UNBIASED RATIO AND EEGERSSION TYPE ESTIMATORS

A. 8. 8ASIRY

Ingtitute of Agricultural Research statistics
(I.C.A.R.)

Library Avenue NEW DELHI-12

N. B. SASTRY

Dissertation
submitted in fulfilment of the requirements for the award of

Diploma in Agricultural and Animal Husbandry Statistics of the

INSTITUTE OF AGRICULTURAL RESEARCH BTATISTICS(I.C.A.R)

- NEV DELAI-12

ACKNOWLEDOEMENTS

I have great pleasure in expressing my deep sense of gratitude to Dr. B.V. Sukhatme, Professor of Statistics, Institute of Agricultural Research Statistics (I.C.A.R.) New Delhi, for his valuable guidence, keen interest and constant oncouragement throughout the course of investigation and inmense belp in writing up the thesis by critically going through the manuscript.

I am grateful to Dr. V.G. Panse, Statistical Adviser, I.C.A.R., New Delht-12, for providing necessary facilities to carry out the investigation.

Now Delh1-12 July 31 , 1964.

CONTENT E

Page

Introduction and Summary 1
Section 1. Unbiased estimation of estimator variance 9
2. Precision of Ratio type estimators with one auxiliary variable 16
3. Precision of Regression type estimators with one auxiliary variable 33
4. Efficiency of Ratio type eatimators with two auxiliary variables 39
5. Extension to Double Sampling 48
6. Application to Stratified Populations 67
7. Numerical Examples 64
References (1-11)

INPRODUCTION AND SUMAARY

Simple random sampling is by far the most commonly used mothod of sampling in surveys. It is simple, operationally convenient and gives equal chance of selection for all the units in the population. Ghen, however, the units vary considerably in size, as is often the case, simple random ampling does not take into account the possible importance of larger units in the population. Under such circumstances, without foregoing the operational convenience of simple random sampling, it is desirable to use auxiliary information, such as size of unit, at the estimation stage, for obtaining more efficient estimators of the population value in the sense of giving estimators with smaller standard errors. Two examplea of such estimation procedures are the 'Ratio and Regression' methods of estimation.

The two classical ratio estimators are the ratio of means estimator $\vec{y}_{R}=-\frac{\bar{Y}_{n}}{\bar{x}_{n}} \bar{x}$ or aquivalentiy the weighted mean of the ratios estimator $\bar{r}_{w} \bar{X}=\frac{\sum_{i}^{n} X_{1} r_{1}}{\sum_{i}^{n} X_{1}} \bar{X}$ and the mean of ratios estimator $\bar{y}_{x}=\bar{r}_{n} \bar{X}$, where $_{i} \bar{X}_{n}$ and \bar{x}_{n} are the semple means, \bar{r}_{n}, the maan of individual ratios $r=\frac{y}{x}$ in the sample and \bar{X} is the known population mean of the auxiliary varlable x. Both the estimators are known to be biased. Ine latter is not even consistent. An exact expreasion for the bias in $\bar{y}_{\mathbf{r}}$ is available which does not depend upon the sample size n. Since the unveighted mean \bar{x}_{n} may be seriously biased if r tends to be larger (or smaller) for large x than for small x,
estimator $\bar{y}_{\mathbf{F}}$ is ilkely to be more blased then the estimator \bar{y}_{R} based on the weighted mean \bar{I}_{W} No exact expression for the blas in \bar{y}_{R} is avallable; however, for samples of moderate size, from populations in which the linear regression of y on x passes near the origin, and in which the coesficient of variation of x is not too large, the bias in \bar{y}_{R} is negligible. But the problem bow large the sample should be to make the bies negligible has not yet been solved setisfactorily for all types of populations.

The classical regression estimator is obtained by evaluating the least squares line of best fit $y=\bar{y}_{n}+b_{n}\left(x-\bar{x}_{n}\right)$ at the point \bar{x}, giving $\bar{y}_{1 r}=\bar{y}_{n}+b_{n}\left(\bar{x}-\bar{x}_{n}\right)$ as a regression estimator of the population mean, where b_{n} is the sample regression coefficient of y on x. Except when the true regression line passes through the origin, the regression estimator is less biased, and more preolse, than the ratio estimator \bar{y}_{R}. On the other hand, the ratio estimator is more easily calculated.

