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In view of worldwide concern for the sustainability of groundwater resources, basin-wide modeling of
groundwater flow is essential for the efficient planning and management of groundwater resources in
a groundwater basin. The objective of the present study is to evaluate the performance of finite differ-
ence-based numerical model MODFLOW and the artificial neural network (ANN) model developed in this
study in simulating groundwater levels in an alluvial aquifer system. Calibration of the MODFLOW was
done by using weekly groundwater level data of 2 years and 4 months (February 2004 to May 2006)
and validation of the model was done using 1 year of groundwater level data (June 2006 to May
2007). Calibration of the model was performed by a combination of trial-and-error method and auto-
mated calibration code PEST with a mean RMSE (root mean squared error) value of 0.62 m and a mean
NSE (Nash–Sutcliffe efficiency) value of 0.915. Groundwater levels at 18 observation wells were simu-
lated for the validation period. Moreover, artificial neural network models were developed to predict
groundwater levels in 18 observation wells in the basin one time step (i.e., week) ahead. The inputs to
the ANN model consisted of weekly rainfall, evaporation, river stage, water level in the drain, pumping
rate of the tubewells and groundwater levels in these wells at the previous time step. The time periods
used in the MODFLOW were also considered for the training and testing of the developed ANN models.
Out of the 174 data sets, 122 data sets were used for training and 52 data sets were used for testing. The
simulated groundwater levels by MODFLOW and ANN model were compared with the observed ground-
water levels. It was found that the ANN model provided better prediction of groundwater levels in the
study area than the numerical model for short time-horizon predictions.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Groundwater is an invaluable natural resource used for variety
of purposes like domestic, agricultural and industrial uses. Almost
all of the liquid freshwater in our planet (more than 98%) occurs as
groundwater, while less than 2% occurs in the more visible form of
streams and lakes which often are fed by groundwater (Bouwer,
2000; Russell, 2003). During the last few decades, groundwater
has become an important source of freshwater throughout the
world. It is estimated that groundwater provides about 50% of
the current global domestic water supply, 40% of the industrial
supply, and 20% of water use in irrigated agriculture (World Water
Assessment Program, 2003). However, the aquifer depletion due to
over-exploitation and the growing pollution of groundwater are
threatening our eco-systems (Shah et al., 2000; Sophocleous,
2005; Evans and Sadler, 2008). The recent studies using GRACE sa-
tellite data have shown alarming decrease in groundwater levels in
developing countries like India and Iran (Rodell et al., 2009; Voss
et al., 2013). Hence, the key concern is how to maintain a long-
term sustainable yield from aquifers (e.g., Hiscock et al., 2002; Al-
ley and Leake, 2004).

The total annual replenishable groundwater resource of India is
about 43 million ha m. However, in spite of national scenario on
the availability of groundwater being favorable, there are pockets
in certain areas of the country that face scarcity of water. This is
because the groundwater development over different parts of the
country is not uniform, being quite intensive in some areas (CGWB,
2006). Excessive pumping has led to alarming decrease in ground-
water levels in several parts of the country like Gujarat, Tamil
Nadu, West Bengal, Odisha, Rajasthan, Punjab and Haryana (CGWB,
2006; Mall et al., 2006). In studies using GRACE satellite data, it
was found that the groundwater reserves in the states like Rajas-
than, Punjab and Haryana are being depleted at a rate of
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17.7 ± 4.5 km3/year. The same data suggest that between August
2002 and December 2008, the region lost 109 km3 of groundwater
which is double the capacity of India’s largest reservoir Wainganga
and almost triple the capacity of Lake Mead, the largest man-made
reservoir in the United States (Rodell et al., 2009). This in turn has
increased the cost of pumping, caused seawater intrusion in the
coastal areas and has raised questions about the future availability
of groundwater.

In order to avoid the overdraft and declining groundwater level,
it is important to understand the behavior of an aquifer system
subjected to artificial stresses. Simulation modeling is an excellent
tool to achieve this goal. Groundwater simulation models are
useful in simulating groundwater flow scenarios under different
management options and thereby taking corrective measures for
sustainable use of water resources by conjunctive use of surface
water and groundwater. During the last 20 years various studies
have been taken up for groundwater flow simulation in different
basins using MODFLOW and other models (e.g., Reichard, 1995;
Onta and Das Gupta, 1995; Ting et al., 1998; Reeve et al., 2001;
Lin and Medina, 2003; Rodriguez et al., 2006; Zume and Tarhule,
2008; Al-Salamah et al., 2011; Gaur et al., 2011; Xu et al., 2012).
However, the physically based groundwater simulation models
are very data intensive, laborious and time consuming. Empirical
models generally require less data and less effort in comparison
to physically based models (Coppola et al., 2005). Artificial
Neural Network (ANN) models are one of such models, which are
treated as universal approximators and are very much suited to
dynamic nonlinear system modeling (ASCE, 2000). The ability to
learn and generalize from sufficient data pairs makes it possible
for ANNs to solve large-scale complex problems. A number of
studies have been done on the application of neural networks
for groundwater level forecasting (e.g., Coulibaly et al., 2001;
Coppola et al., 2003; Daliakopoulos et al., 2005; Lallahem et al.,
2005; Nayak et al., 2006; Uddameri, 2007; Krishna et al., 2008;
Trichakis et al., 2009; Mohanty et al., 2010; Ghose et al., 2010;
Yoon et al., 2011; Adamowski and Chan, 2011; Li et al., 2012;
Nourani et al., 2012).

