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ABSTRACT

Ubiquitin, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin ligases (E3) and
26S proteasome are the significant components of the ubiquitination process. The expression level of ubiquitin
activating (UBA) gene was evaluated in 18 genotypes with differential grain iron (Fe) and zinc (Zn) (including
landraces, high yielding and released biofortified varieties) at panicle initiation stage. The relative expression
of the UBA gene was analysed with three yield checks- BPT 5204, MTU 1010 and Swarna and the highest gene
expression level were found in land race Kalanamak followed by Jalpriya and Taroari Basmati.Significant
positive correlation of expression of the UBA gene with grain Fe content suggests the possible role of ubiquitin
activating enzymes in addition to the reported ubiquitin-conjugating and ligases in Fe homeostasis. The
understanding of ubiquitination regulated nutrient transport mechanism is yet to be explored hence, more in-
depth studies in future may provide better insight to understand the role of ubiquitination in nutrient homeostasis
and develop better strategies for biofortification.

Key words: Ubiquitin activating (UBA) gene, rice, grain iron, expression, correlation

Ubiquitination, the post-translational modifier
plays key role in regulatory mechanisms of plant growth,
development and stress signalling (Sadanandom et al.,
2012). Ubiquitin is a small globular protein of about 76
amino acids, highly conserved in all eukaryotic cells
with a wide range of functions and it conjugates to a
large range of proteins for degrading them through
ubiquitin-proteasome pathway or ubiquitination process
(Belknap & Garbarino, 1996).The three main enzymes
involved in ubiquitination cascade are categorized as
ubiquitin-activating enzyme E1, ubiquitin-conjugating
enzyme E2, and ubiquitin ligases E3. The first step is
the ubiquitin activation where E1 binds to MgATP and
ubiquitin, and catalyzes ubiquitin C-terminal acyl-
adenylation. In the next step, the catalytic cysteine (Cys)
in the E1 attacks the ubiquitin~adenylate and forms the
activated ubiquitin~E1 complex and passed it to Cys
residue of E2 conjugating enzyme. In the last step,
ubiquitin is passed to lysine (Lys) residue of the target
protein through coordinated function of E3 ubiquitin

ligase (Zhiguo et al., 2015) either directly through
Homology to the E6-associated protein C-terminus
(HECT)-type E3s or indirectly through Really
interesting new gene (RING), U-box and Cullin-based
types E3s (Mandal et al., 2018). The polyubiquitinated-
target protein is then degraded by the 26S proteasome.
Ubiquitin mechanism plays vital role during several plant
life processes from embryogenesis, hormone regulation,
immune responses, DNA repair, chromatic remodeling
to senescence(Yee & Goring, 2009). Ubiquitin-
proteasome pathway is suggested to be one of the
adaptation and survival strategies to different
environmental stresses (Yang et al., 2010; Zhou et al.,
2017). In rice, ubiquitination pathway was proposed as
a probable target for improvement of abiotic stress
tolerance (Dametto et al., 2015). Apart from its stress
responsive mechanisms,ubiquitination has also been
reported to have function in nutrient homeostasis in
plants through control of plasma membrane proteins
(Yates & Sadanandom, 2013).The proteasome-
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Correlation of UBA expression with rice grain Fe Bej et al.