The avallable blas expressions and variance formulae for both the regression estimator $\bar{y}_{1 r}$ and the ratio estimator \bar{y}_{R} are only approximate; the approximations assuming the sample aize n to be sufficientiy large. For small samples nothing is known about the nature of their blas and precision. This situation has led the research workers in the fleld to explore ways and means of obtaining 'Ratio and Regression type' estimators, which are either completely free from bias or subject to a smaller blas than the customary ones.

In this connection Quenouilie (1956) has suggested a technique of reducing the blas in the ratio estimator \bar{y}_{R}.

By splitting a sample of size an at random into two sub-samples of sizes n each, he has considered a weighted average of the three ratio estimators of the form \bar{y}_{R}, appiled to the total semple and the two sub-samples, where the weights are chosen in such a way as to reduce the blas to the order $\frac{2}{n^{2}}$. Ravinara $51 n g h(2962)$ has further investigated the technique and oxamined the optimum sizes for the two sub-samples with respect th the order of decrease in bias and the officiency of the modifled ratio estimator as compared to the orainary one. Lurty and Nanjemma (1959) have developed a techntque of estimating the blan of a ratio estimetor unbiasediy to any given aegree of approximation and used this estimator of bias to corroct the ratio estimator for its blas, thereby getting an 'almost unblased racio estimator'.

Unbiased ratio and regression type estimators have been evolved in recent years, following two different approaches. Of the ratio and regression type, the ratio type has received much attention. The pirst approach conalsts in getting new types of unblased ratio and regression estimators under commonly adopted sampling schemes. The second approach is to modify the samping scheme so as to make the usual ratio estimetor (1.e., Ratio of the unblased estimator of the population total of y to tho unbiased estimator of the population total of x under the original scheme of sampling) unblased.

Hartley and Ross (1954) have been the poineers in the group of authors who tried to obtain unbiased estimstors under the comonly adopted sampling schemes. In simple random sampling without replacement, they heve given an elegant expression for
the bias in \bar{y}_{Y}, and on unblased estimator of that blas, thereby arriving at an unbiased ratio-estimator

$$
\bar{y}_{r}^{\prime}=\bar{r}_{n} \bar{x}+\frac{(N-1) n}{N(n-1)}\left(\bar{y}_{n}-\bar{r}_{n} \bar{x}_{n}\right)
$$

Robson (2957) has derived the exact formila for its variance, and on unblased estimator of the variance. In large samples, more simple estimators of the variance of $\bar{y}_{\boldsymbol{F}}^{\prime}$ and an extensive discussion of the relative efficiencies of estimators \vec{y}_{R}, \bar{y}_{r} and $\vec{y}_{\boldsymbol{r}}^{\prime}$ have been given by Goodman and Hartiey (1958).

