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Summary 

Optimal block designs for diallel cross experiments are proposed for the situallon when 
the interest of the experimenter is in estimating the general combining ability effects 
assuming that the specific combining ability effects are excluded from the model. Some 
general methods of construction of universally optimal block designs are gIven for both 
proper as well as non-proper settings. The designs hitherto known in the hterature fall out 
as particular cases of the general methods. Catalogues of universally optimal designs are 
reported. 

Some key !\lords a"d phrases: Mating design, balanced incomplete block design. 
partially balanced incomplete block design, nested balanced incomp1ete block deSIgn. 
nested balanced block design. diallel crosses, general combining ability, universal 
optimality. 

1. Introduction

\ Diallel crossing is a very useful method for conducting plant-breeding experiments. 
The dial lei cross is a type of mating design used to study the genetic properties of a set of 
inbred lines. Suppose there are p-inbred lines and it is desired to perfonll a diallel 
crossing experiment involving p(p- l)/2 crosses of the type (ix}) for 1< },I.} = 1,2 ... ·, P 

This is the type IV mating design of Griffmg( 1956), who studied the detailed analYSIS of 
such mating designs laid out in a randomized complete block design. 

The number of crosses in such mating designs increases rapidly with mcrease in the 
number of lines; for p = 4, there are only 6 crosses while for p = 8, the number of crosses 
is 28. In literature one way advocated for designing suchexpenments IS to treat crosses 
as treatments and use the usual block designs for estImating line effects. Laying out the 
design, as a randomized complete block design, even a moderately large number of lines, 
will, result in large blocks and consequently large intra-block variances. 

In order to overcome this problem, one may use incomplete block deSigns like 
balanced incomplete block (BIB) designs, partially balanced incomplete block (PBIB) 
designs with two associate classes, cyclic designs, etc. by treating the crosses as 
treatments. For instance, a BIB design has been used by identifying crosses as treatments 
[see e.g., Das and Giri(1986, pp441 -442); Ceranka and Mejza, (1988)). "These deSIgns 
have rnterestrng optimality properties when making inferences on a complete sel of 
orthonomlalised treatment contrasts. However, in diallel cross experiments the interest 
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of the experimenter is in making comparisons among general combinmg ability (gca) 
effects of lines and not of crosses and, therefore, using these designs as mating designs 
may result into poor precision of the comparisons among lines Further, the analysIs of a 
diallel cross experiment in incomplete blocks depends on the incidence of lines in blocks. 
rather than the incidence of the crosses as treatments, in blocks. Another approach 
advocated in literature is to start with an incomplete block deSign, \nite all the pall'S of 
treatments within a block, identify these pairs of treatments as crosses by treating 
treatments of the original incomplete block design as lines and use the result1l1g design as 
a deSign for diallel crosses . Sharma (1996) used this approach for complete diallel 
crosses experiments by using balanced lattice designs. This was, however also 
advocated by Das and Giri( 1986), in the context of BIB designs, and a balanced latt1ce IS 

also a BIB design . Ghosh and Divecha( 1997) used this for PBIB deSlb'11S to obtain 
designs for partial diallel crosses and Sharma(1998) obtained designs for partial diallel 
crosses through circular designs . However, this approach also does not seem to do well 
as will become clear through the following examples: 

An experimenter is interested in generating a mating design for companng 7-illbred 
lines on the baSIS of their gca effects. A mating design for diallel crosses experiment. D. 
with 21 crosses can be obtained by writing all possible pairs of treatments within a block 

of the BIB design, Do. with parameters v = b = 7. /' = k = 3. A. = I and treating the 
treatments as lines and paired treatments as crosses. Here the number of crosses IS \ ' = 

2 J, b = 7. r = J, k = 3. The designs. With rows as blocks, are 

Do D D* 

2 r4 lx2 lx4 2x4 Ix7 2x6 3x5 

2 3 5 2x3 2x5 3x5 lx2 3x7 4x6 

3 4 6 3x4 3x6 4x6 2x3 lx4 5x7 

4 5 7 4x5 4x7 5x7 3x4 2x5 h6 

5 6 5x6 IxS lx6 4x5 3x6 2x7 

6 7 2 6x7 2x6 2x7 5x6 4x7 Id 

7 3 lx7 3x7 lx3 6x7 IxS 2x4 

The C = G - NK -IN' matrix of the design D is C =2.(11 --.!..J 7)' and the variance 
3 7 

of the Best Lmear Unbiased Estimator (B.L.U.E.) of any elementary contrast among lines 

(gca) is ~O'~. Here G is a matrix with diagnoal elements as replication number of lines 
7 

and offdiagonal elemen~s as replicatIOn number of crosses, N is the Incidence matrix of 
lines Vs blocks, K is the diagonal matrix with clements as block sizes. I'. is an 
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identity matrix of order v, J v , a l'XV matrix of all elements ones. and a~ is the per plot 

vanance . 

Another mating design generated through a different method IS D* The 

C = G - NK - IN' matrix of the design D* is C ~ 1; (I7 -*J1)' and the variance of the 

2B.L.U.E. of any elementary contTast among lines (gca) is 2. a • Thus, Olll! can sec that 
7 

the design D* estimates the gca with twice the precision as obtained through the design D 
although both the designs are variance balanced for estimating any normalized contrast of 
gca effects. 