mediated degradation through ubiquitination and its role
in iron (Fe) homeostasis has been widely studied in
Arabidopsis (Eroglu & Aksoy, 2017). Post
transcriptional ubiquitination found to help in the
processing of IRON-REGULATED TRANSPORTER
1 (IRT1) (Kerkeb et al., 2008). Kobayashi et al., 2013
identified new Fe-binding regulator zinc (Zn)-finger
protein 1 viz., OsHRZ1 and OsHRZ2 those also binds
to Zn and have protein ubiquitination activity mediated
by RING Zn-finger domains in rice. Differential
expression of OsHRZ1 and OsHRZ2 under Fe
deficiency and sufficient conditions was also reported
(Kobayashi et al., 2014). Comparative transcriptome
analysis of rice and wheat genotypes with differential
grain Zn and Fe revealed enhanced ubiquitin related
genes (Mishra et al., 2019; Neeraja et al., 2018).
Globally, malnutrition is estimated to have affected 2
billion human population (FAO, 2018) and out of which
about 1 billion is in India itself (Ritchie et al., 2018). Fe,
Iodine, Zn and Vitamin A are among the most prevalent
and widespread form of nutrient deficiencies affecting
a larger proportion of the global population. Staple crops
loses most of its Fe/Zn content during post-harvest
milling and processing, that failing to provide an
sufficient supply of Fe and Zn, leading to malnutrition
in human population (Hefferon, 2018). Hence,
biofortification is considered to be the most effective
and sustainable strategy to enhance the micronutrient
levels of Fe and Zn and its bioavailability in staple crops
(Cheema et al., 2018; Wakeel et al., 2018). Rice
biofortification is the desirable target among cereals,
since it is one of the most consumed staple crops
especially in Asia where it the central dietary source
of carbohydrate (Kok et al., 2018). In popular rice
varieties, the polished grains contain approximately 2
ppm of Fe and 16 ppm of Zn. The targeted concentration
of Fe and Zn in polished rice grains is 13 ppm and 28
ppm respectively, in order to reach 30% estimated
average requirement (EAR) (Trijatmiko et al., 2016).
Although, majority of previous studies have identified
several metal chelate-transporter and phytosiderophore
biosynthesis pathway related enzymes coding genes
which are responsible for improving Fe/Zn content but
still some gaps remains to fully understand the
mechanism of Fe/Zn uptake from roots (source),
transport, translocation and loading onto the developing
grains (sink) (Banerjee et al., 2010). Several novel
mechanisms were proposed to play vital role in  plant

mineral dynamics in addition to the known mechanisms.
Ubiquitination was proposed to be one of the
mechanisms associated with protein turnover and
nutrient homeostasis by regulating the movement of
membrane-bound transporters (Sperotto et al., 2014).
The extent of ubiquitination in nutrient transport and
compartmentalization is yet to be elucidated in cereal
crops for their deployment in biofortification studies.
Considering all these points, the current study, we have
evaluated the expression level of ubiquitin-activating
enzyme gene (UBA) in 18 genotypes (including high
yielding and released biofortified varieties) at panicle
initiation stage and correlated the expression level with
the grain Fe and Zn content.Most of the studies have
reported differential tissue specific-expression of
ubiquitin conjugating and ubiquitin ligase genes under
abiotic stresses such as drought, cold, salt stresses and
hormone treatments such as IAA, 6-BA, GA and ABA
in rice (Lourenço et al., 2013; Zhiguo et al., 2015), while
a few groups studied on ubiquitin activating gene
(Agrawal et al., 2016; Hatfield et al., 1997). In nutrient
homeostasis of nitrogen, phosphorous and other
minerals, the role of ubiquitin conjugating and ligases
have been extensively reported (Kobayashi et al., 2014;
Liu et al., 2017; Pan et al., 2019; Rodríguez-Celma et
al., 2019; Yates & Sadanandom, 2013). Rice has six
ubiquitin-activating, 39 ubiquitin-conjugating and over
1300 ubiquitin-ligase genes which is justified by their
role in maintaining substrate specificity (Du et al., 2009;
Zhiguo et al., 2015; Mandal et al., 2018).  Ubiquitin-
activating enzyme is 110-125 k Dain size having four
conserved domain, plays the crucial initial step in the
pathways regulating the rate of ubiquitination. The UBA
genes have been studied in Arabidopsis, tobacco, wheat
and soyabean (Hatfield et al., 1997; Mandal et al., 2018;
Takizawa et al., 2005). In rice roots, PEG induced
drought stress was reported in 2-fold increase of
ubiquitin activating enzyme (OsC-4815). Nutrient
uptake and homeostasis studies have largely focussed
on the genes encoding ubiquitin-conjugating and
ubiquitin ligases, hence, we selected to study the
expression of the UBA gene and to determine whether
its relation to micronutrient homeostasis.