The performance of numerical models evaluation like MOD-
FLOW and empirical models like artificial neural network (ANN)
in forecasting groundwater levels has been reported by Coppola
et al. (2003). In their study, a neural network model was developed
for predicting water levels at 12 monitoring well locations
screened in different aquifers in a public supply well field, Florida,
USA in response to changing pumping and climatic conditions. The
developed neural network model predicted the groundwater level
more accurately than the calibrated numerical model at the same
location over the same time period. Parkin et al. (2007) developed
a hybrid approach of numerical modeling and artificial neural net-
works to assess the impacts of groundwater abstractions on river
flows in hydrogeologic settings representing most of England and
Wales. The artificial neural network model was trained using the
input and output data from SHETRAN numerical modeling system
and tested using a field data from a case study site. They demon-
strated the successful application of the approach for modeling riv-
er–aquifer interactions and its potential for modeling more
complex hydrological systems. Nikolos et al. (2008) evaluated arti-
ficial neural network as an alternate approach to groundwater
numerical modeling to optimize pumping strategy of production
wells located in the northern part of Rhodes Island in Greece. They
concluded that the use of neural network as an approximate model
can significantly reduce the computational burden associated with
numerical model and can provide very close to optimal solutions.
Banerjee et al. (2011) evaluated the prospects of artificial neural
network simulation over 2-D solute transport model (SUTRA) in
estimating safe pumping rate to maintain groundwater salinity in
Kavaratti island of Lakshadweep archipelago. In the present paper,
a groundwater flow simulation model has been developed using
Visual MODFLOW, an empirical ANN model has been developed
for forecasting groundwater levels and comparison between both
models has been done. For this, a study area named Kathajodi–Sur-
ua Inter-basin has been selected within the Mahanadi deltaic sys-
tem of Odisha, eastern India. The present study has innovative
elements concerning the methodology of groundwater-flow mod-
eling and the study area.
2. Study area

The study area is a typical river island within Mahanadi deltaic
system of eastern India and is surrounded on both sides by the
Kathajodi River and its branch Surua (Figs. 1 and 2). It is locally
called as ‘Bayalish Mouza’ and is located between 85�5402100 to
86�0004100 E longitude and 20�2104800 to 20�2600000 N latitude. The
total area of the river island is 35 km2. The study area has a tropical
humid climate with an average annual rainfall of 1650 mm, of
which 80% occurs during June to October months. The normal
mean monthly maximum and minimum temperatures of the re-
gion are 38.8� C and 15.5� C in May and December, respectively.
The mean monthly maximum and minimum evapotranspiration
rates are 202.9 mm and 80.7 mm in May and December, respec-
tively. Agriculture is the major occupation of the inhabitants and
groundwater is the major source of irrigation in the area. There
are 69 functioning government tubewells in the area, which consti-
tute major sources of groundwater withdrawals for irrigation.
These tubewells were constructed and managed by the Orissa Lift
Irrigation Corporation, Government of Orissa, India. Now, they
have been gradually handed over to the local water users’ associa-
tions. There is no water shortage during the monsoon season in the
study area, but in the summer season, the farm ponds dry up and
the groundwater from tubewells is not sufficient to meet the entire
water requirement of the farmers.

The river basin is underlain by a confined aquifer which mostly
comprises coarse sand. The thickness of the aquifer varies from 20
to 55 m and the depth of the aquifer from 15 to 50 m over the basin
(Mohanty et al., 2012). The aquifer hydraulic conductivity varies
from 11.3 to 96.8 m/day, whereas the values of storage coefficient
range between 1.43 � 10�4 and 9.9 � 10�4.
3. Materials and methods

3.1. Data collection and analysis

Daily rainfall data of 20 years (1990–2009) and daily pan evap-
oration data of 4 years (2004–2007) were collected from a nearby
meteorological observatory at Central Rice Research Institute
(CRRI), Cuttack, Orissa located at about 2 km from the study area.
The river-stage data available at an upstream site named Naraj
(Fig. 1) were collected from the office of Central Water Commission
(CWC), Bhubaneswar, Orissa. The lithologic investigations at 70
sites over the study area were carried out by test drilling method
by Orissa Lift Irrigation Corporation (OLIC) Office, Cuttack, Orissa.
The lithologic data were collected from the OLIC Office and ana-
lyzed by drawing geologic profiles along different sections in the
study area. These lithologic analyses along with other field data
were used for developing a numerical groundwater-flow model
of the study area.

Since no groundwater data were available in the study area, a
groundwater monitoring program was initiated by the authors.
Monitoring of groundwater levels in the study area was done by
selecting nineteen tubewells distributed over the study area. The
locations of nineteen monitoring wells are shown as red circles
in Fig. 2. Weekly groundwater-level data at the nineteen sites



Fig. 1. Map of the study area showing geographical location and other details.
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was monitored from February 2004 to October 2007, which
was used for studying the groundwater characteristics in the
study area, calibration of groundwater-flow simulation model,
and training of neural network model for groundwater level
forecasting.

