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Abstract
Biochar application to soil has been projected as an approach to improve soil quality, which can also influence soil microbial 
activities. In this experiment, we have utilized four dissimilar feedstocks derived biochar amendments. The highest microbial 
biomass carbon was found in Lantana camara (LC) biochar followed by pine needle (PN), maize stalk (MS) and lowest in 
black gram (BG) biochar. The dehydrogenase activity in different biochar treatment increased significantly along with control 
with increase in incubation days except pine biochar where dehydrogenase decreased. Biochar application in soil increased 
acid phosphatase compared to control. The highest alkaline phosphatase was found in MS and it was 20.56, 31.27, 42.52, 
57.62 and 69.56 at 1, 7, 30, 60 and 90 days of incubation, respectively. The highest urease was found in LC followed by BG, 
MS and lowest in PN among the biochar at both the biochar application rate. The biochar application augmented the protease 
enzyme activity in soil, which might be due to augmenting the accessibility of inorganic nitrogen. The highest fluorescein 
diacetate was found in LC and it was 10.12, 17.62, 24.62, 32.86 and 37.56 at 1, 7, 30, 60 and 90 days of incubation, respec-
tively. The increased biological indicator was more at 2.5 t/ha biochar application rate than 5.0 t/ha i.e. lower concentration 
of biochar enhanced more than higher concentration. This laboratory study demonstrated that biochar application can profit 
incubated acid soils by improving microbial biomass carbon up-lift while increasing potential soil enzyme activity.

Keywords Biochar · Microbial biomass carbon · Enzyme activity · Dehydrogenase · Phosphatase · Urease · Protease · 
Fluorescein diacetate

1 Introduction

Biochar is broadly utilized as a soil amendment. Biochar 
addition to soil has the prospective to progress soil quality 
and helps the resilience of agro-ecosystems [1]. Biochar has 

dissimilar characteristics, stability and constancy depending 
on the biomass type, pyrolysis temperature and production 
procedures [2]. Soil enzymes are associated in different bio-
chemical processes in soil system, like mineralization of soil 
organic matter and further biogeochemical nutrient cycling 
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[3]. Due to the high sensitivity to changes in microbial bio-
mass carbon, enzyme activities can also be used as indica-
tors of environmental and soil quality [4]. Biochar addition 
to acidic soils is particularly advantageous because it has 
pH more than 7.0 [5]. Therefore, tracking biological indica-
tors like soil enzymes in response to biochar addition over 
time may facilitate us to understand the nutrient cycles as 
well as mechanisms for regulating soil quality and func-
tions [6]. Researches with biochar are desirable due to the 
exclusive interactions connected to type of biochar, char-
ring environment used, and application rate [7]. Applica-
tion of biochar into soil system could have numerous direct 
or indirect influences on soil biota due to the transform of 
some abiotic factors like soil pH or altered substrate qual-
ity as a source of energy [8]. Biochar application has been 
demonstrated to influence the biomass carbon and enzymatic 
dynamics with organic carbon availability as biochar has 
noteworthy quantity of dissolved organic carbon [9]. The 
residence time of biochar in soil is normally hundreds to 
thousands of years and thus, microbial community structure 
and functions changes could continue for a longer period 
[10]. Research connected with the influence of biochar on 
soil microbes are still inadequately understood, and mostly 
due to the inconsistency of the biomass that produces the 
biochar and the quantity of organic carbon present [11]. Bio-
char is normally efficient for supporting microbial enlarge-
ment, improving nutrient accessibility, thus influencing crop 
production [12]. Largely, the net augment in  CO2 discharge 
following biochar addition to soil comes into view to be 
a short-lived result, whereas for incubations over a longer 
time period, the normal emission of  CO2 is typically not or 
even negatively affected for huge application rates [13]. Soils 
system has complex population of thousands of divergent 
microbes, and it was revealed that biochar shows a great 
influence on their function and composition [14]. Biochar 
produced at low temperature can increase enzyme activ-
ity more than high temperature pyrolyzed biochars [15]. 
The reason is that lesser amount of aromatic structures 
and higher amount of quickly degradable compounds [16]. 
Microbial populations are principally dependable for decay 
of the organic matter vis-a-vis a number of enzymes and 
therefore, biochar addition is a technique of replenishing 
besmirched soil quality through development of soil biota 
status, which generally implies an augment in enzyme activ-
ity [13]. Nevertheless, the response of microbial biomass 
carbon and soil enzymes dynamics to biochar application 
and the major issues that force their resultant performance 
have rarely been studied. Hence, keeping the significance 
of feedstocks derived biochar amendment, the investiga-
tion was carried out to examine the influence of biochar 
technology on soil microbial biomass carbon and enzyme 
dynamics under laboratory incubation condition in mid hill 
ecosystem of Sikkim organic state of India. The intention of 

such research work was to determine the influence of dis-
similar feedstocks derived biochar on microbial biomass 
carbon (MBC), dehydrogenase (DHA), acid phosphatase, 
alkaline phosphatase, urease, protease and fluorescein diac-
etate activity at 2.5 and 5.0 t  ha−1 biochar application rate at 
different incubation period. Investigation was also carried 
out to examine the influence of different biochar type (dis-
similar feedstock) on the MBC and soil enzyme activity.