Eighteen rice genotypes having different grain
Zn and Fe content viz., Swarna, BPT 5204, Jaya, MTU
1010, Savitri, PR 116, Ranbir Basmati, Jalpriya,
AkutPhou, ARB-45, High Iron Rice, Kadamkudy
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Pokkali, Kalanamak, Kasturi, Mima Local, Seetasail,
Taroari Basmati and Tilakkachari were selected and
sown in pots arranged in a complete randomized block
design with three biological replicates and maintained
at nethouse of ICAR-Indian Institute of Rice Research
(IIRR), Hyderabad. The grains were harvested from
the kharif season of consecutive 3 years 2015-2017
for grain Zn/Fe estimation. The grains were dehusked
using JLGJ4.5 testing rice husker (Jingjian Huayuan
International Trade Co. Ltd) and polished using polisher
(Krishi International India Ltd.) having non-ferrous and
non-zinc components and was analysed by energy
dispersive X-ray fluorescentspectrophotometer (ED-
XRF) (OXFORD Instruments X-Supreme 8000)
according to  Rao et al., 2014. Total RNA was isolated
using NucleoSpin RNA Plant kit (Macherey-Nagel,
Germany) from the booting stage panicle tissues of the
18 genotypes and the RNA quality was assessed using
Nanodrop® ND1000 spectrophotometer (Thermo
Scientific, USA). cDNA synthesis was performed
using transcriptor first strand cDNA synthesis kit
(Roche Diagnostics, Mannheim, Germany) and diluted
to 1:10 to use as template for qPCR. Each qPCR
reaction was performed in three technical replicates
using FastStart Universal SYBR Green Master (Roche
Diagnostics, Mannheim, Germany) with the following
program 95oC (2 min) followed by 40 cycles of 95oC
(5 s), 58oC (30 s) with fluorescent signal recording and
72oC for 30 min LightCycler 96 system (Roche
Diagnostics, Mannheim, Germany). The relative
expression of the UBA gene was analysed using the 2-
Ct method according to (Schmittgen & Livak, 2008)
with yield checks- BPT 5204, MTU 1010 and Swarna
as control (Neeraja et al., 2018) and normalized using
internal control gene Memp (Membrane protein) (Phule
et al., 2018) (Table 1).

The mean values of grain Zn and Fe content in
both brown and polished rice of 18 genotypes across
three consecutive years (Kharif 2015-2017) were
considered for the analyses (Table 2). Lack of consistent

values in Fe/Zn content for particular genotypes have
been reported in rice with variations being caused by
several factors including environment and genotype
interactions (Nachimuthu et al., 2014). The Fe content
ranged from 7.14 ppm to 13.13 ppm in brown and 1.50
ppm to 4.87 ppm in polished grains, whereas Zn content
ranged from 14.87 ppm to 31.30 ppm in brown and
11.93 ppm to 25.97 ppm in polished rice. Among all the
genotypes, AkutPhou, Taroari Basmati and High Iron
Rice were found to have higher Fe/Zn content in both
dehusked and polished grains. The polishing of rice
grains removes the bran which contains the aleurone
layer containing more than 85% of the Fe content, the
remaining starchy endosperm contains very low amount
of Fe and Zn (Ishimaru et al., 2010; Sperotto et al.,
2012). A similar trend was observed in genotypes Mima

Table 1. Primer details of reference and target gene used in the qPCR

Sl no. Gene name Abbreviation Primer sequence

1 Membrane Protein Memp GAGCGCAAAGTTCCAGAAGAA
CGCCACTAGTTGCCGTCCTGAT

2 Ubiquitin activating enzyme E1 UBA CTGGTTTTGCTAACATGCGG
ACCACCGAGTACCTTGTACA

Table 2. Fe and Zn content in brown and polished grains of
all genotypes.

Sl Genotype Brown Polished
no. (ppm) (ppm)

Fe         Zn Fe        Zn

1 AkutPhou (VR) 9.30 30.17 4.23 25.97
2 ARB-45 (BR) 9.93 28.87 3.67 23.73
3 BPT5204 (VR) 8.13 15.08 1.76 12.7
4 High Iron Rice (LR) 9.43 29.33 3.43 24.33
5 Jalpriya (VR) 12.3 26.4 3.3 13.2
6 Jaya (VR) 7.14 18.73 1.64 15.14
7 KadamkudyPokkali (LR) 9.17 29.23 2.47 23.17
8 Kalanamak (LR) 12.73 22.83 4.87 19.47
9 Kasturi (VR) 10.90 26.77 4.77 24.63
10 Mima (LR) 13.13 29.10 2.09 23.26
11 MTU 1010 (VR) 8.23 14.87 1.67 12.93
12 PR 116 (VR) 7.83 19.77 1.50 11.93
13 Ranbir Basmati (VR) 9.17 22.07 1.70 16.80
14 Savitri (VR) 8.53 21.60 2.80 16.70
15 Seetasail (LR) 10.80 28.83 4.10 22.80
16 Swarna (VR) 7.17 17.73 1.80 12.80
17 Taroari Basmati (PL) 9.83 31.30 4.60 25.70
18 Tilakkachari (LR) 8.00 26.93 4.03 21.20