Sukhatme (1962) has obtained a generalized form of \bar{y}_{r}^{\prime} for multistage designs. A double sampling version of \vec{y}_{r}^{\prime}, in which the unknown population mean of x is replaced by the sample mean of x besed on a larger prollminary sample, without disturbing the property of unblasedness, has been given by Sukhatme (1962) together with a comparison of its large sample efrialency with the double sampling versions of \bar{y}_{R} and \bar{y}_{r}. Joso Nieto Pascual (1961) considers, in a stratified population, a 'separate' unbiased ratio estimator which is a straight-forward generalization of \bar{y}_{r}^{\prime}, and a 'combined' unblased ratio estimator, the latter being besed on a siightly different sampling scheme. The scheme for the combined estimator consists in drawing K independent stratified samples, each sample containing one unit selected at random from each of the strata. In large samples, he has obtalned a comparison of the combined unblased estimator with the usual combined bissed estimator and aleo a comparison of the separate Hartioy and Ross unblased estimator with the usual separate
biased estimator:
Blckey (1958) has putforward a general theory for constructing 'unbiased ratio and regression type' estimators in simple random ampling without replacement, using information on the population means of soveral auxiliary variates. For a sub class of his general cless of estimators he has obtained non-negative unbiased estimators of the variance. No attcmpt has, however, bean made to inveatigate tho variance of the proposed class of unbiased estimators. Villlams (1961, 1963) has considered a hypothetical two stage sampling scheme, in which at the eirst stage, one splits of the possible stops of the whole population into s mutually exclusive and exhaustive groups of aize $\frac{n}{k}$ each (i.e. population $s i z e N=\frac{n s}{k}$ is selected at random, followed by the selection with equal probability without replacement of k of tho groups. For a given gplit of the population and a random selection of the groups, conditionally he has obtained a general class of unbiasod ratio and regression type estimators. In actual usage the groups are obtained by aplitting a simple randin sample without replacement of aize in from the whole population, but not by splitting the population 1tself. The same principle is extended to obtainea unbiased estimators In multistage designs, as also to obtain a 'combinea' unbiased estimator in stratipled populations. He has also discussed the unbiesed estimation of estimator variance and the precision of the regression type estimators.

The underlying principle in the approach of a gecond group of authors in evolving unbiased ratio type estimators
stems from the following considerations. If $\hat{\vartheta}_{s}$ and \hat{X}_{s} are unblased estimators of the population totals Y and X, based on the $s^{\text {th }}$ sample solected with any given sampling design, then the ratio estimator $\hat{R}=\frac{\widehat{Y}_{B}}{\hat{X}_{S}}$ will be unbiased for the ratio $R=Y / X$, if the design is ${ }^{2} / 2$ changed that P_{s}, the probability of selecting the $s^{\text {th }}$ sample is proportional to $\tilde{Z}_{g} p_{g}$ where P_{g} is the probability of selecting the $f^{\text {th }}$ sample in the original sampling design, i.e. if $P_{s}=\frac{\hat{X}_{s} P_{s}}{X}$. If, further, P_{B}^{\prime} is samo for all 3, then P_{s} should be mede proportional to \hat{X}_{g} to make the ratio estimator unblesed.

Thus in the case of simplo random gempling without replacement the ratio $\frac{\overline{y_{n}}}{\bar{x}_{n}}$ of the sarnple neans would bo unbiased for the population ratio if the original sampling design is modifiod so as to mako the probability of selecting tho $s^{\text {th }}$ sample proportional to $\left(\bar{x}_{n}\right)_{B}$, or in other words proportional to the total size of the aample. Lahiri (19E1), Lidzuno (1952) and Sen (1952) have independently given sampling procedures for obtaining a sample with probability proportional to its total bize. Hased on these procedures of selection, עes Raj (1954) has given modified sampling achemes appropriate to unistage, stratified, multistage and multiphase designs, in the case of simplo random sampling without replacement, whioh oliminate the bias of the usual ratio estimator.

Lurty, Nanjamma and Sethi (1959) have given modificatlons of many of tho selection procedures, commonly adopted in practice, which, while retaining the form of the usual biased ratio-estimator, make them unbiased. The method suggested by
them consists essentially in selecting the firgt unit with probability proportional to the auxiliary variate, and the remaining units in the sample according to the original sampling scheme. Indeed the method is very elegant and provides easily calculable unbiased estimators of the sampling variances also, but ita utility is limited in practice as it asbumes the knowledge of all the x values in the population, in which case a better sampling design can be formulated. Recontly Pathak (2964) has shown that if in these modified sampling schemes a sufficient statistic is available and if the ratio estimator does not depend upon the sufficient statistic, it can be uniformly improved by Rao-Blackwell theorem. This result has been used by him in deriving unblasod ratio estimstors, better than the ratio estimators given by Kurty, Nanjamma and Sethi.