Consider another situation when the experimenter is IIlterestcd in designing an 
experiment with p - 9 lines. Sharma (1998) generated a mating design D I from a cyclic 

design with parameters I' = b = 9. r = k = 3, by developing the mitial block (1, 2, 3) mod 

9 and then taking all the possible (~) crosses from each block. The variances of the 

B.L.U.E. of any elementary contrast among lines (gca) is 0.81045cr", J.04574cr 2 
• 

1.29411a2 and 1.39866cr 2 
• Each of these variances is for 9 different B.L.U.E. of tbe 

gca effects and the average variance IS given by 1.13724a 2 
. A similar type of mating 

design D; can be obtained from a cyclIc design with parameters v = b = 9, r = k = 3 by 

developing the initial block (I . 2. 4) mod 9. The variances of the B.L.U.E. of any 

elementary contrast among lines (gca) IS 0.87543a". 0.89409a 2 
, 0.89718a 2 and 

I.02492cr 2 
• and the average variance is given by 0.92291a 2 

• The design D; has 

smaller average variance of B.L.U.E. of elementary contrasts of gca effects as compared 

to D 1 · The design D; seems to have an intuitive appeal also as it contams more number 

of distinct crosses as compared to the design D / although the size of both the designs IS 

the same in tenns of the total number of observations. Hence this design IS more useful 
for same number of experimental UDlts . 

Consider another situaIJon when the experimenter is mterested ill designing an 
experiment with p = 12 lines . Ghosh and Divecha( 1997) generated a mattng design D~ 

from a group divisible design \\ ith parameters v = 12, b = 9, r = 3, k = 4, A, = 0, A2 = 1 . 

11/ = 4, 11 = 3(Clatworthy, 1973, SR41), by taking all possible (~) crosses of treatments 

within each block. by treating treatments in the original design as lines. The variances of 

thc BLU.c . of gca effects are 0.44444a 2 
, for the first associates (/2 in number) and 

OA0741a 2 
, for the second associates (54 in nWl1ber). The average vanance is 

0.41414a 2 
. A Similar type of mating deSign D; is obtaIned from a different method. 

The vanances of the B.L.U.l:.. of any elementary contrast among gca effects IS 
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0.222220"2, for the first associates (J 2 10 number) and 0.259260"2 for the second 

associates (54 in number). The average variance IS 0.252530"2 . One can easily see that 
in the two mating designs the precision of the Bol V.E. of gcas is different and. therefore, 
the choice of an appropriate mating design is important. 

D; 

Blocks 

lxl 5x6 9xl0 3x4 7x8 IIxl2 

Ix3 5x7 9xll 2x4 ()xli IOxl2 

Ix4 5,,8 9x12 2x3 6x7 10xJ 1 

Jx6 5xl0 9x2 Jx8 7xl2 l1x4 

Ix7 5>.11 9x3 2x8 6xl2 IOx4 

Blocks 

Ix8 5:.J2 9x4 2x7 (,)( II 1O~3 

1,,10 5x2 9x6 3x12 7x4 Ihll 

J"II 5)(3 9x7 2xJ2 6x4 10>.8 

lxl2 5x4 9x8 2xl1 6x3 lI;x7 

It is clear from the above discussions that for makmg comparisons of gca effects of 
p-inbred lines, the choice of an appropriate deSign IS imponant. This paper addresses this 
and similar problems. 

The problem of generating optimal mating designs for experiments with diallel 
crosses has been recently investigated by several authors [see e.g .. Gupta and Kageyama 
(1994), Dey and Midha (1996), MukerJee (1997), Das, Dey and Dean (1998)]. These 
authors used nested balanced incomplete block (NBIB) designs of Preece (1967) cor this 
purpose. This paper derives general methods of constructIOn of matmg designs, 
essentially generated from nested variance balanced block (NBB) designs. The 
optimahty aspects have also been investigated under a non-proper setting as well. The 
model considered here involves only the gca effects, the specific combming ability 
effects being excluded from the model. The deSigns obtained are variance balanced in 
the sense that the variances of the B.L.V.E. of elementary contrasts among general 
combining ability effects are all same. 

2. Some Preliminaries 

Let d be a block design for a diallel cross experiment of the type mentioned in 
Section 1 involving p-inbred lines, b blocks such that the /h block is of size k, . This 
means that there are kJ crosses or 2kj lines, in each block of d It may be mentlO'1ed here 

that the designs for dialle) crosses have two types of block sizes, k~, the block sizes with 

respect to crosses and kt. the block sizes with respect to the lines and kf =2kl~' It 

therefore. follows that the block deSigns for diallel crosses may also be Viewed as nested 
block designs with sub blocks of size 2 each and the pair of treatments in each sub block 
form the crosses, the treatments being the lines Further, let ':" denote the number of 

times the lh cross appears In d, 1 = /. 2 .... p(p-l)/2 and similarly s/I/ denotes the number 
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nd of hOles the r" line occurs in the crosses in the whole design d, 1 = 1.2, ... ,po Then It IS 

easy to see that 
lat 

p(p· 1) / l I, 
re, Lr",= Lkj = 11 , the total number of observations, and 

,: 1 J" I 

'2),11 , (because in every cross there are two lines). =i±kj 
1=1 rl 

For the data obtained from the design d, we postulate the model 

Y =pI" + f1;g + f1~.8 +e (2 .1 ) 

where Y is the nx 1 vector of observed responses, j..J is a general mean effect, 1/1 

denotes an 1/ - component column vector of all ones, g and ~ are vectors of p gca effects 
and b block effects, respectively. f1; and f1; are the corresponding 1/XP and nxb design 

matrices respectively, i .e., the (s, t)lh element of f1; is J if the Sill observation pertains to 

the 1''' line and is zero otherwise. Similarly (s, /)111 element of f1; IS / if the S,II 

of observatIOn comes from the t"1 block and is zero otherwise: e is the random error which 
this follows a Nn (0, a!I.) . 

