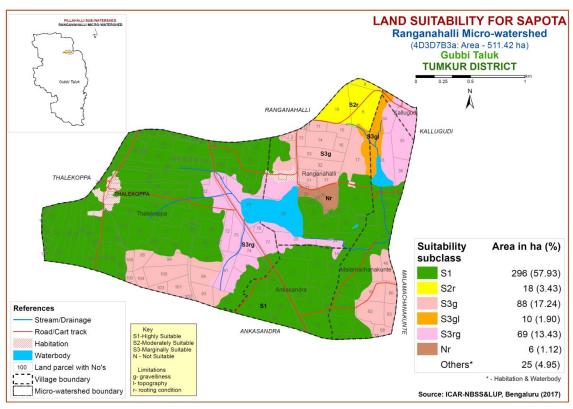


Fig. 7.18 Land Suitability map of Sapota

Marginally suitable lands (Class S3) for growing sapota occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography.

A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitations of rooting depth.

7.18 Land suitability for Guava (Psidium guajava)

Guava is the most important fruit crop grown in an area of 0.64 lakh ha in almost all the districts of the State. The crop requirements (Table 7.18) for growing guava were matched with the soil-site characteristics (7.1) and a land suitability map for growing guava was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.18.

An area of about 250 ha (49%) in the microwatershed is highly suitable (Class S1) for growing guava and are distributed in the western, northern, eastern and southern part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 95 ha (18%) and are distributed in the northwestern and southwestern part of the microwatershed and have minor limitations of gravelliness, rooting depth and texture. The marginally suitable (Class S3) lands cover an area of about 136 ha (26%) and are distributed in the south-eastern, northeastern and central part of the microwatershed with moderate limitations of gravelliness, rooting depth and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed with severe limitation of rooting depth.

Table 7.18 Crop suitability criteria for Guava

Cro	p requirement		Rating				
Soil –site c	haracteristics	Unit	Highly suitable(S1)	Moderately Suitable (S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	28-32	33-36 24-27	37-42 20-23		
Soil moisture	Growing period	Days	>150	120-150	90-120	<90	
Soil aeration	Soil drainage	Class	Well drained	Mod. to imperfectly	poor	Very poor	
	Texture	Class	Scl,l,cl,sil	Sl,sicl,sic.,sc,c	C (<60%)	C(>60%)	
Nutrient availability	рН	1:2.5	6.0-7.5	7.6-8.0 5.0-5.9	8.1-8.5 4.5-4.9	>8.5:<4.5	
availability	CaCO ₃ in root zone	%	Non calcareous	<10	10-15	>15	
Rooting	Soil depth	Cm	>100	75-100	50-75	< 50	
conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	dS/m	<2.0	2.0-4.0	4.0-6.0		
toxicity	Sodicity	%	Non sodic	10-15	15-25	>25	
Erosion	Slope	%	<3	3-5	5-10	>10	

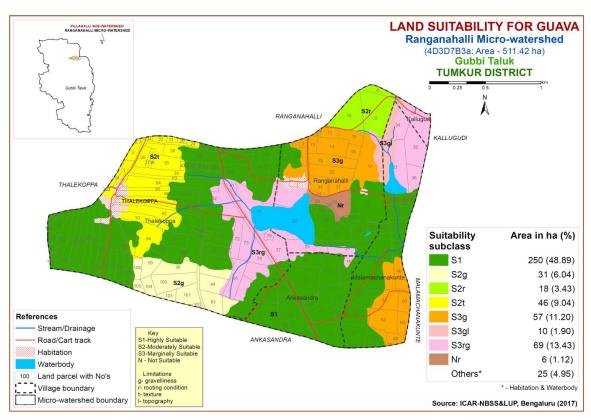


Fig. 7.18 Land Suitability map of Guava

7.19 Land Suitability for Pomegranate (*Punica granatum*)

Pomegranate is one of the commercially grown fruit crop in Karnataka in an area of 0.18 lakh ha mainly in Bijapur, Bagalkot, Koppal, Gadag and Chitradurga districts. The crop requirements for growing pomegranate (Table 7.19) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land suitability map for growing pomegranate was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.19.

Maximum area of about 296 ha (58%) is highly suitable (Class S1) for growing pomegranate and are distributed in major part of the microwatershed. An area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the northern part the microwatershed with minor limitation of rooting depth. Marginally suitable lands (Class S3) for growing pomegranate occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

Table 7.19 Crop suitability criteria for Pomegranate

Croj	p requirement		Rating				
Soil –site c	Soil –site characteristics		Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
LClimate	Temperature in growing season	- (30-34	35-38 25-29	39-40 15-24		
Soil moisture	Growing period	Days	>150	120-150	90-120	<90	
Soil aeration	Soil drainage	class	Well drained	imperfectly drained			
Nutrient availability	Texture	Class	Sl, scl, l, cl	C, sic, sicl	Cl, s, ls	S, fragmental	
Docting	pН	1:2.5	5.5-7.5	7.6-8.5	8.6-9.0		
Rooting conditions	Soil depth	Cm	>100	75-100	50-75	< 50	
Conditions	Gravel content	% vol.	nil	15-35	35-60	>60	
Soil	Salinity	dS/m	Nil	<9	>9	< 50	
toxicity	Sodicity	%	nil				
Erosion	Slope	%	<3	3-5	5-10		

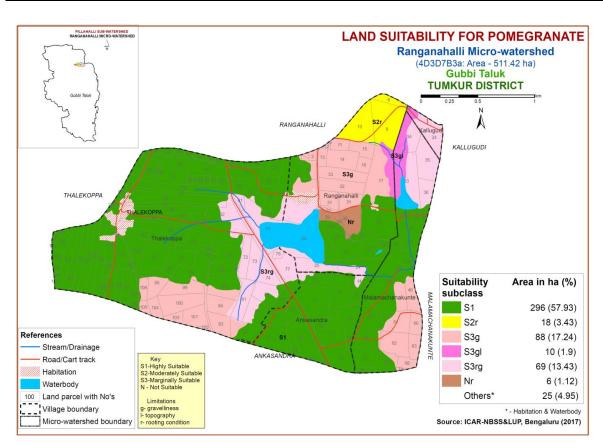


Fig. 7.19 Land Suitability map of Pomegranate

7.20 Land Suitability for Banana (Musa paradisiaca)

Banana is one of the major fruit crop grown in an area of 1.02 lakh ha in Karnataka State. The crop requirements for growing banana (Table 7.20) were matched with the soil-site characteristics (Table 7.1) of the soils of the microwatershed and a land

suitability map for growing banana was generated. The area extent and their geographic distribution of different suitability subclasses in the microwatershed are given in Figure 7.20.

Table 7.20 Crop suitability criteria for Banana

Cro	p requirement		Rating				
Soil –site c	Soil –site characteristics		Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	26-33	34-36 24-25	37-38	>38	
Soil aeration	Soil drainage	Class	Well drained	Moderately to imper.drained	-	V.poorly drained	
Nutrient availability	Texture	Class	l,cl, scl,sil	Sicl, sc, c(<45%)	C (>45%), sic, sl	ls, s	
availability	pН	1:2.5	6.5-7.0	7.1-8.5,5.5-6.4	>8.5,<5.5		
Rooting	Soil depth	Cm	>125	76-125	50-75	< 50	
conditions	Stoniness	%	<10	10-15	15-35	>35	
Soil	Salinity	dS/m	<1.0	1-2	>2		
toxicity	Sodicity	%	<5	5-10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-15	>15	

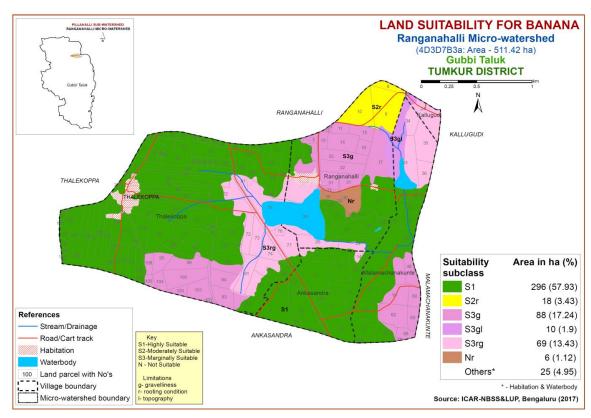


Fig. 7.20 Land Suitability map of Banana

Highly suitable (Class S1) lands occupy maximum area of about 296 ha (58%) for growing banana and are distributed in major part of the microwatershed. An area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the northern part the microwatershed with minor limitation of rooting depth. Marginally suitable lands (Class

S3) for growing banana occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

7.21 Land Suitability for Jack fruit (Artocarpus heterophyllus)

Jackfruit is the most important fruit crop grown in 5368 ha in all the districts of the state. The crop requirements for growing jackfruit were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jackfruit (Table 7.21) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.21.

Maximum area of about 296 ha (58%) is highly suitable (Class S1) for growing jack fruit and are distributed in major part of the microwatershed. An area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the northern part the microwatershed with minor limitation of rooting depth. Marginally suitable lands (Class S3) for growing jackfruit occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

Table 7.21 Land suitability criteria for Jackfruit

Crop	requiremen	t	Rating					
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Soil aeration	Soil drainage	class	well	Mod. well	Poorly	V. Poorly		
Nutrient	Texture	Class	Scl,cl,sc,c(red)	-	Sl,ls,c(black)	-		
availability	pН	1:2.5	5.5-7.3	5.0-5.5,7.3-7.8	7.8-8.4	>8.4		
Dooting	Soil depth	Cm	>100	75-100	50-75	< 50		
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60		
Erosion	Slope	%	0-3	3-5	>5	-		

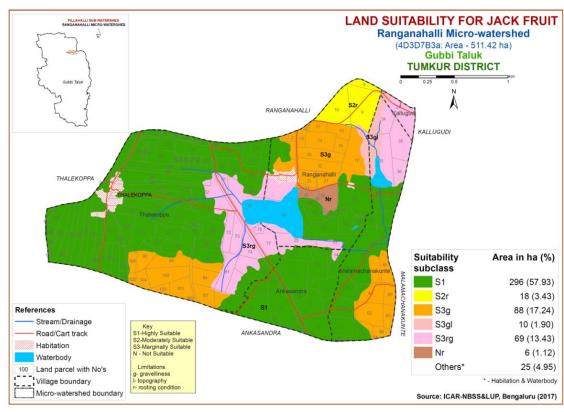


Fig. 7.21 Land Suitability map of Jackfruit

7.22 Land Suitability for Jamun (Syzygium cumini)

Jamun is an important fruit crop grown in almost all the districts of the State. The crop requirements for growing jamun were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing jamun (Table .22) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.22.

Table .22 Land suitability criter	ria for jamun
-----------------------------------	---------------

Crop	requiremen	t	Rating					
	Soil –site characteristics		Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)		
Soil aeration	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly		
Nutrient	Texture	Class	Scl,cl,sc,C(red)	Sl, C (black)	ls	-		
availability	pН	1:2.5	6.0-7.8	5.0-6.0	7.8-8.4	>8.4		
Docting	Soil depth	Cm	>150	100-150	50-100	< 50		
Rooting conditions	Gravel content	% vol.	<15	15-35	35-60	>60		
Erosion	Slope	%	0-3	3-5	5-10	>10		

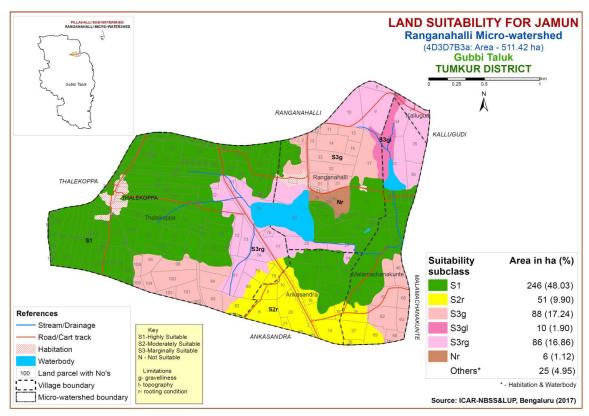


Fig. 7.22 Land Suitability map of Jamun

Major area of about 246 ha (48%) in the microwatershed is highly suitable (Class S1) for growing jamun and are distributed in the western, northwestern and eastern part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 51 ha (10%) and are distributed in the southern part the microwatershed. They have minor limitation of rooting depth. The marginally suitable (Class S3) lands for growing jamun occupy an area of about 184 ha (33%) and are distributed in the south-eastern, northeastern, central and south-eastern part of the microwatershed and have moderate limitations of gravelliness, topography and rooting depth. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed with severe limitation of rooting depth. They have severe limitation of rooting depth.

7.23 Land Suitability for Musambi (Citrus limetta)

Musambi is the most important fruit crop grown in an area of 5446 ha in almost all the districts of the state. The crop requirements (Table 7.23) for growing musambi were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing musambi was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.23.

Maximum area of about 296 ha (58%) is highly suitable (Class S1) for growing musambi and are distributed in major part of the microwatershed. An area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the northern part the microwatershed with minor limitation of rooting depth. Marginally suitable lands (Class

S3) for growing musambi occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

Crop requirement Rating Highly Soil -site Moderately Marginally Not Unit characteristics suitable(S1) suitable(S2) suitable(S3) suitable(N) Soil Soil Well Mod.to Very Class poorly aeration drainage drained imperf.drained poorly Texture Class Scl,l,sicl,cl,s Sc, sc, c C(>70%)S, ls Nutrient 4.0-5.4 <4.0 availability 1:2.5 6.0 - 7.55.5-6.47.6-8.0 pН 8.1-8.5 >8.5 >150 100-150 Soil depth 50-100 < 50 Cm Rooting Non Gravel % conditions 15-35 35-55 >55 content vol. gravelly 3-5 5-10 **Erosion** Slope % <3

Table 7.23 Crop suitability criteria for Musambi

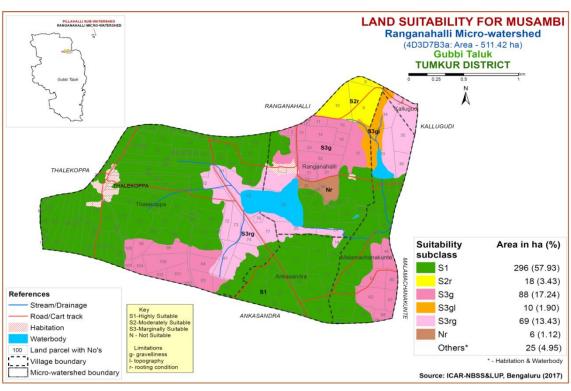


Fig. 7.23 Land Suitability map of Musambi

7.24 Land Suitability for Lime (*Citrus sp*)

Lime is one of the most important fruit crop grown in an area of 11752 ha in almost all the districts of the State. The crop requirements for growing lime (Table 7.24) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing lime was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7. 24.

Table 7.24 Crop suitability criteria for Lime

Cro	p requirement		Rating				
Soil –site c	haracteristics	Unit	Highly suitable(S1)	Moderately suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season	⁰ C	28-30	31-35 24-27	36-40 20-23	>40 <20	
Soil moisture	Growing period	Days	240-265	180-240	150-180	<150	
Soil aeration	Soil drainage	Class	Well drained	Mod.to imperf.drained	poorly	Very poorly	
	Texture	Class	Scl,l,sicl,cl,s	Sc, sc, c	C(>70%)	S, ls	
Nutrient	рН	1:2.5	6.0-7.5	5.5-6.4, 7.6-8.0	4.0-5.4 8.1-8.5	<4.0 >8.5	
availability	CaCO ₃ in root zone	%	Non - calcareous	Upto 5	5-10	>10	
Rooting	Soil depth	Cm	>150	100-150	50-100	< 50	
conditions	Gravel content	% vol.	Non gravelly	15-35	35-55	>55	
Soil	Salinity	dS/m	Non saline	Upto 1.0	1.0-2.5	>2.5	
toxicity	Sodicity	%	Non sodic	5-10	10-15	>15	
Erosion	Slope	%	<3	3-5	5-10		

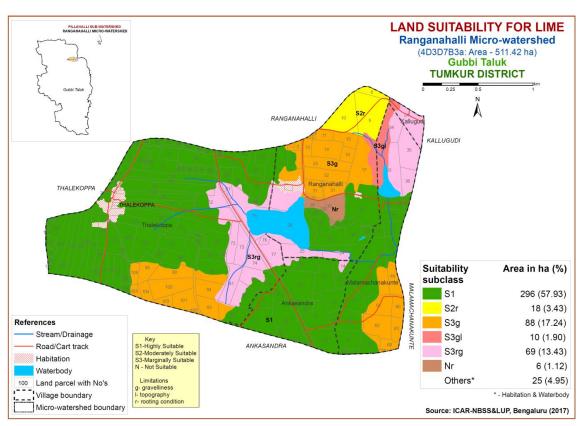


Fig. 7.24 Land Suitability map of Lime

Maximum area of about 296 ha (58%) is highly suitable (Class S1) for growing lime and are distributed in major part of the microwatershed. An area of about 18 ha (3%) is moderately suitable (Class S2) and are distributed in the northern part the microwatershed with minor limitation of rooting depth. Marginally suitable lands (Class

S3) for growing lime occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of gravelliness, topography and rooting depth. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitations of rooting depth.

7.25 Land Suitability for Cashew (*Anacardium occidentale*)

Cashew is one of the most important nut and fruit crop grown in an area of 7052 ha in almost all the districts of the State. The crop requirements (Table 7.25) for growing cashew were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing cashew was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.25.

Cro	p requirement		Rating			
Soil –site o	characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Soil	Soil drainage	Class	Well	Mod. well	Poorly	V.Poorly
aeration	Son dramage	Class	drained	drained	drained	drainage
Nutrient	Texture	Class				
availability	pН	1:2.5	5.5-6.5	5.0-5.5,6.5-7.3	7.3-7.8	>7.8
Rooting	Soil depth	Cm	>100	75-100	50-75	< 50
conditions	Gravel content	% vol.	<15	15-35	35-60	>60
Erosion	Slope	%	0-3	3-10	>10	

Table 7.25 Land suitability criteria for Cashew

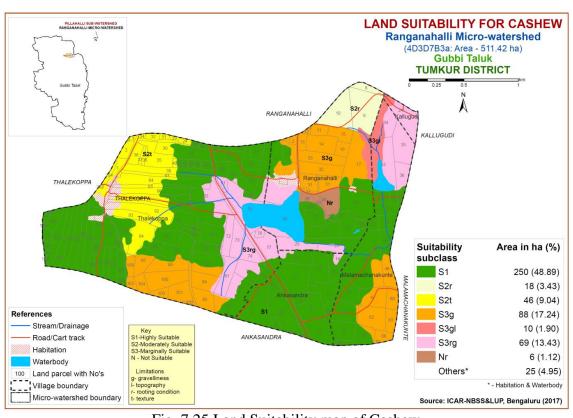


Fig. 7.25 Land Suitability map of Cashew

Maximum area of about 250 ha (49%) has soils that are highly suitable (Class S1) for growing cashew and are distributed in the western, northern, south-eastern and eastern part of the microwatershed. An area of about 64 ha (12%) has soils that are moderately suitable (Class S2) with minor limitations of rooting depth and texture. They are distributed in the northwestern and northern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 167 ha (33%) and occur in the southwestern, northern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness, rooting depth and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

7.26 Land Suitability for Custard Apple (*Annona reticulata*)

Custard apple is one of the most important fruit crop grown in almost all the districts of the State. The crop requirements (Table 26) for growing custard apple were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing custard apple was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.26.

Major area of about 314 ha (611%) is highly suitable (Class S1) lands for growing custard apple and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

Table 7.26 Land suitability criteria for Custard apple

Crop	requirement		Rating				
Soil	Soil –site		Highly	Moderately	Marginally	Not	
charac	teristics	Unit	suitable(S1)	Suitable(S2)	suitable(S3)	suitable(N)	
Soil	Soil	Class	Well drained	Mod. well	Poorly	V.Poorly	
aeration	drainage	Class	well drained	drained	drained	drained	
Nutrient	Texture	Class	Scl,cl,sc,c(red), c (black)	1	Sl, ls	-	
availability	pН	1:2.5	6.0-7.3	7.3-8.4	5.0-5.5 8.4-9.0	>9.0	
Posting	Soil depth	Cm	>75	50-75	25-50	<25	
Rooting conditions	Gravel content	% vol.	<15-35	35-60	60-80	-	
Erosion	Slope	%	0-3	3-5	>5		

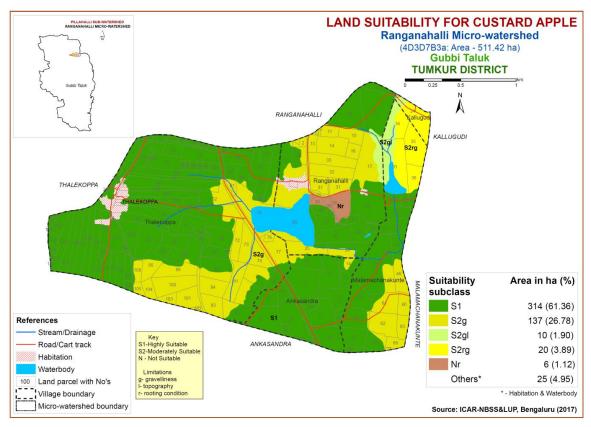


Fig. 7.26 Land Suitability map of Custard Apple

7.27 Land Suitability for Amla (Phyllanthus emblica)

Amla is one of the fruit crop grown in almost all the districts of the State. The crop requirements for growing amla were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing amla (Table 7.27) was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.27.

Table 7.27 Land suitability criteria for Amla

Cro	p requirement		Rating				
Soil –site characteristics		Unit	Highly	Moderately	Marginally	Not	
Son –site C	ii –site characteristics U		suitable(S1)	Suitable(S2)	suitable(S3)	suitable(N)	
Soil	Soil drainage	Class	Well	Mod.well	Poorly	V.Poorly	
aeration	Son dramage	Class	drained	drained	drained	drained	
Nutrient	Texture	Class	Scl,cl,sc,c(red)	C (black)	ls, sl	-	
availability	pН	1:2.5	5.5-7.3	5.0-5.5	7.8-8.4	>8.4	
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel content	% vol	<15-35	35-60	60-80		
Erosion	Slope	%	0-3	3-5	5-10	>10	

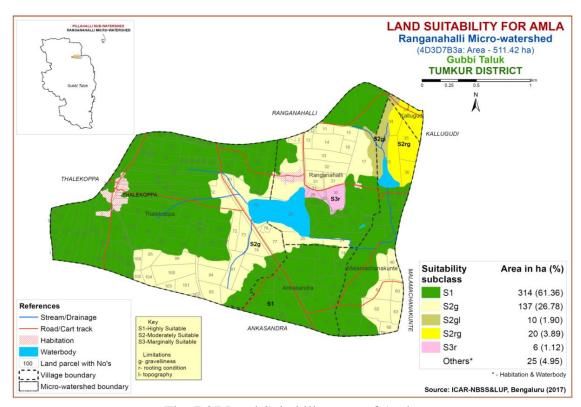


Fig. 7.27 Land Suitability map of Amla

Highly suitable (Class S1) lands occupy major area of about 314 ha (611%) for growing amla and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 167 ha (33%) and occur in the southwestern, central, northeastern and south-eastern part of the microwatershed with moderate limitations of rooting depth, gravelliness and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

7.28 Land Suitability for Tamarind (*Tamarindus indica*)

Tamarind is the most important spice crop grown in 14897 ha in all the districts of the state. The crop requirements (Table 7.28) for growing tamarind were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing tamarind was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Fig. 7.28.