2  Materials and methods

2.1  Incubation study location

A study was conducted under laboratory condition (incuba-
tion study) at ICAR Research Complex for NEH Region, 
Sikkim Centre, Gangtok, Sikkim, India to evaluate the effect 
of four different feedstocks derived four biochar namely MS 
(maize stalk) biochar, LC (Lantana camara) biochar, PN 
(pine needle) biochar and BG (black gram) biochar on dif-
ferent soil biological properties. The soil sampling area was 
located at 1350 m above the mean sea level (msl) and rep-
resents sub-tropical mid hill location of Sikkim and lies at 
27°20′N latitude and 88°37′E longitude. The sampling area 
received an annual rainfall of more than 3000 mm.

2.2  Soil sampling and analysis

Soil samples were collected in polythene bags from the sur-
face layer (0–15 cm). The soil sample was sandy loam to 
clay loam in texture, acidic in pH and high in organic matter 
content (also organic carbon). After removing all the debris, 
roots and stones the moist soil samples were sieved through 
2 mm. Half of the soil samples were air-dried, stored (room 
temperature) followed by chemical analysis. The rest of half 
of soil samples were used for microbiological analysis. To 
stabilize the disturbed microbial activity during the period of 
soil sampling, the samples were kept at 4 °C in plastic bags 
for a few days, followed by analysis within 2 weeks.

2.3  Chemicals and glassware

The reagents used for microbial biomass carbon and enzyme 
dynamics study were of analytical grade (AR) and purchased 
from different repute company in India. The reagents were 
procured from M/S Qualigen India. Different solvents like 
chloroform, methanol etc. were glass distilled before use and 
were purchased from M/S Merck India Ltd.

2.4  Biochar amendment preparation

Four different biochar viz. MS, LC, PN and BG biochar were 
prepared from maize stalk, Lantana camara, pine needle and 
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black gram biomass. The biomass was inserted into kiln, 
combusted (heating rate 10 °C  min−1 and holding tempera-
ture 4.0 h) and the temperature was maintained by electri-
cally operated manual switch connected to the kiln. After 
preparing, the biochar were collected with shovel/scoop, 
dried at 100 °C (24 h), pulverized to fine powder, sieved 
through 0.2 mm and used for further study.

2.5  Experimental design

A short-term incubation study was conducted under labora-
tory utilizing four different biochar to assess their impact on 
different soil biological properties. The biochar application 
dose was 2.5 t/ha and 5.0 t/ha. The calculated amount of 
biochar was applied to 10 g soil in each 100 mL beaker for 
incubation study. The microbial biomass carbon study was 
conducted at 365 days of incubation period. Whereas, the 
soil enzyme activity (dehydrogenase, phosphatase, urease, 
protease, fluorescein diacetate) studies were conducted at 
90 days of incubation period. Twelve sets of each biochar 
treated soil, along with control were maintained for micro-
bial biomass study. But, eight sets of each biochar treated 
soil, along with control were maintained for soil enzyme 
activity. Experiments were carried out in triplicate. All the 
beakers were placed in incubator at 27 ± 1 °C temperature 
(60% of maximum water-holding capacity) and about 90% 
relative humidity was maintained. Constant weight of the 
beakers was maintained throughout the experiment by 
replenishing the lost water every alternate day. Samples were 
withdrawn at 0, 1, 3, 5, 7, 10, 15, 30, 45, 60, 90, 150, 225, 
300 and 365 days interval depending upon analysis element.

2.6  Analysis of microbial biomass carbon

Chloroform fumigation extraction method as per Jenkin-
son and Powlson [15] and modified by Vance et al. [17] 
was followed for estimation of microbial biomass carbon 
in soil. Field moist soils (10 g on oven dry basis) were 
fumigated with ethanol-free-chloroform (25 ml) for 24 h 
in a vacuum desiccator. The soil samples were allowed for 
evacuation and fumigation removal. Then, samples were 
extracted with 0.5 (M)  K2SO4 (1:2.5 soil: solution ratio) 
by an oscillating shaker for 30 min at 500 rpm and filtered 
(Whatman No. 42). Non-fumigated (without ethanol-free-
chloroform) soil samples were also extracted with 0.5 (M) 
 K2SO4. The extracts were subjected to oxidation using wet 
oxidation diffusion method as per Snyder and Trofymow 
[18]. For this, 5 ml of extract was transferred in diffusion 
tube. It was then acidified with 0.025 (M)  H2SO4 followed 
by digestion for 2 h at 120 °C. Then, the diffusion tube 
was allowed to remain undisturbed for 12 h. In a shell vial 
(~ 6 ml capacity) 4 ml of 0.1 (N) NaOH was kept. The 
shell vial was kept over the indentation inside diffusion 

