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Abstract 

Hardwickia binata, is an important fodder and timber tree of arid regions. Assessment of its 

biomass and carbon content is essential, for taking management decisions, and in ecosystem 

modelling. Seven models namely logistic, Gompertz, Chapman, Hill, Allometric, Linear and 

Monomolecular were tested for this purpose by using diameter at breast height (DBH). 

Allometric model (Y = a ×DBHb) was found best performing with AIC value of 12.65. This 

model was then used to develop biomass equations for different tree components using DBH 

as independent variable. Developed equations showed high R2 values (0.894 to 0.989). These 

equations were then used to assess the biomass and carbon stock of H. binata plantations of 

different age groups. Total biomass of plantations ranged between 63.61 Mg ha-1 (14 years) 

and 139.55 Mg ha-1 (36 years) with the corresponding carbon stock of 28.39 Mg ha-1 and 

63.35 Mg ha-1 which translates into carbon sequestration rate of 1.60 and 2.02 Mg ha-1 a-1, 
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respectively. The developed equations provide a realistic assessment of biomass productivity 

and carbon stock with low error margin and would thus be very useful in taking suitable 

management decisions and in ecosystem modelling to explain impact of carbon management 

to policymakers. 

Keywords: allometric model, biomass, carbon, Hardwickia binata, predictive models 

 

Introduction 

Carbon management from different land use systems at present is a major worldwide concern 

threatening the existence of life on earth. Atmospheric concentrations of CO2 has increased 

from 310 ppm in 1950, to above 400 ppm in 2014 (IPCC 2014). Trees are a significant source 

of carbon sink on earth. Tree biomass estimation aids in measuring the concentration and 

stock of green house gases in relation to change in land use pattern (Cairns et al. 2003). The 

accurate estimation of individual tree biomass is important for carbon accounting, trading and 

management. To facilitate carbon stock accounting and verification, predictive models are 

required (Brown 1997; Chave et al. 2005; Bombelli et al. 2009; Gupta et al. 2011; Verma et 

al. 2014; Naik et al. 2018). Equations to estimate biomass are used globally and have long 

history. Most of these equations are generated for tropical, subtropical and temperate species 

worldwide (Navar 2009; Zapata-Cuartas et al. 2012; Henry et al. 2013). These developed 

equations were mainly allometric and described by the metabolic theory of West, Brown and 

Enquist for the origin of allometric scaling laws (West et al. 1997, 1999). Worldwide web 

platform like Glob Allome Tree is a free access database of various volume, carbon and 

biomass equations, though its first version only includes information from countries like 

Europe, Africa and Northern America. However, there is always a scope of upgrading of 

existing equations and inclusion of new equations based on different tree components and 

their carbon stock (Henry et al. 2013). The limited information on prediction models exists 
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for various tree species of commercial use and those existing have very constricted sampling 

range in terms of area and aspect. Predictive model for biomass and carbon estimation 

specifically for arid zone trees are scarce (Kumar et al. 1999, Tewari et al. 2014; Tewari et al. 

2016; Jaiswal et al. 2018). 

 Hardwickia binata Roxb. belongs to the family Leguminosae, sub-family 

Caesalpinioideae is a multipurpose, deciduous, nearly evergreen tree of great economic value 

(Chand and Singh 2001). It belongs to dry tropic and sub-tropic regions of central and south-

east Asia with climate characterized by a long period of drought, scant to moderate rainfall, 

with extreme heat in summer season. It is considered to be a good nitrogen fixing tree gives 

extremely hard and durable timber as well as fuel-wood (Roy 1996) and highly palatable 

fodder rich in crude protein (Singh 1982; Patidar and Mathur 2017). It is amenable to pruning 

practices and coppices and pollards well. Further, in addition to tangible benefits the species 

provide range of intangible environmental benefits like soil and water conservation and 

mitigation of changing climate via sequestering carbon in woody biomass. But the projection 

models to estimate biomass and carbon in various tree components of H. binata is poorly 

reported worldwide. Furthermore, few studies are available on the carbon contents of tree 

components that may be used for the estimation of the carbon storage capacity. Therefore, 

present study was conducted to develop the best fit model for estimation of biomass and 

carbon in tree components of H. binata. Additionally, the carbon sequestration potential of 

this tree in different plantations under arid environment was estimated.  