Major area of about 246 ha (48%) in the microwatershed is highly suitable (Class S1) for growing tamarind and are distributed in the western, northwestern and eastern part of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 51 ha (10%) and are distributed in the southern part the microwatershed. They have minor limitation of rooting depth. The marginally suitable (Class S3) lands for growing tamarind occupy an area of about 155 ha (30%) and are distributed in the south-eastern, northern, central and southwestern part of the microwatershed and they have moderate limitations of gravelliness and rooting depth. An area of about 36 ha (7%) is not suitable

(Class N) and is distributed in the central and northeastern part of the microwatershed with severe limitations of rooting depth, gravelliness and topography.

Cro	p requirement		Rating				
Soil –site c	haracteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Soil	Soil drainage	Class	Well	Mod.well	Poorly	V.Poorly	
aeration	Son dramage	Class	drained	drained	drained	drained	
Nutrient	Texture	Class	Scl,cl,sc,c(red)	Sl,c(black)	ls	-	
availability	pН	1:2.5	6.0-7.3	5.0-6.0,7.3-7.8	7.8-8.4	>8.4	
Rooting	Soil depth	Cm	>150	100-150	75-100	< 50	
conditions	Gravel content	% vol.	<15	15-35	35-60	60-80	
Erosion	Slope	%	0-3	3-5	5-10	>10	

Table 7.28 Land suitability criteria for Tamarind

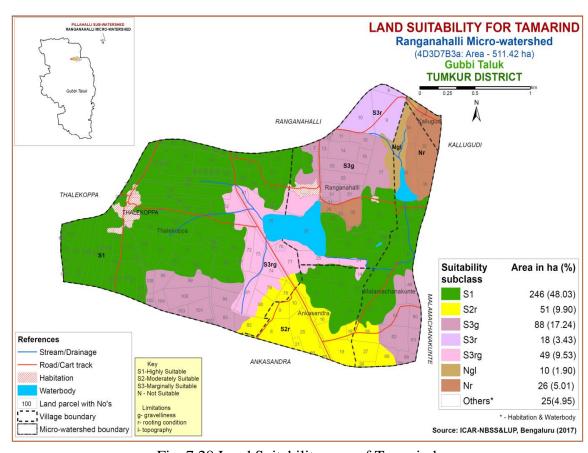


Fig. 7.28 Land Suitability map of Tamarind

7.29 Land suitability for Marigold (*Tagetes sps.*)

Marigold is the most important flower crop grown in an area of 9108 ha in almost all the districts of the state. The crop requirements (Table 7.29) for growing marigold were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing marigold was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.29.

Maximum area of about 314 ha (61%) is highly suitable (Class S1) for growing marigold and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 87 ha (25%) and occur in the northeastern and south-eastern part of the microwatershed with moderate limitations of gravelliness, rooting depth and topography. The marginally suitable (Class S3) lands for growing marigold occupy an area of about 86 ha (17%) and are distributed in the central and southwestern part of the microwatershed and they have moderate limitations of gravelliness and rooting depth.

Table 7.29 Land suitability criteria for Marigold

Crop requirement			Rating				
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable (N)	
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	>40 <10	
Soil aeration	Soil drainage	Class	Well drained	Mod. well drained	Imperfectly drained	Poorly drained	
Nutrient	Texture pH	Class 1:2.5	1,sl,scl,cl,sil 7.0-7.5	sicl,sc,sic,c 5.5-5.9,7.6-8.5	C <5,>8.5	ls, s	
availability	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strongly calcareous	-	
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel content	% vol.	<15	15-35	>35	-	
Soil	Salinity	ds/m	Non saline	Slightly	Strongly	-	
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-	
Erosion	Slope	%	1-3	3-5	5-10	-	

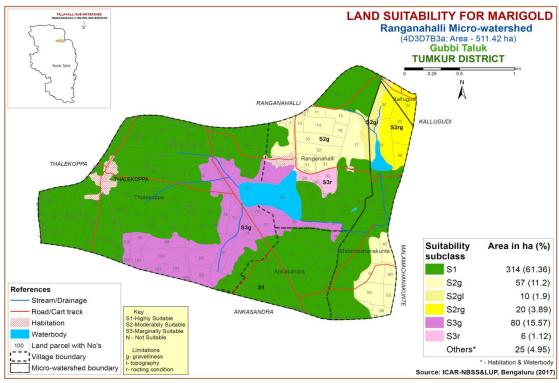


Fig. 7.29 Land Suitability map of Marigold

7.30 Land Suitability for Chrysanthemum (*Dendranthema grandiflora*)

Chrysanthemum is the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (Table 7.30) for growing chrysanthemum were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing chrysanthemum was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.30.

Table 7.30 Land suitability criteria for Chrysanthemum

Crop requirement			Rating				
Soil –site characteristics		Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)	
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	>40 <10	
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Imperfectly drained	Poorly drained	
	Texture	Class	l,sl,scl,cl,sil	sicl,sc,sic,c	C	ls, s	
Nutrient availability	pН	1:2.5	7.0-7.5	5.5-5.9,7.6-8.5	<5,>8.5		
	CaCO ₃ in	%	Non	Slightly	Strongly		
	root zone		calcareous	calcareous	calcareous		
Rooting	Soil depth	Cm	>75	50-75	25-50	<25	
conditions	Gravel content	% vol.	<15	15-35	>35		
Soil	Salinity	ds/m	Non saline	slightly	strongly		
toxicity	Sodicity (ESP)	%	<10	10-15	>15	-	
Erosion	Slope	%	1-3	3-5	5-10		

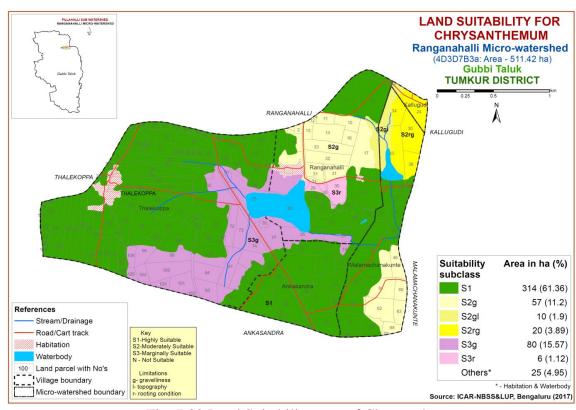


Fig. 7.30 Land Suitability map of Chrysanthemum

Highly suitable (Class S1) lands occupy major area of about 314 ha (61%) is for growing chrysanthemum and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 87 ha (25%) and occur in the northeastern and south-eastern part of the microwatershed with moderate limitations of gravelliness, rooting depth and topography. The marginally suitable (Class S3) lands occupy an area of about 86 ha (17%) and are distributed in the central and southwestern part of the microwatershed and they have moderate limitations of gravelliness and rooting depth.

7. 31 Land Suitability for Jasmine (*Jasminum sp.*)

Jasmine is the most important flower crop grown in an area of 803 ha in almost all the districts of the State. The crop requirements (Table 7.31) for growing Jasmine were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Jasmine was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.31.

Maximum area of about 314 ha (61%) is highly suitable (Class S1) for growing jasmine and are distributed in all parts of the microwatershed. Moderately suitable (Class S2) lands occupy an area of about 87 ha (25%) and occur in the northeastern and southeastern part of the microwatershed with moderate limitations of gravelliness, rooting depth and topography. The marginally suitable (Class S3) for growing jasmine occupy an area of about 86 ha (17%) and are distributed in the central and southwestern part of the microwatershed and they have moderate limitations of gravelliness and rooting depth.

Table 7.31 Land suitability criteria for jasmine (irrigated)

Crop requirement			Rating			
Soil -site characteristics		unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)
Climate	Temperature in growing season		18-23	17-15 24-35	35-40 10-14	
Soil aeration	Soil drainage	Class	Well drained	Moderately drained	Imperfectly drained	Poorly drained
Nutrient	Texture	Class	Scl, l, scl, cl, sil	sicl, sc, sic, c (m/k)	C(ss),	ls, s
	pН	1:2.5	6.0-7.5	5.5-5.9,7.6-8.5	<5,>8.5	
availability	CaCO ₃ in root zone	%	Non calcareous	Slightly calcareous	Strong calcareous	
Rooting	Soil depth	Cm	>75	50-75	25-50	<25
conditions	Gravel content	% vol.	<15	15-35	>35	
Soil	Salinity	ds/m	Non saline	Slight	Strongly	
toxicity	Sodicity	%	Non sodic	Slight	Strongly	
Erosion	Slope	%	1-3	3-5	5-10	

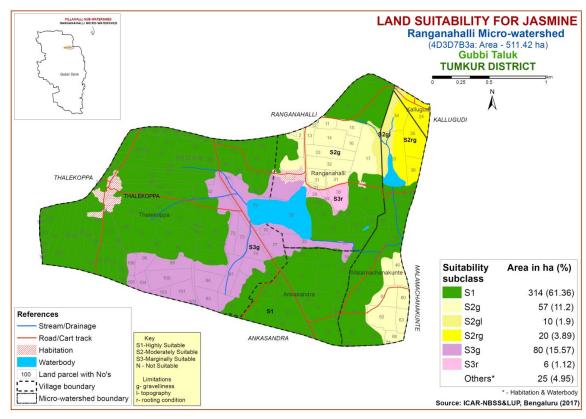


Fig. 7.31 Land Suitability map of Jasmine

7.32 Land Suitability for Coconut (Cocos nucifera)

Coconut is the most important flower crop grown in almost all the districts of the State. The crop requirements (7.32) for growing Coconut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Coconut was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.32.

Table 7. 32 Land suitability criteria for Coconut

Crop requirem	ent	Rating					
Soil –site characteristics	Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable (N)		
Slope	%	0-3	3-5	5-10	>10		
Soil drainage	class	Well drained	Mod. drained	Poorly	Very poorly		
Soil reaction	рН	5.1-6.5	6.6-7.5	7.6-8.5	-		
Surface soil texture	Class	Sc, cl, scl	C (red), sl	C(black),ls	-		
Soil depth	Cm	>100	75-100	50-75	< 50		
Gravel content	%vol.	<15	15-35	35-60	>60		

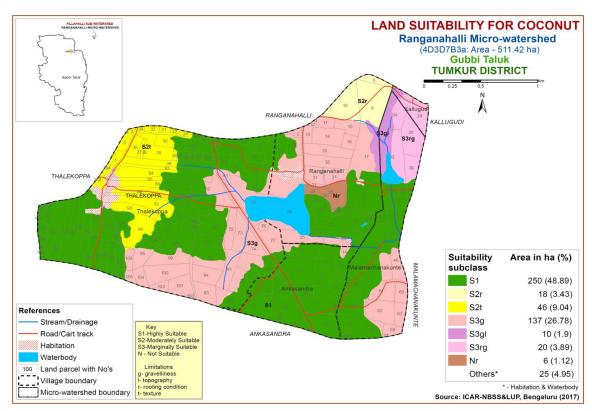


Fig. 7.32 Land Suitability map of Coconut

Maximum area of about 250 ha (49%) has soils that are highly suitable (Class S1) for growing coconut and are distributed in the western, northern, south-eastern and eastern part of the microwatershed. An area of about 64 ha (12%) has soils that are moderately suitable (Class S2) with minor limitations of rooting depth and texture. They are distributed in the northwestern and northern part of the microwatershed. The marginally suitable (Class S3) lands cover an area of about 167 ha (33%) and occur in the southwestern, northern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness, rooting depth and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in central part of the microwatershed. They have severe limitation of rooting depth.

7.33 Land Suitability for Arecanut (*Areca catechu*)

Areca nut is the most important nut crop grown in few districts of the districts of the State. The crop requirements (7.33) for growing Areca nut were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing Areca nut was generated. The area extent and their geographical distribution of different suitability subclasses in the microwatershed are given in Figure 7.33.

Maximum area of about 250 ha (49%) has soils that are highly suitable (Class S1) for growing area nut and are distributed in the western, northern, south-eastern and eastern part of the microwatershed. An area of about 64 ha (12%) has soils that are moderately suitable (Class S2) with minor limitations of rooting depth and texture. They are distributed in the northwestern and northern part of the microwatershed. The

marginally suitable (Class S3) lands cover an area of about 167 ha (33%) and occur in the southwestern, northern, central and south-eastern part of the microwatershed with moderate limitations of gravelliness, rooting depth and topography. A very small area of about 6 ha (1%) is not suitable (Class N) and is distributed in the central part of the microwatershed. They have severe limitation of rooting depth.

Crop requirement Rating Not suitable Soil -site **Highly Moderately Marginally** Unit characteristics suitable(S1) Suitable(S2) suitable(S3) (N) % 0-3 >10 Slope 3-5 5-10 Mod. to poorly Soil drainage class Well drained Very poorly drained Soil reaction pН 5.0-6.5 6.6 - 7.57.6-8.5 Surface soil Class Sc, cl, scl C (red), sl C (black), ls texture >100 75-100 50-75 Soil depth Cm < 50 Gravel content <15 15-35 35-60 %vol. >60

Table 7.33 Land suitability criteria for Areca nut

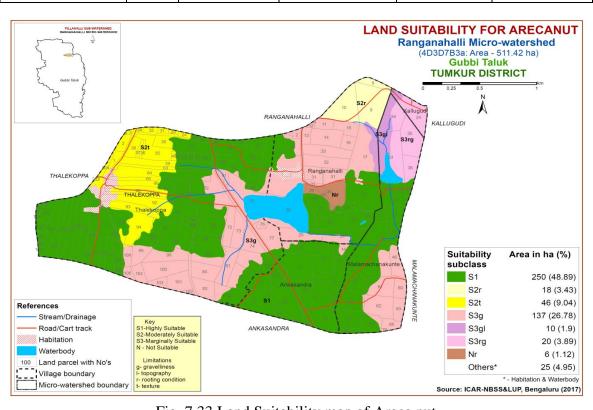


Fig. 7.33 Land Suitability map of Areca nut

7.34 Land Suitability for Mulberry (*Morus nigra*)

Mulberry is the most important leaf crop grown in about 1.66 lakh ha in all the districts of the state for feeding silkworms. The crop requirements for growing mulberry (Table 7.34) were matched with the soil-site characteristics (Table 7.1) and a land suitability map for growing mulberry was generated. The area extent and their

geographical distribution of different suitability subclasses in the microwatershed is given in Figure 7.11.

Table 7.34 Land suitability criteria for Mulberry

Crop requi	rement		Rating						
Soil - charact		Unit	Highly suitable(S1)	Moderately Suitable(S2)	Marginally suitable(S3)	Not suitable(N)			
Soil aeration	Soil drainage	Class	Well drained	Moderately well drained	Poorly drained	V. Poorly drained			
Nutrient availability	Texture	Class	Sc, cl, scl	C (red)	C (black), sl, ls	-			
availability	pН	1:2.5							
Rooting	Soil depth	Cm	>100	75-100	50-75	< 50			
conditions	Gravel content	% vol.	0-35	35-60	60-80	>80			
Erosion	Slope	%	0-3	3-5	5-10	>10			

Note: Suitability evaluation only for Mulberry leaf not for Silk worm rearing

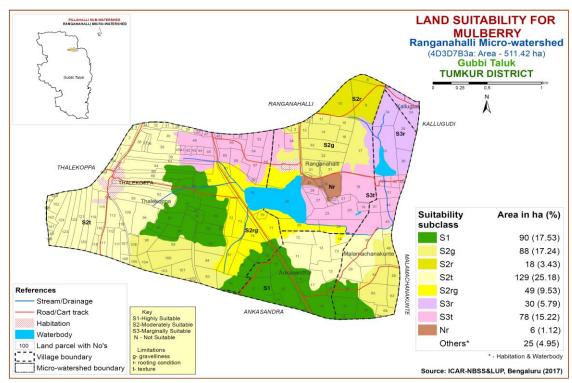


Fig. 7.34 Land Suitability map of Mulberry

Highly suitable (Class S1) lands occupy an area of about 90 ha (18%) for growing mulberry and occur in the southern and central part of the microwatershed. Moderately suitable (Class S2) lands occupy maximum area of about 284 ha (58%) and occur in all parts of the microwatershed. They have minor limitations of gravelliness, rooting depth and texture. Marginally suitable lands cover an area of about 108 ha (21%) and occur in the northeastern and northern part of the microwatershed. They have moderate limitation of rooting depth. A very small area of about 6 ha (1%) is not suitable (Class N) and occur in the central part of the microwatershed and have severe limitation of rooting depth.

7.35 Land Management Units (LMU's)

The 18 soil map units identified in Ranganahalli microwatershed have been regrouped into 6 Land Management Units (LMU's) for the purpose of preparing a Proposed Crop Plan. Land Management Units are grouped based on the similarities in respect of the type of soil, the depth of the soil, the surface soil texture, gravel content, AWC, slope, erosion etc. and a Land Management Units map (Fig.7.35) has been generated. These Land Management Units are expected to behave similarly for a given level of management.

The map units that have been grouped into 6 Land Management Units along with brief description of soil and site characteristics are given below.

LMU	Soil map units	Soil and site characteristics
NO.		
	HLKcB2	Very deep (>150 cm), red sandy clay to sandy clay loam
	HLKhB2g1	soils with slopes of 1-3 %, gravelly (15-35%) and slight
1	RTRcB1	to moderate erosion
	RTRhB1	
	RTRiB1	
	NDLcB1	Very deep (>150cm), red sandy clay to clay loam soils
2	NDLiB1g1	with slopes of 1-3%, gravelly (15-35%) and slight
		erosion
	KDThB1	Very deep (>150 cm), sandy clay loam to sandy clay
3	KDTiA1	soils with slopes of 0-3% and slight erosion
	MNLhB2	Moderately deep to deep (75-150 cm), red sandy clay
4	MNLhB2	loam soils with slopes of 1-3%, gravelly (15-35%) and
	CKMhB2g1	moderate erosion
	BDGhB2	Moderately deep to deep (75-150 cm), red gravelly sandy
5	BDGhB2g1	clay loam soils with slope of 1-3%, gravelly (15-35%)
	BPRhB2	and moderate erosion
	CSRhB2g1	Shallow to moderately shallow (25-75 cm), red sandy
6	KGHcB2g2	loam to sandy clay loam soils with slope of 1-5%,
	KGHcC2g2	gravelly to very gravelly (15-60%) and moderate erosion

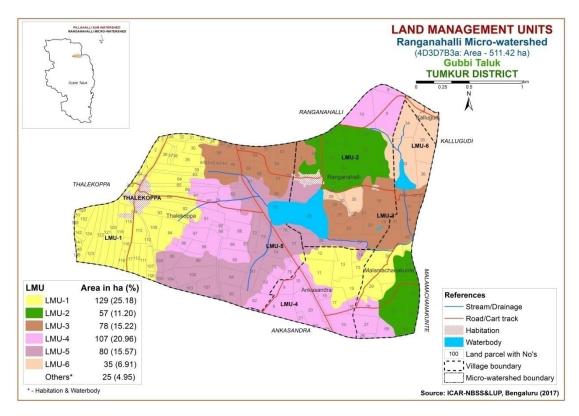


Fig. 7.35 Land Management Units Map-Ranganahalli Microwatershed

7.36 Proposed Crop Plan for Ranganahalli Microwatershed

After assessing the land suitability for the 34 crops, the proposed crop plan has been prepared or the 6 identified LMUs by considering only the highly (Class S1) and moderately (Class S2) suitable lands for each of the 34 crops. The resultant proposed crop plan is presented below in Table 7.35.