In the model (2.1) we have not included the specific combining ability effects . 
illel 

Under model (2.1), it can be shown that the coefficient matrix for reduced normal 
ama 

equations for estimating linear functions of gca effects using a design d is
lese 
this C" =G " -N" K,,'N:, 
gns, 

The where G" = ((g'hi ' )~ N" = ((n'Ii; )1 g'/II =~II and for i:t:i', g,/oris the number of 

The 

times the cross (ixi') appears in d; "'ftl is the number of times line I occurs III the block) . ' 
lility 
:d in Adesign d is said to be connected if and only if Rank (C,,) = p -1, or eqUivalently, 
leral 

if and only if all elementary comparisons among the gca effects are estimable USillg d. A 
connected design d is variance balanced if and only if all the diagonal elements of the 
matrix Cd are equal and 'all the off diagonal elements of the matnx C t1 are equal. In other 

words, the matrix Cd is completely symmetric. For given positive integers p, b, n, Do :d in 
TItis (p,b,n) will denote the class of all connected block designs d with p lines. b blocks and II 
here experimental units. Here the block sizes are arbitrary but for a gIVen design 

dE Do(p,b,n), the block sizes are k,/1,k,/2,· .. ,k;'h Similarly, D(p,b,kp ., kb ) willwith 
denote the class of all connected block designs d with p hnes, b blocks such thaI/, block 

It 
is of size k j • We may allow k, > 2p for some or all j =1,2" " , b . 

ested 
block We shall now state the followmg Lemmas that shall be useful ill establishing the 
ler of uUlversal optimality of designs for diallel crosses. 

mlber 
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Lemma 2.1: For given positive integers sand t. the minimum of tn,~ subject to 
-"I

±II, =I , where the II,' S arc non-negative Integers, is obtained when t - s { int( t ! 5)I 0 

,=1 
the n,are equal to 1n1(t/s) '11 and s-t+s!int(t!s)}are equal to int(tls). The 

corresponding minimum is t(2int(tls)+I)-sint(tls)(mt(tls}+1). Here il/l{1:} denotes 
F 

the largest integer part of t. 
T 

Lemma 2.2: (Kiefer. 1975). A design d' ED is universally optimal in D if 
cr, 

(i) C;, is completely symmetric , and 

I) 

(ii) trace(C'/) = max trace(C /) . 
'rI~D I 

or 
It is well known that a universally oplimal design is A-optimal, D-optimal, E-optimal and 
optimal according to several other fanuhcs of optimality critena. 

3. Main Results u) 

In this Section, we present the main results in the form of Theorems and Corollaries. 
These results enable us to generate universally optimal block designs for diallel crosses. 

Theorem 3.1 : (i) For any design dE D( p, b, k 1,..., k b) 

trace (C d )S:2± k,- I_I[2k j(2x, +l)-pxj(x, +1)],
,~I ,_I k, 

the equality holding jf and only if "'/ij = x j or x j + I for all i = I ..... p,j =\.....b • whele 

x, =int(2k i p)
l 

(ii) For any design d E D il (P. b. 1/). trace (C" )s: 2(/1 - b). With equality for 11"1/ = 0 or I . 

Proof. (i) For any dE O(p.h.k; ..... k,.) 

" ,. h , h hI' 

trace (Cd )= LS/Ii - 'L In d., i k", 2'L k j - I-. I 'I ,il, 


;01 , 1 J I j~1 I I k j tel 


,. 
Now llsing the fact that I TId" = 2k" and using Lenmla 2 1, we have 

1 

hI" , b l [
'L - L nd•j ~ I - 2k j (2x, + 1)- px;(x, + 1)]. 
; I k, i=1 J~I k j 

b 
" I [ . ~ 

Therefore. trace (C d ) ~ 2 hk J I-. 2k I (2x 1+ 1)- p.,jx j ·f Ih 
I I k, 

III 
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and equality is achieved if and only if 

11"'1 = int(2kl Ip)or int (2k j I p)+ I V i = I ....• p. j == I ..... b. 

(ii) Now if 2k"j < p, then x I ::: 0 \i j== I .. ". b. and then lrace(C d ) :s; 2(/1 - b). 

Hence the proof. 

Further. using Lemma 2.2. we have the following theorem: 

Theorem 3.2 : Let d' E D(p.b.k" .. .• kJ [Do (p. b. n)] be a block design for diallel 

crosses and suppose that 	(( satisfies 

. /' "1 [ ~ 
i) trace (C,t')= i2:;kj - L-, 2kj(2x) +1)- PXJ'I + I)J 

1=1 i-I k i 

or 


[trace (C". ) =2(1/ - b)] 


ii) C,," IS completely s'ymmetric . 


,. 
Then (( is universally optimal over D(p. b, k, ..... k,J 00 (P . b, 11)] 

A block design d for diallel crosses is said to be variance balanced if and only If Its 
information matrix is completely symmetric. In particular. a variance balanced block 
design for diallel crosses is said to be a generalized binary variance balanced block 
(GBBB) design If 111 addition to completely symmetric informatIOn maITIx. 
11"<1 =x , O/' X I + 1 and is said 10 be bmary variance balanced block (BBB) design. if 

re 
l1"ij ::: 0 or I . 

Corollary 3.1: In view of the above definitions, we have the following results : 

(i) A GBBB design for diallel crosses. whenever existent. is universally optimal O\'cr 
O(P. b. k\ ... . , k,,) 

(ii) A BBB design for diallel crosses. whenever existent. is universally optimal over 
011 (p. b, /I) . 

It may be noted that a design d· that IS universally optimal over O(P. b. k\ ..... k,,) is 

also universally optimal over Do (p, b, 11) provided all 2k i :s; P for all j = 1.2 ... ·. b . 