 

Material and Methods 

Study site 

The study was conducted at research farm of ICAR-Central Arid Zone Research Institute, 

Jodhpur. (26º14′ N 72º59′ E and altitude of 216 m). This location represents Koppen Climate 
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Classification subtype "Bsh" (Mid-Latitude Steppe and Desert Climate). It experiences very 

high temperature during the summers touching a maximum of 48ºC, short (December to mid- 

February) cool and dry winters (4.1–14 ºC), high evaporation (3.5–13.5 mm day-1) and low 

humidity. About 95% of the average annual rainfall of 360 mm is received during 6–8 rain 

events. The soil of experimental site is classified as coarse loamy Typichaplocambids. At 0-

15 cm soil depth pH of soils varied from 8.0-8.3 and have 0.14 % organic carbon, 14.20 kg 

ha-1 available P, 250.6 kg ha-1 available K.  

Experimental Material 

The study was conducted in a 25 years old plantation of H. binata maintained under 

integrated farming system. The trees were planted in paired rows (3m × 4m) forming an alley 

of 24 m between two pairs. Rainfed pearlmillet- legume rotation was followed in the alleys 

since establishment with standard management practices. No irrigation was applied to the 

plants after 2 years of establishment. Since, it was a part of an integrated farming system the 

trees were yearly lopped to 40 % from fifth year of establishment to 10th year and later on, it 

was increased to 60%. Therefore, the data pertaining to leaves used for developing predictive 

model was based on the single year growth. 

Biomass and carbon estimation of trees 

Twenty trees were selected; diameters at breast height (DBH) was measured for these trees 

and were classified into six diameter classes viz. 11-14, 14-17, 17-20, 20-23, 23-26, 26-29 

cm. Sample size of 20-30 plants for developing the relationship between DBH and biomass 

of tree including entire range of DBH was supported by studies of Gupta et al. (2011) in 

Populus deltoides, Verma et al. (2014) and Rathore et al. (2018) in Grewia optiva and Guava, 

respectively. The trees were harvested and parts of each tree viz. bole, branches, leaves 

(above ground components) and roots (below ground components) were partitioned. Roots 

were excavated upto 1.5 m3 volume of soil. The fresh weight of all the components was 
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measured immediately after harvesting. To determine the dry weight 500 g sample of each 

component was placed in brown paper bags and oven dried at 60°C till it attained constant 

weight. The dried up sample of different tree parts were grounded to fine powder and carbon 

content of each sample was estimated using Eurovector C analyser. The carbon content of 

each component was multiplied by dry weight to get the carbon stock. 

Model fitting, validation and application 

Different linear and nonlinear predictive models were fitted to develop the correlation 

between the total biomass (kg tree-1) and DBH (cm) of H. binata trees. To visualize the shape 

of the biomass and DBH relationship, scatter plot was drawn. The drawn plot indicated that 

linear, logistic, gompertz, chapman, hill, allometric, and monomolecular fit well in the 

recorded data of total biomass using DBH as explanatory variable. The recorded data of 20 

trees was divided into two different sets; one of 15 trees (75%) used for model fitting and 

other of 5 trees (25%) used for validation. While fitting model along with the parameter 

estimates, R-square and Akaike information criteria (AIC) value were also calculated. AIC 

compares the quality of statistical models for measured data (Naik et al. 2018). Fitted models 

with highest R-square and lowest AIC values are considered to be the best fit model. Further, 

for statistical validation, residuals of the fitted models were tested to fulfil the null hypothesis 

that errors are independently distributed. Anderson–Darling test used for testing the normality 

of residuals, whereas, independence of errors was tested visually by plotting the errors. 