 Table 7.35 Proposed Crop Plan for Ranganahalli Microwatershed

LMU No	Mapping Units	Survey Number	Field Crops	Forestry/ Grasses	Horticulture Crops with suitable interventions	Suitable Interventions
LMU1	10,11,12, 13, 14	Ankasandra:11,12,13,14,1	Sole crops: Ragi, Upland	Neem, Silver Oak	Vegetables: Onion,	Summer
(129 ha.)	Very deep (>150	5,73	paddy, Maize, Sorghum,	Grasses	Tomato, Brinjal Chillies,	ploughing,
	cm), red clayey	Malamachanakunte:29, 30	Fodder sorghum,	Styloxanthes	Coriander, Drumstick	cultivation on
	soils	Thalekoppa:1,2,3,4,24,29,	Sunflower, Groundnut,	hamata,	Flower crops:	raised beds with
		30,31,32,34,35,36,37,38,	Redgram, Fieldbean,	Styloxanthes Scabra,	Chrysanthemum, Jasmine,	mulches, Drip
		39,40,	Cowpea	Hybrid Napier,	China aster, Marigold,	irrigation and
		63,64,67,68,92,93,94,	Intercropping:	Sesbania,	Crossandra	suitable
		106,107,109,110,111,112,	Redgram+Fodder sorghum		Fruit crops/ Plantation	conservation
		113,114,115,116,117,118,	Ragi+Cowpea		crops: Mango, Sapota,	practices (Crescent
		119,120,121,122,123,124,	Ragi+Redgram		Guava, Cashew, Jackfruit,	Bunding with
		138,140,141,142,149,151,	Ragi+Fieldbean		Pomegranate, Musambi,	Catch Pit etc)
		152,153, 203,204			Arecanut, Coconut	
LMU 2	15, 16	Malamachanakunte:46,60,	Sole crops:	Neem, Silver Oak	Vegetables: Onion,	Drip irrigation,
(57 ha.)	Very deep (>150	61,62,63,68,71	Ragi, Upland paddy, Maize,	Grasses	Tomato, Brinjal, Coriander,	Mulching, suitable
	cm), gravelly	Ranganahalli:2,3,11,12,13,	Sorghum, Field bean,	Styloxanthes	Drumstick, Chillies,	conservation
	red clayey soils	14,15,16,17,31,32,33	Fodder sorghum, Redgram,		Flowercrops:	practises (Crescent
			Cowpea	Styloxanthes Scabra,	Chrysanthemum, Jasmine,	Bunding with
			Intercropping:	Hybrid Napier,	China aster, Marigold	Catch Pit etc)
			Redgram+Fodder sorghum	Sesbania,	Fruit crops/ Plantation	
			Ragi+Cowpea		crops: Mango, Cashew,	
			Ragi+Redgram		Sapota, Guava, Amla,	
			Ragi+Fieldbean		Custardapple, Pomegranate	
					Jackfruit, Musambi,	
					Arecanut, Coconut	
LMU 3	17,18	Malamachanakunte:31,32,	Sole crops: Sorghum,	Hebbevu, Silveroak	Vegetables: Brinjal,	Application of
(78 ha.)	Very deep (>150	43,44,45,129,131	Sunflower, Fodder	Grasses:	Tomato, chillies, Cucurbits	FYM and
	cm), black	Ranganahalli:18,19,20,21,	sorghum, Redgram, Field	Styloxanthes	Flower crops: Marigold,	micronutrients,
	clayey soils	22,23,24,27,28,34	bean, Horse gram	hamata,	Chrysanthemum	drip irrigation,

		Thalekoppa:23,41,42,43,4 4,45,46,47,48,51,53,54,55, 56,57,58,59,60	Intercropping: Redgram+Fodder sorghum	Styloxanthes scabra, Hybrid napier	Fruit crops: Pomegranate, Tamarind, Custard Apple, Amla, Lime, Musambi Arecanut, Coconut	Mulching, suitable conservation practises
LMU 4 (107 ha.)	7, 8, 4 Moderately deep to deep (75-150 cm), red clay to loamy soils	Ankasandra:7,8,9,10,16,17,18,19,20,21,22,23 Malamachanakunte:26,27,28,69 Ranganahalli:8,9,10 Thalekoppa:65,66,69,70,71,78,82,85,86,87,88,89,90,91,96,97,98	Sole crops: Upland paddy, Ragi, Maize, Sorghum, Groundnut, Sunflower, Fieldbean, Cowpea, Fodder sorghum Intercropping: Redgram+Fodder sorghum Ragi+Cowpea Ragi+Redgram	Glyricidia, Subabul, Hebbevu Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid napier	Vegetables: Onion, Tomato, chillies Brinjal, Cucurbits Flower crops: Chrysanthemum, Jasmine, Crossandra, China aster Fruit crops/ Plantation crops: Musambi, Sapota, Pomegranate, Banana, Amla, Lime, Arecanut, Coconut	Drip irrigation, Mulching, suitable conservation practises (Crescent Bunding with Catch Pit etc)
LMU 5 (80 ha.)	5,6,9 Moderately deep to deep (75-150 cm), red gravelly clayey soils	Ranganahalli:1,25 Thalekoppa:61,62,72,73,7 4,75,76,77,79,80,81,83,84, 95,99,100,101,102, 103, 104,105,108	Sole crops: Upland paddy, Ragi, Maize, Sorghum, Groundnut, Fieldbean, Cowpea, Fodder sorghum, Horsegram	Glyricidia, Grasses: Styloxanthes hamata, Styloxanthes scabra, Hybrid Napier	Vegetables: Tomato, Brinjal, Drumstick, Chillies, Curry leaf Flowercrops: Crossandra Marigold, Chrysanthemum, Fruitcrops/Plantation crops:Tamarind, CustardApple, Amla, Lime, Musambi	Drip irrigation, Mulching, suitable conservation practises (Crescent Bunding with Catch Pit etc)
LMU 6 (35 ha.)	1, 2, 3 Shallow to moderately shallow (25-75 cm), red loamy soils	Kallugudi: 24,25 Malamachanakunte:33,34, 35,36 Ranganahalli:29,30	Sole crops: Maize, Ragi, Groundnut, Fodder sorghum, Cowpea, Horsegram	Glyricidia, Grasses Styloxanthes hamata, Styloxanthes scabra	Vegetables: Tomato, Onion, Chillies, Curryleaf, Fruit crops: Custard apple, Amla, Bael	Use of medium duration varieties, and deep rooted crops, sowing across the slope, drip irrigation and mulching is recommended

SOIL HEALTH MANAGEMENT

8.1 Soil Health

Soil is fundamental to crop production. Without soil, no food could be produced nor would livestock be fed on a large scale. Because it is finite and fragile, soil is a precious resource that requires special care from its users.

Soil health or the capacity of the soil to function is critical to human survival. Soil health has been defined as: "the capacity of the soil to function as a living system without adverse effect on the ecosystem". Healthy soils maintain a diverse community of soil organisms that help to form beneficial symbiotic associations with plant roots, recycle essential plant nutrients, improve soil structure with positive repercussions for soil, water and nutrient holding capacity and ultimately improve crop production and also contribute to mitigating climate change by maintaining or increasing its carbon content.

Functional interactions of soil biota with organic and inorganic components, air and water determine a soil's potential to store and release nutrients and water to plants and to promote and sustain plant growth. Thus, maintaining soil health is vital to crop production and conserve soil resource base for sustaining agriculture.

The most important characteristics of a healthy soil are

- ➤ Good soil tilth
- > Sufficient soil depth
- ➤ Good water storage and good drainage
- Adequate supply, but not excess of nutrients
- ➤ Large population of beneficial organisms
- > Small proportion of plant pathogens and insect pests
- > Low weed pressure
- > Free of chemicals and toxins that may harm the crop
- > Resistance to degradation
- Resilience when unfavorable conditions occur

Characteristics of Ranganahalli Microwatershed

- ❖ The soil phases identified in the microwatershed belonged to the soil series of HLK 83 ha (16%), KDT 77 ha (15%), NDL 57 ha (11%), MNL 51 ha (10%), BDG 49 ha (9%), RTR 46 ha (9%), JDG 39 ha (8%), BPR 31 ha (6%), KGH 30 ha (6%), CKM 18 ha (3%) and CSR 6 ha (1%).
- ❖ As per land capability classification, About 95 per cent area in the microwatershed falls under arable land category (Class II & III). The major limitations identified in the arable lands were soil and erosion.

❖ On the basis of soil reaction, an area of about 226 ha (44%) is strongly acid to slightly acid (pH 5.0 -6.5), about 225 ha (44%) is under neutral (pH 6.5-7.3) and 35 ha (7%) is under slightly alkaline.

Soil Health Management

The following actions are required to improve the current land husbandry practices that provide a sound basis for the successful adoption of sustainable crop production system.

Acid soils

(Slightly acid to strongly acid soils)

- 1. Application of lime in the form of calcium carbonate or limestone (CaCO₃)
- 2. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 3. Use of rock phosphate (30-50 % of CaO, which helps in improving soil pH).
- 4. Application of basic fertilizers (Sodium nitrate, basic slag etc, reduces acidity in acid soils)

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Alkaline soils

(Slightly alkaline to moderately alkaline soils)

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers (Azospirullum, Azatobacter, Rhizobium).
- 3. Application of 25% extra N and P (125 % RDN&P).
- 4. Application of $ZnSO_4 12.5$ kg/ha (once in three years).
- 5. Application of Boron 5kg/ha (once in three years).

Neutral soils

- 1. Regular addition of organic manure, green manuring, green leaf manuring, crop residue incorporation and mulching needs to be taken up to improve the soil organic matter status.
- 2. Application of biofertilizers, (Azospirullum, Azotobacter, Rhizobium).
- 3. Application of 100 per cent RDF.
- 4. Need based micronutrient applications.

Besides the above recommendations, the best transfer of technology options are also to be adopted.

Soil Degradation

Soil erosion is one of the major factors affecting the soil health in the microwatershed. Out of total 511 ha area in the microwatershed, an area of about 266 ha is suffering from moderate erosion. These areas need immediate soil and water conservation and, other land development and land husbandry practices for restoring soil health.

Dissemination of information and communication of benefits

Any large scale implementation of soil health management requires that supporting information is made available widely, particularly through channels familiar to farmers and extension workers. Given the very high priority attached to soil health especially by the Central Government on issuing Soil-Health Cards to all the farmers, media outlets like Regional, State and National Newspapers, Radio and Dooradarshan programs in local languages but also modern information and communication technologies such as Cellular phones and the Internet, which can be much more effective in reaching the younger farmers.

Inputs for Net Planning (Saturation Plan) and Interventions needed

Net planning in IWMP is focusing on preparation of

- 1. Soil and Water Conservation Plans for each plot or farm.
- 2. Productivity enhancement measures/ interventions for existing crops/livestock/other farm enterprises.
- 3. Diversification of farming mainly with perennial horticultural crops and livestock.
- 4. Improving livelihood opportunities and income generating activities.

In this connection, how various outputs of Sujala-III are of use in addressing these objectives of Net Planning (Saturation Plan) are briefly presented below.

- ❖ Soil Depth: The depth of a soil decides the amount of moisture and nutrients it can hold, what crops can be taken up or not, depending on the rooting depth and the length of growing period available for raising any crop. Deeper the soil, better for a wide variety of crops. If sufficient depth is not available for growing deep rooted crops, either choose medium or short duration crops or deeper planting pits need to be opened and additional good quality soil brought from outside has to be filled into the planting pits.
- ❖ Surface soil texture: Lighter soil texture in the top soil means, better rain water infiltration, less run-off and soil moisture conservation, less capillary rise and less evaporation losses. Lighter surface textured soils are amenable to good soil tilth and are highly suitable for crops like groundnut, root vegetables (carrot, radish, potato etc) but not ideal for crops that need stagnant water like lowland paddy. Heavy textured soils are poor in water infiltration and percolation. They are prone for sheet erosion; such soils can be improved by sand mulching. The technology that is developed by the AICRP-Dryland Agriculture, Vijayapura, and Karnataka can be adopted.

- ❖ Gravelliness: More gravel content is favorable for run-off harvesting but poor in soil moisture storage and nutrient availability. It is a significant parameter that decides the kind of crop to be raised.
- ❖ Land Capability Classification: The land capability map shows the areas suitable and not suitable for agriculture and the major constraints in each of the plot/survey number. Hence, one can decide what kind of enterprise is possible in each of these units. In general, erosion and soil are the major constraints in Ranganahalli microwatershed.
- ❖ Organic Carbon: The OC content is medium (0.5-0.75%) in about 142 ha (28%) area and low (<0.5%) in about 341 ha (67%). The areas that are low and medium in OC needs to be further improved by applying farmyard manure and rotating crops with cereals and legumes or mixed cropping. A very small area of about 3 ha (<1%) is high in organic carbon.
- **♦ Promoting green manuring:** Growing of green manuring crops costs Rs. 1250/ha (green manuring seeds) and about Rs. 2000/ha towards cultivation that totals to Rs. 3250/- per ha. On the other hand, application of organic manure @ 10 tons/ha costs Rs. 5000/ha. The practice needs to be continued for 2-3 years or more. Nitrogen fertilizer needs to be supplemented by 25% in addition to the recommended level in 483 ha area where OC is medium (0.5-0.75%) and low (<0.5%). For example, for rainfed maize, recommended level is 50 kg N per ha and an additional 12 kg /ha needs to be applied for all the crops grown in these plots.
- ❖ Available Phosphorus: In 154 ha (30%) area, the available phosphorus is high (>57 kg/ha) and an area of 333 ha (65%) is medium (23-57 kg/ha).
- ❖ Available Potassium: Available potassium is low (<145 kg/ha) in an area of 41 ha (8%) in the microwatershed and an area of about 183 ha (36%) is high (>337 kg/ha) in available potassium. Maximum area of about 262 ha (51%) is medium in available potassium (145-337 kg/ha). Hence, in all these plots, where available potassium is low and medium, for all the crops, additional 25 % potassium may be applied.
- ❖ Available Sulphur: Available sulphur is a very critical nutrient for oilseed crops. Medium in an area of about 486 ha (95%). These areas need to be applied with magnesium sulphate or gypsum or Factamphos (p) fertilizer (13% sulphur) for 2-3 years for the deficiency to be corrected.
- ❖ Available Boron: Available boron is medium in an area of 96 ha (19%) and low in 390 ha (76%) in the microwatershed. These areas need to be applied with sodium borate @ 10 kg/ha as soil application or 0.2% borax as foliar application to correct the boron deficiency.
- ❖ Available Iron: An area of about 486 ha (95%) is sufficient (>4.5 ppm) in available iron in the microwatershed.

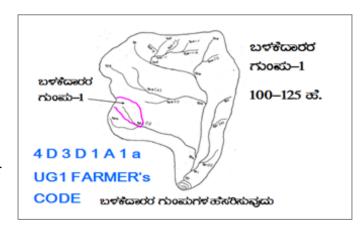
- ❖ Available Manganese and Available Copper: Entire area in the microwatershed is sufficient for both available manganese and copper.
- ❖ Available Zinc: It is deficient (<0.6 ppm) in 315 ha (62%) area of the microwatershed. Application of zinc sulphate @ 25 kg/ha is to be recommended and about 171 ha (33%) area is sufficient (>0.6 ppm) in available Zinc.
- ❖ Soil acidity: The microwatershed has 226 ha (44%) area with soils that are slightly to strongly acid. These areas need application of lime (Calcium Carbonate). About 225 ha (44%) is neutral (pH 6.5-7.8).
- ❖ Land Suitability for various crops: Areas that are highly, moderately and marginally suitable for growing various crops are indicated. Along with the suitability, various constraints that are limiting the productivity are also indicated. For example, in case of cotton, gravel content, rooting depth and salinity/alkalinity are the major constraints in various plots. With suitable management interventions, the productivity can be enhanced. In order to increase water holding capacity of light textured soils, growing of green manure crops and application of organic manure is recommended.

SOIL AND WATER CONSERVATION TREATMENT PLAN

For preparing soil and water conservation treatment plan for Ranganahalli microwatershed, the land resource inventory database prepared under Sujala-III project has been transformed as information through series of interpretative (thematic) maps using soil phase map as a base. The various thematic maps (1:7920 scale) prepared were

- ➤ Soil depth
- ➤ Surface soil texture
- ➤ Soil gravelliness
- ➤ Available water capacity
- ➤ Soil slope
- > Soil erosion
- ➤ Land capability
- > Present land use and land cover
- > Crop suitability
- ➤ Rainfall
- > Hydrology
- ➤ Water Resources
- > Socio-economic data
- ➤ Contour plan with existing features- network of waterways, pothissa boundaries, cut up/ minor terraces etc.
- ➤ Cadastral map (1:7920 scale)
- ➤ Satellite imagery (1:7920 scale)

Apart from these, Hand Level/ Hydro Marker/ Dumpy Level/ Total Station and Kathedars' List has to be collected.


Steps for Survey and Preparation of Treatment Plan

The boundaries of Land User Groups' and Survey No. boundaries are traced in the field.

- ➤ Naming of user groups and farmers
- ➤ Identification of arable and non arable lands
- ➤ Identification of drainage lines and gullies
- > Identification of non treatable areas
- ➤ Identification of priority areas in the arable lands
- > Treatment plan for arable lands
- ➤ Location of water harvesting and recharge structures

9.1 Treatment Plan

The treatment plan recommended for arable lands is briefly described below.

9.1.1 Arable Land Treatment

A. BUNDING

Steps fo	r Survey and Preparation of	USER GROUP-1
	Treatment Plan	
to a scale	map (1:7920 scale) is enlarged of 1:2500 scale	CLASSIFICATION OF GULLIES ಕೊರಕಲಿನ ವರ್ಗೀಕರಣ
boundario lines/ was marked o	network of waterways, pothissa es, grass belts, natural drainage tercourse, cut ups/ terraces are in the cadastral map to the scale lines are demarcated into	upper reach • ಮೇಲ್ಫ್ರ್ಯ್ 15 Ha. • ಮಧ್ಯಕ್ಕರ MIDDLE REACH 15+10=25 ಪ.
Small gullies	(up to 5 ha catchment)	• ক্রথমূট 25 ক্রঞ্বুত নিতর ভট্নর
Medium gullies	(5-15 ha catchment)	LOWER REACH POINT OF CONCENTRATION
Ravines	(15-25 ha catchment) and	
Halla/Nala	(more than 25ha catchment)	

Measurement of Land Slope

Land slope is estimated or determined by the study and interpretation of contours or by measurement in the field using simple instruments like Hand Level or Hydromarker.

Vertical and Horizontal intervals between bunds as recommended by the Watershed Development Department.

Slope percentage	Vertical interval (m)	Corresponding Horizontal Distance (m)
2 - 3%	0.6	24
3 - 4%	0.9	21
4 - 5%	0.9	21
5 - 6%	1.2	21
6 - 7%	1.2	21

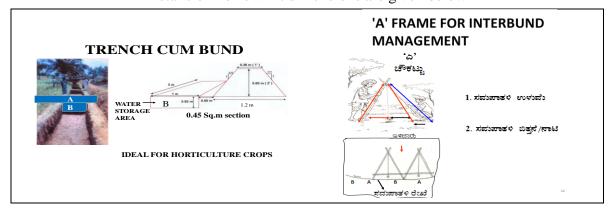
Note: i) The above intervals are maximum.

(ii) Considering the slope class and erosion status (A1... A= 0-1% slope, 1= slight erosion) the intervals have to be decided.

Bund length recording: Considering the contour plan and the existing grass belts/partitions, the bunds are aligned and lengths are measured.

Section of the Bund

Bund section is decided considering the soil texture class and gravelliness class (bg₀ ...b= loamy sand, g_0 = <15% gravel). The recommended sections for different soils are given below.


Recommended Bund Section

Top width (m)	Base width (m)	Height (m)	Side slope (Z:1;H:V)	Cross section (sq m)	Soil Texture	Remarks
0.3	0.9	0.3	01:01	0.18	Sandy loam	Vegetative
0.3	1.2	0.3	1.5:1	0.225	Sandy clay	bund
0.3	1.2	0.5	0.9:1	0.375	Red gravelly soils	
0.3	1.2	0.6	0.75:1	0.45		
0.3	1.5	0.6	01:01	0.54	Red sandy loam	
0.3	2.1	0.6	1.5:1	0.72	Very shallow black soils	
0.45	2	0.75	01:01	0.92		
0.45	2.4	0.75	1.3:1	1.07	Shallow black soils	
0.6	3.1	0.7	1.78:1	1.29	Medium black soils	
0.5	3	0.85	1.47:1	1.49		

Formation of Trench cum Bund

Dimensions of the Borrow Pits/ Trenches to be excavated (machinery are decided considering the Bund Section).

Details of Borrow Pit dimensions are given below

Size of Borrow Pits/ Trench recommended for Trench cum Bund (by machinery)

Bund section	Bund length	Earth quantity			Pit	Berm (pit to pit)	Soil depth class	
m ²	m	m ³	L(m)	W(m)	D(m)	QUANTITY (m ³)	m	
0.375	6	2.25	5.85	0.85	0.45	2.24	0.15	Shallow
0.45	6	2.7	5.4	1.2	0.43	2.79	0.6	Shallow
0.45	6	2.7	5	0.85	0.65	2.76	1	Moderately Shallow
0.54	5.6	3.02	5.5	0.85	0.7	3.27	0.1	Moderately shallow
0.54	5.5	2.97	5	1.2	0.5	3	0.5	Shallow
0.72	6.2	4.46	6	1.2	0.7	5.04	0.2	Moderately shallow
0.72	5.2	3.74	5.1	0.85	0.9	3.9	0.1	Moderately deep

B. Waterways

- a) Existing waterways are marked on the cadastral map (1:7920 scale) and their dimensions are recorded.
- b) Considering the contour plan of the MWS, additional waterways/ modernization of the existing ones can be thought of.
 - c) The design details are given in the Manual.

C. Farm Ponds

Waterways and the catchment area will give an indication on the size of the Farm Pond. Location of the pond can be decided based on the contour plan/ field condition and farmers' need/desire.

D. Diversion channel

Existing EPT/ CPT are marked on the cadastral map. Looking to the need, these can be modernized or fresh diversion channel can be proposed and runoff from this can be stored in Gokatte/ Recharge ponds.

9.1.2 Non-Arable Land Treatment

Depending on the gravelliness and crops preferred by the farmers, the concerned authorities can decide appropriate treatment plan. The recommended treatments may be Contour Trench, Staggered Trench, Crescent Bund, Boulder Bund or Pebble Bund are formed in the field.

9.1.3 Treatment of Natural Water Course/ Drainage Lines

- a) The cadastral map has to be updated as regards the network of drainage lines (gullies/nalas/hallas) and existing structures are marked to the scale and storage capacity of the existing water bodies are documented.
- b) The drainage line will be demarcated into Upper Reach, Middle Reach and Lower Reach.
- c) Considering the Catchment, Nala bed and bank conditions, suitable structures are decided.
- d) Number of storage structures (Check dam/ Nala bund/ Percolation tank) will be decided considering the commitments and available runoff from water budgeting and quality of water in the wells and site suitability.
- e) Detailed Leveling Survey using Dumpy Level / Total Station has to be carried out to arrive at the site-specific designs as shown in the Manual.
- f) The location of ground water recharge structures are decided by examining the lineaments and fracture zones from geological maps.
- g) Rainfall intensity data of the nearest Rain Gauge station is considered for Hydrologic Designs.
- h) Silt load to the Storage/Recharge structures is reduced by providing vegetative, boulder and earthen checks in the natural water course. Location and design details are given in the Manual.

9.2 Recommended Soil and Water Conservation Measures

The appropriate conservation structures best suited for each of the land parcel/ survey number (Appendix-I) are selected based on the slope per cent, severity of erosion, amount of rainfall, land use and soil type. The different kinds of conservation structures recommended are

- 1. Graded / Strengthening of Bunds
- 2. Trench cum Bunds (TCB)
- 3. Trench cum Bunds / Strengthening
- 4. Crescent Bunds

A map (Fig. 9.1) showing soil and water conservation plan with different kinds of structures recommended has been generated which shows the spatial distribution and extent of area. A maximum area of about 444 ha (87%) requires Trench cum Bunding and an area of about 42 ha (8%) area is Bunding / Strengthening of existing bunds. The conservation plan generated may be presented to all the stakeholders including farmers and after including their suggestions, the conservation plan for the microwatershed may be finalised in a participatory approach.

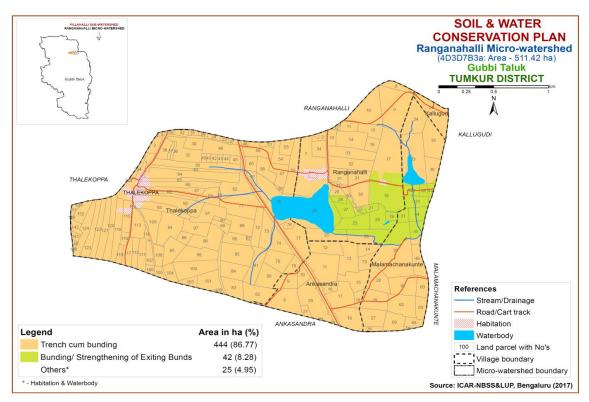


Fig. 9.1 Soil and Water Conservation Plan map of Ranganahalli Microwatershed

9.3 Greening of Microwatershed

As part of the greening programme in the watersheds, it is envisaged to plant a variety of horticultural and other tree plants that are edible, economical and produce lot of biomass which helps to restore the ecological balance in the watersheds. The lands that are suitable for greening programme are non-arable lands (land capability classes V, VI, VII and VIII) and also the lands that are not suitable or marginally suitable for growing annual and perennial crops. The method of planting these trees is given below.

It is recommended to open pits during the 1st week of March along the contour and heap the dugout soil on the lower side of the slope in order to harness the flowing water and facilitate weathering of soil in the pit. Exposure of soil in the pit also prevents spread of pests and diseases due to scorching sun rays. The pits should be filled with mixture of soil and organic manure during the second week of April and keep ready with sufficiently tall seedlings produced either in poly bags or in root trainer nurseries so that planting can be done during the 2nd or 3rd week of April depending on the rainfall.