3.2. Groundwater flow simulation using Visual MODFLOW

A groundwater flow simulation model was developed using Vi-
sual MODFLOW for simulating groundwater scenario in the study
area. MODFLOW is a modular three-dimensional finite difference
groundwater flow model (McDonald and Harbaugh, 1988), which
simulates transient/steady groundwater flow in complex hydraulic
conditions with various natural hydrological processes and/or arti-
ficial activities and, can be used for multi-aquifer modeling (Ting
et al., 1998).
3.2.1. Conceptual model
A conceptual model of the study area was developed based on

the hydrogeologic information and field investigation. The litho-
logic investigation indicates that a confined aquifer exists in the
river basin. The thickness of the aquifer varies from 20 to 55 m
and its depth from the ground surface varies from 15 to 50 m over
the basin. The upper confining layer mostly consists of clay
whereas the aquifer material comprises of medium sand to coarse
sand. There are patches of medium sand and coarse sand within
the clay bed which makes it act as a leaky confining layer. There
are some clay lenses present in the confined aquifer. To simplify
the model for simulation, those clay lenses were ignored while
developing the conceptual model of the study area. The eastern
boundary is bounded by the Kathajodi River and the western
boundary is bounded by the Surua River (Fig. 2). Therefore, these
boundaries were simulated as Cauchy (head-dependant flux)



Fig. 2. Location of observation and pumping wells in the study area.
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Fig. 3. (a) Representative lithiologic section of the Kathajodi–Surua Inter-basin. (b) Conceptual model of the Kathajodi–Surua Inter-basin.
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boundary conditions. The conceptual model of the study area at
Section A–A0 (Fig. 2) is shown in Fig. 3a and b, which provides a ba-
sis for the design and development of the numerical model of the
study area using Visual MODFLOW software.
3.2.2. Discretization of the basin and model design
The study area was discretized into 40 rows and 60 columns

using the Grid module of Visual MODFLOW software. This resulted
in 2400 cells, each having a dimension of approximately 222 m �



Table 1
Range of calibration parameters during automated calibration.

Calibration
parameter

Hydraulic
conductivity

Specific storage Recharge

Lower range 50% of measured
value

50% of measured
value

90% of estimated
value

Upper range 200% of
measured value

200% of
measured value

110% of
estimated value
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215 m. The cells lying outside the study area were assigned as inac-
tive cells. The hydrogeologic setting of the study area as conceptu-
alized earlier was divided into two model layers with the lower
one representing the confined aquifer. The thickness of the two
layers at different points was assigned considering the hydrogeo-
logic framework of the basin. The data on surface elevation, bottom
elevation of the top layer and bottom elevation of the aquifer layer
at available 19 sites were imported to the MODFLOW software
from the database prepared using MS-Excel files. Similarly, the
location of pumping wells, observation wells and weekly ground-
water levels of the model period were also imported from the
MS-Excel databases.

3.2.3. Boundary conditions
The Kathajodi and Surua rivers completely surround the basin

from the east and west directions, respectively making this study
area a complete river island. Therefore, the boundaries of the
groundwater basin were modeled as head-dependent flux or Cau-
chy boundary condition. The river heads were assigned as varying
head boundary conditions using the ‘River Package’ of Visual MOD-
FLOW software. The base of the aquifer was modeled as a no-flow
boundary, because it consists of dense clay. The water flux be-
tween the rivers and the aquifer was simulated by dividing the riv-
ers into 10 reaches. The input parameters such as river stage at
different time steps, river-bed elevation, river-bed conductivity,
river-bed thickness, and river width at the upstream and the
downstream site for all the river reaches were assigned. MOD-
FLOW linearly interpolates these values between both the ends
of a river reach.

3.2.4. Initial conditions
Initial conditions refer to the head distribution everywhere in

the system at the beginning of the simulation and thus are bound-
ary conditions in time. It is a standard practice to select as the ini-
tial condition a steady state head solution generated by a
calibrated model (Anderson and Woessner, 1992). In this study,
steady-state head solution of 1st February 2004 groundwater level
was used as the initial condition for the calibration period and
steady-state head solution of 4th June 2006 groundwater level
was used as the initial condition for the validation period.

3.2.5. Assigning model parameters
The model input includes hydrogeological parameters such as

hydraulic conductivity and specific storage (Ss), and hydrological
stresses like recharge, evapotranspiration and groundwater
abstraction. The model parameters like hydraulic conductivity
and specific storage were determined by conducting pumping tests
at nine different sites of the study area. The hydraulic conductivity
values ranged from a minimum of 11.25 m/day at Site B to a max-
imum of 96.80 m/day at Site O. Similarly the specific storage values
ranged from a minimum of 4.3 � 10�6 at Site B to a maximum of
2.75 � 10�5 at Site O (Mohanty et al., 2012). The distribution of
aquifer hydraulic conductivity over the study area was grouped
into 9 zones based on pumping test data. For all the zones, a ratio
of horizontal hydraulic conductivity (Kh) to vertical hydraulic con-
ductivity (Kv) was assumed as 10 to account for aquifer anisotropy.

Since the historical records of pumping from these tubewells
were not available, the data of groundwater abstractions were ob-
tained by conducting a detailed survey in the study area. The
pumping schedule, and position and extent of the well screens of
respective pumping wells were assigned using the Well Package
of the Visual MODFLOW software. The total groundwater recharge
in the study area was estimated by adding the recharge from dif-
ferent sources such as rainfall, return flow from irrigation and
water bodies. The recharge from rainfall was estimated using rain-
fall–recharge relationship for alluvial geological provinces of India
given by Rangarajan and Athavale (2000). The recharge from the
return flow from irrigation and water bodies were estimated
according to the guidelines of Central Ground Water Board, New
Delhi, India (CGWB, 1997). As the recharge estimated by empirical
methods has a chance of uncertainty, they were used as a calibrat-
ing parameter.