VR: released varieties; BR: breeding lines; LR: landraces;
PL: pure line

Oryza Vol. 57 Issue No. 3, 2020 (251-259)
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local, Jalpriya, Kalanamak and DRRDhan 45 where
the reduction in grain Fe was found to be 84.08%,
73.17%, 61.74% and 71.53% respectively. For grain
Zn content, the polishing was found to cause about
~15% reduction in most of the genotypes whereas in
Jalpriya the reduction was observed more than 50%.
Genotypic variation of grain Zn in polished rice has been
reported to be differential translocation ability from
aleurone to the endosperm (Bollinedi et al., 2020). Based
on the Fe and Zn content, the 18 genotypes can be

divided into three groups as high, moderate and low. In
Fe content, genotypes with lower than 2 ppm was
considered as low (BPT 5204, Jaya, MTU 1010, PR
116, Ranbir Basmati and Swarna), with range 2 ppm -
3.9 ppm was categorized as moderate (ARB-45, High
Iron rice, Jalpriya, KadamkudyPokkali, Mima Local and
Savitri) and higher than 4 ppm was considered as high
(AkutPhou, Kalanamak, Kasturi, Seetasail, Taroari
Basmati and Tilakkachari). In case of Zn content, within

Fig. 1. Relative expression of UBA gene among 18 genotypes compared to yield checks viz., (a) MTU 1010, (b) BPT 5204 and
(c) Swarna was normalized using Memp as internal control.

Correlation of UBA expression with rice grain Fe Bej et al.
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range 24 ppm - 25 ppm was categorized as high
(AkutPhou, High Iron rice, Kasturi and Taroari
Basmati), within range 20 ppm - 24 ppm was considered
as moderate (ARB-45, KadamkudyPokali, Mima
Local, Seetasail and Tilakkachari) and below 20 ppm
was considered as low (BPT 5204, Jalpriya, Jaya,
Kalanamak, MTU 1010, PR116, Ranbir Basmati, Savitri
and Swarna). The differential expression of the UBA
gene was obtained by quantitative real time PCR and
the relative fold change was calculated using the Ct
method by comparing the fold change relative to high
yield checks- MTU 1010, BPT 5204 and Swarna (Fig.
1 a, b,c & 2 a, b). The comparative expression of UBA
with MTU 1010 was found to be up regulated in
genotypes Kalanamak (3.71), Jalpriya (2.34), Taroari
Basmati (2.33), High Iron Rice (1.39), Seetasail (1.13),
Ranbir Basmati (1.23) whereas with BPT 5204, the
gene expression was found to be up-regulated in all
genotypes except Savitri (-1.21) and highest in
Kalanamak (8.37) (Supp Table 1). The expression
relative to yield check Swarna a few genotypes BPT
5204 (-1.94), Jaya (-1.75), KadamkudyPokkali (-1.04),
Mima Local (-1.29) and Savitri (-2.33) were found to
have negative fold change of the UBA gene
(Supplementary  Table 1). The genotypes having higher
expression of UBA compared with all the three yield
checks were found to be highest in Kalanamak followed
by Jalpriya and Taroari Basmati and moderate
expression was found in High Iron Rice, Ranbir Basmati,
Kasturi, and Seetasail (Fig. 1 a, b, c). The correlation
between the fold change of UBA gene and grain Fe/Zn
content was determined using R software version 3.2.4.
The Pearson correlation between fold changes relative
to BPT 5204 to grain Fe/Zn content found to be 0.62

and 0.57 with Fe content in brown and polished grains
respectively (Fig. 3 a & d). The correlation of Fe
content in brown and polished grains with fold change
relative to yield check MTU 1010 was 0.59 and 0.51
whereas 0.45 and 0.59 with yield check Swarna
respectively (Fig. 3 b, c, e & f). The correlation of fold
change with grain Zn content was not found to be
significant. The correlation study of the expression
pattern of UBA gene with grain Fe content shows the
probable role of ubiquitin activating enzyme E1 in Fe
homeostasis.