The tree species suitable for the area considering rainfall, temperature and adaptability is listed below; waterlogged areas are recommended to be planted with species like Neral (*Sizyzium cumini*) and Bamboo. Dry areas are to be planted with species like Honge, Bevu, Seetaphal *etc*.

	Dry D	Deciduous Species	Temp (°C)	Rainfall(mm)
1.	Bevu	Azadiracta indica	21–32	400 -1,200
2.	Tapasi	Holoptelia integrifolia	20-30	500 - 1000
3.	Seetaphal	Anona Squamosa	20-40	400 - 1000
4.	Honge	Pongamia pinnata	20 -50	500-2,500
5.	Kamara	Hardwikia binata	25 -35	400 - 1000
6.	Bage	Albezzia lebbek	20 - 45	500 - 1000
7.	Ficus	Ficus bengalensis	20 - 50	500-2,500
8.	Sisso	Dalbargia Sissoo	20 - 50	500 -2000
9.	Ailanthus	Ailanthus excelsa	20 - 50	500 - 1000
10.	Hale	Wrightia tinctoria	25 - 45	500 - 1000
11.	Uded	Steriospermum chelanoides	25 - 45	500 -2000
12.	Dhupa	Boswella Serrata	20 - 40	500 - 2000
13.	Nelli	Emblica Officinalis	20 - 50	500 -1500
14.	Honne	Pterocarpus marsupium	20 - 40	500 - 2000
	Moist 1	Deciduous Species	Temp (°C)	Rainfall(mm)
15.	Teak	Tectona grandis	20 - 50	500-5000
16.	Nandi	Legarstroemia lanceolata	20 - 40	500 - 4000
17.	Honne	Pterocarpus marsupium	20 - 40	500 - 3000
18.	Mathi	Terminalia alata	20 -50	500 - 2000
19.	Shivane	Gmelina arboria	20 -50	500 -2000
20.	Kindal	T.Paniculata	20 - 40	500 - 1500
21.	Beete	Dalbargia latifolia	20 - 40	500 - 1500
22.	Tare	T. belerica	20 - 40	500 - 2000
23.	Bamboo	Bambusa arundinasia	20 - 40	500 - 2500
24.	Bamboo	Dendrocalamus strictus	20 – 40	500 – 2500
25.	Muthuga	Butea monosperma	20 - 40	400 - 1500
26.	Hippe	Madhuca latifolia	20 - 40	500 - 2000
27.	Sandal	Santalum album	20 - 50	400 - 1000
28.	Nelli	Emblica officinalis	20 - 40	500 - 2000
29.	Nerale	Sizyzium cumini	20 - 40	500 - 2000
30.	Dhaman	Grevia tilifolia	20 - 40	500 - 2000
31.	Kaval	Careya arborea	20 - 40	500 - 2000
32.	Harada	Terminalia chebula	20 - 40	500 - 2000

References

- 1. FAO (1976) Framework for Land Evaluation, Food and Agriculture Organization, Rome.72 pp.
- FAO (1983) Guidelines for Land Evaluation for Rainfed Agriculture, FAO, Rome, 237 pp.
- 3. IARI (1971) Soil Survey Manual, All India Soil and Land Use Survey Organization, IARI, New Delhi, 121 pp.
- 4. Katyal, J.C. and Rattan, R.K. (2003) Secondary and Micronutrients; Research Gap and future needs. Fert. News 48 (4); 9-20.
- 5. Naidu, L.G.K., Ramamurthy, V., Challa, O., Hegde, R. and Krishnan, P. (2006) Manual Soil Site Suitability Criteria for Major Crops, NBSS Publ. No. 129, NBSS &LUP, Nagpur, 118 pp.
- 6. Natarajan, A. and Dipak Sarkar (2010) Field Guide for Soil Survey, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India.
- 7. Natarajan, A., Rajendra Hegde, Raj, J.N. and Shivananda Murthy, H.G. (2015)Implementation Manual for Sujala-III Project, Watershed Development Department, Bengaluru, Karnataka.
- 8. Sarma, V.A.K., Krishnan, P. and Budihal, S.L. (1987) Laboratory Manual, Tech. Bull. 23, NBSS &LUP, Nagpur.
- 9. Sehgal, J.L. (1990) Soil Resource Mapping of Different States of India; Why and How?, National Bureau of Soil Survey and Land Use Planning, Nagpur, 49 pp.
- 10. Shivaprasad, C.R., R.S. Reddy, J. Sehgal and M. Velayuthum (1998) Soils of Karntaka for Optimising Land Use, NBSS Publ. No. 47b, NBSS & LUP, Nagpur, India.
- 11. Soil Survey Staff (2006) Keys to Soil Taxonomy, Tenth edition, U.S. Department of Agriculture/ NRCS, Washington DC, U.S.A.
- 12. Soil Survey Staff (2012) Soil Survey Manual, Handbook No. 18, USDA, Washington DC, USA.

Appendix I Ranganahalli Microwatershed **Soil Phase Information**

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conservation Plan
Ankasandra	7	0.2	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Ankasandra	8	5.69	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Arecanut+Coconut +Mango+Ragi (Ar + CN + Mn +Ra)	1 Bore well	IIIe	тсв
Ankasandra	9	2.68	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIe	тсв
Ankasandra	10	1.62	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIe	тсв
Ankasandra	11	6.74	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Coconut (Mn + CN)	1 Bore well	IIIe	тсв
Ankasandra	12	3.71	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	1 Bore well	IIIe	тсв
Ankasandra	13	4.87	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Ankasandra	14	1.97	HLKhB2g1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Gravelly (15- 35%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIe	тсв
Ankasandra	15	3.86	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	2 Bore well	IIIe	тсв
Ankasandra	16	1.31	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIe	тсв
Ankasandra	17	4.8	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut + Ragi (CN + Ra)	Not Available	IIIe	тсв
Ankasandra	18	1.11	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIe	тсв
Ankasandra	19	4.66	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Ragi (Mn + Ra)	Not Available	IIIe	тсв
Ankasandra	20	6.63	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIe	тсв
Ankasandra	21	0.77	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIe	тсв
Ankasandra	22	0.06	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Ankasandra	23	0.06	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Ankasandra	73	1.73	HLKhB2g1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Gravelly (15- 35%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIe	тсв
Kallugudi	24	5.55	KGHcB2g2	LMU-6	Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Arecanut+Coconut +Mango+Ragi (Ar+ CN + Mn +Ra)	Not Available	IIIes	тсв
Kallugudi	25	0.11	KGHcC2g2	LMU-6	Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moder ate	Not Available (NA)	Not Available	IIIes	тсв

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap	Conservation Plan
Malamachana kunte	26	0.86	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Malamachana kunte	27	3.58	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Ragi (Mn + Ra)	Not Available	IIIe	тсв
Malamachana kunte	28	4.26	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	1 Bore well	IIIe	тсв
Malamachana kunte	29	3.99	HLKhB2g1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Gravelly (15- 35%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	2 Bore well	IIIe	тсв
Malamachana kunte	30	13.77	HLKhB2g1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Gravelly (15- 35%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	2 Bore well	IIIe	тсв
Malamachana kunte	31	1.21	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut + Coconut (Ar + CN)	2 Bore well	IIs	Bunding/ Field Bunds
Malamachana kunte	32	0.87	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	Not Available	IIs	Bunding/ Field Bunds
Malamachana kunte	33	10.25	KGHcB2g2	LMU-6	Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut + Mango + Ragi (CN +Mn +Ra)	Not Available	IIIes	тсв
Malamachana kunte	34	5.19	KGHcC2g2	LMU-6	Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Gently sloping (3-5%)	Moder ate	Mango (Mn)	Not Available	IIIes	тсв
Malamachana kunte	35	5.59	KGHcB2g2	LMU-6	Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIes	тсв
Malamachana kunte	36	2.86	KGHcB2g2	LMU-6	Moderately shallow (50-75 cm)	Sandy loam	Very gravelly (35-60%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Fallow land (Fl)	Not Available	IIIes	тсв
Malamachana kunte	43	0.83	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Field Bunds
Malamachana kunte	44	2.11	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	Not Available	IIs	Bunding/ Field Bunds
Malamachana kunte	45	2.42	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	1 Bore well	IIs	Bunding/ Field Bunds
Malamachana kunte	46	2.92	NDLcB1	LMU-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut + Ragi (CN + Ra)	Not Available	IIIs	тсв
Malamachana kunte	60	2.13	NDLcB1	LMU-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Malamachana kunte	61	4.34	NDLcB1	LMU-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango + Coconut (Mn + CN)	Not Available	IIIs	тсв
Malamachana kunte	62	4.88	NDLcB1	LMU-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango + Ragi (Mn + Ra)	Not Available	IIIs	тсв
Malamachana kunte	63	2.07	NDLcB1	LMU-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut + Ragi (CN + Ra)	Not Available	IIIs	тсв
Malamachana kunte	68	1.48	NDLcB1	LMU-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Malamachana kunte	69	3.08	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Pomogranate + Ragi (Pg +Ra)	Not Available	IIIe	тсв
Malamachana kunte	71	0.16	NDLcB1	LMU-2	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Malamachana kunte	129	1.5	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	Not Available	IIs	Bunding/ Field Bunds

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conservation Plan
Malamachana kunte	131	2.42	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut + Coconut (Ar + CN)	2 Bore well	IIs	Bunding/ Field Bunds
Ranganahalli	1	11.42	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Arecanut + Coconut (Ar + CN)	2 Bore well	IIIes	тсв
Ranganahalli	2	0.77	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Ranganahalli	3	0.04	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIIs	тсв
Ranganahalli	8	1.58	CKMhB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIe	тсв
Ranganahalli	9	9.41	CKMhB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut + Ragi (CN + Ra)	Not Available	IIIe	тсв
Ranganahalli	10	7.03	CKMhB2g1	LMU-4	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Ragi (Mn + Ra)	Not Available	IIIe	тсв
Ranganahalli	11	1.51	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Ranganahalli	12	0.3	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Ranganahalli	13	1.21	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIIs	тсв
Ranganahalli	14	4.25	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Ranganahalli	15	2.45	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Ranganahalli	16	1.57	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIIs	тсв
Ranganahalli	17	12.04	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut + Coconut + Mango (Ar + CN + Mn)	3 Bore well	IIIs	тсв
Ranganahalli	18	7.65	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut + Coconut + Mango (Ar + CN + Mn)	2 Bore well	IIs	Bunding/ Field Bunds
Ranganahalli	19	0.87	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIs	Bunding/ Field Bunds
Ranganahalli	20	3.54	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut (CN)	Not Available	IIs	Bunding/ Field Bunds
Ranganahalli	21	0.83	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIs	Bunding/ Field Bunds
Ranganahalli	22	0.73	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIs	Bunding/ Field Bunds
Ranganahalli	23	3.65	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Mango + Coconut (Mn + CN)	1 Bore well	IIs	Bunding/ Field Bunds
Ranganahalli	24	5	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Coconut + Fallow land (CN + Fl)	Not Available	IIs	Bunding/ Field Bunds
Ranganahalli	25	4.32	BDGhB2g1	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut + Fallow land (CN + Fl)	1 Bore well	IIIes	тсв
Ranganahalli	26	13.35	Waterbody	Oters	Others	Others	Others	Others	Others	Oters	Arecanut (Ar)	Not Available	Oth ers	Others

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conservation Plan
Ranganahalli	27	2.19	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Not Available (NA)	Not Available	IIs	Bunding/ Field Bunds
Ranganahalli	28	0.86	KDTiA1	LMU-3	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Very high (>200 mm/m)	Nearly level (0- 1%)	Slight	Arecanut (Ar)	Not Available	IIs	Bunding/ Field Bunds
Ranganahalli	29	1.09	CSRhB2g1	LMU-6	Shallow (25-50 cm)	Sandy clay loam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIes	тсв
Ranganahalli	30	4.23	CSRhB2g1	LMU-6	Shallow (25-50 cm)	Sandy clay loam	Gravelly (15- 35%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIes	тсв
Ranganahalli	31	4.84	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIIs	тсв
Ranganahalli	32	4.22	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut + Arecanut + Mango (CN + Ar +Mn)	3 Bore well	IIIs	тсв
Ranganahalli	33	4.16	NDLiB1g1	LMU-2	Very deep (>150 cm)	Sandy clay	Gravelly (15- 35%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Slight	Coconut + Ragi (CN + Ra)	1 Bore well	IIIs	тсв
Ranganahalli	34	1.98	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut (Ar)	Not Available	IIs	тсв
Thalekoppa	1	1.37	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	тсв
Thalekoppa	2	1.35	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut + Ragi (CN + Ra)	1 Bore well	IIs	тсв
Thalekoppa	3	0.27	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	4	0.06	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	тсв
Thalekoppa	23	0.34	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	тсв
Thalekoppa	24	0.52	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	тсв
Thalekoppa	29	0.32	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	тсв
Thalekoppa	30	1.84	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIs	тсв
Thalekoppa	31	0.48	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	тсв
Thalekoppa	32	0.78	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	тсв
Thalekoppa	34	0.24	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIs	тсв
Thalekoppa	35	4.2	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango + Coconut (Mn + CN)	Not Available	IIs	тсв
Thalekoppa	36	0.41	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	тсв
Thalekoppa	37	0.46	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	тсв
Thalekoppa	38	1.61	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango + Coconut (Mn + CN)	Not Available	IIs	тсв

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conservation Plan
Thalekoppa	39	4.83	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	5 Bore well	IIs	тсв
Thalekoppa	40	0.36	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIs	тсв
Thalekoppa	41	0.37	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	42	0.5	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	тсв
Thalekoppa	43	0.41	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	тсв
Thalekoppa	44	0.49	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIs	тсв
Thalekoppa	45	0.76	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	46	3.95	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango + Coconut (Mn + CN)	1 Bore well	IIs	тсв
Thalekoppa	47	0.44	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	тсв
Thalekoppa	48	0.38	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIs	тсв
Thalekoppa	51	0.63	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	тсв
Thalekoppa	53	1.71	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	54	2.24	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut + Coconut (Ar + CN)	2 Bore well	IIs	тсв
Thalekoppa	55	4.54	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut + Coconut (Ar + CN)	Not Available	IIs	тсв
Thalekoppa	56	0.29	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIs	тсв
Thalekoppa	57	2.7	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	58	2.74	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut + Coconut (Ar + CN)	Not Available	IIs	тсв
Thalekoppa	59	3.13	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut + Fallow land (CN + Fl)	Not Available	IIs	тсв
Thalekoppa	60	1.42	KDThB1	LMU-3	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Very high (>200 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	61	0.93	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIes	тсв
Thalekoppa	62	4.43	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIes	тсв
Thalekoppa	63	2.16	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	3 Bore well	IIs	тсв
Thalekoppa	64	7.1	RTRcB1	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	3 Bore well	IIs	тсв
Thalekoppa	65	2.04	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIes	тсв

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conservation Plan
Thalekoppa	66	4.08	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIes	тсв
Thalekoppa	67	2.33	RTRcB1	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	68	1.73	RTRcB1	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Ragi (Ra)	Not Available	IIs	тсв
Thalekoppa	69	4.03	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIes	тсв
Thalekoppa	70	0.18	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIes	тсв
Thalekoppa	71	6.38	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIes	тсв
Thalekoppa	72	2.68	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	1 Bore well	IIIes	тсв
Thalekoppa	73	3.12	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIes	тсв
Thalekoppa	74	2.84	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	2 Bore well	IIIes	тсв
Thalekoppa	75	8.58	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIes	тсв
Thalekoppa	76	0.67	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	1 Bore well	IIIes	тсв
Thalekoppa	77	4.6	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	3 Bore well	IIIes	тсв
Thalekoppa	78	1.55	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Thalekoppa	79	3.82	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	2 Bore well	IIIes	тсв
Thalekoppa	80	3.74	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIes	тсв
Thalekoppa	81	3.88	BDGhB2	LMU-5	Moderately deep (75-100 cm)	Sandy clay loam	Non gravelly (<15%)	Very low (<50 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	1 Open well,2 Bore well	IIIes	тсв
Thalekoppa	82	4.26	MNLhB2	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Coconut (Mn + CN)	1 Bore well	IIIe	тсв
Thalekoppa	83	3.12	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Coconut (Mn + CN)	Not Available	IIIes	тсв
Thalekoppa	84	3.58	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Arecanut+Ragi+Ma ngo (Ar+Ra+Mn)	Not Available	IIIes	тсв
Thalekoppa	85	5.36	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango + Coconut (Mn + CN)	3 Bore well	IIes	тсв
Thalekoppa	86	2.3	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	2 Bore well	IIes	тсв
Thalekoppa	87	0.17	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIes	тсв
Thalekoppa	88	3.78	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango + Coconut (Mn + CN)	2 Bore well	IIes	тсв

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conservation Plan
Thalekoppa	89	1.1	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIes	тсв
Thalekoppa	90	0.62	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	Not Available	IIes	тсв
Thalekoppa	91	3.7	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Arecanut + Coconut (Ar + CN)	2 Bore well	IIes	тсв
Thalekoppa	92	5.88	RTRiB1	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	93	3.48	RTRiB1	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIs	тсв
Thalekoppa	94	5.35	RTRiB1	LMU-1	Very deep (>150 cm)	Sandy clay	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	4 Bore well	IIs	тсв
Thalekoppa	95	3.39	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	1 Open well	IIIes	тсв
Thalekoppa	96	1.19	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	Not Available	IIes	тсв
Thalekoppa	97	2.97	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Coconut (CN)	1 Bore well	IIes	тсв
Thalekoppa	98	4.63	JDGhB1	LMU-4	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Mango (Mn)	1 Bore well	IIes	тсв
Thalekoppa	99	4.44	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Arecanut (Mn+Ar)	Not Available	IIIes	тсв
Thalekoppa	100	5.48	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	1 Bore well	IIIes	тсв
Thalekoppa	101	3.35	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIes	тсв
Thalekoppa	102	0.36	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIes	тсв
Thalekoppa	103	1.17	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIes	тсв
Thalekoppa	104	1.68	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIes	тсв
Thalekoppa	105	0.97	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIes	тсв
Thalekoppa	106	0.68	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	107	1.42	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	108	1.61	BPRhB2	LMU-5	Deep (100-150 cm)	Sandy clay loam	Non gravelly (<15%)	Low (51-100 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	1 Open well	IIIes	тсв
Thalekoppa	109	3.5	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	110	0.4	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Thalekoppa	111	2.27	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	112	1.59	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв

Village	Sy No.	Area (ha)	Soil Phase	LMU	Soil Depth	Surface Soil Texture	Soil Gravelliness	Available Water Capacity	Slope	Soil Erosion	Current Land Use	WELLS	Land Cap ability	Conservation Plan
Thalekoppa	113	3.17	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	114	0.09	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Thalekoppa	115	2.35	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	1 Bore well	IIIe	тсв
Thalekoppa	116	0.84	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Thalekoppa	117	2.1	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	1 Bore well	IIIe	тсв
Thalekoppa	118	0.9	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	119	3.83	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	120	3.34	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	121	3.76	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	122	2.81	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango + Ragi (Mn + Ra)	Not Available	IIIe	тсв
Thalekoppa	123	3.31	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	124	3.66	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	138	0.02	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Thalekoppa	140	0.26	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	141	0.57	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Mango (Mn)	Not Available	IIIe	тсв
Thalekoppa	142	1.06	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIe	тсв
Thalekoppa	149	0.04	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Not Available (NA)	Not Available	IIIe	тсв
Thalekoppa	151	0.51	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Fallow land (Fl)	Not Available	IIIe	тсв
Thalekoppa	152	2.05	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Ragi (Ra)	Not Available	IIIe	тсв
Thalekoppa	153	0.15	HLKcB2	LMU-1	Very deep (>150 cm)	Sandy loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Moder ate	Coconut (CN)	Not Available	IIIe	тсв
Thalekoppa	203	0.03	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Not Available (NA)	Not Available	IIs	тсв
Thalekoppa	204	0.8	RTRhB1	LMU-1	Very deep (>150 cm)	Sandy clay loam	Non gravelly (<15%)	Medium (101- 150 mm/m)	Very gently sloping (1-3%)	Slight	Fallow land (Fl)	Not Available	IIs	тсв

Appendix II Ranganahalli Microwatershed **Soil Fertility Information**

Village	Sy No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Ankasandra	7	Slightly acid (pH	Non saline	Low (<0.5 %)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Ankasandra	8	6.0 - 6.5) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
		(pH 5.5 - 6.0) Slightly acid (pH	(<2 dsm) Non saline	, ,	kg/ha) Medium (23 -	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Ankasandra	9	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ankasandra	10	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ankasandra	11	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ankasandra	12	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Ankasandra	13	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 – 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ankasandra	14	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ankasandra	15	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ankasandra	16	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ankasandra	17	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1.	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ankasandra	18	Strongly acid (pH 5.0 - 5.5)	Non saline	Medium (0.5- 0.75 %)	High (> 57	Medium (145- 337 kg/ha)	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient (>0.2 ppm)	Deficient
Ankasandra	19	Strongly acid (pH	(<2 dsm) Non saline	Medium (0.5-	kg/ha) High (> 57	Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	Sufficient	(<0.6 ppm) Deficient
Ankasandra	20	5.0 - 5.5) Moderately acid	(<2 dsm) Non saline	0.75 %) Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Ankasandra	21	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Ankasandra	22	(pH 5.5 - 6.0) Strongly acid (pH	(<2 dsm) Non saline	Medium (0.5-	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
		5.0 - 5.5) Strongly acid (pH	(<2 dsm) Non saline	0.75 %) Medium (0.5-	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Ankasandra	23	5.0 - 5.5) Slightly acid (pH	(<2 dsm) Non saline	0.75 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Medium (0.5-	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Ankasandra	73	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Kallugudi	24	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Kallugudi	25	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	26	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha	27	Strongly acid (pH	Non saline	Medium (0.5-	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
nakunte		5.0 - 5.5)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)

Village	Sy No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Malamacha nakunte	28	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	29	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	30	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	31	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	32	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	33	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	34	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	35	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	36	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	43	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	44	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 – 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	45	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	46	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	60	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	61	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	62	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	63	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	68	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	69	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	71	Strongly acid (pH 5.0 - 5.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Low (<145 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	129	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Malamacha nakunte	131	Slightly alkaline (pH 7.3 - 7.8)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ranganahalli	1	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	High (> 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Ranganahalli	2	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)