Tho prosent investigation is a critical study of lickey's unbiased retio and regression type estimators. Section 1 deals with the unbiased estimation of the variance of Mickey'a ostimator in its general form. Section 2 is concerned with the investigation of the precision of Mickey's unblased ratio type estimators, utilisying information on a single auxiliary veriable; and a comparison of their efficiency with the usual biased ratio estimator \bar{y}_{R} in large samples. In section 3 an attempt is made to obtain a large sample formula for the variance of the unbiased regression type estimators based on a single auxiliary variable; and to compare their effictency with tho usual blased regression estimator and the corresponiing Mickey's ratio type estimators. Section 4 is a
study of the unblased ratio type estimators based on two auxiliary variables in respect of their precision, in large samplen, and their relative efficiency compared with tho Olkin's weighted and biased ratio estimator. Section 5 doals with tho development of mickey's prinoiple to obtain unbiased ratio and regression type estimators in two-phase sampling. It also includes the unbiased estimation of thoir variances and a discussion of their large sample efficiency compared with the usual biased ratio and regression antimators in two-phase sampling. In section 6 separate and combined unblased ratio type estimators, based on Lickey's principle, are given for stratified almple random sampling without replacement together with the unbiased ostimation of their variance. Finally, Soction 7 gives some numerical rosults concerning the performance of the unbiased ratio type estimators with respect to the usual biased ratio estimators.

1. UNBIASED EST IMATION OF EST IMATOR VARIANCP

Hickey's 'unblased ratio and regression estimators' are particular cases of general cless of unblased estimators, developed hy him. A brief account of the sampling frame, sempling design, and the construction procedure of the general class of estimators is necessary to outline the results of this section.

Mickey's unbiased ostimators

Lot the finite population of size N be represented by a bet of $(p+1)$ component vectors

$$
\left(y_{j}, x_{1 j}, x_{2 j}, \ldots \ldots \ldots, x_{p j}\right), j=1,2, \ldots \ldots, N
$$

where $x_{1}, x_{2}, \ldots, x_{p}$ are p auxiliary variables with known population means $\bar{X}_{1}, \bar{X}_{2}, \ldots . . . \bar{X}_{p}$. The problem is to estimate the unknown population mean $\overline{\mathrm{Y}}$ of the variable y undor study. For this purpose, a simple random sample of size in is selected (without replacement) from the population. Let \bar{y}_{z} and $\bar{x}_{1}, 1=1,2, \ldots, p$ denote the sample means. Qiven this sample, for any choice of m of the semple elements, $m<n$, the remaining n-m elements constitute a simple random sampie of $B 1 z e n-m$ from the inite population of $\mathrm{N}-\mathrm{m}$ elements derived by excluding the selected melements from the givan population. Lot x_{m} represent the mample elcmonts so chosen out of the given sample and $a_{1}\left(z_{m}\right), i=1,2, \ldots, p$ denote some known real valued functions of the observations z_{m}. Further let \bar{y}_{m}, and $\bar{x}_{1 m}, i=1,2, \ldots, p$, be the means of the observations zm_{m}.

Now define
and

$$
\begin{aligned}
& \bar{y}_{n-m}=\frac{n \bar{y}-\bar{y}_{m}}{n-m}, \bar{x}_{1 n-m}=\frac{n \bar{x}_{1}-m \bar{x}_{1 m}}{n-m} \\
& \bar{X}_{1-m}=\frac{n \bar{Y}-m \bar{y}_{m}}{n-m} ; \bar{X}_{1 N-m}=\frac{\bar{X}_{1}-m \bar{x}_{i m}}{N-m}, 1=1,2, \ldots, p .
\end{aligned}
$$

Further let U_{m} denote the statistic given by

$$
\begin{equation*}
u_{m}=\bar{y}_{n-m}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(\bar{x}_{1 n-m}-\bar{x}_{1 N-m}\right) \tag{1.1}
\end{equation*}
$$

Then, if $\mathrm{E}\left(\mathrm{U}_{\mathrm{m}} / \mathrm{m}\right)$ denotes the conditional expectation for a given set z_{m}, we have

$$
E\left(U_{m} / m\right)=\bar{Y}_{N-m}
$$

Consequently, if $T_{m}=\frac{(N-m) U_{m n}+\overline{m y}_{m}}{N}$,
then $\quad E\left(T_{m} / m\right) \quad=\quad \bar{Y}$
Hence unconditionally also T_{m} provides an unbiased estimator of the population mean \bar{Y}.