Similarly, a design d· thal is universally optimal over 00 (p, b. 1/) is also universally 

oplimalover D(p.b,k" ... k,,) provided k"oj ==k j for all j=I,2, " ',b 

As a consequence of CorollalY 3.1, all the designs known /llthel1o in the literature as 
universally opttmal over D(p. b. k) are also universally optimal over Do (p, b. 1/) . 
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Therefore, now our problem of obtaining universally optimal block designs for 
ctiallel crosses, over D(p,b, k, ,... ,k,,) or Do (p, h, n) reduces to obtaining GBBB 

designs/BBB designs for dlallel crosses 

4. 	 Methods of Construction 

The purpose of thiS Section is to give some methods of construchon of GBBB/BRB 
designs for diallcl crosses that are universally optimal over D(p,b,kw.,kJ or 

Do(p,b,n) . 

4.1. Method Of Construction Of Universally Optimal, Non-Proper Block Designs 
For Diallel Crosses 

We give below a method of construction of designs for dlallel crosses that are bOlh 
BBB and GBBB designs and are, therefore. universally optimal over both D'l(P,b.,,) 
and D(p, b,k 1"'" k~ ) . 

Method 4.1: Let N" I = 1.2 be the incidence rnatnx of a PBIB design with two associate 

classes and with parameters v = p,b" I~. k i • n" 11 2 , Ail' Ai2' where the symbols have theIr 

usual meamng. Suppose that there exist two series of NBIB deSigns, Senes 1 and Scnes . 	 . .. .. .. - - .. .. - )
2. With parameters, k" b, ' b" r • k, , k2 = 2, A" A2 =1 and k" h, , b~ , r . kl . k: =_. 
},;'. }.;' =1 respectively. Rc",;rite the block contents of each block of the ith PBID design 

as NIHB design using Senes I and Senes 2 and take copies of the blocks so obtained in 
the ratio 0, : ()2 :. a, .a 2 , where a, = 0, / c, a 2 = ()2 / c and C IS the highest common facter 

of 0, and f)~ , such that the following conctitions are satisfied: 

a, k; k;' - 2A;' A~~ -A:1-=-
a 2 k~ -u; k;' All - A,: 

The resulting design is a NBB design with parameters 

v p, b: =a,b,b; +a·)J2b;·. b; =a,b,b; +a2b2b;·. rV =alr,r +a~,.:r 

• 	 k" ' k'" ) k" ( .)k, 	 == ( ,1 aN't" , 1a,bA' , 2 == 21,... • 

and hence the mating design for dlallel crosses with parameters p = v. h =b~, k =. ~ k I" . 
2 

As a particular cascO consider the following two series of NBIB designs that alway_ 
eXist: 

Series I: ,,6 = 2(, b;; = 2( - 1. h~ ;; ((2/- I). ,.5 == 2( - I. k~ = 2(. ki' = 2. A.~ ~ 2/- I . A.~ ;/ 

Series 2: v') = 2t+ 1 =b;; . b: --' ((2( + n. l = 2/ . k,o = 21, k: = 2, A.;' = 2t - /. ),~ =1 

Here / is any positive mteger larger than / 
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designs for 
ling GBBB 

GBBB/BBB 

:"".,kh ) or 

Ick Designs 

hat arc both 
Do(p,b,ll) 

'0 associate 

have theIr 

~ and Senes 
1 

"1" , k;' = 2. 

PBIB design 

+a2/'1/' 

k-.!.k"- 2 I ' 

lhat always 

. /,~ =/. 

~ =/ . 
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For each block of the i" PBIB design with two associate classes for ki even (odd) 

rewrite the block contents as NBlB design usmg Senes I(Senes 2) Takmg caples of he 
blocks so obtained in the ratio ()I: ()2: : a l : a2 , such that the followmg conditions are 

satisfied, we get a universally optimal design for dialJel crosses: 

Case I: Both k , and kJ are even. 

_ "I 2-k2 A~; -A 21a l 

a:! 2-kl 11." All -An 

Case II· k, is odd and k
J 

is even. 

!:L= kl -1 2-k2 A22  All 

3-kl 11.2 All-An 

Case III: k, is even and k~ is odd. 

a l 

a l 11.1 3-k2 ~2 -)'21 
-= 

a2 2 kl k2 -1 All - All 


Case IV Both k / and k2 are odd. 

!:L= "I -1 3-k2 A2: -).11 


3-k l k} -I All - ).12
a 2 

We get NBB designs with the following parameters 


Case L v = p, b;=albl(2fl-I)+a}b2(2tl-I), b;=alblf,(2tl-l)+a.h:I)(2t2-1). 

, , 

r*=a l rl (2t l -l)+a}r:(2t2 -I) , k; =(2tll~,'~(2', 1),21,1~ . 1>1 12' . I ) ' k:: =(21; ). 

and hence the mating deSign for dlalleJ crosses wIth paramett:rs p v. 

b' = a ,b,(211-I) +a:b2(2t 2 -I). k' = (t 1~,1\12,,_IJ't:l~:h,121,'I I) 

Case II. v = p, b;=albl(2tl+l)+a:bl(2t2-1), h~=albl/l(2tl+I)+a:hh(2tl-1 
I , 

r*=a ll'I(2t l )+a: /'2(2t 2 -I) . k; =(2111~,'\12,,"1,2t21;':I~'2, ,_ 1i), k; =(21;,:). 

and hence the mating design for dialle! crosses with parameters p 
I 

b' =a/J,(2/1..Ll)+a2.b1(2t: -I), k =(t,l~''''(:I' ,),t!1~, 1,,(11 ' II)' 

Case III: v = p. b; =a,b,(2/1- 1)+a2b1(211 +1), b; =a,b/,(2t , -1) t-a.b;/2(2/; +1) • 

J'*=a lJ'I(2t l - I)+a2/';(2t;). k; =(2(~1;J,I"t:I. 1J.2t:1~.h(:I"I')' k; =(21;,.).' 
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and hence the matmg des ign for diallel crosses WIth parameters p 1" 

b" =a,b, ( 2r , - I)+a1b~(2/~+1), k" = (t, l~h(,tl ,),t~l:"t"(~"'Il)' 