3.2.6. Model calibration and validation
The developed groundwater-flow simulation model was firstly

calibrated for the steady-state condition and then for the transient
condition. The steady-state calibration was achieved by matching
the model-calculated groundwater levels with average groundwa-
ter-levels observed in the 19 observation wells during 1st February
2004. The solution of the steady-state calibration was used as an
initial condition for the transient calibration. Transient calibration
was performed using weekly groundwater level data of 19 selected
sites for the period 01 February 2004 to 04 June 2006, following the
standard procedures (Anderson and Woessner, 1992; Zheng and
Bennett, 2002; Bear and Cheng, 2010). A combination of trial and
error technique and automated calibration code PEST was used
to calibrate the developed flow model by adjusting the hydraulic
conductivity, specific storage and recharge within reasonable
ranges. Initially, the sensitivity of hydraulic conductivity, specific
storage and recharge to groundwater level fluctuation was studied
by trial-and-error method. Based on the experience, their initial
ranges were fixed for automated calibration, which were further
refined during trial-and-error calibration. The lower and upper
range of calibration parameters during automated calibration is gi-
ven in Table 1. The calibration results were evaluated relative to
the observed values of groundwater levels at 19 sites by using sta-
tistical indicators as well as by comparing observed and simulated
groundwater-level hydrographs.

After calibrating the model, validation was performed using the
observed groundwater level data from June 2006 to May 2007. The
calibrated hydraulic conductivity and storage coefficient values
were used during validation of the model whereas other input
parameters like pumping, river stage, recharge and observation
head of the corresponding validation period were used.

3.2.7. Criteria of model evaluation
In order to evaluate the performance of the calibration and val-

idation of the MODFLOW-based numerical model, six statistical
criteria were used. They are bias, mean absolute error (MAE), root
mean squared error (RMSE), coefficient of determination (R2),
mean percent deviation (Dv) and Nash–Sutcliffe efficiency (NSE)
and are given by the following equations:

Bias ¼ 1
N

XN

i¼1

ðhsi � hoiÞ ð1Þ

MAE ¼ 1
N

XN

i¼1

jhsi � hoij: ð2Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðhsi � hoiÞ2

N

s
: ð3Þ
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�
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where hoi is the observed groundwater level of the ith data [L],
hsi the simulated/predicted groundwater level of the ith data, ho

�
the

mean of observed groundwater levels [L], hs

�
the mean of simulated

groundwater levels [L], and N is the number of observations. The
best-fit between observed and simulated groundwater levels un-
der ideal conditions would yield bias = 0, MAE = 0, SEE = 0,
RMSE = 0, normalized RMSE = 0, R2 = 1, Dv = 0 and NSE = 1.

Moreover, the observed groundwater level hydrographs and
MODFLOW-based numerical model simulated groundwater level
hydrographs were plotted for a visual checking of model perfor-
mance. Scatter plots (together with 1:1 line, 95% interval lines
and 95% confidence interval lines) of observed versus simulated
groundwater levels were also prepared for calibration and valida-
tion periods for examining the efficiency of the models in simulat-
ing groundwater levels. The 95% interval is the interval where 95%
of the total number of data points is expected to occur. The 95%
confidence interval shows the range of calculated values for each
observed value with 95% confidence that the simulation results
will be acceptable for a given observed value. For an ideal calibra-
tion, the 1:1 line should lie within the 95% confidence interval lines
(WHI, 2005).

3.2.8. Prediction of future groundwater scenario
In a predictive simulation, the parameters optimized during cal-

ibration are used to predict the system response to future events.
Predictive simulations were performed to examine the response
of the aquifer to simulate groundwater levels in the long run under
existing pumping conditions. Under this scenario, keeping all the
existing conditions constant, the effect of continuation of existing
pumpage on groundwater levels during 2007–2020 period was
examined.

3.3. Groundwater level forecasting using artificial neural network
model

Besides the development of a groundwater-flow simulation
model, ANN models were also developed to assess their efficacy
Fig. 4. Configuration of feedforward th
in predicting groundwater levels in the study area. In most of the
past studies on groundwater level prediction by ANN, the ANN
models have been developed for predicting groundwater levels
either in a single well or in a few selected wells using a varying
set of input parameters (Daliakopoulos et al., 2005; Nayak et al.,
2006; Uddameri, 2007; Krishna et al., 2008). However, in the pres-
ent study, an attempt was made to predict groundwater levels
simultaneously in a large number of wells over the basin by using
ANN technique.
3.3.1. Design of ANN model
In this study, widely applied feedforward neural network (FNN)

architecture was used. It is one of the simplest neural networks
and has been successfully used for water resources variable mod-
eling and prediction (Maier and Dandy, 2000; ASCE, 2000). In a
feedforward network, the nodes are generally arranged in layers,
starting from a first input layer and ending at the final output layer.
The nodes in one layer are connected to those in the next, but not
to those in the same layer. Thus, the output of a node in a layer is
only dependant on the input it receives from previous layers and
corresponding weights. Fig. 4 shows the feedforward network for
the current study having one hidden layer with 40 nodes in the in-
put layer and 18 nodes in the output layer.