The estimator T_{m} which can also be written in the following equivalent forms:

$$
\begin{align*}
& I_{m}=\bar{y}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(\bar{x}_{1}-\bar{X}_{1}\right)-\frac{m(N-n)}{N(n-m)} \sum_{i}^{T} \bar{y}_{m} \bar{y}-\sum_{i=1}^{p} a_{1}\left(\varepsilon_{m}\right)\left(\bar{x}_{1 m}-\bar{x}_{1}\right) ; \\
& =\frac{(N-m) n}{N(n-m)}\left[\bar{y}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(\bar{x}_{1}-\bar{X}_{1}\right)\right] \\
& \left.\frac{m(N-n)}{\|(n-m)}<\bar{y}_{m}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(\bar{x}_{1 m} \bar{X}_{1}\right)\right] \\
& =\sum_{i=1}^{p} a_{i}\left(z_{m}\right) \bar{X}_{1}+\frac{(N-m) n}{N(n-m)}\left[\bar{y}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right) \bar{x}_{1-}\right]- \\
& \frac{(N-n) m}{N(n-m)}\left[\bar{y}_{m}-\sum_{i=1}^{p} a_{i}\left(z_{m}\right) \bar{x}_{1 m}\right] \tag{1.6}
\end{align*}
$$

is hereafter called Mickey's unblased estimator, in its general form; meaning thereby Mickey's unbiased estimator T_{m} with arbitrary coofficient functions $a_{1}\left(z_{m}\right), 1=1,2, \ldots, p$. Here z_{ml} may ba taken as the observations on the first m draws of the sample of size n or as any subsample of size m from the given sample. Thus a general class of unblased estimators can be obtained by taking weighted averages of estimators of the form T_{m}, applied to all possible permutations of the semple elements. Of particular interest is the estimator T_{m}^{*} obtained from T_{m} by averaging over all possible permutations. This is so because the unordered sample plays the role of a sufficient statistic and by an appilcation of Rac-Blackwell thaorem it follows that the variance of T_{m} is never greater than that of T_{m}.
uickey has obtained unbiased Ratio and Regrassion type estimators as particular cases of the estimator T_{m} in its general form, by a proper choioe of the coefficient functions $a_{i}(\mathrm{zm})$, $1=1,2, \ldots, p$.

Unblased Ratio type estimators

For example, when information on only one auxiliary variable la available, the choice $a\left(z_{m}\right)=\bar{y}_{m} / \bar{x}_{m}=R_{m}$, applied to the form (1.5) of T_{m}, provides an unblased ratio type estimator $\mathrm{T}_{\text {2m }}$ given by

$$
\begin{equation*}
T_{1 m}=R_{m} \bar{X}+\frac{(N-m) n}{N(n-m)}\left[\bar{y}-R_{m} \bar{x}\right] . \quad . \tag{2.6}
\end{equation*}
$$

Averaging over all possible permutations, we obtain the more efficient unblased ratio type estimetor $\mathrm{F}_{\mathrm{im}}^{\mathrm{m}}$ given by

$$
\begin{equation*}
\Psi_{2 m}=\dot{R}_{m} \bar{X}+\frac{(N-m) n}{N(n-m)}\left[\bar{y}-R_{m} \bar{x}\right] \tag{1.7}
\end{equation*}
$$

where R_{m} is the average of $R_{\mathbb{E}}$ over all permutations.