Case IV v = p.b:=a,b,(2r,+I)+a,h)(2t,+I), b;=a,b,t,(2/,+I)+a~b211(211+1), 
, 

r* = a,i',(2!, ) +a 1 r1 (21 1 ). k; = (2r11~,hl"" 'li . 2t,1~,hJ('t,l)' k~ = (21;,:), 

and hence the mating design for dHlllel crosses with parameters p v, , 
b" =a,b,(2!, + 1)'l-a:b~(2t: +1), k" =(I ,l~,1\1111+'I.t~1~_"_(""I) -

USIng the melhod just described, a large number of non-proper block designs fot 
dialle] crosses can be obtained USing PBlB designs [rom Clatworthy (1973) and Sinha 
(1991 ) 

Remark 4.1. It IS II1terestmg to note U1at In the above method. \\'e gel unequal 
replications of different crosses 

Remark 4.2. In the above mcthod, If in place of two PBm designs we take a pairwise 

balanced des ign wi th parameters I' =- p, b, k l , k." A and repeat the above proces~ for each 

' h a, k, 2 - k. . 
o f U tiour cases as abovc. then se ectIng copIes In t e ratIO - = ----- In case 1.1e I 

tZ: 2-k, k: 

a, k,-12-k~ _ _, a , k, 3-k, - da, /..,-I:'-k : -=---- 111 case 11. - ---- m case II1 an -=---- m 
a 3 - /.. k: a c 2 ", k2 -1 a~ 3-k, k~ 

case IV \\lll suffice. 

When Ik, - 1i ,1 = I (/aJ'gl'l" hl!il/g the odd), i.t = 1.2, wc get an universally optimal 

proper block design for dwllel crosses However when Ik i - k,-I ~ 2 or Ik, - k, I= I . 

(larger being the even). i. i' = 1,2, we get a universa lIy optimal non-propel block dcsign 

for dlallel crosses. Howcwr. through this metllOd one can never get a deSIgn with 
mlllimum number of obsen'atlOns, 

Remark ~.3. One tnvial mcthod of generating universally optinl:lI nOll-proper block 
designs for diallel crosses is that of taking the umon of two universally optima propcr 
block deSigns for dlallel crosses. 

Remark 4.4. Das. Dey and Dean ( 19911) reported a method (family :'\) of construction of 
block designs for diallel crosscs. These designs are essenliall> :-"BB deSIgns . Th~lefore. 
1I1 the method 4.1 givcn abo\ 'c. If we start with two PBlB deSIgns with block sizes as k I ~-

21! -+ I and Ii: = :!I:+ I and replace the contents of each of the blocks of the two PBIB 

deSigns \\ ilh the NBB dt::slgns of Das, Dey and Dean(J 998) and take copies of the block' 
so obtalllcd in tht.: TaLIo 0, : 0, :. u , : a: _we gel a NBB design for diallel crosses if 

Cl', II, k: -4! },,~ ' /.:, 

U. /.. -4/ , L AI: - A, 
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These designs are universally optimal over D(p, b. k*), where b lX1 'lbl +lX,t,b2 , 

k*'=ik l' k ,l ' )\ I U)hd r ' _ {J .. h:t : . 

4.2. Method Of Construction Of Universally Optimal, Proper Block Designs For 
Diallel Crosses 

We give below a method of construction of designs for diallel crosses that are BBB 
designs and are therefore ulllversally optimal over Do (p, b, 11) . 

Family 1: Let v = p = mt+ J be a prime or prime power and x be a primitive element of 

the Galois field of order p, GF (P) , where m = 2u for u ;: 2 and I ;: 1. ConSider t initial 
If blocks 
;a 


/Ix 1 .i,u,\(.iH Xi'(U+I)'\ . (\.1+111 I), i+(2"-')')} \4 1'=01 I-I

l\'~ } ..1;,. " ••• , - ,x v, , .. . , . 

al These initial blocks when developed mod p, give rise to a NBlB design with 

parameters v=p = lilt ., 1, bl = t(mt + 1). b~ == IIt(mt + I), k, = m = 2u, k~ == 2, ,. = mt, A, 
;e == In - I . A.: = I, 1/ == 2111(ml + I). 
:h 

If we identify the trearnlents of d as lines of a diallel crosses experiment and perform 

I, crosses among the lines appearlng in the same sub-block of size 2 in d, we get a 
universally optimal block design for diallel crosses over Do(P' b, n) with mmimal number 

of experimental units and with parameters as p = (1111 + I), b = ((ml -t- J), k = II, n = 
III 

1I/{mt + I) such that each of the crosses is replicated once in the design. 

For 111 ~ 4 and m = 6, we get respectively Family I and Family 2 deSigns of Das, 
Dey and Dean (1998) . For 1 = I. we get the same designs as reported by Gupta and 

lal Kageyama ( 1994). 

Example 4.1: For In == 8 and I = 2, I.e. v = p = 17, the primitive root of G F( 17) is 3. 
gn TIlerefore developing the inillal blocks 

ith ((I, /6) ; (9.8) ; (13, 4) (J 5, 2)] 

[(3, 14) ; (10, 7); (5, /2) (1/ ,6)]
ck 
leT mod 17, we get a universally optimal diallel cross design over Do (p, b. n) with p = /7, b 

== 34, k = 4. II = /36. 

of Catalogues of designs for p ~ 30. obtained through this method are reported in 
reo Table I in appendix . This table also includes w1lVersally optimal proper block designs 

for complete diallel crosses known hitherto in the literature 
!B 
k~ Family 2: Suppose there eXlsts a BIB design with parameters 11 = p, h. r, k. A and there 

also exists an NBlB design with parameters k, bl , by kl' k_, == 2, "., AI' A, Then "''Titing 

each of the block contellts of BIB design as NBIB design, we get an NBIB design with 

parameters p, b,· = bbl' h: * = bb~, k , '" == k k~ '" = 2, ,.u = ""., A,'" = ,.1,)./. ,1.:* == .1,1.: 
"and hence a universally optimal design for diallel crosses over D(p. b*, Il), and With 
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parameters p, b* = bb 
l
, k* = k,l2. 1/ = bb,k· Now If A., = A. = I, then we get a design 

in minimal number of observations. 