Validation of the fitted model using 25% data set was done using the procedure given by 

Gupta et al. (2011) and allometric model outperformed the basic principles of validation 

among the seven selected models. Hence, in the present study, allometric model (Y = a 

×DBHb) was used for predicting the biomass for H. binata components, where Y is biomass 

weight (kg tree-1), DBH is diameter at breast height (cm), a and b are parameters of 

allometric model. 
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 Allometric equations obtained were then applied for the biomass and carbon 

estimation in 14, 25 and 36 year old H. binata plantations with density of 1111, 494 and 400 

trees ha-1, respectively. To calculate the biomass stored in different components of tree 

measured, DBH value was fitted in respective component wise developed equations. The 

carbon stock of each constituent of tree (bole, branches, leaves and roots) was computed as 

the product of biomass and average carbon content. The total carbon stock of plantation was 

obtained by multiplying the carbon stock of trees with the plantation density. As carbon stock 

of roots, branches and bole locks up for longer period it is measured as stored carbon. 

Whereas, the carbon in leaves is stored for very short duration (used as fodder in our case) 

therefore it is measured as emitted carbon. Mitigated carbon was figured out by subtracting 

emitted carbon from stored carbon. Carbon sequestration rate of plantation was calculated by 

dividing stored carbon by age of plantation. 

Statistical analysis 

Descriptive statistics, fitting various growth models (parameter estimation, AIC and R-square 

values etc), residual diagnostics plots, validation of models using paired t-test and linear 

regression between observed and predicted data set were analysed using SAS 9.3 

software. Non-linear models were fitted using Levenberg-Marquardt algorithm in SAS NLIN 

procedure. The best model was chosen which outperformed others on both the criteria of 

model fitting and validation. 

 

Results and Discussion 

Summary statistics of recorded variables from the harvested trees revealed that DBH of trees 

ranged from 11.78 to 28.66 cm and total biomass 41.0 to 411.1 kg tree-1 with the average of 

181.7 kg tree-1. The total above ground biomass varied between 34.3 kg tree-1 and 343.0 kg 

tree-1, whereas, the below ground biomass ranged from 6.7 kg tree-1 to 68.1 kg tree-1 (Table 
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1). The mean contribution of above ground and below ground components to total biomass 

was 81% and 19 %, respectively above. The similar fraction of above ground (88%) and 

below ground (12%) biomass in litchi was reported by Naik et al. (2018). The percent 

contribution of bole, branches and leaves to total biomass was 74.5%, 16.5% and 9%, 

respectively. The results with high concentration of biomass in bole are supported by the 

findings of Gupta et al. (2011) and Urban et al. (2015).  

 Relationship between DBH (independent variable) and biomass (dependant variable) 

was tested in different models viz., logistic, gompertz, chapman, hill, allometric, linear and 

monomolecular. The biomass of trees was well predicted using data of DBH alone (R2 values 

>0.87) and accordingly tree height was not included for biomass modelling. Also the 

continuous lopping of the tree for fodder under farming system mode of management does 

not give the reliable measure of the tree height. Moreover, measuring DBH of tall trees is 

more convenient compared to tree height (Montagu et al. 2005; Segura and Kanninen 2005; 

Gupta et al. 2011; Verma et al. 2014; Singh and Singh 2015; Kebede and Soromessa 2018; 

Naik et al. 2018).  

The parameter estimates of models viz, logistic, gompertz, chapman, hill, allometric, 

linear and monomolecular fitted on estimated dataset with other related statistics is given in 

Table 2. The values of adjusted R2 were above 0.876 for all the models (observed vs 

predicted) showing their equal competence. The maximum R2 values were recorded for Hill 

model (R2= 0.960) followed by allometric model (R2=0.942). However, it is reported that 

values of R2 alone cannot predict the best fitting model (Payandeh 1981; Gupta et al. 2006). 