Village	Sy No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
Ranganahalli		Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ranganahalli	8	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Ranganahalli	9	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
. 8	1	(pH 5.5 - 6.0)	(<2 dsm)	. (kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ranganahalli	10	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ranganahalli	11	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Ranganahalli	12	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57	Medium (145-	Medium (10- 20 ppm)	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		Slightly acid (pH	Non saline		kg/ha) High (> 57	337 kg/ha) Medium (145-	Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Ranganahalli	13	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Ranganahalli	14	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
		Moderately acid	Non saline		High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Ranganahalli	15	(pH 5.5 - 6.0)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ranganahalli	16	Slightly acid (pH	Non saline	Low (<0.50/)	Medium (23 -	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Kangananan	10	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ranganahalli	17	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
		Slightly alkaline	Non saline		Medium (23 -	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Ranganahalli	18	(pH 7.3 - 7.8)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	40	Slightly alkaline	Non saline		Medium (23 -	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Deficient
Ranganahalli	19	(pH 7.3 – 7.8)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ranganahalli	20	Slightly alkaline	Non saline	Low (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Deficient
Kangananan	20	(pH 7.3 – 7.8)	(<2 dsm)	` ′	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ranganahalli	21	Slightly alkaline	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		(pH 7.3 - 7.8)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Ranganahalli	22	Slightly alkaline (pH 7.3 – 7.8)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
		Slightly alkaline	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Ranganahalli	23	(pH 7.3 - 7.8)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Ranganahalli	24	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	Medium (145-	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Deficient
Kangananan	24	7.3)	(<2 dsm)		57 kg/ha)	337 kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Ranganahalli	25	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Danganahalli	26	7.3) Others	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha) Others	20 ppm)	1.0 ppm) Others	(>4.5 ppm) Others	0 ppm) Others	(>0.2 ppm) Others	(>0.6 ppm)
Ranganahalli	20		Others	Others Medium (0.5-	Others		Others		Sufficient		Sufficient	Others Sufficient
Ranganahalli	27	Slightly alkaline (pH 7.3 – 7.8)	Non saline (<2 dsm)	0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5- 1.0 ppm)	(>4.5 ppm)	Sufficient(>1. 0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Ranganahalli	28	Slightly alkaline	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Rangananan	20	(pH 7.3 - 7.8)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Ranganahalli	29	Slightly alkaline	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		(pH 7.3 - 7.8)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Ranganahalli	30	Slightly alkaline	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Medium (0.5-	Sufficient (>4.5 ppm)	Sufficient(>1.	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
		(pH 7.3 - 7.8)	Non saline	Medium (0.5-	Medium (23 -	кg/па) High (>337	Medium (10-	1.0 ppm) Medium (0.5-	Sufficient	0 ppm) Sufficient(>1.	Sufficient	Sufficient
Ranganahalli	31	Neutral (pH 6.5 - 7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		/ .J	(~2 usiii)	U.73 70J	J/ ng/ilaj	ng/ IIa j	20 ppmj	T.o bbiii)	(54.9 bhin)	o ppinj	(~0.2 ppiii)	(>0.0 phin)

Village	Sy No.	Soil Reaction	Salinity	Organic Carbon	Available Phosphorus	Available Potassium	Available Sulphur	Available Boron	Available Iron	Available Manganese	Available Copper	Available Zinc
		Neutral (pH 6.5 -	Non saline		Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Ranganahalli	32	7.3)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
D 1 111	20	Slightly acid (pH	Non saline	T (0 = 0/)	High (> 57	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Ranganahalli	33	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Dongonahalli	24	Slightly acid (pH	Non saline	Medium (0.5-	High (> 57	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Ranganahalli	34	6.0 - 6.5)	(<2 dsm)	0.75 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalakanna	1	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	1	7.3)	(<2 dsm)	LOW (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	2	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Паскорра		7.3)	(<2 dsm)	LOW (<0.5 /0)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	3	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
типскорри		7.3)	(<2 dsm)	2011 (1010 70)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	4	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
писторра	_	7.3)	(<2 dsm)		57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	23	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
PP		7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	24	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	29	Slightly acid (pH	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
• • • • • • • • • • • • • • • • • • • •		6.0 - 6.5)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	30	Slightly acid (pH	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		6.0 - 6.5)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	31	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10-	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1.	Sufficient	Sufficient
		Slightly acid (pH	Non saline	Medium (0.5-	Medium (23 -	Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient
Thalekoppa	32	6.0 - 6.5)	(<2 dsm)	0.75 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Slightly acid (pH	Non saline	Medium (0.5-	Medium (23 -	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	34	6.0 - 6.5)	(<2 dsm)	0.75 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	35	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	36	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
m1 1 1		Neutral (pH 6.5 -	Non saline		Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	37	7.3)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
m1 1 1	20	Neutral (pH 6.5 -	Non saline	I (0 = 0/)	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	38	7.3)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalalsanna	39	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	39	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalakanna	40	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	40	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	41	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
тпатекорра	41	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	42	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
паскорра	74	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	43	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
панскорра	73	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	44	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Village	Sy	Soil Reaction	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available
	No.			Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Thalekoppa	45	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	High (>0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
Thalekoppa	46	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
m1 1 1	4=	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 –	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	47	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	48	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	51	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	53	Neutral (pH 6.5 -	Non saline	Medium (0.5-	High (> 57	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Панекорра	33	7.3)	(<2 dsm)	0.75 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	54	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
тишенорри	0.	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	55	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	56	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Medium (0.5- 0.75 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	57	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 –	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	58	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
m1 1 1	=0	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	59	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	60	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
панекорра	00	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	61	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
типенорри	01	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	62	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	63	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
		7.3)	(<2 dsm)	0.75 %) Medium (0.5-	57 kg/ha) Medium (23 -	kg/ha)	20 ppm) Medium (10-	ppm)	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(>0.6 ppm)
Thalekoppa	64	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	0.75 %)	57 kg/ha)	High (>337 kg/ha)	20 ppm)	Low (<0.5 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	Sufficient (>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	65	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	66	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
7711-1	67	Neutral (pH 6.5 -	Non saline		Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	67	7.3)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	68	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
панекорра	00	7.3)	(<2 dsm)	LUW (<0.3 70)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	69	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
титеморра	"	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
Thalekoppa	70	Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
штолорри		7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
m1 1 1		Neutral (pH 6.5 -	Non saline	Medium (0.5-	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	71	7.3)	(<2 dsm)	0.75 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)

3) eutral (pH 6.5 - 3) ightly acid (pH 6.5 - 3) eutral (pH 6.5 - 3)	Non saline (<2 dsm) 0.75 Non saline (<2 dsm) 0.75 Non saline (<2 dsm) Low Non saline (<2 dsm) 0.75 Non saline (<2 dsm) 0.75 Non saline (<2 dsm) 0.75 Non saline (<2 dsm) Low Non saline Low Low Non saline (<2 dsm) Low (<2 dsm)	dium (0.5-5 %) v (<0.5 %) dium (0.5-5 %) dium (0.5-5 %) dium (0.5-5 %) v (<0.5 %)	Phosphorus Medium (23 - 57 kg/ha)	Potassium High (>337 kg/ha) Medium (145- 337 kg/ha)	Sulphur Medium (10- 20 ppm)	Boron Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm)	Iron Sufficient (>4.5 ppm)	Manganese Sufficient(>1. 0 ppm)	Copper Sufficient (>0.2 ppm)	Zinc Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
3) eutral (pH 6.5 - 3) ightly acid (pH 6.5 - 3) eutral (pH 6.5 - 3)	(<2 dsm)	5 %) dium (0.5- 5 %) v (<0.5 %) dium (0.5- 5 %) dium (0.5- 5 %) dium (0.5- 5 %) v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha)	kg/ha) High (>337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10-20 ppm)	ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient (>0.2 ppm)	(>0.6 ppm) Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
3) eutral (pH 6.5 - 3) eightly acid (pH 6.5 - 3) eutral (pH 6.5 - 3)	(<2 dsm)	5 %) v (<0.5 %) dium (0.5- 5 %) dium (0.5- 5 %) dium (0.5- 5 %) v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha)	kg/ha) High (>337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10- 20 ppm)	1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	(>4.5 ppm) Sufficient	Sufficient(>1. 0 ppm)	(>0.2 ppm) Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) ightly acid (pH 6.5 - 3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) ightly acid (pH 6.5 - 3) ightly acid (pH 6.5 - 3) eutral (pH 6.5 - 3)	Non saline (<2 dsm) Low	v (<0.5 %) dium (0.5-5 %) dium (0.5-5 %) dium (0.5-5 %) v (<0.5 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha) Medium (145-337 kg/ha)	Medium (10-20 ppm)	Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	Sufficient (>4.5 ppm) Sufficient	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm) Sufficient	Sufficient (>0.6 ppm) Sufficient (>0.6 ppm) Sufficient (>0.6 ppm) Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) ightly acid (pH 6.5 - 3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) ightly acid (pH 6.5 - 3) eutral (pH 6.5 - 3)	Non saline (<2 dsm) 0.75 Non saline (<2 dsm) 0.75 Non saline (<2 dsm) 0.75 Non saline (<2 dsm) Low Non saline Low L	5 %) dium (0.5- 5 %) dium (0.5- 5 %) v (<0.5 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha) High (>337 kg/ha) High (>337 kg/ha) High (>337 kg/ha) Medium (145-337 kg/ha)	Medium (10-20 ppm)	Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	Sufficient (>4.5 ppm) Sufficient	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm) Sufficient	Sufficient (>0.6 ppm) Sufficient (>0.6 ppm) Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) ightly acid (pH .0 - 6.5) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) ightly acid (pH .0 - 6.5) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) ightly acid (pH .0 - 6.5) eutral (pH 6.5 - 3)	(<2 dsm)	5 %) dium (0.5- 5 %) dium (0.5- 5 %) v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha)	kg/ha) High (>337 kg/ha) High (>337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10-20 ppm)	ppm) Medium (0.5- 1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient (>0.6 ppm) Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
3) eutral (pH 6.5 - 3) ightly acid (pH .0 - 6.5) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) ightly acid (pH .0 - 6.5) eutral (pH 6.5 - 3)	(<2 dsm)	5 %) dium (0.5- 5 %) v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha)	kg/ha) High (>337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10- 20 ppm)	1.0 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1. 0 ppm)	(>0.2 ppm) Sufficient	(>0.6 ppm) Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) ightly acid (pH 0.6.5) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) ightly acid (pH 0.6.5) eutral (pH 6.5 - 3)	Non saline (<2 dsm) 0.75 Non saline (<2 dsm) Low	dium (0.5-5 %) v (<0.5 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha) Medium (145- 337 kg/ha)	Medium (10- 20 ppm) Medium (10- 40 ppm) Medium (10- 40 ppm)	Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	Sufficient (>4.5 ppm) Sufficient	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm) Sufficient	Sufficient (>0.6 ppm) Deficient (<0.6 ppm)
ightly acid (pH .0 - 6.5) (eutral (pH 6.53) (eutral (e	Non saline (<2 dsm) Low Non saline (<2 dsm) Non saline (<2 dsm) Non saline (<2 dsm) Low	v (<0.5 %)	Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha)	Medium (10- 20 ppm) Medium (10- 40 ppm) Medium (10-	Low (<0.5 ppm) Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5-1.0 ppm) Low (<0.5 ppm) Low (<0.5 ppm)	Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient	Sufficient(>1. 0 ppm) Sufficient(>1.	Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient	Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) lightly acid (pH 0.6 - 6.5) eutral (pH 6.5 - 3)	(<2 dsm)LowNon saline (<2 dsm)	v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha)	337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10- 40 ppm) Medium (10- 40 ppm)	ppm) Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient (<0.6 ppm)
eutral (pH 6.5 - 3)	Non saline (<2 dsm) Non saline	v (<0.5 %) v (<0.5 %) v (<0.5 %) v (<0.5 %)	Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha)	Medium (10- 20 ppm) Medium (10- 20 ppm) Medium (10- 20 ppm) Medium (10- 20 ppm) Medium (10-	Low (<0.5 ppm) Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5	Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient	Sufficient(>1. 0 ppm) Sufficient(>1.	Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient	Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) eutral (pH 6.5 - 3) lightly acid (pH 0.0 - 6.5) eutral (pH 6.5 - 3)	Non saline (<2 dsm) Non saline	v (<0.5 %) v (<0.5 %) v (<0.5 %) v (<0.5 %)	Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha)	Medium (10- 20 ppm) Medium (10- 20 ppm) Medium (10- 20 ppm) Medium (10-	Low (<0.5 ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5	Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient	0 ppm) Sufficient(>1. 0 ppm) Sufficient(>1. 0 ppm) Sufficient(>1. 0 ppm) Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient	Deficient (<0.6 ppm) Deficient (<0.6 ppm) Deficient (<0.6 ppm) Deficient (<0.6 ppm)
3)	(<2 dsm) Non saline (<2 dsm) Non saline (<2 dsm) Non saline (<2 dsm) Non saline (<2 dsm) Low Low Low Low Low Low	v (<0.5 %) v (<0.5 %) v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha)	337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10- 20 ppm) Medium (10- 20 ppm) Medium (10-	ppm) Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5	(>4.5 ppm) Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient	0 ppm) Sufficient(>1. 0 ppm) Sufficient(>1. 0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient	(<0.6 ppm) Deficient (<0.6 ppm) Deficient (<0.6 ppm) Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) (sightly acid (pH 6.5 - 6.5) (eutral (pH 6.5 - 3) (eutral (pH 6.5 - 3) (eutral (pH 6.5 - 11) (eutral (eu	Non saline (<2 dsm) Non saline (<2 dsm) Non saline (<2 dsm) Non saline (<2 dsm) Non saline I ow	v (<0.5 %) v (<0.5 %) v (<0.5 %)	Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha)	Medium (10- 20 ppm) Medium (10- 20 ppm) Medium (10-	Medium (0.5- 1.0 ppm) Low (<0.5 ppm) Low (<0.5	Sufficient (>4.5 ppm) Sufficient (>4.5 ppm) Sufficient	Sufficient(>1. 0 ppm) Sufficient(>1. 0 ppm) Sufficient(>1.	Sufficient (>0.2 ppm) Sufficient (>0.2 ppm) Sufficient	Deficient (<0.6 ppm) Deficient (<0.6 ppm) Deficient (<0.6 ppm)
3)	(<2 dsm) Non saline (<2 dsm) Non saline (<2 dsm) Low Low Non saline (<2 dsm) Low	v (<0.5 %) v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha) Medium (23 - 57 kg/ha)	337 kg/ha) Medium (145- 337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10- 20 ppm) Medium (10-	1.0 ppm) Low (<0.5 ppm) Low (<0.5	(>4.5 ppm) Sufficient (>4.5 ppm) Sufficient	0 ppm) Sufficient(>1. 0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient (>0.2 ppm) Sufficient	(<0.6 ppm) Deficient (<0.6 ppm) Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) (eutral (pH 6.5 - 4) (eutral (eutra) (eutral (eutral (eutral (eutral (eutral (eutral (eutral (eutra	(<2 dsm) Non saline (<2 dsm) Non saline Low	v (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha)	337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient (<0.6 ppm)
eutral (pH 6.5 - 3) (eutral (pH 6.5 - 3) (eutral (pH 6.5 - 1) (eutral (eutra) (eutral (eutral (eutral (eutral (eutral (eutral (eutral (eutra	Non saline (<2 dsm) Non saline	, ,	Medium (23 – 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient (<0.6 ppm)
.3) (eutral (pH 6.5 - 3) (eutral (pH 6.5 - 1)	(<2 dsm) Low	, ,	57 kg/ha)	337 kg/ha)						(<0.6 ppm)
3) eutral (pH 6.5 -	LOW	(.0 = 0/)	Medium (23 -	Madium (145		ppm)	(>4.5 ppm)	y pp)		
eutral (pH 6.5 -	(<2 dsm)			Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
· ·		V (<0.5 70)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
.3)	Non saline (<2 dsm)	v (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
	Non calino	- (-0 F 0/)	Medium (23 -	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
	(<2 dsm)	v (<0.5 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
· ·	Non saline Low	v (<0.5 %)	Medium (23 -	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
	(<2 asm)	70,	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)
CI.	Non saline (<2 dsm)	v (<0.5 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Sufficient (>0.6 ppm)
eutral (pH 6.5 -	Non saline Low	v (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
,	(<2 dSm)	,	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
· ·	Non saline (<2 dsm)	v (<0.5 %)	Medium (23 - 57 kg/ha)	kg/ha)	20 ppm)	Low (<0.5 ppm)		0 ppm)	(>0.2 ppm)	Sufficient (>0.6 ppm)
CI.		`	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Sufficient
,	· ,	5 %)	0, ,	, o, ,		11 /				(>0.6 ppm) Sufficient
	I OW	v (<0.5 %)	,	0 (,			,		(>0.6 ppm)
	Non calino	(0 = 0/)			+		Sufficient			Deficient
	(<2 dsm)	v (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
ightly acid (nH	Non saline Low	v (<0 5 %)	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
	(12 1) LUW	, (-0.5 70)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
	(<2 usin)		Medium (23 –	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
eu .3) eu .3) eu .3)	tral (pH 6.5 - tral (pH 6.5 - tral (pH 6.5 - tral (pH 6.5 - that (pH 6.5 -	tral (pH 6.5 - Non saline (<2 dsm) htly acid (pH Non saline	tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) tral (pH 6.5 - Non saline (2 dsm) 0.75 %) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) thly acid (pH Non saline (<2 dsm) Low (<0.5 %)	tral (pH 6.5 - Non saline (<2 dsm) tral (pH 6.5 - N	Low (<0.5 %) Medium (23 - High (>337 kg/ha) Kral (pH 6.5 - Non saline (<2 dsm) Medium (0.5 + Medium (23 - High (>337 kg/ha) Kral (pH 6.5 - Non saline (<2 dsm) Low (<0.5 %) Medium (23 - High (>337 kg/ha) Kral (pH 6.5 - Non saline (<2 dsm) Low (<0.5 %) Medium (23 - High (>337 kg/ha) Kral (pH 6.5 - Non saline (<2 dsm) Low (<0.5 %) Medium (23 - High (>337 kg/ha) Kral (pH 6.5 - Non saline (<2 dsm) Low (<0.5 %) Medium (23 - High (>337 kg/ha) Kral (pH 6.5 - Non saline (<2 dsm) Low (<0.5 %) Medium (23 - High (>337 Kg/ha) Kral (pH 6.5 - Non saline (<2 dsm) Low (<0.5 %) Medium (23 - High (>337 Kg/ha) Kral (pH 6.5 - Kral (pH 6.	tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - High (>337 kg/ha) 20 ppm) tral (pH 6.5 - Non saline (2 dsm) 0.75 %) 57 kg/ha) kg/ha) 20 ppm) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - High (>337 kg/ha) 20 ppm) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - Figh (>337 kg/ha) Medium (10 - 20 ppm) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - Figh (>337 kg/ha) Medium (10 - 20 ppm) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - Figh (>337 kg/ha) Medium (10 - 20 ppm) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - Figh (>337 kg/ha) Medium (10 - 20 ppm) tral (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - Figh (>337 kg/ha) Medium (10 - 20 ppm)	trail (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - F7 kg/ha) kg/ha) Low (<0.5 %) Medium (23 - Kg/ha) Low (<0.5 %) F7 kg/ha) kg/ha) Low (<0.5 %) Example (2 dsm) Example (2 dsm) Low (<0.5 %) Example (2 dsm) Exam	tral (pH 6.5 - Non saline (<2 dsm)	trail (pH 6.5 - Non saline (2 dsm) Low (<0.5 %) Medium (23 - High (>337 kg/ha) 20 ppm) pm) (>4.5 ppm) 0 ppm) (tral (pH 6.5 - Non saline (2 dsm)

Village	Sy	Soil Reaction	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available
Village	No.	Joh Reaction	Sammey	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Thalekoppa	96	Neutral (pH 6.5 – 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	97	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	High (>337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	98	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	99	Neutral (pH 6.5 - 7.3)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	100	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Thalekoppa	101	7.3) Neutral (pH 6.5 -	(<2 dsm) Non saline	Low (<0.5 %)	57 kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Thalekoppa	102	7.3) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
	102	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Thalekoppa		6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	1	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Thalekoppa	104	6.0 - 6.5) Slightly acid (pH	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Thalekoppa	105	6.0 - 6.5)	(<2 dsm)	Low (<0.5 %)	kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	106	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	107	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 – 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	108	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	109	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	110	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 – 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	111	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	112	Moderately acid (pH 5.5 - 6.0)	Non saline (<2 dsm)	Low (<0.5 %)	High (> 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	113	Slightly acid (pH	Non saline	Low (<0.5 %)	Medium (23 -	Medium (145-	Medium (10-	ppm) Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Thalekoppa	114	6.0 - 6.5) Neutral (pH 6.5 - 7.3)	(<2 dsm) Non saline (<2 dsm)	Low (<0.5 %)	57 kg/ha) Medium (23 - 57 kg/ha)	337 kg/ha) Medium (145- 337 kg/ha)	20 ppm) Medium (10- 20 ppm)	ppm) Low (<0.5 ppm)	(>4.5 ppm) Sufficient (>4.5 ppm)	0 ppm) Sufficient(>1. 0 ppm)	(>0.2 ppm) Sufficient (>0.2 ppm)	(<0.6 ppm) Deficient (<0.6 ppm)
Thalekoppa	115	Slightly acid (pH 6.0 - 6.5)	Non saline (<2 dsm)	Low (<0.5 %)	Medium (23 - 57 kg/ha)	Medium (145- 337 kg/ha)	Medium (10- 20 ppm)	Low (<0.5 ppm)	Sufficient (>4.5 ppm)	Sufficient(>1. 0 ppm)	Sufficient (>0.2 ppm)	Deficient (<0.6 ppm)
Thalekoppa	116	Moderately acid	Non saline	Low (<0.5 %)	Medium (23 – 57 kg/ha)	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Thalekoppa	117	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Thalekoppa	118	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) High (> 57	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
Thalekoppa	119	(pH 5.5 - 6.0) Moderately acid	(<2 dsm) Non saline	Low (<0.5 %)	kg/ha) Medium (23 -	337 kg/ha) Medium (145-	20 ppm) Medium (10-	ppm) Low (<0.5	(>4.5 ppm) Sufficient	0 ppm) Sufficient(>1.	(>0.2 ppm) Sufficient	(<0.6 ppm) Deficient
		(pH 5.5 - 6.0)	(<2 dsm)		57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)