This is a fairly general method of construction and the existence of any NBIB design 
and a BIB design satisfying the conditions mentioned above implies the existence of a res
NBIB design for diallel crosses Some particular cases of interest are: 

Re 
Particular Cases 

Ag; 
Case 1: Suppose there exists a BIB design \' = p, b, r, k = 21. A. and a NBill design with 

parameters v, = 21, h, = 21- 1, b., = r(2t - I), r = 21-1, k = 2r, k = 2, A = 21 - t, A: = 1
J J J 

always exists . Therefore, we can always get a universally optimal design for diallcl 
crosses o\'er D with parameters p , b· = b(2t - 1). k· -= I, 1/ = b * k'" 

Example 4.2: Consider a BIB design with parameters p = 16, h = 20 r = 5 k = 4. it = 1 

and a NIB design with parameter, v* = k = 4, b ,• = 3. b:" = 6, k J * = 4, k:· ~ 2, r = 5, AJ 

- 3. A: = I, Then we get a universally optimal design for diallel crosses D(/6. 60, 120) 

with parameters p =16, b =60, k = 2, /I = 120. Da 

ThiS design is not obtainable by the methods given by Gupta and Kageyama (1994). 
DeDey and Midha (1996), Das, Dt,y and Dean (1998) for these values ofp = J6 and k = 2. 

Case 11 If there exists a BIB deSign with parameters p,h,r,k =21 + 1,J... where { IS a 
Gh 

positive integer, and an NBIB deSign with parametcrs . . . ( \. . . 
v = 2(+I,bl =2t+l,b2 =1 2/+I"k l =2/,k ., =2,1' =2/, AI =21-1'}.2 =1, we ·:an 

G
always get a unlversaliy optimal design over D(p, b·, /I) for diallel crosses with 


parameter~ p, b' =b(2/+l~k' = 1,n=bt(2t+I). 


Example 4.3: Consider a BID design with parameters p = b = 6, ,. = k = 5. A = 4 and a 

corresponding NEIB design with parameters v* = 21 + 1=5, b; =5, b~ = 10, k; ~ 4, KI 

k; = 2, ,. =4, AI = 3'}.1 =I . Followmg the above procedure. we get a universally 

optimal deSign for diallel crosses over D(P = 6, b = 30. n = 60) with parameters as p = 
6, b = 30, k = 2. /I = 60. 

Catalogue of designs obtained through thiS method using Case· I and Case -II l'or 
p ::; 30 and 1/::; 1000, is reported in Table 2 given in appendix. The designs obtainahle 

by taking copies of the designs reported are not included in the catalogue. 

Remark 4.5: Agarwal and Das (1987) gave an application of balanced /I-an' designs in 
the construction of incomplete block deSigns for evaluatmg the gca effects from complete 
diallel system IV of Gnfling ( 1956) using BID deSigns with" = p. h p(p - f) /2, r p 

I, k = 2, it = 1 and triangular designs with parameters I' =- p(p - /)/1, b. r, k. At,1/"p',~, Sl 
(i. j, k ~ J. 2). Although the authors do not discuss the optimality aspects of thesc deSigns, 
1l1deed some of their deSigns are universally optimal. In fact the design obtained in the 
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Example given by the authors is universaIly optimal using the conditions of Das, Dey and 
Dean (1998). 
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results . 

References 

Agarwal, S.c. and Das, M.N. (1987). A note on construction and application of balanced 
n-ary designs. Sallkhyii B. 49(2) , 192-196. 

Ceranka. B. and Mejza, S. (1988). Analysis of diallel table [or experiments carried out in 
BIB designs-mixed model. Biomet. 1.. 30, 3-\6. 

Clatworthy, W.H (1973) . Tables of fWo-associate class par/jally bal(Jllced designs, 
Applied Maills . Series No . 63 . Washrngton D.C.:National Bureau of Standards 

Das, A., Dey, A . and Dean, A. (1993). Optimal designs [or diallel cross experiments. 
Statist. Prob. Letters. 36, 427-436. 

Das, M.N. and Giri, N.C.(1986). De5igl/ and analysis ofexperimellts 20d Edition, Wiley 
Eastern Limited, New Delhi . 

Dey, A. and Midha, Chand, K.(1996) . Optimal block designs for diallel crosses. 
Biometrika. 83(2).484-489 . 

Ghosh, D.K. and Divecha, 1. (1997). Two associate class partially balanced Incomplete 
block dcsigns and parlla I diallel crosses. Biometrika. 84( I), 245-248. 

Griffing, B. (1956) . Concepts of general and specific combinmg ability m relation to 
diane I croSStng systems . Awl. J BIOI. Sci, 9,463-493. 

Gupta , S. and Kageyama, S (1994). Optimal complete diallel crosses. Biometrika, 81, 
420-424. 

Kiefer, .r. (1975) . Construction and optimality of generalized Youden designs In A 
SIIIWY of Statislical Desigll alld Linear Models. Ed. IN. Srivastava. pp. 333-353 . 
Amsterdam: North Holland. 

Mukcrjee , R. (1997) . Optimal partial diallel crosses. Biometrika. 84 (4) . 939-948. 

Preece. D.A . (1967). Nested balanced incomplete block designs. Biollletrika. 54 479
486. 

Sharma, M.K. (1 996). Blockmg of complete ctiallel crossing plans using balanced lattice 
designs. Sankhyii B, 58(3),427-430 . 