As the Bayesian regularization performed better than Laven-
berg–Marquardt and GDX algorithms (Mohanty et al., 2010), it
was used in this study for groundwater level forecasting. The
ANN model was designed to predict groundwater levels in 18 tube-
wells (Fig. 2) with 1-week lead time using a set of suitable input
parameters. Based on the correlation analysis between groundwa-
ter level and the selected input parameters, groundwater level at
1-week lag time, weekly rainfall, river stage, weekly evaporation,
water level in the main drain and weekly pumping from the tube-
wells were considered as final input parameters. There were alto-
gether 40 input nodes and 18 output nodes in the initial ANN
model of the study area. The 40 input nodes represent groundwa-
ter levels with 1-week lag time at the 18 sites, groundwater pump-
ing rates of the 18 tubewells, weekly rainfall, average weekly pan
evaporation, average weekly river stage, and average weekly water
level at the drain outlet. The 18 output nodes represent groundwa-
ter levels at the 18 sites in the next time step (i.e., 1 week ahead).
3.3.2. Clustering of study area
The ANN model having 40 input nodes and 18 output nodes was

difficult to be trained by the trial and error method while using
Bayesian regularization (BR) algorithm; it proved to be time and
computer memory consuming. Maier and Dandy (1998) reported
that the Levenberg–Marquardt algorithm has a great computa-
tional and memory requirement, and hence it is mostly useful for
ree-layer ANN for the study area.



Table 2
Performance statistics of numerical model during calibration period.

Site Calibration period (February 2004 to May 2006)

Bias
(m)

MAE
(m)

RMSE
(m)

R2 Dv (%) NSE Kh (m/
day)

A 0.347 0.505 0.589 0.891 2.396 0.831 20
B �0.490 0.508 0.616 0.910 �3.012 0.693 20
C �0.267 0.593 0.660 0.869 �1.788 0.602 27
D 0.006 0.344 0.442 0.895 0.118 0.895 32
E �0.175 0.655 0.765 0.843 �1.280 0.700 23
F 0.006 0.382 0.485 0.901 �0.012 0.872 27
G �0.517 0.616 0.768 0.794 �3.154 0.613 27
H 0.012 0.335 0.444 0.927 0.264 0.907 32
I �0.090 0.515 0.642 0.856 �0.683 0.792 23
J 0.117 0.370 0.472 0.949 1.065 0.918 41
K �0.081 0.496 0.686 0.817 �0.598 0.782 44
L �0.253 0.462 0.682 0.812 �1.793 0.775 44
M 0.161 0.486 0.632 0.878 1.604 0.857 52
N 0.542 0.722 0.850 0.799 4.457 0.681 52
O 0.182 0.577 0.809 0.762 1.436 0.680 52
P �0.407 0.449 0.617 0.903 �3.098 0.828 45
Q 0.031 0.397 0.581 0.869 0.400 0.861 45
R �0.210 0.663 0.817 0.852 �1.076 0.809 47
S 0.273 0.473 0.600 0.899 2.564 0.863 47
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small networks. In order to run the model effectively, an effort was
made to reduce the size of the neural network by dividing the
study area into three clusters (Mohanty et al., 2010) and develop-
ing three separate ANN models for the three clusters to predict
groundwater levels 1 week advance at the sites present in a partic-
ular cluster. Cluster 1 contains 7 sites namely A, B, D, E, H, I and J.
Cluster 2 contains 5 sites namely C, F, G, K and L, and Cluster 3 con-
tains 6 sites namely M, O, P, Q, R and S (Fig. 2). The division of the
study area into three clusters and modeling groundwater sepa-
rately in three clusters would not have any effect on the final out-
put as the pumping of the tubewells in a given cluster has a very
minor effect on the water level in the tubewells of other clusters.

In each cluster, groundwater levels at the sites in the previous
time step, pumping rates of the tubewells, weekly total rainfall,
weekly pan evaporation and weekly river stage were considered
as input parameters. In the third cluster, however, an additional in-
put parameter weekly water level in the drain was considered as it
has potential to affect the groundwater level in this cluster only.
Thus, Cluster 1 had 17 input nodes and 7 output nodes, Cluster 2
had 13 input nodes and 5 output nodes and Cluster 3 had 16 input
nodes and 6 output nodes.

3.3.3. Model training and testing
The structure of the neural network consisted of one hidden

layer along with the input and output layer. The optimal number
of nodes in the hidden layer was optimized by trial and error and
the number of hidden nodes corresponding to the least root mean
squared error (RMSE) was selected as the optimal number of hid-
den neuron. The activation function of the hidden layer and output
layer was set as log-sigmoid transfer function as this proved to be
the best by trial and error among a set of other options. In this
study, supervised type of learning with a batch mode of data feed-
ing was used for ANN modeling. Out of the 174 weeks datasets
available, 122 datasets were used for training the ANN models
and 52 datasets were used for testing the models. The ANN model-
ing was performed by using MATLAB 6.5 software. The six statisti-
cal indicators described in Section 3.2.7 were used to evaluate the
performance of the developed ANN models during training and
testing.