To choose the best fitting function its behaviour and validation within and outside the 

observed range of the independent variable must be considered as well (Kaushal et al. 2016; 

Naik et al. 2018). Allometric model (Y = a ×DBHb) with lowest AIC value of 12.65 fulfils the 

model fitting norms to the maximum followed by Hill model (AIC=19.98). However, all the 



Acc
ep

ted
 M

an
us

cri
pt

 

models explained more than 85% variance in measured biomass. Linear models estimated 

negative values of predicted biomass when the values of explanatory variables are very low. 

These results are in line with the findings of Verma et al. (2014) and Naik et al. (2018). 

To statistically verify the model the linear regression between observed and predicted 

(obs = a + b ×pred) should lead to ‘a’ value approaching to zero and ‘b’ value approaching to 

one, to gave lowest and closer to zero value for ‘a’ and almost unit value for ‘b’ compared to 

other model (Table 3). The model validation carried out using remaining 25% data set 

fulfilled these criteria (Table 3). Secondly, the paired t -test between observed and predicted 

values must give a non-significant ‘t’ value, with highest p value for allometric model 

compared to the other model. Since, allometric model fitted best in validation criteria, its 

residuals have also been tested for independence and normality for statistical validation. The 

test statistic for Anderson–Darling test was 0.648 (p = 0.075) signifying the acceptance of 

null hypothesis. Residuals of the algometric model have been plotted in Figure 1 (a-b) where 

form normally with mean zero and constant variance of the residuals can be visualized. 

Prediction error called as residual was calculated as the difference among observed and 

predicted values. Plotting of residuals along with predicted and independent variable DBH 

for allometric model ensured that there is no constant over or under estimation of residuals 

for tree biomass (Figure 1(c) and 1(d)). Accordingly, the allometric model, out of the seven 

models, was selected for predicting component wise tree biomass with DBH as explanatory 

variable as it met all the required criteria in both fitting and validation stage. 

The biomass of various tree parts like bole, roots, leaves and branches was also tested 

in allometric model with DBH of the tree as independent variable (Table 4). The adjusted 

values of R2 ranged from 0.894 to 0.989. The maximum value of adjusted R2 value (0.989) 

was recorded for leaf biomass and minimum (0.894) for root biomass. The allometric curve 

was fitted for biomass of different tree component with the DBH of tree which showed the 
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smooth parabolic lines for predicted biomass and all the observed values of biomass are 

touching the line (Figure 2) signifying the very strong correlation between the variables with 

high R-square values. Standard error estimates were found to be negligible. The paired t-test 

was used for validating allometric model statistically and t values were not found to be 

significant (p>0.05) denoting that observed and predicted values were not differing 

significantly. Allometric models found best performing fulfilling the criteria of validation in 

different species across Indian sub continent (Gupta et al. 2013; Verma et al. 2014; Kaushal 

et al. 2016; Rathore et al. 2018).  

 The total biomass allocated to different tree components followed the order as: 

bole>roots>branches>leaves. The above and below ground biomass contributed 78-82% and 

18-22%, respectively to the total biomass. These values are in the range specified for trees 

(82% aboveground and 18% belowground) grown in agroforestry systems (Chaturvedi et al. 

2016). Bole had the maximum proportion (74%) of above ground biomass followed by 

branches (15-17%) and 8-11% stored in leaves. The per cent contribution of the bole (28-

82%) and branch biomass to aboveground biomass increases with increase in age and 

diameter (Chaturvedi et al. 2016). The relative distribution of total biomass in different 

components of tree depends on its age, branching habit, length of clean bole, rooting pattern 

and management practices (Bernardo et al. 1998; Osada et al. 2005; Newaj et al. 2016).  