Sham1:l, \1.K. (1998) . PartIal diallel crosses through clfcular deSIgns. J flld Soc. Ag 
SllIIi.\/.. Vol LJ, No. I , 17-27. 

Sinha, K . (1991 ). A Itst o[ new group divisible deSIgns. J Res. Natl /11.1'1 Sialld 
Tecllllol. 96. b 13-6 J5. 



48 RAJENDER PARSAD, V.K. GUPTA AND R. SRlVASTAVA [No. I 199 

APPENDIX 
SLTable 1 : Proper block designs for diallel crosses: I 
29 
30

SI. No. p b k n Method of Construction 
31 

1 a,b 5 5 2 10 Family I : m == 4 
32 

9 18 2 36 Family 1 : m = 4 332b 
34b 13 39 2 78 Family 1 : m == 4

3 35 
b 17 68 2 136 FamIly 1 . m = 4

4 36 
b 25 150 2 300 Family I . m == 4 375

38b 29 203 2 406 Family 1 . m = 4 
6 39 
7a,c 7 7 3 21 Family 1 : m = 6 

40 
c 13 26 3 78 Family 1 : m = 6 418

42c 19 57 3 171 Family 1 : m = 6
9

25 100 3 300 Family 1 : D1 == 6JOe 

9 9 4 36 Family 1 : m = 8
II a 


12 17 34 4 136 Family 1 : m ·=o 8 


13 25 75 4 300 Family I : m= 8 


a I I 11 5 55 Family 1 : m = 10
14


a 13 13 6 78 Family 1 : m = 12

15

16 25 50 6 300 Family 1 : m = 12 


17 29 58 7 406 Family I : m =- 14 


a 17 17 8 136 Family 1 : m = 16 

18


a 19 19 9 171 Family 1 : m = 18 

19


a 2323 11 253 Family 1 : m = 22 

20


a 25 25 12 300 Family I : m = 24 

21
 

a 27 27 13 351 Family I : ill == 26 

22


a 29 29 14 406 ramily 1 . m = 28 

23

24 15 15 7 105 Senes I : Gupta and Kageyama (1994) 


25 21 21 10 210 Series I . Gupta and Kageyama (1994) 


26 4 3 2 6 Series 2 . Gupta and Kageyama (1994) 


27 6 5 3 15 Sencs 2 . Gupta and Kageyama (1994) 


28 8 7 4 28 Senes 2 : Gupta and Kageyama (1994) 
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k 

5 
30 12 11 6 

31 14 13 7 

32 16 IS 8 

33 18 17 9 

34 20 19 10 

35 22 21 11 

36 24 23 12 

37 26 25 13 

38 28 27 14 

39 30 29 15 

40 19 95 2 

41 5 10 2 

42 7 21 2 

43 9 36 2 
44 II 55 2 

4S 13 78 2 

46 17 136 2 

47 19 171 2 
48 23 253 2 

49 25 300 2 

50 27 35 I 2 

51 29 406 2 

52 5 2 5 
53 7 3 7 

54 9 4 9 

55 11 5 II 

56 13 6 13 

57 15 7 15 

58 17 8 17 

59 19 9 19 

60 21 10 21 

61 23 I I 23 

62 25 12 25 

63 27 13 27 

64 29 14 29 

65 5 30 3 

n 

45 

66 

91 

120 

153 

190 

231 

27 6 

325 

378 

435 

171 

20 
42 

72 

110 

156 

272 

342 

506 

600 

702 

812 

\0 
21 

36 

55 

78 

105 

136 

171 
210 

253 

300 

351 
406 

90 

Method of Construction 

Series 2 : Gupta and Kageyama (1994) 

Series 2 : Gupta and Kageyama (1994) 

Series 2 ' Gupta and Kageyama (1994) 

Series 2 : Gupta and Kageyama (1994) 

Series 2 : Gupta and Kageyama (1994) 

Senes 2 : Gupta and Kageyama (1994) 

Series 2 : Gupta and Kageyama ( 1994) 

Series 2 : Gupta and Kageyama (1994) 

Senes 2 : Gupta and Kageyarna (1994) 

Series 2: Gupta and Kageyama (1994) 

Series 2 : Gupta and Kageyama (1994) 

Family 3: Das, Dey and Dean (1998) 

Family 4 : Das, Dey and Dean (1998) 

Family 4 : Das, Dey and Dean (1998) 

Family 4 . Das, Dey and Dean (1998) 

Family 4: Das, Dey and Dean (1998) 

Family 4 . Das, Dey and Dean (1998) 

Family 4: Das, Dey and Dean (1998) 

Family 4 : Das, Dey and Dt!an (1998) 

Family 4 : Das, Dey and Dean (1998) 

Family 4 : Das, Dey and Dean (1998) 

Family 4 : Das, Dey and Dean (1998) 

Family 4 : Das, Dey and Dean ( 1998) 

FamIly 5 : Das, Dey and Dean (1998) 

FamIly 5 . Das, Dey and Dean (1998) 

Family 5 : Das, Dey and Dean (1998) 

Family 5 . Das, Dey and Dean (1998) 

Family 5 . Das, Dey and Dean (1998) 

Family 5 : Das, Dey and Dean (1998) 

Family 5 : Das, Dey and Dean (1998) 

Family 5 : Das, Dey and Dean ( J 998) 

Family 5 : Das, Dey and Dean (1998) 

Family 5 : Das, Dey and Dean (1998) 

Family 5: Das, Dey and Dean (1998) 

Famtly 5 : Das. Dey and Dean (1998) 

Famtly 5 : Das. Dey and Dean (1998) 

Theorem 4.1 : Das. Dey and Dean (\998) 
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SI. No. P b k n . Method of Construction 