tube. The amount of  CO2-C evolved was trapped into the 
shell vial. After 12 h, the shell vial was taken out from the 
diffusion tube. In the presence of an excess of 1 (M)  BaCl2, 
the unspent alkali in the shell vial was titrated against 0.02 
(N) HCl to stabilize the trapped  CO2-C. Calculation of 
microbial biomass carbon was done using an efficiency 
factor (Kc) 0.25 [19].

2.7  Analysis of soil enzyme activity

2.7.1  Dehydrogenase

Soil dehydrogenase activity was measured as per the 
methodology of Casida et al. [13] by reducing 2,3,5-triph-
enyltetrazolium chloride (TTC). For this 5 g soil sample 
mixed with 50 mg of  CaCO3 and 1 ml of 3% (w/v) TTC. 
Then, it was incubated at 37 ± 1 °C for 24 h where dehydro-
genase enzyme converted TTC to 2,3,5-triphenylformazan 
(TPF) and the produced TPF was extracted with acetone 
solvent (3 × 15 ml). Then, the extracts were filtered followed 
by spectrophotometric analysis at 485 nm.

2.7.2  Phosphomonoestaerase (Acid and alkaline 
phosphatase) activity

As per the methodology of Tabatabai and Bremner [20], acid 
and alkaline phosphatase activity in soil was measured. For 
estimation of acid phosphatase p-nitrophenhyl phosphate 
tetrahydrate (pH 6.5) solution was used and for alkaline 
phosphatase the same solution of pH 11.0 was used. For 
these assay, soil samples were incubated at 37 ± 1 °C for 1 h. 
Then, yellow colour filtrate obtained using Whatman No. 42 
filter paper was estimated using UV–VIS double beam spec-
trophotometer at 440 nm. Then, calibration graph was plot-
ted using standards containing 0 to 50 µg of p-nitrophenol 
solution and from that amount of p-nitrophenol released was 
calculated. Acid and alkaline phosphatase activities were 
expressed as µg p-nitrophenol  g−1 soil  h−1.

2.7.3  Urease

Urease activity was estimated as per the methodology of 
Tabatabai and Bremner [21]. For this, incubation study 
was carried by taking 5 g of soil with 5 ml of 0.05 M tris-
(hydroxymethyl)-aminomethane (THAM) buffer (pH 9.0) 
and 1 ml of 0.02% urea solution for 2 h at 37 ± 1 °C. After 
incubation, the excess urea was extracted with KCl-PMA 
solution, the extractant measured colorimetrically at 527 nm. 
Urease activity was expressed as (µg urea hydrolysed or µg 
tyrosine produced  g−1  h−1).
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2.7.4  Protease

Protease activity was measured as per the methodology of 
Ladd and Butler [22]. For this, 1 g of soil (oven-dry equiv-
alent of field-moist soil) was mixed with 5 ml of 50 mM 
trisaminomethane (Tris) buffer (pH 8.1) and 5 ml of 2% Na-
caseinate and incubated at 50 ± 1 °C for 2 h. During incuba-
tion, aromatic amino acids were released and extracted. The 
remaining substrate was precipitated with 0.92 M trichlo-
roacetic acid. Using folin-Ciocalteu reagent the released 
tyrosine was measured colorimetrically at 700 nm. Protease 
activity was expressed as mg tyrosine produced  g− soil  h−1.

2.7.5  Fluorescein diacetate hydrolyzing activity

Fluorescein diacetate hydrolytic activity (FDHA) was meas-
ured as per the methodology of Green et al. [23]. By the 
action of hydrolytic enzymes in soil, the released fluorescein 
from fluorescein diacetate was measured. Fluorescein diace-
tate hydrolyzing activity was expressed as mg of fluorescein 
 kg−1 oven dry soil  hr−1.

2.8  Statistical analysis

All the data generated during the entire period of investiga-
tion was statistically analysed using the ‘F’ using the pro-
cedure of Gomez and Gomez [16]. LSD values at P = 0.05 
were used to determine the significance of difference 
between the treatment means. This analysis was done using 
the statistical package ‘STATISTICS’.