 These developed models were then used to estimate the component wise biomass in 

different aged plantations of H. binata (Table 5). The total biomass of plantations ranged 

between 63.6 Mg ha-1 (14 years) and 139.5 Mg ha-1 (36 years). The mean annual increment 

ranged between 3.5 Mg ha-1 a-1in 25 years to 4.5 Mg ha-1 a-1 in 14 year old plantation. The 

determined biomass values were equivalent to the biomass of 34 years old H. binata trees in 

study conducted in semi-arid hot region of Rajasthan with 450 mm annual rainfall (Gupta et 

al. 2019). Singh and Singh (2015) reported 1.8-54.3 Mg ha-1 biomass in an 18 year old 
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plantation in arid region and Dash (2017) reported 60 Mg ha-1 biomass in 30 years plantation 

in silvipastoral system which are comparatively lesser than our estimates. This might be due 

to difference in tree density and climatic conditions. However, these values are less than the 

accumulated biomass at the age of 20 years (101 Mg ha-1) in semi-arid Central India (Newaj 

et al. 2016) with higher rainfall and more favourable growing conditions than arid 

environments. The leaf biomass is however comparable (7.1 Mg ha-1) which is a big incentive 

for incorporating this tree in agroforestry system of mostly livestock based farming systems 

of arid zone. 

 Specific allometric models are important not only for quantifying biomass but they 

are also reported to give accurate estimates of carbon storage in terrestrial ecosystem 

(Creighton and Kauffman 2008; Roxburgh et al. 2015). Carbon concentration of tree 

components ranged between 49.26% found in bole to 47.68% in leaves. C content in roots 

and branches were 47.95 and 47.83 % respectively (Figure 3). Verma et al. (2014) also 

reported that bole contains the highest concentration of carbon followed by roots, branches 

and minimum concentration of carbon was recorded in leaves. Carbon content varied widely 

across tropical species ranging from 41–51% (Thomas and Martin 2012; Navarro et al. 2013).  

 The stored biomass carbon stock ranged from 28.4 Mg ha-1 with sequestration rate of 

1.6 Mg ha-1 a-1 in 14 years and 63.3 Mg ha-1 with sequestration rate of 2.0 Mg ha-1 a-1 in 36 

years old plantation of H. binata (Table 6). It was comparable with carbon storage of 46.1 

Mg C ha-1 with sequestration rate of 2.3 Mg C ha-1 yr-1 in 20 years old plantation of H. binata 

as reported by Newaj et al. (2016). Dhyani et al. (2016) reported the carbon sequestration 

potential in the range of 0.4 to 13.9 Mg C ha−1 a−1 in different block plantation in arid and 

semi arid regions of India. The net annual carbon sequestration rates in our study were lower 

than that of observed by Kaul et al. (2010) for fast growing species with short felling cycle 

like Poplar and Eucalyptus (6-8 Mg C ha−1 a−1), comparable with moderate growing tree 
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species like Teak (2 Mg C ha−1 a−1) and higher than the slow growing species like Sal (1 Mg 

C ha−1 a−1). Carbon mitigation in plantations with different age varied between 25.8 Mg ha-1 

and 58.7 Mg ha-1 with maximum proportion of bole. The contribution of all the components 

increased with age. Carbon emitted by leaves ranged between 2.6 and 4.6 Mg ha-1 (Table 6). 

The sequestration of carbon in tree wood is influenced by number of factors like growth habit 

of tree, age, tree density, agroclimatic conditions and carbon content of species (Kanime et al. 

2013, Navarro et al. 2013; Dhyani et al. 2016; Gupta et al. 2019). As wood density represents 

the amount of mass and carbon per unit volume, it is directly linked to total carbon stocks 

(Nam et al. 2018). Trees in arid regions have higher wood density (Gupta et al. 2017) which 

compensates slower growth (by volume) and slower carbon accumulation in this region. 