The vital role of ubiquitination in Fe homeostasis
through endocytosis processing of IRT1 which in turn
plays vital role in Fe uptake at the transcriptional level
and post-transcriptionally ubiquitination has already been
demonstrated (Kerkeb et al., 2008). In the root
epidermal cells of Arabidopsis, IRT1 was found localized
to early endosomes/trans-Golgi network (EE/TGN) for
taking up Fe from the soil and its rapid recycling to the
plasma membrane. Mono-ubiquitination of Lys residues
on IRT1 resulted in vacuole sorting while mutation in
these Lys residues was found to stabilize the plasma
membrane leading to extreme lethality (Barberon et
al., 2011). Shin et al. (2013) identified a RING-type E3
ubiquitin ligase, designated as IRT1 DEGRADATION
FACTOR 1 (IDF1), was found to be involved in IRT1
degradation process. A similar finding was reported in
Arabidopsis BOR1 boron transporter, at high boron
concentrations mono- or diubiquitination induced BOR1
was observed and mutation of single Lys residue
affected the vacuole trafficking of BOR1 (Takano et
al., 2005; Zelazny et al., 2011). Kobayashi et al., 2013
identified new Fe-binding regulators zinc (Zn)-finger

Fig. 2. (a) Melting peak and (b) melting curve of UBA gene showing Tm at 82ºC.

Oryza Vol. 57 Issue No. 3, 2020 (251-259)



   
   

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

   
   

   
   

M
em

b
er

s 
C

o
p

y,
 N

o
t 

fo
r 

C
o

m
m

er
ci

al
 S

al
e 

   
 

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
36

.1
85

.1
20

.2
6 

o
n

 d
at

ed
 1

4-
A

u
g

-2
02

1

256 

protein 1 (OsHRZ1) and OsHRZ2 binding to Zn and
have protein ubiquitination activity mediated by RING
Zn-finger domains. Under Fe deficiency conditions, the
expression of OsHRZ1 and OsHRZ2 was found to be
induced, while under Fe sufficient conditions, OsHRZ1
and OsHRZ2 acts as negative regulators preventing
excess Fe uptake (Kobayashi et al., 2014). Interestingly,
Yang et al., 2018 revealed differential expression of
ubiquitin/proteasome 26S system by transcriptome
comparison of two contrasting ecotypes of Zn/cadmium
(Cd) hyper accumulator Sedum alfredii Hance species.
Comparative transcriptome analysis of four high- and
three low-grain Zn and Fe containing wheat genotypes
showed two ubiquitin related genes (E3 ligase and
ubiquitin dependent protein) specific to the genotypes
with high nutrients (Mishra et al., 2019). Panicle
transcriptome study on  two landraces and a widely

grown popular variety BPT with differential Zn in the
polished rice reported higher fold change of a gene
encoding putative ubiquitin conjugating enzyme 7
interacting protein (Neeraja et al., 2018). In the present
study, the role of ubiquitin activating enzyme has been
shown to be associated with the nutrient metabolism in
addition to the reported roles of ubiquitin conjugating
and ligating enzymes. To enhance the grain Fe/Zn
content and its bioavailability in staple crops using
conventional or transgenic approach requires the
understanding of the mechanisms of the nutrient uptake,
translocation and loading of the minerals - Fe/Zn.
Genetic variability having varying Fe/Zn content has
been observed in diverse genotypes of rice which if
exploited by genetic strategies can increase Fe/Zn
concentrations in sink tissues (grains). Studies have
established the role of ubiquitination and ubiquitin

Fig. 3. Pearson correlation of fold change relative to (a) BPT 5204, (b) MTU 1010 and (c) Swarna with grain Fe/Zn content in
all genotypes. The GGplot graph showing correlation of fold change with grain Fe/Zn content relative to (d) BPT 5204, (e)
MTU 1010 and (f) Swarna.

Correlation of UBA expression with rice grain Fe Bej et al.
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enzymes in the uptake and trafficking of essential
micronutrients in plants but mechanism needs to be
deciphered in detail. In our study, we have observed
positive correlation of grain Fe content with expression
of ubiquitin activating gene UBA in rice landraces,
suggesting the potential role of UBA in grain Fe
homeostasis. However, the understanding of
ubiquitination regulated nutrient transport and
homeostasis is still in its infancy depth study in this field
may provide better insight to understand and develop
better strategies for biofortification.
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