Village	Sy	Soil Reaction	Salinity	Organic	Available	Available	Available	Available	Available	Available	Available	Available
Village	No.	Jon Reaction	Saminty	Carbon	Phosphorus	Potassium	Sulphur	Boron	Iron	Manganese	Copper	Zinc
Thalekoppa	120	Moderately acid	Non saline	Low (<0.5 %)	Medium (23 -	Medium (145-	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Панекорра	120	(pH 5.5 - 6.0)	(<2 dsm)	LUW (<0.3 %)	57 kg/ha)	337 kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	121	Moderately acid	Non saline	Low (<0.5 %)	Medium (23 -	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Панекорра	141	(pH 5.5 - 6.0)	(<2 dsm)	LUW (<0.3 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	122	Moderately acid	Non saline	Low (<0.5 %)	Medium (23 -	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Панскорра	122	(pH 5.5 - 6.0)	(<2 dsm)	LOW (<0.5 70)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	123	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
ппанекорра	123	(pH 5.5 - 6.0)	(<2 dsm)	LOW (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	124	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
ппанекорра	124	(pH 5.5 - 6.0)	(<2 dsm)	LUW (<0.3 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	138	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Панекорра	130	(pH 5.5 - 6.0)	(<2 dsm)	LUW (<0.3 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	140	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
ппанекорра	140	(pH 5.5 - 6.0)	(<2 dsm)	LOW (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	141	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
ппанекорра	141	(pH 5.5 - 6.0)	(<2 dsm)	LUW (<0.3 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalakanna	142	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Thalekoppa	142	(pH 5.5 - 6.0)	(<2 dsm)	LOW (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalakanna	149	Moderately acid	Non saline	Low (<0.5 %)	High (> 57	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Thalekoppa	149	(pH 5.5 - 6.0)	(<2 dsm)	LOW (<0.5 %)	kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	151	Slightly acid (pH	Non saline	Low (<0.5 %)	Medium (23 -	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Панекорра	131	6.0 - 6.5)	(<2 dsm)	LUW (<0.3 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	152	Slightly acid (pH	Non saline	Low (<0.5 %)	Medium (23 -	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
ппанекорра	152	6.0 - 6.5)	(<2 dsm)	LOW (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalakanna	153	Slightly acid (pH	Non saline	Low (<0.5 %)	Medium (23 -	Low (<145	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
Thalekoppa	133	6.0 - 6.5)	(<2 dsm)	LUW (<0.3 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalekoppa	203	Neutral (pH 6.5 -	Non saline	Low (<0.5 %)	Medium (23 -	High (>337	Medium (10-	Low (<0.5	Sufficient	Sufficient(>1.	Sufficient	Deficient
ппанекорра	203	7.3)	(<2 dsm)	LUW (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(<0.6 ppm)
Thalalranna	204	Neutral (pH 6.5 -	Non saline	Low (<0.5 0/)	Medium (23 -	High (>337	Medium (10-	Medium (0.5-	Sufficient	Sufficient(>1.	Sufficient	Sufficient
Thalekoppa	204	7.3)	(<2 dsm)	Low (<0.5 %)	57 kg/ha)	kg/ha)	20 ppm)	1.0 ppm)	(>4.5 ppm)	0 ppm)	(>0.2 ppm)	(>0.6 ppm)

Appendix III

Ranganahalli Microwatershed Soil Suitability Information

Village	Sy No.	Man go	Mai ze	Sap ota		Coc		Tama rind	Li me	Sun flo wer	Red gram		Jack fruit	Cus tard app le	Cas hew	Jam un	am	Gro und nut	Oni on	Chil ly	To ma to	Mari gold	Chrys anth emu m	Pome gran ate	Ban ana	Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine	Cow	Mul ber ry
Ankasan dra	7	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	8	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	9	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	10	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	11	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Ankasan dra	12	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Ankasan dra	13	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Ankasan dra	14	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Ankasan dra	15	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Ankasan dra	16	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	17	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	18	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	19	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	20	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	21	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	22	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	23	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Ankasan dra	73	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Kallugu di	24	Nr	S2rg	S3rg	S2rg	S3rg	S3rg	Nr	S3rg	S3rg	S2rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3rg	S3rg	S1	S2rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3r
Kallugu di	25	Ngl	S2gl	S3gl	S2gl	S3gl	S3gl	Ngl	S3gl	S3gl	S2gl	S2gl	S3gl	S2gl	S3gl	S3gl	S3gl	S2gl	S2gl	S2gl	S2gl	S2gl	S2gl	S3gl	S3gl	S2gl	S2gl	S3gl	S2gl	S2gl	S2gl	S2gl	S2gl	S2gl	S3r

Village	Sy No.	Man go	Mai ze	Sap ota		Coc onut		Tama rind	Li me	Sun flo wer	Red gram			Cus tard app le		Jam un	Mus am bi	Gro und nut	Oni on	Chil ly	To ma to	Mari gold	Chrys anth emu m	Pome gran ate	Ban ana	Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine		Mul ber ry
Malama chanaku nte	26	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malama chanaku nte	27	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malama chanaku nte	28	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malama chanaku nte	29	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Malama chanaku nte	30	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Malama chanaku nte	31	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Malama chanaku nte	32	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Malama chanaku nte	33	Nr	S2rg	S3rg	S2rg	S3rg	S3rg	Nr	S3rg	S3rg	S2rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3rg	S3rg	S1	S2rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3r
Malama chanaku nte	34	Ngl	S2gl	S3gl	S2gl	S3gl	S3gl	Ngl	S3gl	S3gl	S2gl	S2gl	S3gl	S2gl	S3gl	S3gl	S3gl	S2gl	S2gl	S2gl	S2gl	S2gl	S2gl	S3gl	S3gl	S2gl	S2gl	S3gl	S2gl	S2gl	S2gl	S2gl	S2gl	S2gl	S3r
Malama chanaku nte	35	Nr	S2rg	S3rg	S2rg	S3rg	S3rg	Nr	S3rg	S3rg	S2rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3rg	S3rg	S1	S2rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3r
Malama chanaku nte	36	Nr	S2rg	S3rg	S2rg	S3rg	S3rg	Nr	S3rg	S3rg	S2rg	S2rg	S3rg	S2rg	S3rg	S3rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3rg	S3rg	S1	S2rg	S3rg	S2rg	S2rg	S2rg	S2rg	S2rg	S2rg	S3r
Malama chanaku nte	43	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Malama chanaku nte	44	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Malama chanaku nte	45	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Malama chanaku nte	46	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Malama chanaku nte	60	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g

Village	Sy No.	Man go	Mai ze	Sap ota	Sorg ham	Coc		Tama rind	Li me	Sun flo wer	Red gram		Jack fruit	Cus tard app le	Cas hew	Jam un	am	Gro und nut	Oni on	Chil ly	To ma to	Mari gold	Chrys anth emu m	Pome gran ate	Ban ana	Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine	Cow	Mul ber ry
Malama chanaku nte	61	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Malama chanaku nte	62	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Malama chanaku nte	63	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Malama chanaku nte	68	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Malama chanaku nte	69	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Malama chanaku nte	71	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Malama chanaku nte	129	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Malama chanaku nte	131	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	1	S3rg	S3rg	S3rg	S3rg	S3g	S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
Rangan ahalli	2	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	3	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	8	S3r	S1	S2r	S1	S2r	S2r	S3r	S2r	S2r	S1	S1	S2r	S1	S2r	S3rg	S2r	S1	S1	S1	S1	S1	S1	S2r	S2r	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S2r
Rangan ahalli	9	S3r	S1	S2r	S1	S2r	S2r	S3r	S2r	S2r	S1	S1	S2r	S1	S2r	S3rg	S2r	S1	S1	S1	S1	S1	S1	S2r	S2r	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S2r
Rangan ahalli	10	S3r	S1	S2r	S1	S2r	S2r	S3r	S2r	S2r	S1	S1	S2r	S1	S2r	S3rg	S2r	S1	S1	S1	S1	S1	S1	S2r	S2r	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S2r
Rangan ahalli	11	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	12	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	13	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	14	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	15	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g

Village	Sy No.	Man go	Mai ze	Sap ota		Coc onut		Tama rind	Li me	Sun flo wer	Red gram		Jack fruit	Cus tard app le	Cas hew	Jam un	am	Gro und nut	Oni on	Chil ly	To ma to	Mari gold	Chrys anth emu m	Pome gran ate	Ban ana	Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine	Cow pea	Mul ber ry
Rangan ahalli	16	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	17	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	18	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	19	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	20	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	21	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	22	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	23	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	24	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	25	S3rg	S3rg	S3rg	S3rg	S3g	S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
Rangan ahalli	26	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers	Oth ers
Rangan ahalli	27	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	28	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Rangan ahalli	29	Nr	S3r	Nr	S3r	Nr	Nr	Nr	Nr	Nr	S3r	S3r	Nr	Nr	Nr	Nr	Nr	S3r	S3r	S3r	S3r	S3r	S3r	Nr	Nr	S3r	S3r	Nr	S2r	S3r	S3r	S3r	S3r	S3r	Nr
Rangan ahalli	30	Nr	S3r	Nr	S3r	Nr	Nr	Nr	Nr	Nr	S3r	S3r	Nr	Nr	Nr	Nr	Nr	S3r	S3r	S3r	S3r	S3r	S3r	Nr	Nr	S3r	S3r	Nr	S2r	S3r	S3r	S3r	S3r	S3r	Nr
Rangan ahalli	31	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	32	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	33	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S2g	S2g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S2g
Rangan ahalli	34	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	1	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	2	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	3	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	4	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t

Village	Sy No.	Man go	Mai ze	Sap ota	Sorg ham	Coc onut		Tama rind	Li me	Sun flo wer	Red gram		Jack fruit	Cus tard app le	Cas hew	Jam un	Mus am bi	Gro und nut	Oni on	Chil ly	To ma to	Mari gold	Chrys anth emu m	gran	Ban ana	Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine	Cow	Mul ber ry
Thaleko ppa	23	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	24	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	29	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	30	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	31	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	32	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	34	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	35	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	36	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	37	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	38	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	39	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	40	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	41	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	42	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	43	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	44	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	45	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	46	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	47	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	48	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	51	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
Thaleko ppa	53	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t

S2t S S2t S S2t S S2t S S2t S	S1 S1	S1 S1 S1 S1 S1 S1		S1	S1					app le	hew	un		und nut	on	ly	ma to	gold	Chrys anth emu m	gran ate	ana 🗆	segr am	-bean	ca nut	r- Millet	njal	Sor ghum	dPad dy	mine	Cow pea	ber ry
S2t S S2t S S2t S	S1		S1			S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S3t														
S2t S S2t S		S1 S1		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S3t									
S2t S	S1		S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S3t									
		S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
S2t S	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t
S2t S	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S3t						
S3rg S3	S3rg S	53rg S3	g S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
S3rg S3	S3rg S	3rg S3	g S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
S2t S	S1	S1 S2	t S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
S2t S	S1	S1 S2	t S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
S1 S	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
S1 S	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
S2t S	S1	S1 S2	t S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t							
S2t S	S1	S1 S2	t S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t							
S1 S	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
S1 S	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
S1 S	S1	S1 S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1						
S3rg S3	S3rg S	3rg S3	g S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
	S3rg S	3rg S3	g S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g		S3g	S2g	S3g	S3rg	S2g	S3g		S2rg
S3rg S3																												_			S2rg
S3rg S3 S3rg S3				<u> </u>																											
S3rg S3	0																														
		gS	g S3rg S3g	rg S3rg S3g S3rg		rg S3rg S3rg S3rg S3rg	rg S3rg S3g S3rg S3rg S3rg S3rg	rg S3rg S3g S3rg S3rg S3rg S3rg S3g	rg S3rg S3g S3rg S3rg S3rg S3rg S3g S2g	rg S3rg S3rg S3rg S3rg S3rg S3rg S3rg S3	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S2g S3rg S2g	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3rg S3rg S3rg S3rg S3rg S3rg S3	rg S3rg S3rg S3rg S3rg S3rg S3rg S3rg S3	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3g S3rg S3rg S3rg S3rg S3rg S3r	rg S3rg S3rg S3rg S3rg S3rg S3rg S3rg S3	rg S3rg S3rg S3rg S3rg S3rg S3rg S3rg S3	rg S3rg S3rg S3rg S3rg S3rg S3rg S3rg S3

Village	Sy No.	Man go	Mai ze	Sap ota	Sorg ham	Coc onut		Tama rind	Li me	Sun flo wer	Red gram	_	Jack fruit	Cus tard app le	Cas hew	Jam un	am	Gro und nut	Oni on	Chil ly	To ma to		Chrys anth emu m	Pome gran ate		Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine		Mul ber ry
Thaleko ppa	77	S3rg	S3rg	S3rg	S3rg	S3g	S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
Thaleko ppa	78	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	79	S3rg	S3rg	S3rg	S3rg	S3g	S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
Thaleko ppa	80	S3rg	S3rg	S3rg	S3rg	S3g	S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
Thaleko ppa	81	S3rg	S3rg	S3rg	S3rg	S3g	S3rg	S3rg	S3rg	S3rg	S3g	S2g	S3rg	S2g	S3rg	S3rg	S3rg	S2rg	S3g	S3g	S3g	S3g	S3g	S3rg	S3rg	S2g	S3g	S3g	S2g	S3g	S3rg	S2g	S3g	S3g	S2rg
Thaleko ppa	82	S2r	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S2r	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	83	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	84	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	85	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	86	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	87	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	88	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	89	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	90	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	91	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa Thaleko	92	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
ppa Thaleko	93	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
ppa Thaleko	94	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
ppa Thaleko	95	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
ppa Thaleko	96	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
ppa Thaleko	97	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
рра	98	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
Thaleko ppa	99	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g

Village	Sy No.	Man go	Mai ze	Sap ota	Sorg ham	Coc onut		Tama rind	Li me	Sun flo wer	Red gram		Jack fruit	Cus tard app le	Cas hew	Jam un	am	Gro und nut	Oni on	Chil ly	To ma to		Chrys anth emu m	Pome gran ate	Ban ana	Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine		Mul ber ry
Thaleko ppa	100	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	101	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	102	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	103	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	104	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	105	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko	106	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
ppa Thaleko ppa	107	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	108	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S2g	S3g	S2g	S3g	S3g	S3g	S2tg	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S3g	S2g
Thaleko ppa	109	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	110	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	111	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	112	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	113	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	114	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	115	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	116	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	117	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	118	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	119	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	120	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	121	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	122	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t

Village	Sy No.	Man go	Mai ze	Sap ota		Coc onut		Tama rind	me	Sun flo wer	Red gram		Jack	Cus tard app le	Cas hew	ıam	am	Gro und nut	Oni on	Chil ly	To ma to	Mari gold	Chrys anth emu m	Pome gran ate	Ban	Hor segr am	Field -bean	ca	Finge r- Millet	Bri njal	Fod der Sor ghum	Uplan dPad dy	Jas mine	Cow pea	Mul ber ry
Thaleko ppa	123	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	124	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	138	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	140	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	141	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	142	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	149	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	151	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	152	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	153	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	203	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t
Thaleko ppa	204	S1	S2t	S1	S1	S2t	S2t	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S3t	S1	S1	S1	S1	S1	S1	S1	S1	S1	S2t	S1	S1	S1	S1	S1	S1	S2t

PART-B

SOCIO-ECONOMIC STATUS OF FARM HOUSEHOLDS

CONTENTS

1.	Executive summary	1-4
2.	Introduction	5
3.	Methodology	7-11
4.	Results and discussions	13-31

LIST OF TABLES

I. Soci	al status	
1	Human population among sample households	13
2	Basic needs of sample households	14
3	Institutional participation among the sample population	15
II. Eco	onomic status	
4	Occupational pattern in sample households	16
5	Domestic assets among samples households	17
6	Farm assets among samples households	17
7	Livestock assets among sample households	18
8	Milk produced and Fodder availability of sample households	19
9	Women empowerment of sample households	19
10	Per capita daily consumption of food among the sample households	20
11	Annual average Income from various sources	21
12	Average annual expenditure of sample households	21
13	Distribution of land holding among the sample households	22
14	Land holding among samples households	23
III. R	esource use pattern	
15	Number of tree/plants covered in sample farm households	23
16	Present cropping pattern among samples households	23
17	Distribution of soil series in the watershed	25
IV. Ec	onomic land evaluation	
18	Cropping pattern on major soil series	26
19	Alternative land use options for different size group of farmers	26
1)	(Benefit Cost Ratio)	20
20	Economics Land evaluation and bridging yield gap for different crops	27
21	Estimation of onsite cost of soil erosion	28
22	Ecosystem services of food grain production	30
23	Ecosystem services of fodder production	30
24	Ecosystem services of water supply for crop production	31
25	Farming constraints	31

LIST OF FIGURES

1	Location of study area	8
2	ALPES Framework	9
3	Basic needs of sample households	15
4	Domestic assets among the sample households	16
5	Farm assets among samples households	17
6	Livestock assets among sample households	18
7	Per capita daily consumption of food among the sample households	20
8	Average annual expenditure of sample households	22
9	Present cropping pattern	24
10	Estimation of onsite cost of soil erosion	29
11	Ecosystem services of food grain production	29
12	Ecosystem services of water supply	30

EXECUTIVE SUMMARY

Baseline socioeconomic characterisation is prerequisite to prepare action plan for program implementation and to assess the project performance before making any changes in the watershed development program. The baseline provides appropriate policy direction for enhancing productivity and sustainability in agriculture.

Methodology: Ranganahalli micro-watershed (Pillahalli sub-watershed, Gubbi taluk, Tumkur district) is located in between $13^{0}28' - 13^{0}29'$ North latitudes and $76^{0}52' - 76^{0}54'$ East longitudes, covering an area of about 353.56 ha, bounded by Malamachanakunte, Kallugudi, Thalekoppa, Ranganahalli an Ankasandra villages with length of growing period (LGP) 120-150 days. We used soil resource map as basis for sampling farm households to test the hypothesis that soil quality influence crop selection, and conservation investment of farm households. The level of technology adoption and productivity gaps and livelihood patterns were analyses. The cost of soil degradation and ecosystem services were quantified.

Results: The socio-economic outputs for the Ranganahalli micro-watershed (Pillahalli sub-watershed, Gubbi taluk, Thumkur district) are presented here.

Social Indicators;

- ❖ *Male and female ratio is 51.1 to 48.9 Per cent to the total sample population.*
- ❖ Younger age 18 to 50 years group of population is 64.4 around per cent to the total population.
- ❖ *Literacy population is around 73.4 per cent.*
- Social groups belong to other backward caste (OBC) 80 percent and general caste 20 percent.
- Liquefied petroleum gas (LPG) is the source of energy for a cooking among all the sample households.
- ❖ About 20.0 per cent of households have a yashaswini health card.
- * Farm households are having MGNREGA card only 40 per cent for rural employment.
- ❖ Dependence on ration cards for food grains through public distribution system is around 90 per cent.
- Swach bharath program providing closed toilet facilities among all sample households.
- ❖ *Institutional participation is only 8.9 per cent of sample households.*
- Women participation in decisions making are around 90 per cent of households were found.

Economic Indicators;

- ❖ The average land holding is 1.01 ha indicates that majority of farm households are belong to marginal and small farmers. The dry land of 73.4 per cent and irrigated land 26.5 per cent of total cultivated land area among the sample households.
- Agriculture is the main occupation among 84.4 per cent and agriculture is the main and agriculture labour is subsidiary occupation for 8.9 per cent of sample households.
- ❖ The average value of domestic assets is around Rs.14771. per household. Mobile and television are popular media mass communication.
- ❖ The average value of farm assets is around Rs. 2472 per household. Among all sample farmers having weeder and plough (30 %).
- ❖ The average value of livestock is around Rs. 26687 per household; about 66.6 per cent of household are having livestock.
- ❖ The average per capita food consumption is around 612.2 grams (1374.7 kilo calories) against national institute of nutrition (NIN) recommendation at 827 gram. Among the all sample households are consuming less than the NIN recommendation.
- ❖ The annual average income is around Rs.67122 per household. About 50.0 per cent of farm households are below poverty line.
- ❖ The per capita average monthly expenditure is around Rs. 946.

Environmental Indicators-Ecosystem Services;

- * The value of ecosystem service helps to support investment to decision on soil and water conservation and in promoting sustainable land use.
- * The onsite cost of different soil nutrients lost due to soil erosion is around Rs. 637 per ha/year. The total cost of annual soil nutrients is around Rs. 309674 per year for the total area of 535.5 ha.
- * The average value of ecosystem service for food grain production is around Rs. 53002/ha/year. Per hectare food grain production services is maximum in ragi (Rs. 3371) followed by coconut (Rs. 66505) and areca nut (Rs. 142384).
- ❖ The average value of ecosystem service for fodder production is around Rs. 1883/ ha/year. Per hectare fodder production services is maximum in horse gram (Rs. 2779) and ragi (Rs. 988).
- ❖ The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum in turmeric (Rs.69577) followed by coconut (Rs. 246668), horse gram (Rs. 20907), ragi (Rs. 12073) and areca nut (Rs. 7058).

Economic Land Evaluation;

- ❖ The major cropping pattern is coconut (62.5 %) followed by ragi (17.3 %) arecanut (15.6 %) and horse gram (4.5 %).
- ❖ In Ragenahalli micro-watershed, major soil series are Kutegoudanahundi series are having moderately shallow soil depth cover around 15.2 % of area. On this soil farmer are presently growing horse gram (50 %) and ragi (50 %). Bidanagere series having moderately soils depth cover around 9.5 % of areas; the major crops are coconut. Balapur and Jedigere series are having deep soil depth cover around 6.0 % and 7.6 % of areas respectively, crops are coconut, areca nut and ragi grown. Hallikere, Niduvalalu and Ranatur series having very deep soil depth covers around 16.1 per cent, 11.2 per cent and 9.0 per cent of areas, respectively; the major crops are coconut, areca nut and horse gram can grow.
- ❖ The total cost of cultivation and benefit cost ratio (BCR) in study area for horse gram ranges between Rs.34886/ha in KGH soil (with BCR of 1.13) and Rs.19954/ha in NDL soil (with BCR of 1.12).
- ❖ In ragi the cost of cultivation range between Rs 25530/ha in KGH soil (with of 1.32) and Rs. 22068/ha in HLK soil (with BCR of 1.39).
- ❖ In coconut the cost of cultivation range between Rs. 136691/ha in RTR soil (with BCR of 1.69) and Rs. 54014/ha in BPR soil (with BCR of 2.0).
- ❖ In areca nut the cost of cultivation range between is Rs.109416ha in RTR soil (with BCR of 3.24) and Rs.48323/ha JDG soil (with BCR of 3.79).
- * The land management practices reported by the farmers are crop rotation, tillage practices, fertilizer application and use of farm yard manure (FYM). Due to higher wages farmer are following labour saving strategies is not prating soil and water conservation measures. Less ownership of livestock limiting application of FYM.
- ❖ It was observed soil quality influences on the type and intensity of land use.

 More fertilizer applications in deeper soil to maximize returns.

Suggestions;

- ❖ Involving farmers is watershed planning helps in strengthing institutional participation.
- * The per capita food consumption and monthly income is very low. Diversifying income generation activities from crop and livestock production in order to reduce risk related to drought and market prices.
- * Majority of farmers reported that they are not getting timely support/extension services from the concerned development departments.

- * By strengthing agricultural extension for providing timely advice improved technology there is scope to increase in net income of farm households.
- ❖ By adopting recommended package of practices by following the soil test fertiliser recommendation, there is scope to increase yield in horse gram (24.1 to 36.7 %), ragi (67.6 %), coconut (57.7 to 30.7 %) and areca nut (88.2 to 83.3 %).

INTRODUCTION

Watershed Development program aim to restore degraded watersheds in rainfed regions to increase their capacity to capture and store rain water, reduce soil erosion, and improved soil nutrients and carbon contents so they can produce greater agricultural yields and other benefits. As majority of rural poor live in these regions and dependent on natural resources for their livelihood and sustenance, improvements in agricultural yields improve human welfare and simultaneously improve national food security.