However, this difference in wood density warrants validation of these equations in other 

ecological settings for more accurate estimations. Although the model is developed from a 

comparatively smaller sample size; this limitation may be spared due to laborious data 

collection and high R2 values of fitted models.  

 

Conclusion 

The present study was carried out to develop the models that can predict the biomass of H. 

binata species. Of the various models used for predicting biomass and carbon the allometric 

model was most steady with best fit in goodness of statistics. The paired t-test between 

observed and predicted values was used to check the consistencies of the models used. 

Though, these models are applicable in the measured diameter range as it does not include 

other source of variation. These developed models in future will help the farmers and tree 

growers to estimate the biomass and carbon stock of standing trees by only measuring the 

tree diameter. Additionally, these models will help farmers in decision making regarding the 

number of animals to be reared on available tree stand and vice versa, available fuelwood for 
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market, amount of timber in stock (bole) etc. To the policy makers, it would be easy to 

estimate the carbon sequestered in farm forestry as well as agroforestry plantations and could 

be utilized for framing policies, carbon-credit trading etc.  
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Table 1. Descriptive statistics for DBH (cm), Height (m) and biomass (kg tree
-1

) for the harvested 

trees in H. binata 

Parameters Mean Standard 
deviation 

Kurtosis Skewness Minimum Maximum n 

DBH (cm) 19.76 5.47 -1.44 0.16 11.78 28.66 20 
Height (m) 8.30 1.99 -1.19 0.25 5.30 11.60 20 
Biomass (component 
wise) 

       

Bole 109.1 77.84 -1.37 0.50 23.1 252.6 20 
Branches 24.2 18.19 -1.00 0.66 3.7 60.9 20 
Leaf 13.6 8.13 -1.25 0.40 3.5 29.5 20 
Roots 34.8 23.53 -1.97 0.04 6.7 68.1 20 
Above ground 
biomass (AGB) 

146.9 
 

103.66 
 

-1.32 
 

0.51 
 

34.3 343.0 20 

Below ground 
biomass (BGB) 

34.8 
 

23.53 
 

-1.97 
 

0.04 
 

6.7 
 

68.1 
 

20 

Total biomass 181.7 126.23 -1.46 0.41 41.0 411.2 20 
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Table 2. Parameter estimates of various functions fitted on 75% dataset for total biomass in H. 
binata 
 
Model Parameter estimates R-square AIC

Logistic ܻ = 165.36251 + ቀ  34.0851ቁିଷ.଻ଷଷ଻ܪܤܦ

 

0.916 
 

69.21 

Gompertz  ܻ = 221.4701 × ݁ି௘షቀವಳಹషయయ.మబలఱభర.వవబభ ቁ
 

 

0.916 45.32 

Chapman ܻ = 454.2007(1 − ݁ି଴.଴ଷହ଺×஽஻ு)ସ.଺ଷଵଵ 
 

0.915  70.98 

Hill ܻ = 7.6379 × ଷ଴଴.଺ସଽ଴1267.2389ିଷ଴଴.଺ସଽ଴ିܪܤܦ +  ଷ଴଴.଺ସଽ଴ିܪܦܤ

 

0.960 19.98 

Allometric ܻ = 0.0024 ×  ଷ.଴ଵସଵܪܤܦ
 

0.924 12.65 

Linear ܻ = −38.6351 + 3.1431 × ܪܤܦ
 

0.876 68.21 

Monomolicular ܻ = 1 − (1 − 6.4527)݁ି(ି଴.଴ଵଶଷ ×஽஻ு) 
 

0.901 75.91 
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Table 3. Validation of various models of total biomass DBH on 25% data set 

Tree parameters t value Pr>|t| R
2
 of 

regression of 
observed vs. 
predicted 

Linear regression between 
predicted and observed 
observations  
(pred=a+b×obs) 