3  Results and discussion

For mineral nutrient preservation and conversion related to 
soil quality and health, the soil MBC and enzyme activ-
ity had been acknowledged as a potential indicator. The 
initial soil biological properties of collected sample under 
laboratory condition have been presented in Table 1. Results 
revealed that the microbial biomass carbon was 295 mg  kg−1 
soil, dehydrogenase 27.46 µg TPF produced  g−1  h−1, acid 
and alkaline phosphatase 96.24 and 27.64 µg p-nitrophenol 
 g−1  h−1, urease 95.46 µg urea hydrolysed, protease 95.46 µg 
urea hydrolysed, protease 14.15 µg urea hydrolysed, fluo-
rescein diacetate hydrolyzing 16.38 mg of fluorescein  kg−1 
oven dry soil  hr−1, invertase activity 55.78 mg glucose eq. 
 g−1  h−1. The influences of biochar application are also in 
conformity with different researcher who mentioned that 
the potential activities of dehydrogenase, cellulase, protease 
and invertase augmented in soils amended with dissimilar 
types and doses of biochars produced at unlike pyrolysis 
condition. Maximum number of biochar is alkaline in pH. 
The application of biochar therefore may perhaps augment 

the soil pH through its liming potential, creating the soil 
environment additional favorable for soil microbes as well 
as enzymes.

3.1  Microbial biomass carbon

The addition of organic manures to soils could excite 
microbe’s biomass via supplying degradable carbon sub-
stances and nutrients [24]. This explained that the more 
amount of soil microbial biomass carbon was found in the 
biochar amended soil than biochar unamended soil and the 
soil getting organic sources of manures as well as fertiliz-
ers [25]. Biochar may also manipulate the abundance of 
microbes via different mechanism like soil physicochemi-
cal characters changes by creating micro-habitats, which 
significantly supply huge niches for microbial enlargement. 
This gives details the augmented soil microbial biomass 
carbon found in biochar amended soil than without biochar 
amended soil. Effect of biochar type at 5.0 t/ha on microbial 
biomass carbon at different days of incubation period has 
been presented in Fig. 1. The microbial biomass carbon for 
control was 270.3, 273.1, 278.1, 288.1 and 298.6 at 0, 30, 
90, 225 and 365 days of incubation, respectively. The micro-
bial biomass carbon for MS biochar was 272.6, 279.1, 296.5, 
331.3 and 366.4 at 0, 30, 90, 225 and 365 days of incuba-
tion, respectively. The microbial biomass carbon for LC was 
270.4, 280.1, 301.1, 343.1 and 385.5 at 0, 30, 90, 225 and 
365 days of incubation, respectively. The microbial biomass 
carbon for PN biochar was 271.5, 279.6, 298.4, 336.7 and 
374.5 at 0, 30, 90, 225 and 365 days of incubation, respec-
tively. The microbial biomass carbon for BG biochar was 
270.2, 277.4, 293.6, 326.5 and 358.5 at 0, 30, 90, 225 and 
365 days of incubation, respectively. Results revealed that 
the microbial biomass carbon in different biochar treatment 
increased significantly along with control with increase in 
incubation days. The highest microbial biomass carbon was 
found in LC followed by PN, MS and lowest in BG among 
the biochar. Thus, biochar application in soil increased 

Table 1  Initial soil biological properties of collected sample under 
laboratory condition

Soil properties Values

Urease (µg urea hydrolysed or µg tyrosine produced  g−1  h−1) 95.46
Fluorescein diacetate hydrolyzing (mg of fluorescein  kg−1 

oven dry soil  hr−1)
16.38

Acid phosphatase (µg p-nitrophenol  g−1  h−1) 96.24
Invertase activity (mg glucose eq.  g−1  h−1) 55.78
Microbial biomass carbon (mg  kg−1 soil) 295
Protease (µg urea hydrolysed or µg tyrosine produced 

 g−1  h−1)
14.15

Dehydrogenase (µg TPF produced  g−1  h−1) 27.46
Alkaline phosphatase (µg p-nitrophenol  g−1  h−1) 27.64
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microbial biomass carbon compared to control. Effect of 
biochar type at 2.5 t/ha on microbial biomass carbon at dif-
ferent days of incubation period has been presented in Fig. 1. 
The results followed the similar trend as observed in case 
of 5.0 t/ha application rate. But the increased in microbial 
biomass carbon in all the biochar treatment was more at 2.5 
t/ha application rate than 5.0 t/ha i.e. lower concentration of 
biochar enhanced more in microbial biomass carbon than 
higher concentration. Besides, microbes present in soil are 
sensitive to the soil environment changes [14]. Rather than 
pyrolysis temperature and type of feedstock, the organic car-
bon present in biochar significantly influenced different soil 
biological properties like microbial biomass carbon [26]. 
The maximum constructive combined influences of biochar 
on soil microbial biomass carbon were found while biochar 
was jointly used with decomposed waste N-fertilizer [27]. 
A raise in soil microbial biomass carbon was found while 
biochar application rate was augmented, in spite of quan-
tity of nitrogen applied [28]. After biochar application, the 
improved microbial biomass carbon can be attributed to 
encouraging priming effect of biochar [29]. Nevertheless, 
published results of biochar applications to soil microbial 
biomass carbon are quite contradictory [30]. Due to the 
presence of water soluble low molecular organic substances 
(trace amount) in biochar, it might trigger priming effects 
[31]. Peanut biochar addition can also augment the microbial 
biomass carbon in a short-term period due to rise in soil 
organic carbon [32].