3.4. Comparison of numerical model and neural network model

A comparison of the performance of the MODFLOW-based
numerical model with that of the ANN model was carried out to
study their efficacy in simulating/predicting groundwater levels.
In order to have a fair comparison between the models, the train-
ing and testing periods of the ANN model were maintained same as
the corresponding period of the numerical model. The predicted
groundwater levels by the ANN model at 18 sites during the testing
period were compared with the groundwater levels simulated by
the numerical model during the validation period using statistical
indicators like bias, MAE, RMSE, R2, Dv and NSE as described in Sec-
tion 3.2.7. In addition, groundwater levels simulated by both the
models were plotted along with the observed groundwater levels
for visual comparison of performance of the two models.
Fig. 5. Scatter diagram of observed versus simulated groundwater levels for the
calibration period.
4. Results and discussion

4.1. Groundwater simulation by numerical model

4.1.1. Calibration results
During calibration, the groundwater flow-simulation model

was found more sensitive to aquifer hydraulic conductivity values
in comparison to aquifer specific storage. The statistical indicators
along with the calibrated hydraulic conductivity values at nineteen
calibration sites are presented in Table 2. It is observed that the
bias, MAE, RMSE, R2, Dv and NSE values vary in the range of
0.006 to 0.517 m, 0.335 to 0.663 m, 0.442 to 0.817 m, 0.762 to
0.949,�0.012 to�3.154% and 0.602 to 0.918 respectively, after cal-
ibration of the model. The statistical indicators in the table indicate
that the simulated groundwater levels at sites D, F, H, J and N are
more accurate compared to other sites (relatively low values of
MAE and RMSE, and high values of R2 and NSE). On the other hand,
there has been relatively inferior simulation of groundwater levels
at sites C, E, G and R as the MAE and RMSE values are on a higher
side, and R2 and NSE values are on a lower side. The bias values at
sites B, C, E, G, I, K, L, P and R are negative, which indicates there is
overall under-simulation at these sites. There is overall over-simu-
lation at the remaining sites. However, there is an overall good cal-
ibration because the values of bias, MAE, RMSE, and Dv for almost
all the sites are reasonably low and within acceptable limits. Also,
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Fig. 6. (a–c) Comparison between observed and simulated groundwater levels at sites A, K and S for the calibration period.
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the R2 and NSE values are reasonably high at most of the sites. The
calibration was done keeping in view the mean statistical indica-
tors, and hence there was very good calibration at some sites and
there was average calibration at other sites. The variation of degree
of accuracy at different calibration sites is not unusual at a basin
scale. This variation can be attributed to the influence of local fac-
tors and/or errors in field data measurement. The calibrated values
of hydraulic conductivity varied from a minimum of 20 m/day
(sites A and B) to a maximum of 52 m/day (sites M, N and O)
(Table 2), whereas the calibrated values of aquifer specific storage
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remained more or less the same (varying from 1.43 � 10�4 to
9.9 � 10�4) as the measured values.

The MODFLOW-generated scatter diagram along with 1:1 line,
95% interval lines and 95% confidence interval lines for the entire
calibration period is shown in Fig. 5. The figure shows that the
1:1 line lies within the 95% confidence interval lines indicating a
good calibration of the developed groundwater flow model. The
observed and calibrated groundwater levels at three sites, i.e., Bau-
lakuda (Site A) in the upstream portion of the basin, Dahigan (Site
K) in the middle portion of the basin and Chanduli (Site S) in the
downstream portion of the basin are shown in Figs. 6a–c, respec-
tively. The visual comparison of observed and calibrated ground-
water level hydrographs at all the sites including the above 3
sites indicated a reasonably good match between observed and cal-
ibrated groundwater levels at almost all the sites except sites C and
E having under-simulation of groundwater levels during dry peri-
ods, Site G having under-simulation during both dry and wet peri-
ods, and Site R having over-simulation during dry periods and
under-simulation during wet periods.
Fig. 7. Scatter diagram of observed versus simulated groundwater levels for the
validation period.

Table 3
Comparison of performance statistics during calibration and validation of the model.

Bias (m) MAE (m) RMSE (m) R2 Dv (%) NSE

Calibration �0.063 0.478 0.620 0.916 �0.27 0.915
Validation 0.044 0.489 0.632 0.918 0.37 0.914
4.1.2. Validation results
The scatter diagram along with 1:1 line, 95% interval lines and

95% confidence interval lines for the entire validation period is
shown in Fig. 7. The figure shows that the 1:1 line lies within the
95% confidence interval lines which indicates satisfactory valida-
tion of the developed groundwater flow model. The comparison
between the observed and simulated groundwater levels by graph-
ical as well as statistical methods is described in succeeding sec-
tion dealing with comparison of MODFLOW-based numerical
model and ANN model. Table 3 shows the comparison of statistical
indicators during the calibration and validation of the model. The
statistical indicators MAE, RMSE, Dv are only marginally higher
and NSE is only marginally lower during validation in comparison
to the calibration period. This signifies satisfactory calibration and
validation of the model.
4.1.3. Simulating future groundwater scenario
Fig. 8 shows the simulated groundwater levels at five sites dis-

tributed over the study area during the period (2007–2020), keep-
ing all the parameters constant. It is clear that there is no
significant change in groundwater levels up to the year 2020 at
all the sites. The groundwater levels at sites O and S are relatively
lower than the other 3 sites, and that scenario is maintained
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throughout the simulation period. The Kathajodi–Surua Inter-basin
is a complete river island surrounded by two rivers and due to this,
the effect of the boundary conditions on groundwater levels has
been found very significant. The water that is pumped from the
aquifer is being replenished by the river, and hence there is no sig-
nificant change in groundwater levels even in the long run (by
2020). Thus, if the existing conditions continue, there is no threat
to the groundwater lowering in the study area in the near future.
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Fig. 9. (a–c) Variation of RMSE and NSE with number of nodes in the hidden layer at three clusters.
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4.2. Groundwater level forecasting using neural network model