66 5 10 4 40 Theorem 4. 1 . Das, Dey and Dean (1998) 
67 5 6 5 30 Theorem 4.! : Das, Dey and Dean (998) 
68 5 10 6 60 Theorem 4.1 : Das, Dey and Dean (1998) 

69 6 10 6 60 rheorem 4 .1 . Das, Dey and Dean (1998) 

70 8 28 7 196 Theorem 4.1 . Das, Dey and Dean (1998) 

71 6 10 9 90 Theorem 4 .1 . Das, Dey and Dean (1998) 

72 9 28 9 252 Theorem 4.1 : Das, Dey and Dean (1998) 

73 10 45 9 405 Theorem 4 1 . Das, Dey and Dean (1998) 

a .
Note: denotes that the designs can also be obtained from Senes Gupta and 

Kageyama( 1994). 

b denotes that the designs can also be obtained from Family ; Das, Dey and 
Dean( 1998) 

denotes that the designs can also be obtomed from Family 2 . Das, Dey and Dean 
( 1998). 

Table 2: Proper Block Designs for dial\el crosses: II 

SI.No. P b k n Reference Design Method of Construction 

5 15 2 30 5 5 4 4 3 Family 2 : Case 1 

2 6 30 2 6066554 Family 2: Case Ii 
3 7 21 2 42 7 7 4 4 2 Family 2 : Case I 4" 
4 7 35 3 105 7 7 6 6 5 Family 2 Case I 4 
5 8 42 2 84 8 14 7 4 3 Family 2 : Case I 4, 
6 8 56 3 168 8 8 7 7 6 Family 2: Case II 4 
7 9 54 2 108 9 18 8 4 3 Fantily 2 . Case ! 

4 
8 9 60 3 180 9 12 8 6 5 Family 2 ; Case I 4 
9 9 63 4 252 9 9 8 8 7 Family 2 : Case I 4 
10 10 45 2 90 10 15 6 4 2 Family 2 . Case I 

4~ 
1 I 10 75 3 225 10 15 9 6 5 Family 2 . Case I 5C 
12 10 90 4 360 10 10 9 9 8 Family 2' Case II 51 
13 II 55 2 110 11 115 5 2 Family 2' Case II 5 
14 II 55 3 165 II II 6 6 3 Family 2 . Case I 5. 
15 11 99 5 495 II 11 10 109 Family 2 : Case I 
16 12 99 2 198 12 33 11 4 3 Family 2 . Case I 
17 12 110 3 33012221165 Family 2 : Case I 

18 12 132 5 660 I 2 12 1 I I 1 I 0 FamIly 2: Case n 
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SI No. P b k n Reference Design Method of Construction 

and 

and 

Dcan 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

13 

13 

13 

13 

14 

15 

15 

15 

15 

15 

16 

16 

16 

16 

16 

16 

17 

17 

18 

39 

130 

117 

143 

182 

105 

175 

105 

105 

189 

60 

80 

120 

200 

210 

144 

204 

238 

255 

2 

3 

4 

6 

3 

2 

3 

3 

4 

5 

2 

3 

3 

3 

4 

5 

2 

4 

3 

78 13 13 4 4 I 

390 13 26 12 6 5 

468 13 13 9 9 6 

858 1] 13 12 12 11 

546 14 26 13 7 6 

210 15 21 7 5 2 

525 15 35 14 6 5 

315 IS 15 7 7 3 

420 15 15 8 8 4 

945 15 21 14 10 9 

120 16 20 5 4 1 

240 16 16 6 6 2 

360 16 24 9 6 J 
600 16 40 15 6 5 

840 16 30 15 8 7 

720 16 16 10 10 6 

408 17 68 16 4 3 

952 17 34 16 8 7 

765 III 51 17 6 5 

Family 2 : Case I 
Family 2 : Case I 
Family 2: Case II 
Family 2 : Case I 

Family 2: Case II 
Family 2: Case IT 

Family 2 : Case I 
Family 2: Case n 
FamIly 2 . Case I 
Family 2 : Case I 

Family 2 ' Case r 
Family 2 Case r 
Family 2 : Case I 
Family 2 Case I 
Family 2 : Case I 
Family 2 . Case I 
Family 2 . Case] 

FamIly 2 : Case I 

Family 2 : Case I 
38 19 17 I 2 342 19 57 12 4 2 FamIly 2 : Case I 

39 19 285 3 855 19 57 18 6 5 Family 2 : Case I 

40 19 171 4 684 19 19 9 9 4 Family 2: Case II 

41 19 171 5 855 19 19 10 10 5 Family 2 : Case I 

42 20 285 2 570 20 95 19 4 3 Family 2 : Case I 

43 20 380 2 760 20 76 19 5 4 Family 2: Case IT 

44 21 105 2 210 21 21 5 5 1 Family 2 . Case II 

45 21 140 3 420 21 28 8 6 2 Family 2 : Case I 

46 21 210 3 630 21 42 12 6 3 Family 2 : Case [ 

47 22 231 2 462 22 77 14 4 2 Family 2 . Case I 

48 22 154 3 462 22 22 7 7 2 Famify 2: Case II 

49 12 231 4 924 22 33 12 8 4 Family 2 : Case I 

50 24 414 2 828 24 138 23 4 3 Family 2 : Case r 
51 25 150 2 300 25 50 8 4 1 Family 2 : Case I 

52 25 225 4 900 25 25 9 9 3 Family 2: Case II 

53 26 325 3 975 26 65 15 6 3 Family 2 . Case J 
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S1. 1\0. b k n R~fcrcnce Design Method of ConstructionP 
54 28 189 2 378 n 63 9 4 1 family 2 : Case I 

55 28 252 3 756 21"> 36 9 7 2 f-a'11ily 2: Case II 

56 29 203 4 812 llJ 29 8 8 2 family 2 : Case 1 
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