3.2  Dehydrogenase activity

As an intracellular enzyme, the dehydrogenase (DHA) 
serves as an index for soil microbiological action due to 
its function in soil organic matter oxidation (biological). 
The DHA action has been utilized fruitfully as a factor for 
assessment of degree of restoration of degraded acid soils 
[33]. Dehydrogenase activity under different type and 2.5 t/
ha rate of biochar application at various incubation intervals 
has been presented in Fig. 2. The dehydrogenase for control 
was 18.57, 20.01, 19.97, 20.97 and 21.61 at 1, 7, 30, 60 and 
90 days of incubation, respectively. The dehydrogenase for 
MS biochar was 19.61, 25.61, 24.61, 34.69 and 38.08 at 1, 
7, 30, 60 and 90 days of incubation, respectively. The dehy-
drogenase for LC biochar was 20.61, 24.59, 28.61, 38.56 and 
35.88 at 1, 7, 30, 60 and 90 days of incubation, respectively. 
The dehydrogenase for PN biochar was 14.2, 23.62, 22.26, 
17.62 and 18.08 at 1, 7, 30, 60 and 90 days of incubation, 
respectively. The dehydrogenase for BG biochar was 20.61, 
21.32, 29.58, 37.91 and 40.28 at 1, 7, 30, 60 and 90 days of 
incubation, respectively. Results revealed that the dehydro-
genase in different biochar treatment increased significantly 
along with control with increase in incubation days except 
pine biochar where dehydrogenase decreased. The highest 
dehydrogenase was found in BG followed by MS, LC and 
lowest in PN among the biochar. Thus, biochar application 
in soil increased dehydrogenase compared to control except 
LC biochar. Dehydrogenase activity under different type 

Fig. 1  Effect of biochar type 
and application rate on micro-
bial biomass carbon at different 
days of incubation
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and 5.0 t/ha rate of biochar application at various incuba-
tion intervals has also been presented in Fig. 2. The results 
followed the similar trend as observed in case of 2.5 t/ha 
application rate. But the increase in dehydrogenase in all 
the biochar treatment was more at 5.0 t/ha application rate 
than 2.5 t/ha except LC biochar where higher application 
rate decreases more in dehydrogenase activity than lower 
application rate. The probable mechanisms through which 
dissimilar biochar addition in soil changes enzyme activi-
ties are (a) biochar’s more specific surface area, pore space 
and ability to sorb various substrates on its exterior or (b) 
biochar addition modify the features of soil to manipulate 
soil enzyme activity [34, 35]. The interaction of dehydroge-
nase, which only works within the cell, is typically linked 
to microbiological activity and respiration and furthermore 
reflects the greatness of soil microbial procedure [36]. Soil 
dehydrogenase activity augmented only with application of 
manure biochar produced at 300 °C while no effect with the 
same biochar derived at 500 °C [37]. Biochar produced at 
low temperature pyrolysis augmented the enzyme activity 
more than high temperature pyrolyzed biochars [38]. The 
reason may be the lower concentration of aromatic structures 
and more quantity of easily degradable substances [39].

3.3  Acid phosphatase activity

The acid phosphatase enzyme activity is unswervingly 
connected to available phosphorus and soil organic car-
bon [40]. Acid phosphatase activity under different type 
and 2.5 t/ha rate of biochar application at various incu-
bation intervals has been presented in Fig. 3. The acid 
phosphatase for control was 45.27, 46.28, 52.61, 54.62 
and 55.67 at 1, 7, 30, 60 and 90 days of incubation, respec-
tively. The acid phosphatase for MS biochar was 47.56, 
55.61, 67.56, 75.61 and 81.07 at 1, 7, 30, 60 and 90 days 
of incubation, respectively. The acid phosphatase for LC 
biochar was 46.91, 55.61, 67.56, 88.61 and 90.07 at 1, 7, 