Logistic 0.9756 
 

0.3740 
 

0.903 -0.569 1.165 

Gompertz 1.0684 
 

0.3341 
 

0.940 -0.678 1.124 

Chapman 0.6453 
 

0.5471 0.813 0.879 1.569 

Hill 0.7906 
 

0.4649 
 

0.947 -0.369 1.199 

Allometric 0.6092 0.5689 
 

0.967 0.289 1.056 

Linear 0.4511 
 

0.6707 
 

0.853 -0.489 -1.135 

Monomolicular 0.3765 
 

0.7219 
 

0.948 0.458 1.156 
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Table 4. Allometric relationship of H. binata data fitted for biomass content for different tree 

components [Y- component biomass (kg tree
-1

) and X- DBH (cm)]. 

Biomass 
component 

Parameters Estimates 
Standard 
Error 

t-value P-value 
Adj R-
Square 

Branch biomass 
(kg) 

a 0.0054 0.0054 1.0016 0.3298 0.8947 

b 2.7631 0.3095 8.9277 <0.0001   

Bole biomass 
(kg) 

a 0.0283 0.0158 1.7921 0.0899 0.9628 

b 2.7164 0.1731 15.6939 <0.0001   

Leaf biomass 
(kg) 

a 0.0158 0.0057 2.7959 0.0119 0.9731 

b 2.2328 0.1118 19.9733 <0.0001   

Root biomass 
(kg) 

a 0.0363 0.0299 1.2136 0.2406 0.8868 

b 2.2738 0.2573 8.8356 <0.0001   

Above ground 
biomass (kg) 

a 0.0428 0.0241 1.7755 0.0927 0.9606 

b 2.6792 0.1748 15.3278 <0.0001   

Total biomass 
(kg) 

a 0.0700 0.0385 1.8196 0.0855 0.9595 

b 2.5907 0.1708 15.1701 <0.0001   
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Table 5. Biomass estimates (component wise) (Mg ha
-1

) and MAI (Mg ha
-1

 yr
-1

) in different aged 

H. binata plantations 

Age  
(a) 

Average 
DBH (cm) 

Bole 
biomass 

Branch 
biomass 

Root 
biomass 

Leaf 
biomass 

Total biomass MAI 

14 12.20±0.71 36.8±4.41 
(57.78) 

7.3±0.97 
(11.47) 

14.1±1.41 
(22.28) 

5.4±0.55 
(8.47) 

63.6±7.33 4.54 

25 19.87±1.21  53.1±9.83 
(59.92) 

11.7±2.40 
(13.18) 

17.9±2.60 
(19.38) 

6.7±1.03 
(7.52) 

88.6±15.86 3.54 

36 24.77±1.22 85.2±7.27 
(61.07) 

19.9±1.81 
(14.25) 

24.7±1.87 
(17.73) 

9.7±0.74 
(6.95) 

139.6±11.69 3.88 

Values in parenthesis indicates % allocation in different tree components ± values indicate std. 

error 
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Table 6. Carbon estimates (Mg ha
-1

) of various tree components in different aged H. binata 

plantations 

Age  
(a) 

Stored Emitted Mitigated 
Sequestration 

rate (Mg ha-1 a-1) 

CO2 

stored	
(Mg 
ha-1) 

 Bole Branches Roots Leaves    
14 18.1±2.17 3.5±0.46 6.8±0.68 2.6±0.26 25.8±3.05 2.0±0.24 94.8 
25 26.2±4.84 5.5± 1.14 8.2±1.24 3.2±0.49 36.7±6.74 1.6±0.29 134.7 
36 42.0±3.58 9.5±0.87 11.9±0.90 4.6±0.35 58.7±4.99 1.8±0.15 215.5 

±values indicate std. error 
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Figure 1. Plots of residuals against the value of predicted and explanatory variable for total dry 

biomass after fitting allometric model 
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Figure 2. Observed vs predicted figure (a-f) for different biomass components using DBH (cm) 

as explanatory variable 
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Figure 3. Carbon concentration in different components of H. binata 
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