Unbiased Regression type estimators

$$
\text { With the choice } a\left(z_{m}\right)=\frac{\sum_{j}^{m}\left(y_{g}-\bar{y}_{m}\right) x_{g}}{\sum_{j}^{m}\left(x_{j}-\bar{x}_{m}\right)^{2}}=b_{m} \text {, }
$$

the usual linear regression coefficient based on the observations z_{m}; expression (1.3) for Fm yields a regression type estimator Pam given by $^{\text {given }}$

$$
\begin{equation*}
T_{2 m}=\left[\bar{y}-b_{m}(\bar{x}-\bar{x})\right]-\frac{m(N-n)}{(n-m \| N}\left[\bar{y}_{m}-\bar{y}-b_{m}\left(\bar{x}_{m}-\bar{x}\right)\right] \tag{2.8}
\end{equation*}
$$

Averaging over all permutations we obtain

$$
\begin{equation*}
I_{2 m}=\left[\bar{y}-b_{m}(\bar{x}-\bar{x})\right]+\frac{m(N-n)}{(n-m) N} * \frac{1}{\binom{n}{m}} \sum^{\binom{n}{m}} b_{m}(\bar{x}(\bar{m}-\bar{x}), \tag{1.9}
\end{equation*}
$$

where b_{m} is the average of b_{m} over all permutations.
The present section deals with the unbiased estimacion of the variance of Mickey's unbiased estimators T_{m} and Tm; in their general form.

Unbiased estimator of the variance of T_{m}
Prom the well known formula, connecting variance, with the conditional expectation and conditional variance, we have

$$
\begin{aligned}
V\left(T_{m}\right) & =E\left(V\left(T_{m} / m\right)\right)+V\left(B\left(I_{m} / m\right)\right) \\
& =B\left(V L \frac{(N-m) U_{m}+\overline{m y}_{m}}{V} / m\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{(N-m)^{2}}{N^{2}} E\left[V\left(U_{m} / m\right)\right] \\
& =\frac{(N-m)^{2}}{N^{2}} E\left[V\left(\bar{y}_{n-m}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right) \bar{x}_{i n-m} / m\right)\right] . \tag{1.10}
\end{align*}
$$

from the definition (1.1) of U_{m}.
Now we observe that

$$
\bar{y}_{n-m}^{\prime}=\bar{y}_{n-m}-\sum_{i=1}^{p} a_{i}\left(z_{m}\right) \bar{x}_{i n-m}
$$

is the arithmetio mean of the observations

$$
y_{j}^{\prime}=y_{j}-\sum_{i=1}^{p} z_{i}\left(z_{m}\right) x_{i j},
$$

made on the $n-m$ sample elemente which are obtained by exclud1ng z_{m} from the given sample of size n. Purther, since for a given choice of $2 m$, the remaining $n-m$ semple elementa constitute a random aample from the derived population of size $N-m$, it can be seen that a non-ve unblased estimator of

$$
v\left(\bar{y}_{n-m}^{\prime} / m\right)
$$

is provided by

$$
\begin{equation*}
\frac{N-n}{(N-m)(n-m)} s_{y^{\prime}}^{2}, n-m \quad, m=1,2, \ldots, n-2 \tag{1.11}
\end{equation*}
$$

where

$$
s_{y^{\prime}, n-m}^{2}=\frac{1}{n-m-1} \sum_{j}^{n-m}\left(y_{j}^{\prime}-\bar{y}_{n-m}^{\prime}\right)^{2},
$$

the sumantion being taken over the remaining $n-m$ sample elements. Consequentiy, from (1.10) and (1.11), a non-ve unbiased estimator of the variance of $\mathrm{T}_{\mathrm{m}} \mathrm{is}$ given by

$$
E_{s t,} V\left(T_{m}\right)=\frac{(N-n)(N-m)}{N^{2}(n-m)} \frac{1}{n-m-2} \sum_{j}^{n-m}\left[\left(y_{i}-\bar{y}_{n-m}\right)-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(x_{1 j}-\bar{x}_{i n-m}\right)\right]^{8}
$$

This estimator holds good for all values of m less than n except for $m=n-1$, in which case there is only one observation of the type y_{j}^{\prime}. Purther it can be seen that the
reliability of the Esth($\left.T_{m}\right)$ is more for small values of m than for the choices of m near to the total sample size n, as $s_{y^{\prime}, n-m}^{2}$ is based on $n-m-1$ degrees of freedom.