30, 60 and 90 days of incubation, respectively. The acid 
phosphatase for PN biochar was 44.86, 48.86, 45.86, 49.56 
and 51.46 at 1, 7, 30, 60 and 90 days of incubation, respec-
tively. The acid phosphatase for BG biochar was 46.62, 
54.82, 65.91, 78.16 and 85.57 at 1, 7, 30, 60 and 90 days 
of incubation, respectively. Results revealed that the acid 
phosphatase in different biochar treatment increased sig-
nificantly along with control with increase in incubation 
days. The highest acid phosphatase was found in LC fol-
lowed by BG, MS and lowest in PN among the biochar. 
Thus, biochar application in soil increased acid phos-
phatase compared to control. Acid phosphatase activity 
under different type and 5.0 t/ha rate of biochar application 
at various incubation intervals has been also presented in 
Fig. 3. The results followed the similar trend as observed 
in case of 2.5 t/ha application rate. But the increase in acid 
phosphatase in all the biochar treatment was more at 2.5 t/
ha application rate than 5.0 t/ha. Augmented soil enzyme 
activity as a result of biochar application could be taking 
place directly during co-location of enzyme-biochar fol-
lowed by interaction with surface of biochar or indirectly 
during augmented microbial activity, biomass, soil organic 
matter and finally changes in microbial community organi-
zation [41]. Due to the presence of plentiful micro-pores, 
more surface area and surface functional groups or aug-
mented soil aggregation in biochar, it can physico-chem-
ically immobilize soil enzyme activity [42–46]. Biochars 
may sorb more substrate due to its more specific surface 
area and porosity and, consequently, decrease extremely 
soluble substrate availability for soil enzymes, which may 
hinder the reaction rate of enzyme [46, 47]. Moreover, bio-
char is able to immobilize native soil organic carbon due 
to its large surface area and porosity [48]. The immobili-
zation process may be due to direct sorption of dissolved 
microbial enzymes and organic matter onto surfaces of 
biochar and within pore spaces, which ultimately results 
in hindering soil enzyme activity [49, 50].

Fig. 3  Acid phosphatase activ-
ity under different biochar type 
and application rate at different 
days of incubation
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3.4  Alkaline phosphatase

Alkaline phosphatase activity under different type and 2.5 t/
ha rate of biochar application at various incubation intervals 
has been presented in Fig. 4. The alkaline phosphatase for 
control was 19.56, 20.56, 22.23, 22.97 and 23.62 at 1, 7, 
30, 60 and 90 days of incubation, respectively. The alkaline 
phosphatase for MS biochar was 20.56, 31.27, 42.52, 57.62 
and 69.56 at 1, 7, 30, 60 and 90 days of incubation, respec-
tively. The alkaline phosphatase for LC biochar was 21.52, 
32.64, 45.62, 61.27 and 65.85 at 1, 7, 30, 60 and 90 days of 
incubation, respectively. The alkaline phosphatase for PN 
biochar was 19.02, 25.75, 45.29, 57.56 and 61.61 at 1, 7, 
30, 60 and 90 days of incubation, respectively. The alkaline 
phosphatase for BG biochar was 18.89, 24.86, 33.86, 42.46, 
61.62 and 68.46 at 1, 7, 30, 60 and 90 days of incubation, 
respectively. Results revealed that the alkaline phosphatase 
in different biochar treatment increased significantly with 
increase in incubation days along with control. The raise in 
alkali phosphatase through biochar addition may be due to 
a chemical improvement of enzyme activity which occurred 
by interaction with biochar. It augmented gradually over the 
incubation period which recommended that biochar offers a 
proper habitation for the phytase-producing microorganisms. 
As soil holds huge quantity of organic-P, the microorgan-
isms living in biochar particles pore space can liberate the 
biochar-phosphorus and also from the organic matter which 
increased the enzyme activity. The highest alkaline phos-
phatase was found in MS followed by BG, LC and lowest 
in PN among the biochar. Thus, biochar application in soil 
increased alkaline phosphatase compared to control. Alka-
line phosphatase activity under different type and 5.0 t/ha 
rate of biochar application at various incubation intervals 
has been also presented in Fig. 4. The results followed the 
similar trend as observed in case of 2.5 t/ha application rate. 

But the increase in acid phosphatase in all the biochar treat-
ment was more at 5.0 t/ha application rate than 2.5 t/ha. 
The higher rate of rice straw biochar addition at 50 mg/kg 
can inhibit the alkaline phosphatase activity whereas alka-
line phosphatase activity indicated an augment with biochar 
addition at 10 mg/kg [51, 52]. In unfertile tropical soils, 
the enzymes involved in carbon, nitrogen and phosphorus 
cycles were considerably augmented by biochar application, 
however for fertile soil, biochar addition resulted in lower 
phosphomonoesterase activity [53–57]. The unpredictable 
role of different biochar on soil enzyme activities may be 
due to its more dependence on soil type [58].