Sujala–III watershed development project conceptualised and implemented by the Watershed Development Department of Government of Karnataka with tripartite cost-sharing arrangements. The World Bank through International Development Association provided major portion of plan outlay as a loan to Government of India and in turn loan to Government of Karnataka.

The objectives of Sujala-III is to demonstrate more effective watershed management through greater integration of programs related to rain fed agriculture, innovative and science based approaches and strengthened institutions and capacities. The project is implemented in 11 districts of Bidar, Vijayapura, Gulbarga, Yadgir, Koppal, Gadag, Raichur, Davanagere, Tumkur, Chikkamangalur and Chamarajanagar which have been identified by the Watershed Development Department based on rainfall and socioeconomic conditions. The project will be implemented over six years and linked with the centrally financed integrated watershed management programme.

Economic evaluations can better guide in watershed planning and implementation, as well as raise awareness of benefits of ecosystem restoration for food security and poverty alleviation program. The present study aims to characterize socio-economic status of farm households, assess the land and water use status, evaluate the economic viability of land use, prioritize farming constraints and suggest the measures for soil and water conservation for sustainable agriculture.

Objectives of the study

- 1. To characterize socio-economic status of farm households
- 2. To evaluate the economic viability of land use and land related constraints
- 3. To estimate the ecosystem service provided by the watershed and
- 4. To suggest alternatives for sustainable agriculture production.

METHODOLOGY

Study area

Ranganahalli micro-watershed is located in Southern Dry Zone in Karnataka (Figure 1) the total geographical area of 1.56 M ha with 0.74 M ha under cultivation of which 0.22 M ha is irrigated. The mean elevation ranges from 450 to 900 m MSL; most part of the zone is situated at 800-900m. The major soils are red loams with pockets of black soils in Kollegal, Yalandur and T.N. Pura taluks of Mysore district. The average annual rainfall ranges from 670 to 890 mm, of which about 55 to 75 per cent is received during the kharif season. The major crops of the zone are rice, ragi, sugarcane, pulses and minor millets. It's represented Agro Ecological Region (AER)-3 having LGP 120-150 days.

Ranganahalli micro-watershed (Pillahalli sub-watershed, Gubbi taluk, Tumkur district) is located in between $13^{0}28' - 13^{0}29'$ North latitudes and $76^{0}52' - 76^{0}54'$ East longitudes, covering an area of about 353.56 ha, bounded by Malamachanakunte, Kallugudi, Thalekoppa, Ranganahalli and Ankasandra villages.

Sampling Procedure:

In this study we have followed soil variability as criterion for sampling the farm households. In each micro-watershed the survey numbers and associated soil series are listed. Minimum three farm households for each soil series were taken and summed up to arrive at total sample for analysis.

Sources of data and analysis:

For evaluating the specific objectives of the study, primary data was collected from the sample respondents by personal interview method with the help of pre-tested questionnaire. The data on socio-economic characteristics of respondents such as family size and composition, land holdings, asset position, occupational pattern and education level was collected. The present cropping pattern and the level of input use and yields collected during survry. The data collected from the representative farm households were analysed using Automated Land Potential Evalution System (Figure 2).

LOCATION MAP OF RANGANAHALLI MICRO-WATERSHED

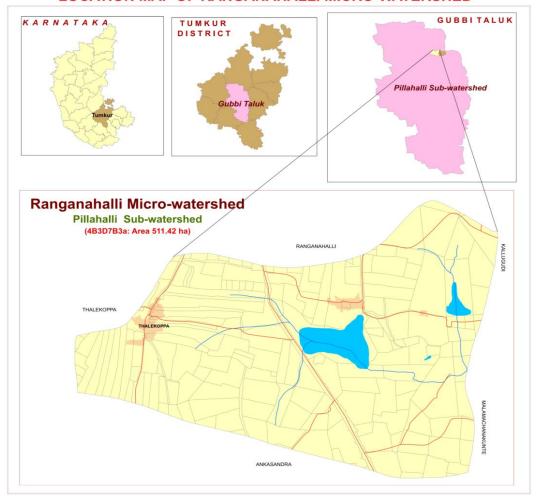


Figure 1: Location of study area

Steps followed in socio-economic assessment

- •After the completion of soil profile study link the cadastral number to the soil profile in the micro watershed.
- Download the names of the farmers who are owning the land for each cadastral number in the Karnataka BHOOMI Website.
- Compiling the names of the farmers representing for all the soil profiles studied in the micro watershed for socio-economic Survey.
- Conducting the socioeconomic survey of selected farm households in the micro watershed.
- Farm households database created using the Automated Land Potential Evaluation System (ALPES) for analysis of socio economic status for each micro watershed.
- Synthesis of tables and preparation of report for each micro watershed.

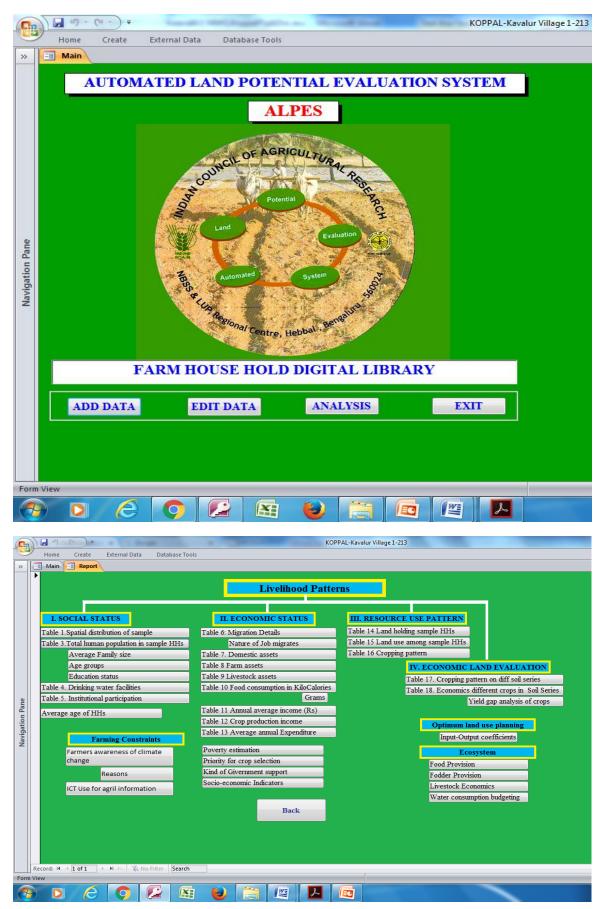


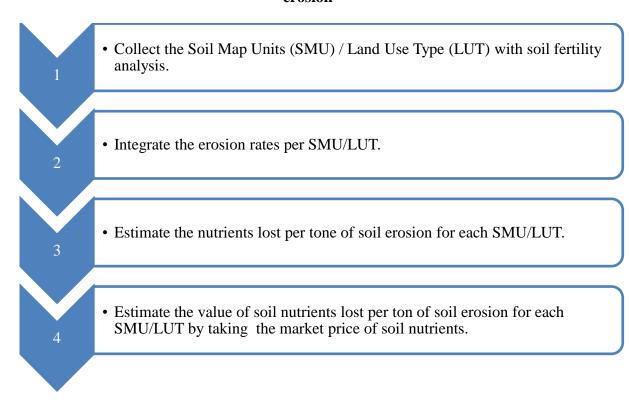
Figure 2: ALPES FRAMEWORK

The sample farmers were post classified in to marginal and small (0.0 to <=2 ha), medium and semi medium (>2 to <=10 ha) and large (>10 ha). The steps involved in estimation of soil potential involve estimation of total cost of cultivation, the yield/gross returns and net income per hectare. The cost of inputs such seed, manure and fertilizer, plant protection chemicals, payment towards human and bullock labour and interest on working capita are included under operational costs. In the case of perennial crops, the cost of establishment was estimated by using actual physical requirements and prevailing market prices. Estimation cost included maintenance cost up to bearing period. The value of main product and by product from the crop enterprise at the market rates were the gross returns of the crop. Net returns were worked out by deducting establishment and maintained cost from gross returns.

Operational Cost = cost of seeds, fertilizers, pesticides. Cost of human and bullock labour, cost of machinery, cost of irrigation water + interest on working capital.

Gross returns = Yield (Quintals/hectare)*Price (Rs/Quintal)

Net returns = Gross returns-Operational cost.


Benefit Cost Ratio = Net returns/Total cost.

Economic suitability classes: once each land use —land area combination has been assigned an economic value by the land evaluation, the question arises as to its 'suitability', that is, the degree to which it satisfies the land user. The FAO framework defines two suitability orders: 'S'(suitable if benefit cost ratio (BCR)>1) and 'N'(not suitable if (BCR<1), which are dived into five economic suitability classes: 'S1'(highly suitable if BCR>3), 'S2'(suitable if BCR>2 and <3), 'S3'(Marginally suitable if BCR>1 and <2), 'N1'(Not suitable for economic reasons but physically suitable) and 'N2'(not suitable for physical reasons). The limit between 'S3' and 'N1'must be at least at the point of financial feasibility (i.e. net returns, NPV, or IRR>0 and BCR>1). The other limits depend on social factors such as farm size, family size, alternative employment or investment possibilities and wealth expectations; these need to be specified for the Soil series.

Economic Valuation of Soil ecosystem services:

The replacement cost approach was followed for estimating the onsite cost of soil erosion, Market price method was followed for estimating the value of food and fodder production. Value transfer menthods was followed for estimating the value of water demand by different crops in the micro watershed.

Steps followed in Replacement cost methods for estimation of onsite cost of soil erosion

RESULTS AND DISCUSSIONS

The demographic information shows that the household population dynamics encompasses the socioeconomic status of the farmer. For a rural family, the household size should be optimal to earn a comfortable livelihood through farm and non-farm wage earning. The total number of population in watershed area was 45, out of which 51 per cent were males and 49 per cent females. Average family size of the households is 4.5. Age is an important factor, which affects the potential employment and mobility status of respondents. The data on age wise distribution of farmers in the sample households indicated that majority of the farmers are coming under the age group of 30 to 50 years (42.2 %) followed by more than 50 years (24.4 %), 18 to 30 years (22.2 %) and 0 to 18 years (11.1 %). Hence, in the study area in general, the respondents were of young and middle age, indicating thereby that the households had almost settled with whatever livelihood options they were practicing and sample respondents were young by age who could venture into various options of livelihood sources. Data on literacy indicated that 26.6 per cent of respondents were illiterate and 73.4 per cent literate (Table 1).

Table 1: Human population among sample households in Ranganahalli Microwatershed

Particulars	Units	Value
Total human population in sample HHs	Number	45.0
Male	% to total Population	51.0
Female	% to total Population	49.0
Average family size	Number	4.5
Age group		-
0 to 18 years	% to total Population	11.1
18 to 30 years	% to total Population	22.2
30 to 50 years	% to total Population	42.2
>50 years	% to total Population	24.4
Average age	Age in years	40.3
Education Status		
Illiterates	% to total Population	26.6
Literates	% to total Population	73.4
Primary School (<5 class)	% to total Population	22.2
Middle School (6- 8 class)	% to total Population	8.8
High School (9- 10 class)	% to total Population	13.3
Others	% to total Population	28.8

The ethnic groups among the sample farm households found to be 80.0 per cent belonging to other backward caste (OBC) followed by 20.0 per cent belonging to general

castes (Table 2 and Figure 3). All the sample households are using liquefied petroleum gas as source of fuel for cooking. All the sample farmers are having electricity connection. About 20.0 per cent are sample households having health cards. About 40 per cent of farm households are having MNREGA job cards for employment generation. About 90.0 per cent of farm households are having ration cards for taking food grains from public distribution system. Among all farm households are having toilet facilities.

Table 2: Basic needs of sample households in Ranganahalli Micro watershed

Particulars	Units	Value		
Social groups				
OBC	% of Households	80.0		
General	% of Households	20.0		
Types of fuel use for coo	oking			
Gas	% of Households	100.0		
Energy supply for home				
Electricity	% of Households	100.0		
Number of households h	naving Health card			
Yes	% of Households	20.0		
No	% of Households	80.0		
MGNREGA Card	·			
Yes	% of Households	40.0		
No	% of Households	60.0		
Ration Card	·			
Yes	% of Households	90.0		
No	% of Households	10.0		
Households with toilet				
Yes	% of Households	100.0		
Drinking water facilities				
Tube well	% of Households	100.0		

The data collected on the source of drinking water in the study area is presented in Table 2. All the sample respondents are having tube well source for water supply for domestic purpose (100 %).

Only 8.9 percent of the farmers are participating in community based organizations (Table 3). Among them majority were participating in self help group organization (2.2 %) and co-operative societies-credit (6.6 %).

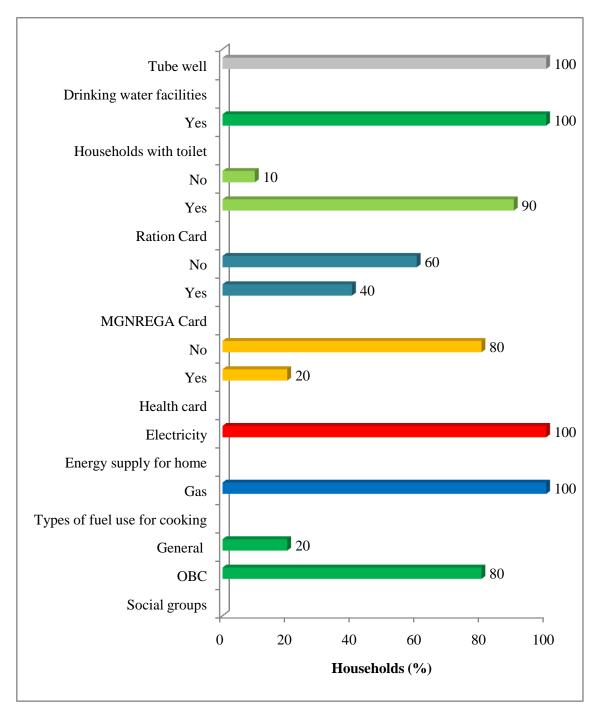


Figure 3: Basic needs of sample households in Ranganahalli Microwatershed

Table 3: Institutional participation among the sample population in Ranganahalli Microwatershed

Particulars	Units	Value
No. of people participating	% to total	8.9
Co-operative societies-credit	% to total	6.67
Self help groups(SHG's)	% to total	2.22
No. of people not participating	% to total	91.11

The occupational pattern (Table 4) among sample households shows that agriculture is the main occupation around 84.4 per cent of farmers followed by subsidiary occupations like agricultural labour (8.9%) and private service (2.2 %), government services 2.2 per cent as a main occupation each.

Table 4: Occupational pattern in sample population in Ranganahalli Microwatershed

Occupation		% to total
Main	Subsidiary	/0 to total
Agriculture	Agriculture	84.4
Agriculture	Agriculture Labour	8.9
Private service		2.2
Govt service		2.2
Grand Total		100.0
Family labour availability		Man days/month
Male		37.5
Female		24.0
Total		61.5

The important assets especially with reference to domestic assets were analyzed and are given in Table 5 and Figure 4. The important domestic assets possessed by all categories of farmers are television (100.0 %) followed by mobile phone (100.0 %), mixer/grinder (60.0 %), motor cycle (30.0 %) and computer/laptop (10.0 %). The average value of domestic assets is around Rs 14771 per households.

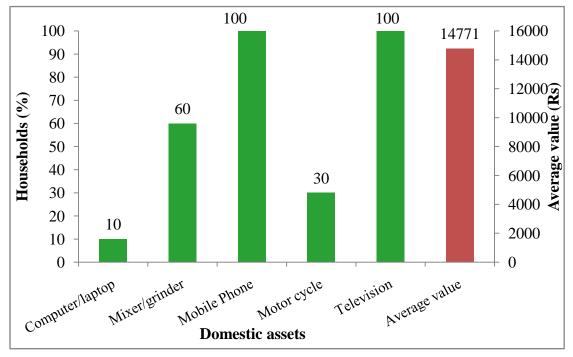


Figure 4: Domestic assets among the sample households in Ranganahalli Microwatershed

Table 5: Domestic assets among the sample households in Ranganahalli Microwatershed

Particulars	% of households	Average value in Rs
Computer/laptop	10.0	30000
Mixer/grinder	60.0	3000
Mobile Phone	100.0	3010
Motor cycle	30.0	31166
Television	100.0	6680
Average value	14771	

The most popularly owned farm equipments were sickles, plough, cattle shed; pump sets, chaff cutter, bullock cart, sprayer and thresher. Plough and sickle were commonly present in all the sampled farmers; these were primary implements in agriculture. The per cent of households owned weeder (80 %), plough (30 %) and sprayer (10 %). The average value of farm assets is around Rs 2472 per households (Table 6 and Figure 5).

Table 6: Farm assets among samples households in Ranganahalli Microwatershed

Particulars	% of households	Average value in Rs
Plough	30	2333
Sprayer	10	5000
Weeder	80	85
Average value		2472

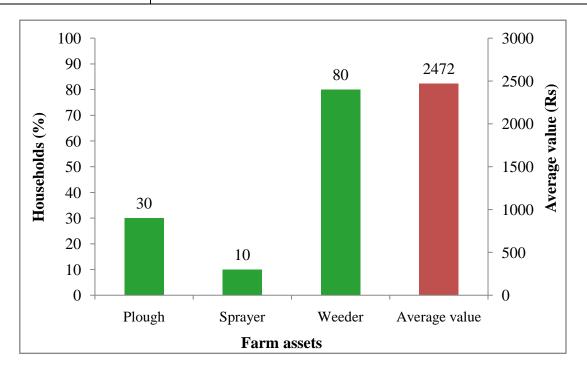


Figure 5: Farm assets among samples households in Ranganahalli Microwatershed

Livestock is an integral component of the conventional farming systems (Table 7 and Figure 6). The highest livestock population is crossbred milching cow were around 50 per cent followed milching buffalos (25.5 %) and dry buffalos (12.5 %). The average livestock value was Rs 26687 per household.

Table 7: Livestock assets among sample households in Ranganahalli Micro-watershed

Particulars	% of livestock population	Average value in Rs
Crossbred Dry Cow	12.5	18000
Crossbred Milching Cow	50.0	28750
Dry Buffalos	12.5	30000
Milching Buffalos	25.5	30000
Average value 26687		

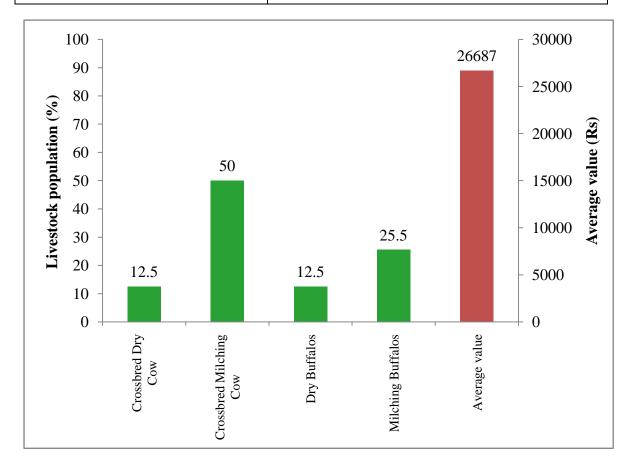


Figure 6: Livestock assets among sample households in Ranganahalli micro-watershed

Average milk produced in sample households is 855 litters / annum. Among the farm households, horse gram, and ragi are the main crops for domestic food and fodder for animals. About 1458 kg /ha of average fodder is available per season for the livestock feeding (Table 8).

Table 8: Milk produced and fodder availability of sample households in Ranganahalli Microwatershed

Particulars	
Name of the Livestock	Ltr./Lactation/animal
Crossbred Milching Cow	108
	0
Milching Buffalos	630
Average Milk produced	855
Fodder produces	Fodder yield (kg/ha.)
Horse gram	1666
Ragi	1250
Average fodder availability	1458
Livestock having households (%)	66.6
Livestock population (Numbers)	12

A woman participation in decision making is in this micro-watershed is presented in Table 9. About 30.0 per cent of women participation in local organisation activates, and 90.0 per cent of women taking decision in her family and agriculture related activities.

Table 9: Women empowerment of sample households in Ranganahalli Microwatershed % to Grand Total

Particulars	Yes	No
Women participation in local organization activities	30.0	70.0
Women elected as panchayat member	0.0	100.0
Women earning for her family requirement	0.0	100.0
Women taking decision in her family and agriculture related activities	90.0	10.0

The food intake in terms of kilo calorie (kcal) per person per day was calculated and presented in the Table 10 and Figure 7. More quantity of cereals is consumed by sample farmers which accounted for 928.3 kcal per person. The other important food items consumed was pulses 111.2 kcal followed by milk 177 kcal, vegetables 19.1 kcal and cooking oil 190 kcal. In the sampled households, farmers were consuming less (1374.7 kcal) than NIN- recommended food requirement (2250 kcal).

Table 10: Per capita daily consumption of food among the sample households in Ranganahalli Microwatershed

Particulars	NIN recommendation (gram/ per day/ person)	Present level of consumption (gram/ per day/ person)	Kilo Calories /day/person
Cereals	396.0	273.6	928.3
Pulses	43.0	32.4	111.2
Milk	200.0	193.6	125.8
Vegetables	143.0	79.7	19.1
Cooking Oil	31.0	33.3	190
Egg	0.5	0.0	0.0
Meat	14.2	0.0	0.0
Total	827.7	612.2	1374.7
Threshold of	NIN recommendation	827 gram*	2250 Kcal*
% Below NIN	1	100	100
% Above NIN		0.0	0.0

Note: * day/person

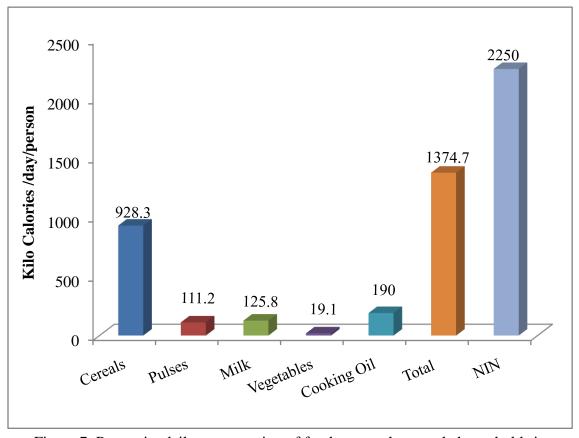


Figure 7: Per capita daily consumption of food among the sample households in Ranganahalli Microwatershed

Annual income of the sample HHs: The average annual household income is around Rs 67122. Major source of income to the farmers in the study area is from crop production (Rs 53232) followed by livestock (Rs. 13890). The monthly per capita income is Rs.1243, which is above than the threshold monthly income of Rs 975 for considering above poverty line. Due to the fact that erratic rainfall and shortage of water, farmers are diverting from crop production activities to enable the household for a comfortable livelihood. The incomes from the other aforesaid sources are very meagre (Table 11).