4.2.1. Model training results
The optimum number of hidden neurons in the neural network

model was found 10, 20 and 40 for clusters 1, 2 and 3, respectively.
Fig. 9a–c show the variation of RMSE and NSE values with the
number of nodes in hidden layer for three different clusters respec-
tively. The RMSE values are the lowest and the NSE values are the
highest in all the figures with respect to the optimum number of
hidden neurons.



Table 4
Performance statistics of ANN model during training period.

Site Calibration period (February 2004 to May 2006)

Bias (m) MAE (m) RMSE (m) R2 Dv (%) NSE

A �0.044 0.189 0.249 0.970 �0.262 0.970
B �0.018 0.116 0.149 0.982 �0.097 0.982
C 0.019 0.139 0.184 0.970 0.074 0.969
D �0.032 0.176 0.241 0.970 �0.169 0.969
E 0.011 0.147 0.188 0.982 0.105 0.982
F 0.011 0.168 0.214 0.976 0.104 0.975
G �0.003 0.210 0.304 0.941 0.022 0.940
H �0.030 0.181 0.235 0.974 �0.176 0.974
I �0.005 0.121 0.159 0.988 �0.005 0.987
J �0.018 0.150 0.200 0.986 �0.087 0.985
K 0.006 0.224 0.328 0.951 0.106 0.951
L 0.019 0.251 0.359 0.939 0.237 0.938
M 0.020 0.276 0.394 0.945 0.284 0.945
O 0.024 0.266 0.389 0.927 0.311 0.926
P 0.030 0.228 0.367 0.941 0.349 0.940
Q 0.022 0.258 0.385 0.941 0.309 0.939
R 0.057 0.361 0.478 0.939 0.714 0.935
S 0.037 0.237 0.391 0.943 0.455 0.942
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The statistical indicators for the training period at eighteen sites
are presented in Table 4. It is observed that the bias, MAE, RMSE,
R2, Dv and NSE values for the training period vary in the range of
�0.003 to 0.057 m, 0.116 to 0.361 m, 0.149 to 0.478 m, 0.927 to
0.988, �0.005 to �0.714% and 0.926 to 0.987 respectively. The sta-
tistical indicators indicate that the training of the model is very
satisfactory as the values of bias, MAE, RMSE, and Dv are reasonably
low and the R2 and NSE values are reasonably high at all the sites.
4.3. Comparison between the numerical model and ANN model

The comparison between the MODFLOW-based numerical
model and the ANN model in terms of bias, MAE, RMSE, R2, Dv

and NSE statistical indicators during validation period is shown
in Table 5. The bias, MAE, RMSE, R2, Dv and NSE values in numerical
model vary in the range of �0.025 to �0.505 m, 0.297–0.709 m,
0.38–0.827 m, 0.85–0.964, 0.36% to �3.78% and 0.55–0.95 respec-
tively. The corresponding values in neural network model varies
in the range of 0.01–0.239 m, 0.178–0.464 m, 0.24–0.522 m,
0.918–0.976, �0.06% to 1.82% and 0.90–0.96 respectively. The val-
ues of R2 and NSE are generally higher and the values of bias, MAE,
RMSE and Dv are lower for the ANN model at all the sites compared
Table 5
Goodness-of-fit statistics for the numerical and ANN models at 18 sites during validation

Site Numerical model

Bias (m) MAE (m) RMSE (m) R2 Dv (%) NSE

A 0.473 0.536 0.717 0.867 3.162 0.763
B �0.438 0.568 0.677 0.854 �2.620 0.718
C �0.072 0.657 0.775 0.891 �0.657 0.550
D 0.236 0.343 0.493 0.912 1.565 0.884
E 0.182 0.658 0.827 0.937 0.825 0.670
F 0.082 0.613 0.737 0.874 0.356 0.706
G �0.399 0.436 0.542 0.935 �2.396 0.855
H 0.081 0.511 0.657 0.850 0.804 0.826
I 0.369 0.529 0.697 0.962 2.177 0.775
J 0.124 0.417 0.600 0.850 0.947 0.841
K 0.284 0.400 0.505 0.947 2.041 0.912
L �0.277 0.379 0.522 0.929 �1.958 0.900
M 0.312 0.709 0.812 0.937 3.114 0.843
O 0.369 0.424 0.563 0.949 2.790 0.885
P �0.505 0.520 0.631 0.953 �3.778 0.853
Q �0.025 0.297 0.380 0.964 �0.373 0.945
R �0.279 0.396 0.552 0.945 �1.974 0.907
S 0.282 0.416 0.486 0.955 2.587 0.922
to the numerical model. Hence, it can be inferred that the ANN
model predicted groundwater levels with higher accuracy than
the numerical model.