3.5  Urease activity

The urease enzyme is recognized to hydrolyse the nitroge-
nous compound (protein). The action of urease was acknowl-
edged as an extremely successful soil enzymatic indicator 
for nitrogen mineralization of applied organic manure and 
soil organic matter [59–61]. In our research findings, exten-
sively enhanced soil urease activities with four dissimilar 
biochar possibly will be attributed to exogenous addition 
of enzymes along with enhancement of microbial enlarge-
ment. Urease activity under different type and 2.5 t/ha rate 
of biochar application at various incubation intervals has 
been presented in Fig. 5. The urease for control was 60.59, 
66.45, 65.46, 66.49 and 67.59 at 1, 7, 30, 60 and 90 days 
of incubation, respectively. The urease for MS biochar was 
61.58, 68.56, 71.37, 75.56 and 79.64 at 1, 7, 30, 60 and 
90 days of incubation, respectively. The urease for LC bio-
char was 62.65, 69.57, 78.56, 82.56 and 85.69 at 1, 7, 30, 
60 and 90 days of incubation, respectively. The urease for 
PN biochar was 59.56, 57.52, 58.17, 63.17 and 65.16 at 
1, 7, 30, 60 and 90 days of incubation, respectively. The 
urease for BG biochar was 61.62, 62.59, 72.46, 79.56 and 

Fig. 4  Alkaline phosphatase 
activity under different biochar 
type and application rate at dif-
ferent days of incubation
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83.64 at 1, 7, 30, 60 and 90 days of incubation, respectively. 
Results revealed that the urease in different biochar treat-
ment increased significantly with increase in incubation days 
along with control. The highest urease was found in LC fol-
lowed by BG, MS and lowest in PN among the biochar. 
Thus, biochar application in soil increased urease compared 
to control. Urease activity under different type and 5.0 t/ha 
rate of biochar application at various incubation intervals has 
been also presented in Fig. 5. The results followed the simi-
lar trend as observed in case of 2.5 t/ha application rate. But, 
the increase in urease in all the biochar treatment was more 
at 5.0 t/ha application rate than 2.5 t/ha except LC biochar. 
A noteworthy expand in soil urease activity (31.1–37.6%) 
having optimistic correlation of soil enzyme activities with 
soil organic carbon and pH was observed after biochar appli-
cation in a two year paddy field in China [62, 63].

3.6  Protease activity

The protease enzyme is recognized to hydrolyse nitrogen 
compound in soil [64]. Protease activity under different 
type and 2.5 t/ha rate of biochar application at various 
incubation intervals has been presented in Fig. 6. The pro-
tease for control was 10.12, 12.62, 11.26, 13.01 and 13.62 
at 1, 7, 30, 60 and 90 days of incubation, respectively. 
The protease for MS biochar was 11.62, 17.62, 22.61, 
28.46 and 30.26 at 1, 7, 30, 60 and 90 days of incuba-
tion, respectively. The protease for LC biochar was 10.56, 
12.62, 22.62, 21.56 and 23.73 at 1, 7, 30, 60 and 90 days of 
incubation, respectively. The protease for PN biochar was 
10.01, 9.45, 9.02, 8.15, 8.98, 9.11 and 9.98 at 1, 7, 30, 60 
and 90 days of incubation, respectively. The protease for 

BG biochar was 12.91, 17.62, 22.62, 24.89 and 25.46 at 1, 
7, 30, 60 and 90 days of incubation, respectively. Results 
revealed that the protease in different biochar treatment 
increased significantly along with control with increase 
in incubation days except pine biochar where protease 
activity decreased. The highest protease was found in MS 
followed by BG, LC and lowest in PN among the bio-
char. Thus, biochar application in soil increased protease 
compared to control except LC biochar which decreased 
protease activity. In this experiment, the biochar appli-
cation augmented the protease enzyme activity in soil, 
which might be due to augmenting the accessibility of 
inorganic nitrogen. Protease activity under different type 
and 5.0 t/ha rate of biochar application at various incu-
bation intervals has been also presented in Fig. 6. The 
results followed the similar trend as observed in case of 
2.5 t/ha application rate. But the increase in protease in 
all the biochar treatment was more at 5.0 t/ha application 
rate than 2.5 t/ha except LC biochar where higher appli-
cation rate decrease more in protease activity than lower 
application rate. The protease enzyme acts as significant 
function in soil organic N-mineralization through hydroly-
sis of protein to polypeptide and oligo-peptide to amino 
acid [65–67]. The synergistic role of fresh biomass and its 
resulted biochar on soil enzymes are stalwartly linked to 
enhanced soil physico-chemical characters, and the appli-
cation of various labile-C substances in the biochar for 
enzyme reactions [68]. The role of biochar addition on 
soil enzyme activity was mostly because of its influence 
on soil microbial biomass as because enzyme activities are 
connected with live microbe’s cell and abiotic elements as 
extracellular enzyme [69, 70].
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3.7  Fluorescein diacetate activity