Table 11: Annual average income of HHs from various sources in Ranganahalli Microwatershed

Particulars	Income *
Nonfarm income	0 (0)
Livestock income (Rs)	13890 (60)
Crop Production (Rs)	53232(100)
Total Annual Income (Rs)	67122
Average monthly per capita income (Rs)	1243
Threshold for Poverty level (Rs 975 per month/person)	
% of households below poverty line	50
% of households above poverty line	50

^{*} Figure in the parenthesis indicates % of Households

The average annual expenditure of farm households indicated that farmers in the study area spend highest on food (Rs. 31884) followed by education, clothing, social function and health. Now a day's education is most important among all of us. In today's competitive world, education is a necessity for man after food, clothing, and shelter. It is the only fundamental way by which a desired change in the society can happen. The average per capita monthly expenditure is around Rs 946 and about 70 per cent of farm households are below poverty line (Table 12 and Figure 8).

Table 12: Average annual expenditure of sample HHs in Ranganahalli Microwatershed

Particulars	Value in Rupees	Per cent
Food	31884	62.4
Education	4250	8.3
Clothing	4250	8.3
Social functions	3700	7.2
Health	7000	13.7
Total Expenditure (Rs/year)	51084	100
Monthly per capita expenditure (Rs)	946	

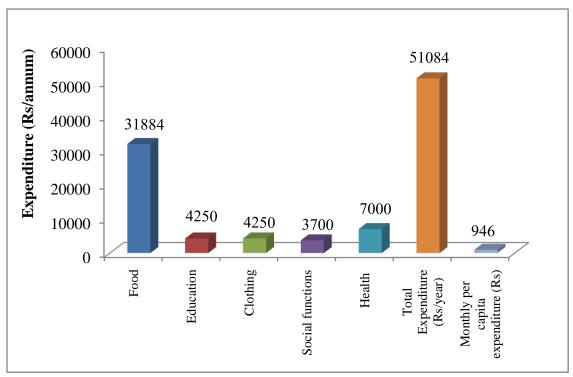


Figure 8: Average annual expenditure of sample HHs in Ranganahalli Microwatershed

Land holding: A total area cultivated by them is 10.13 ha. The average land holding of sample HHs is 1.01 ha. The large number of households (90 %) is small size groups with an average land holding size of 0.84 ha followed by medium size (10 %) groups with the average land holding is 2.54 ha (Table 13).

Table 13: Distribution of land holding among the sample households in Ragenahalli micro-watershed

Particulars	Units	Values			
Small farmers					
Total land	ha	7.5			
Sample size	Percent	90			
Average land holding	ha	0.84			
Medium farmers					
Total land	ha	2.54			
Sample size	Percent	10.0			
Average land holding	ha	2.54			
Total sample households					
Total land	ha	10.13			
Sample size	Percent	100.0			
Average land holding	ha	1.01			

Land use: The total land holding in the Ranganahalli micro-watershed is 10.0 ha (Table 14). Of which 7.4 ha is rain fed land and 2.6 ha is irrigated land. The average land holding per household is worked out to be 1.01 ha.

Table 14: Land use among samples households in Ranganahalli Microwatershed

Particulars	Per cent	Area in ha
Irrigated land	26.5	2.6
Rainfed Land	73.4	7.4
Fallow Land	0.0	0.0
Total land holding	100 10.0	
Average land holding	1.01	

In the micro-watershed, the prevalent present land uses under perennial plants are coconut (85.2 %) followed by neem trees (12.5 %) and teak (2.2 %) (Table 15).

Table 15: Number of trees/plants covered in sample farm households in Ranganahalli Microwatershed

Particulars	Number of Plants/trees	Per cent	
Coconut	150	85.2	
Neem trees	22	12.5	
Teak	4	2.2	
Grand Total	176	100.0	

The land use decisions are usually based on experience of farmers, tradition, expected profit, personal preferences, resources and social requirements.

The present dominant crops grown in dry lands in the study area were by areca nut (15.6 %) followed by coconut (62.5 %), horse gram (4.5 %) and ragi (8.9 %). which are taken during kharif and ragi (8.9 %) during Rabi season respectively ragi (8.9 %). The cropping intensity was 109.8 per cent (Table 16 and Figure 9).

Table 16: Present cropping pattern and cropping intensity in Ranganahalli
Microwatershed % to Grand Total

Crops	Kharif	Rabi	Grand Total
Areca nut	15.6	0.0	15.6
Coconut	62.5	0.0	62.5
Horse gram	4.5	0.0	4.5
Ragi	8.9	8.9	17.3
Grand Total	91.1	8.9	100
Cropping intensity (%)	109.8		

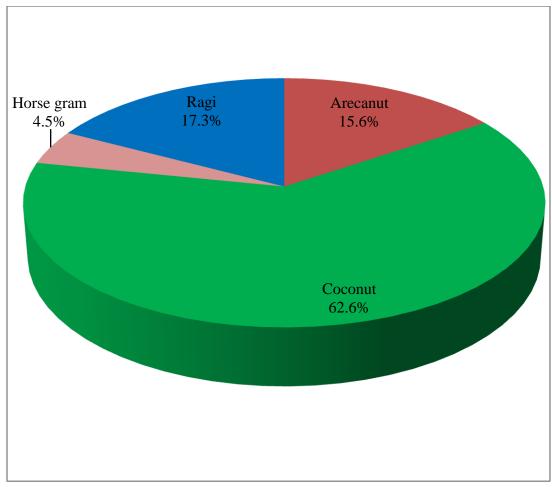


Figure 9: Present cropping pattern in Ranganahalli Microwatershed

Economic land evaluation

The main purpose to characterise the socio-economic systems in the watershed is to identify the existing production constraints and propose the potential/alternate options for agro-technology transfer and for bridging the adoption and yield gap.

In Ranganahalli micro-watershed, 11 soil series are identified and mapped (Table 17). The distribution of major soil series are Chikkasavanur covering an area around 6.0 ha (1.12 %) followed by Kutegoudanahundi 30 ha (5.79 %), Chikkamegheri 18 ha (3.43 %), Bidanagere 49 ha (9.53 %), Mornal 51 ha (9.90 %), Jedigere 39 ha (7.63 %), Balapur 31 ha (6.04 %), Hallikere 83 ha (16.14 %), Ranatur 46 ha (9.04 %), Niduvalalu 57 ha (11.2 %) and Kadagathur 77 ha (15.21 %).

Table 17: Distribution of soil series in Ranganahalli Microwatershed

Soil No	Soil Series	Mapping Unit Description	Area in ha %
1	CSR	Chikkasavanur soils are shallow (25-50 cm), well drained, have	6(1.12)
		dark brown to light yellowish brown sandy clay loam soils	, ,
		occurring on very gently sloping uplands under cultivation.	
2	KGH	Kutegoudanahundi soils are moderately shallow (50-75 cm),	30(5.79)
		well drained, have brown to dark brown gravelly sandy clay	
		loam soils occurring on very gently to gently sloping uplands	
3	CKM	under cultivation. Chikkamegheri soils are moderately deep (75-100 cm), well	18(3.43)
3	CKM	drained, have dark brown to dark reddish brown sandy clay	16(3.43)
		soils occurring on very gently sloping uplands under cultivation.	
4	BDG	Bidanagere soils are moderately deep (75-100 cm), well	49(9.53)
		drained, have dark reddish brown gravelly sandy clay loam to	, ,
		sandy clay soils occurring on very gently sloping uplands under	
		cultivation.	
5	MNL	Mornal soils are deep (100-150 cm), well drained, have dark	51(9.90)
		reddish brown to red gravelly sandy clay loam to sandy clay	
		soils occurring on very gently sloping uplands under cultivation	
6	JDG	Jedigere soils are deep (100-150 cm), well drained, have dark	39(7.63)
	JDG	brown to dark reddish brown sandy clay to clay soils occurring	37(1.03)
		on very gently sloping uplands under cultivation.	
7	BPR	Balapur soils are deep (100-150 cm), well drained, have dark	31
		reddish brown to dark red gravelly sandy clay to clay soils	(6.04)
		occurring on very gently sloping uplands under cultivation.	
8	HLK	Hallikere soils are very deep (>150 cm), well drained, have dark	83
		brown to dark reddish brown clayey soils occurring on very	(16.14)
9	RTR	gently sloping uplands under cultivation. Ranatur soils are very deep (>150 cm), well drained, have dark	46
)	KIK	reddish brown to dark red clay soils occurring on very gently	(9.04)
		sloping uplands under cultivation	(2.04)
10	NDL	Niduvalalu soils are very deep (>150 cm), well drained, have	57
		red to dark reddish brown gravelly sandy clay soils occurring on	(11.2)
		very gently sloping uplands under cultivation.	
11	KDT	Kadagathur soils are very deep (>150 cm), moderately well	77
		drained, have dark brown to very dark greyish brown sandy clay	(15.21)
		to clay soils occurring on very gently sloping uplands under	
		cultivation.	

Present cropping pattern on different soil series are given in Table 18. Crops grown on Kutegoudanahundi soils are horse gram and ragi. Coconut on Bidanagere soils is grown. A coconut and ragi on Balapur soil is grown. Coconut on Hallikere soil is grown. Areca nuts on Jedigere soils are grown. Coconut and horse gram on Niduvalalu soil is grown. Areca nut and coconut on Ranatur soil is grow.

Table 18: Cropping pattern on major soil series in Ranganahalli micro-watershed

(Area in per cent)

Soil Series	Soil Donth	Crons	Crang Kharif		Grand
Son Series	Soil Depth	Crops	Dry	Irrigated	Total
KGH	Moderately shallow (50-75 cm)	Horse gram	50.0	0.0	50.0
KUH	Moderatery sharrow (30-73 cm)	Ragi	50.0	0.0	50.0
BDG	Moderately deep (75-100 cm)	Coconut	66.6	33.3	100.0
BPR	Deep (100-150 cm)	Coconut	25.0	50.0	75.0
DFK		Ragi	25.0	0.0	25.0
JDG	Deep (100-150 cm)	Areca nut	0.0	100.0	100.0
HLK	Very deep (>150 cm)	Coconut	100.0	0.0	100.0
NDL	Vary door (>150 am)	Coconut	50.0	0.0	50.0
NDL	Very deep (>150 cm)	Horse gram	50.0	0.0	50.0
RTR	Very deep (>150 cm)	Areca nut	0.0	43.4	43.4
KIK		Coconut	13.4	43.4	56.5

Land is used for agricultural use for growing cereals, pulse, oilseeds and commercial crops. The soil/ land potential are measures in terms of physical yield and net income. The alternative land use options for each micro-watershed are given below (Table 19).

Table 19: Alternative land use options for different size group of farmers (Benefit Cost Ratio) in Ranganahalli Micro watershed.

Soil Series	Small farmers	Medium farmers
KGH	Horse gram (1.13) & ragi (1.32).	
BDG	Coconut (2.08).	Coconut (3.74).
BPR	Coconut (2.0) & ragi (1.39).	
HLK	Coconut (2.24).	
JDG	Areca nut (3.79).	
NDL	Coconut (2.56) & horse gram (1.12).	
RTR	Areca nut (2.37)& coconut (1.69)	

The productivity of different crops grown in Ranganahalli Microwatershed under potential yield of the crops is given in Table 20.

The data on cost of cultivation and benefit cost ratio (BCR) of different crops is given in Table 20. The total cost of cultivation in study area for horse gram ranges between Rs.34886/ha in KGH soil (with BCR of 1.13) and Rs.19954/ha in NDL soil (with BCR of 1.12), ragi range between Rs 25530/ha in KGH soil (with BCR of 1.32) and Rs.22068/ha in HLK soil (with BCR of 1.39), coconut range between Rs. 136691/ha in RTR soil (with BCR of 1.69) and Rs.54014/ha in BPR soil (with BCR of 2.0), arecanut range between is Rs.109416/ha in RTR soil (with BCR of 3.24) and Rs.48323/ha JDG soil (with BCR of 3.79).

Table 20: Economic land evaluation and bridging yield gap for different crops in Ranganahalli Microwatershed

Table 20: Economic land ev	KGH		BDG JDG		BPR		HLK RTR		NDL		
5	(50-75		(75100cm)	(100-150 cm)	(100-15		(>150cm)	(>150		(>150	
Particulars	Horso						/	`	Coco	Coco	Horse
	gram	Ragi	Coconut	Areca nut	Coconut	Ragi	Coconut	Areca nut	nut	nut	gram
Total cost (Rs/ha)	34886	25530	34259	48323	54014	22068	48228	109416	136691	34688	19954
Gross Return (Rs/ha)	39273	33592	92625	183157	111150	30628	108175	259350	220653	88920	22354
Net returns (Rs/ha)	4387	8062	58366	134834	57136	8560	59947	149934	83963	54232	2400
BCR	1.13	1.32	2.91	3.79	2.00	1.39	2.24	2.37	1.69	2.56	1.12
Farmers Practices (FP)											
FYM (t/ha)	2.5	2.5	2.5	1.1	4.2	2.5	3.6		8.9	1.3	2.5
Nitrogen (kg/ha)	21.9	21.9		37.1	59.2	72.5	32.8	112.5	125.0	36.3	36.3
Phosphorus (kg/ha)	39.4	39.4	43.1	66.7	77.1	78.8	83.9	182.5	249.4	51.3	51.3
Potash (kg/ha)	10.6	10.6	0.0	18.0	39.2	21.3	164.2		128.3	37.5	37.5
Grain (Qtl/ha)	7.5	10.0	78.1	5.3	104.2	10.0	91.2		127.8	75.0	
Price of Yield (Rs/Qtl)	4500	3000	1200	35000	1200	2500	1200	35000	1867	1200	3500
Soil test based fertilizer Rec											
FYM (t/ha)	0.0	8.6	10.0			8.6	10.0		10.0	10.0	0.0
Nitrogen (kg/ha)	30.9	92.6	115.3	100.0	128.1	92.6	128.1	125.0	128.1	128.1	30.9
Phosphorus (kg/ha)	37.1	43.2	56.9	75.0		32.4	65.0		65.0	48.8	
Potash (kg/ha)	24.7	44.5	183.8	30.0		44.5	245.0		183.8	245.0	24.7
Grain (Qtl/ha)	9.9	30.9	184.5	45.0	184.5	30.9	184.5	45.0	184.5	184.5	9.9
% of Adoption/yield gap (S	TBR-FP)										
FYM (%)	0.0	71.1	75.0			71.1	63.5		11.1	87.5	0.0
Nitrogen (%)	29.1	76.4	72.9	62.9	53.8	21.7	74.4		2.4	71.7	-17.4
Phosphorus (%)	-6.3	8.9	24.2	11.0		-142.9	-29.1	-143.3	-283.8	-5.1	-84.4
Potash (%)	57.0	76.1	100.0	40.0		52.2	33.0		0.0	84.7	-51.8
Grain (%)	24.1	67.6	57.7	88.2	43.5	67.6	50.5	83.3	30.7	59.3	36.7
Value of yield and Fertilizer (Rs)											
Additional Cost (Rs/ha)	-2213	7840	12789			4812	8276		-5859	13893	-3853
Additional Benefits(Rs/ha)	10710	62625	127650	1389619	96400	52188	111911	1312500	105881	131400	
Net change Income(Rs/ha)	12923	54785	114861	1382569	86631	47375	103635	1316080	111740	117508	16558

The data on FYM, Nitrogen, Phosphorus and Potash application by the farmers to different crops and recommended FYM for different crops is given in Table 20. There is a huge gap between FYM application by farmers and recommended FYM in all the crops across the soils. There is a larger yield gap in crops grown across different soil series. Adequate knowledge about recommended package of practices is the pre-requisite for their use in cultivation of crops. It is a fact that, recommended practices are major contributing factors to yield. Inadequate knowledge about recommended practices leads to their improper adoption. Strengthening of extension services by concerned agency is required to increase adoption of recommended cultivation practices and ultimately reducing the gap. By adopting soil-test fertiliser recommendation, there is scope to increase yield and income to a maximum of Rs 1382569 in areca nut and a minimum of Rs 12923 in horse gram cultivation.

Economic valuation of Ecosystem Services (ES) was aimed at combining use and non-use values to determine the Total Economic Value (TEV) of ES. Ecosystem Services (ES) were valued based on their annual flow or utilization in common monetary units, Rs/year. The valuation of ES was based on market price in 2017 or market cost approaches whichever is applicable, and in other cases on value or benefit transfer from previous valuation studies.

The onsite cost of different soil nutrients lost due to soil erosion is given in Table 21 and Figure 10. The average value of soil nutrient loss is around Rs 637.1 per ha/year. The total cost of annual soil nutrients is around Rs 309674 per year for the total area of 353.5 ha.

Table 21: Estimation of onsite cost of soil erosion in Ranganahalli micro-watershed

Particulars	Quantity(kg)	Value (Rs)		
1 at ticulars	Per ha	Total	Per ha	Total	
Organic matter	85.59	41597	539.22	262059	
Phosphorus	0.24	116	10.51	5107	
Potash	1.26	611	25.14	12216	
Iron	0.15	73	7.22	3509	
Manganese	0.16	78	44.39	21571	
Cupper	0.01	5	5.57	2706	
Zinc	0.00	2	0.19	94	
Sulphur	0.12	58	4.78	2324	
Boron	0.00	2	0.18	87	
Total	87.54	42543	637.19	309674	

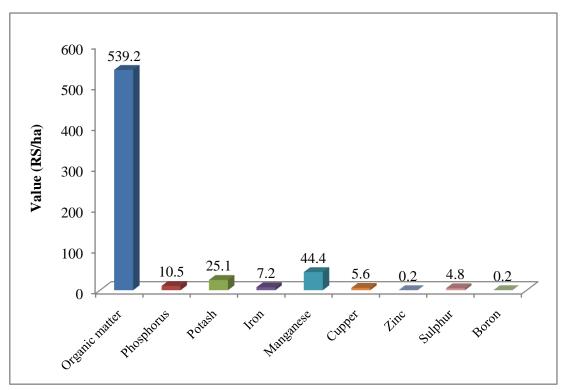


Figure 10: Estimation of onsite cost of soil erosion in Ranganahalli micro-watershed

The average value of ecosystem service for food grain production is around Rs 53002/ ha/year (Table 22 and Figure 11). Per hectare food grain production service is maximum in ragi (Rs 3371) followed by coconut (Rs.66505), areca nut (Rs 142384) and horse gram is negative

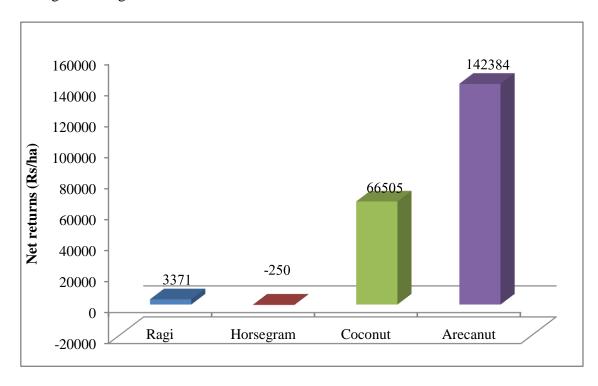


Figure 11: Ecosystem services of food grains production in Ranganahalli Microwatershed

Table 22: Ecosystem services of food grain production in Ranganahalli Microwatershed

Production items	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Gross Returns (Rs/ha)	Cost of Cultivation (Rs/ha)	Net Returns (Rs/ha)
Cereals	Ragi	0.8	10	2750	27170	23799	3371
Pulses	Horsegram	1.2	7	4000	27170	27420	-250
Oil seeds	Coconut	5.5	92	1450	133111	66605	66505
Commercial Crops	Areca nut	1.4	6	35000	221253	78869	142384
Average value		8.9	28.7	10800	102176	49173	53002

The average value of ecosystem service for fodder production is around Rs 1883/ha/year (Table 23). Per hectare fodder production service is maximum in horse gram (Rs 2779) and ragi (Rs 988).

Table 23: Ecosystem services of fodder production in Ranganahalli Micro watershed

Production items	Crops	Area in ha	Yield (Qtl/ha)	Price (Rs/Qtl)	Net Returns (Rs/ha)
Cereals	Ragi	0.8	2.5	400	988
Pulses	Horse gram	1.2	3.1	900	2779
Average value		2	2.8	650	1883

The water demand for production of different crops was worked out in arriving at the ecosystem services of water support to crop growth. The data on water requirement for producing one quintal of grain is considered for estimating the total value of water required for crop production. The per hectare value of water used and value of water was maximum (Table 24 and Figure 12) in coconut (Rs 24668) followed by horse gram (Rs 20907), ragi (12073) and areca nut (Rs 7058).

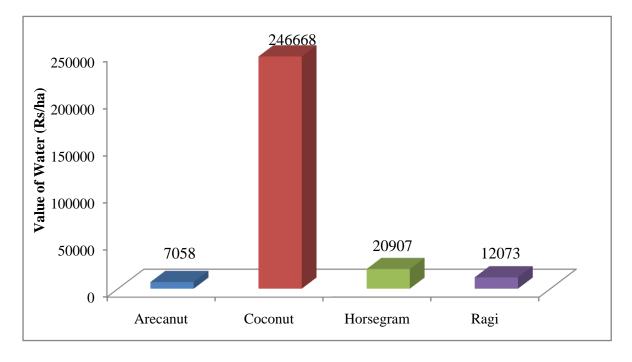


Figure 12: Ecosystem services of water supply in Ranganahalli Microwatershed

Table 24: Ecosystem services of water supply in Ranganahalli Micro watershed

Cmong	Yield	Virtual water	Value of Water	Water consumption	
Crops	(Qtl/ha)	(cubic meter) per ha	(Rs/ha)	(Cubic meters/Qtl)	
Arecanut	6.3	706	7058	112	
Coconut	91.8	24667	246668	269	
Horse gram	6.8	2091	20907	308	
Ragi	9.9	1207	12073	122	
Average value	28.7	7167	71676	202	

The main farming constraints in Ranganahalli micro-watershed to be found are less rainfall, damage of crops by wild animals, non availability of plant protection chemicals, non availability fertilizers, lack of transportation, lack of good quality seeds and high crop pests & diseases. Majority of farmers depend up on money lender of the sources of loan for purpose of crop production. Farmers to sell the agriculture produce through village market and the farmers getting the agriculture related information on newspaper and television. Farmers reported that they are not getting timely support/extension services from the concerned development department (Table 25).

Table 25: Farming constraints related land resources of sample households in Ranganahalli Microwatershed

Sl. No	Particulars	Per cent				
1	Less Rainfall	100.0				
2	Damage of crops by Wild Animals	100.0				
3	Non availability of Plant Protection Chemicals	30.0				
4	Source of loan	·				
4	Money Leander	100.0				
5	Market for selling					
	Village market	100.0				
	Sources of Agri-Technology information	·				
6	Newspaper	100.0				
	Television	10.0				

The findings of the study would be very much useful to the planners and policy makers of the study area to identify the irrationality in the existing production pattern and to suggest appropriate production plans for efficient utilization of their scarce resources resulting in increased net farm incomes and employment. The study also throws light on future potentialities of increasing net farm income and employment under different situations viz., with existing and recommended technology.