Furthermore, simultaneous plots of the groundwater levels sim-
ulated by the MODFLOW-based numerical model and the ANN
model along with the observed groundwater levels for three sites,
i.e., Baulakuda (Site A) in the upstream portion of the basin, Dahi-
gan (Site K) in the middle portion of the basin and Chanduli (Site S)
in the downstream portion of the basin are shown in Figs. 10a–c,
respectively. The visual comparison of observed, numerical mod-
el-simulated and ANN model-simulated groundwater level hydro-
graphs at all the sites including the above 3 sites indicated that the
groundwater levels predicted by the ANN model matched better
with the observed groundwater levels than the groundwater levels
simulated by the numerical model. It is only at Site Q and to some
extent Site R, the accuracy of groundwater levels prediction by the
numerical model almost matched with that of ANN model. Thus,
the visual checking of observed and simulated groundwater levels
also confirms that the ANN model is superior to the numerical
model in simulating groundwater levels.

A closer look at the quantitative indicators and graphical com-
parisons show that there is very little difference between the R2

values obtained for the numerical and ANN models (Table 5), even
though the graphical comparisons and other statistical indicators
indicate a clear difference between the performances of both the
models. Similarly, the values of bias and Dv at sites C, F and H
are significantly less in case of numerical model, even though other
statistical indicators and graphical comparisons do not show a
good matching between the observed and simulated groundwater
levels. It can be attributed to the reason that in some cases, the
over-calculated and under-calculated values negate each other,
and produce a bias value close to zero. Sometimes, this can lead
to false interpretation of model calibration (WHI, 2005). The same
logic holds true for Dv also. On the other hand, the MAE, RMSE and
NSE indicators are consistently found superior in ANN model than
the numerical model, except at sites Q and R, where they are com-
parable. This is also in agreement with the graphical comparison of
observed and simulated groundwater levels. Based on the above
analysis, it is inferred that the MAE, RMSE and NSE statistical indi-
cators are more powerful than the bias, Dv and R2 in evaluating the
model performance.

Despite the limited data, the ANN model provides better
prediction of groundwater levels. The neural networks also have
the advantage of not requiring explicit characterization and
period (June 2006 to May 2007).

ANN model

Bias (m) MAE (m) RMSE (m) R2 Dv (%) NSE

0.023 0.253 0.365 0.941 0.167 0.939
�0.022 0.281 0.331 0.937 �0.060 0.933

0.010 0.178 0.240 0.958 0.095 0.957
0.127 0.239 0.342 0.953 0.859 0.945
0.023 0.216 0.299 0.956 0.183 0.957
�0.067 0.277 0.365 0.939 �0.454 0.928

0.079 0.201 0.288 0.964 0.491 0.960
0.084 0.271 0.358 0.953 0.617 0.949
0.211 0.297 0.380 0.955 1.431 0.934
�0.016 0.375 0.480 0.918 �0.166 0.898

0.239 0.291 0.353 0.976 1.816 0.957
�0.047 0.228 0.345 0.958 �0.299 0.957

0.109 0.365 0.444 0.972 1.171 0.954
0.097 0.259 0.355 0.958 0.844 0.955
�0.079 0.247 0.324 0.964 �0.566 0.962
�0.136 0.292 0.343 0.966 �1.170 0.955
�0.042 0.464 0.522 0.922 �0.350 0.918

0.036 0.244 0.356 0.960 0.300 0.958
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Fig. 10. (a–c) Comparison between groundwater level simulated by numerical model and ANN model at site A, K and S.
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quantification of the physical properties and condition of the aqui-
fer system. Also, the data requirement of ANNs is generally easier
to collect and quantify than the physically based models. However,
in case of ANN models, any changes in the input or output
parameters will require total modeling of the system from the
beginning, whereas this is not the case in case of numerical models.
The numerical models provide total water balance of the system
under study, whereas the ANN models are ‘black box’ models
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and they do not provide any information about the processes of a
system. Also, the numerical models can help provide insights into
the hydrogeologic framework and properties, and simulate future
conditions (Coppola et al., 2003). They can also generate detailed
output regarding head, flow, and water budget components over
the study area. Thus, the numerical models can be more appropri-
ate for long-term predictions, whereas the ANN technique may be
better for real-time short-term predictions at selected locations
that require a high accuracy (Coppola et al., 2005).

5. Conclusions

A groundwater flow simulation model was developed for the
Kathajodi–Surua Inter-basin of Odisha, India using finite differ-
ence-based Visual MODFLOW software for simulating groundwa-
ter levels. Additionally, artificial neural network (ANN) models
were also developed for forecasting groundwater levels in the
study area. The comparison of these two different types of models
revealed that the ANN model can provide better prediction of
groundwater levels than the MODFLOW-based numerical model
for short time-horizon predictions. ANNs have also the advantage
of not requiring explicit characterization and quantification of
physical properties of the system. However, numerical models like
MODFLOW provide the total water balance of the system, whereas
the ANN models are like a ‘black box’ and they do not describe the
entire physics of the system. In case of ANN models, any changes in
the input or output parameters will require total modeling of the
system from the beginning, but this is not the case in case of
numerical models. Furthermore, the numerical models are more
appropriate for long-term predictions, whereas the ANN technique
is better for short-term predictions that require a high accuracy.
Thus, there are different advantages offered by the ANN technology
and numerical models, and therefore they should be selected in
accordance with the type of problems. In some cases, they can be
used as complementary to each other for making sound decisions
concerning groundwater management problems.
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