Fluorescein diacetate activity (FDA) under different type and 
2.5 t/ha rate of biochar application at various incubation inter-
vals has been presented in Table 2. The fluorescein diacetate 
for control was 9.12, 11.62, 13.92, 12.68 and 14.62 at 1, 7, 30, 
60 and 90 days of incubation, respectively. The fluorescein 
diacetate for MS biochar was 10.91, 14.26, 22.36, 28.56 and 
31.28 at 1, 7, 30, 60 and 90 days of incubation, respectively. 
The fluorescein diacetate for LC biochar was 10.12, 17.62, 
24.62, 32.86 and 37.56 at 1, 7, 30, 60 and 90 days of incuba-
tion, respectively. The fluorescein diacetate for PN biochar 
was 9.08, 7.85, 5.45, 9.46 and 11.27 at 1, 7, 30, 60 and 90 days 
of incubation, respectively. The fluorescein diacetate for BG 
biochar was 9.26, 17.56, 23.52, 31.62 and 35.42 at 1, 7, 30, 

60 and 90 days of incubation, respectively. Results revealed 
that the fluorescein diacetate in different biochar treatment 
increased significantly with increase in incubation days along 
with control. The highest fluorescein diacetate was found in 
LC followed by BG, MS and lowest in PN among the bio-
char. Thus, biochar application in soil increased fluorescein 
diacetate compared to control significantly except LC biochar 
which increase non-significantly (slight increase). Fluorescein 
diacetate activity under different type and 5.0 t/ha rate of bio-
char application at various incubation intervals has been also 
presented in Table 2. The results followed the similar trend as 
observed in case of 2.5 t/ha application rate. But, the increase 
in fluorescein diacetate in all the biochar treatment was more at 
5.0 t/ha application rate than 2.5 t/ha. In our findings, augment-
ing the biochar application rates enhanced the soil enzyme 
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Table 2  Fluorescein diacetate 
hydrolyzing activity under 
different biochar type and 
rate of application at different 
incubation period

* MSB, maize stalk biochar; LCB, Lantana camara biochar; PNB, pine needle biochar; BGB, black gram 
biochar

Type of biochar Application 
rate (t  ha−1)

Fluorescein diacetate hydrolyzing activity (mg of fluorescein  kg−1 oven 
dry soil  hr−1)

1 3 7 15 30 45 60 90

Control 0 9.12 10.26 11.62 12.58 13.92 15.46 12.68 14.62
MSB 2.5 10.91 15.68 14.26 17.92 22.36 27.56 28.56 31.28

5.0 9.89 11.25 14.62 15.56 20.62 22.56 27.56 35.46
LCB 2.5 10.12 14.56 17.62 22.46 24.62 27.56 32.85 37.56

5.0 9.56 11.62 16.56 15.37 18.56 22.37 32.56 40.61
PNB 2.5 9.08 8.56 7.85 6.48 5.45 7.56 9.46 11.27

5.0 9.02 8.16 7.43 6.01 5.05 6.01 8.89 10.46
BGB 2.5 9.26 13.62 17.56 19.56 23.52 27.56 31.62 35.42

5.0 11.61 12.56 15.56 18.56 22.62 27.95 35.46 38.56
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activity (except PN biochar) and such surveillance was men-
tioned by various recognized researchers utilizing other types 
of biochar. The PN biochar may have an antagonistic effect 
on soil enzyme activity because pine needle contains resin 
(oleoresin). The augmented action of FDA might be either due 
to encouragement of a particular type of microbes by different 
biochar or enlargement of biomass in reply to primarily labile 
carbon. The FDA exists in the major decomposers like soil 
bacteria and fungi and is mediated by various enzymes, for 
example, esterase, proteases and lipases [71–73]. Therefore, 
the FDA could be precious to determine various responses 
happening in soil [74]. Even though investigations have shown 
uplifted in FDA hydrolysis in soils amended with biochar, the 
response (decrease/no change/increase) has varied due to bio-
char type, application rates, and the complex mechanisms of 
action of type of soil with biochar [75–77].

4  Conclusion

We concluded that the effect of four dissimilar biochar appli-
cations on microbial biomass carbon and soil enzyme activity 
was extremely variable. The feedstock type has a great signifi-
cant influence on biochar and obviously, significantly enhance-
ment on MBC and enzyme activity with four different biochar 
was observed. Besides, rate of biochar application also played 
a crucial role to influence the MBC and soil enzyme. Some 
properties of soil biological indicator were more influenced 
by higher biochar application, while some were by lower bio-
char application rate. Thus, there is an urgent call for further 
estimation of positive and negative long term results of bio-
char on the soil biology. The existing work suggests that the 
employ of MS, LC and BG biochar (but not PN biochar) as 
a soil amendment might be adopted as an efficient measure 
to improve MBC and enzyme activity. Finally, more research 
under actual field conditions is necessary to verify the advan-
tages of biochar application.
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