Unbiased estimator of the variance of T_{m}
since for a given sample of size $n, E\left(T_{m} / n\right)=T_{m}^{*}$,
we have

$$
V\left(T_{m}\right)=E\left(T_{m}-T_{m}^{*}\right)^{2}+V\left(T_{m}^{*}\right)
$$

Averging over all the possible $\left(\frac{n}{n}\right)$ estimators of the form Tm will therefore give

$$
\begin{equation*}
\frac{1}{\binom{n}{m}} \sum^{\binom{n}{m}} V\left(T_{m}\right)=E \frac{1}{\binom{n}{m}} \sum^{\binom{n}{m}}\left(T_{m}=T_{m}^{*}\right)^{2}+V\left(T_{m}^{*}\right) . \tag{1.13}
\end{equation*}
$$

From this it follows that en unbiased estimator of the variance of $\mathrm{rm}_{\mathrm{m}}^{\boldsymbol{*}}$ is given by

$$
\begin{equation*}
\text { Est. } V\left(T_{m}^{*}\right)=\frac{2}{\binom{n}{m}} \sum_{j}^{n-m}\left[\operatorname{sst} \cdot V\left(T_{m}\right)-\left(T_{m}-T_{m}^{*}\right)^{2}\right] \tag{1.14}
\end{equation*}
$$

where Bst.V(T_{m}) is provided by (1.12).

Particular gases

For the ratio type estimators $T_{\text {mm }}$ and $T_{1 m}^{*}$, from (1.12) and (1.14) unbiased estimators of the variance are provided by

$$
\begin{equation*}
\text { Est. } V(T 1 m)=\frac{(N-n)(N-m)}{N^{2}(n-m)} \cdot \frac{1}{(n-m-1)} \sum_{j}^{n-m}\left[\left(y_{g}-\bar{y}_{n-m}\right)-n_{m}\left(x_{g}-\bar{x}_{n-m}\right)\right]^{2} \tag{1.16}
\end{equation*}
$$

and Est. $V\left(T_{i m}^{*}\right)=\frac{1}{\binom{n}{m}} \sum^{\binom{n}{m}} E_{s t} \cdot V\left(T_{I m}\right)$

$$
-\left(\bar{x}-\frac{(N-m) n}{N(n-m)} \bar{x}^{2} \frac{1}{\binom{n}{m}} \sum^{\left(\begin{array}{l}
n \tag{1.16}
\end{array}\right)}\left(R_{m}-R_{m}^{*}\right)^{2}\right.
$$

For the regression type estimators $T_{2 m}$ and $T_{8 m}^{\circ}$, unbiased estimators of the variance are given by

Est. $V\left(T_{2 m}\right)=\frac{(N-n)(N-m)}{N 2(n-m)} \cdot \frac{1}{(n-m-1)} \sum_{j}^{n-m}\left[\left(y_{j}-\bar{y}_{n-m}\right)-b_{m}\left(x_{j}-\bar{x}_{n-m}\right) \xrightarrow{2}\right]$
and Est. $\left.V\left(T_{2 m}^{*}\right)=\frac{1}{\binom{\binom{n}{m}}{m}} \sum^{\text {Est. }} V\left(T_{2 m}\right)-\left(T_{2 m}-T_{2 m}^{*}\right)^{2}\right]$ (1.18)

Goodman and Hartloy (2958) have investigated, in large semples, the relative efficiencies of the ratio type estimators $\bar{y}_{R}=\frac{\bar{y}}{\bar{x}} \bar{x}, \bar{y}_{r}=\bar{z} \bar{x}$,
and $\bar{y}_{r}^{\prime}=\bar{r} \bar{x}+\frac{(N-1) n}{N(n-1)}(\bar{y}-\bar{r} \bar{x}), \quad\left(\bar{r}=\frac{1}{n} \sum_{j}^{n} \frac{y_{y}}{x_{j}}\right)$
of which the first two are biased estimators and the third an unbiesed estimator of \bar{Y}. They have shown that in large semples the estimator \bar{y}_{r}^{\prime} is more eppicient than \bar{y}_{R}, if and only if the slope of the regression line of y on x is closer to $\bar{r}_{p}=\frac{1}{\pi} \sum_{j=1}^{N} \frac{y_{j}}{x_{j}}$ than to the population ratio $R=\bar{Y} / \bar{X}$.

In this section, we shall investigate the relative. officiencies of mickey's unblased ratio type estimators:

$$
\begin{align*}
T_{2 m} & =R_{m} \bar{x}+\frac{(N-m) n}{N(n-m)}\left(\bar{y}-R_{m} \bar{x}\right) \tag{2,1}\\
\text { and } \quad T_{j m}^{*} & =R_{m}^{*} \bar{x}+\frac{(N-m) n}{N(n-m)}\left(\bar{y}-R_{m}^{*} \bar{x}\right) \tag{2,2}
\end{align*}
$$

with respect to the conventional blased ratio estimator \bar{y}_{R}, for large samples.

We shall first obtain the variance of $\mathrm{I}_{\text {Im }}$, in large samples, for m sufficientiy large and compare it with the variance of the usual blased ratio eatimator $\bar{y}_{\mathbb{R}}$. After this an expression for the variance of $T{ }^{*}$, in large samples, will be derived. It will be seen that considerable simplification is offected in the large sample variance express ${ }_{n}^{10 n}$ of $\mathrm{I}_{\mathrm{m}}^{*}$
when either is small as compared to n or when mas sufidentil large. From the practical point of view these two cases are most important as in these two cases only computation of the estimator T^{m} and of the unbiased estimator of its variance, given in section 1 , is most convenient. Finally, assuming the population to follow a bivariate normal distribution, we shall further investigate the variances of $I_{j m}$ and $T^{*}{ }_{m}$, when m is large; and discuss the relative efficiency of $\mathrm{T}_{\mathrm{Im}}^{*}$ with respect to $\overline{\mathrm{y}}_{\mathrm{R}}$.

Variance of ${ }^{T}$ In for large m To derive an expression for the variance of the estimator I_{im} in large samples for m sufficiently large, the results of the following lemma will be useful.

Lemmas- In simple random samples (without replacement) of size n from a bivariate finite population of N pairs (x_{i}, y_{i}) 1=1,2,...., N,

$$
\begin{aligned}
& \operatorname{Cov}\left(\bar{x}, s_{\bar{z}}^{2}\right)=K_{n, N} \mu_{03}, \operatorname{Cov}\left(\bar{y}, s_{x}^{2}\right)=x_{n, N} \mu_{18}, \\
& \operatorname{Cov}\left(\bar{x}, s_{x y}\right)=K_{n, N} \mu_{12}, \operatorname{Cov}\left(\bar{y}, s_{x y}\right)=K_{n, N} \mu_{21},
\end{aligned}
$$

where \bar{z} and \bar{y} are the sample mans, \bar{X} and \bar{Y} are the population means,

$$
\begin{aligned}
& s_{x}^{8}=\frac{1}{n-2} \sum_{i}^{n}\left(x_{1}-\bar{x}\right)^{2}, \quad s_{x y}=\frac{1}{n-1} \sum_{i}^{n}\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right), \\
& \mu_{03}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{1}-\bar{x}\right)^{3}, \mu_{12}=\frac{1}{N} \sum_{i=1}^{N}\left(y_{1}-\bar{Y}\right)\left(x_{1}-\bar{x}\right)^{2},
\end{aligned}
$$

$$
\begin{aligned}
\mu_{21}= & \frac{1}{N} \sum_{i=1}^{N}\left(y_{1}-\bar{x}\right)^{2}\left(x_{1}-\bar{x}\right) \text { and } \\
& K_{n, N}=\left[\frac{1}{n}-\frac{n-3}{n(N-1)}-\frac{2(n-2)}{n(N-1)(N-2)}\right]
\end{aligned}
$$

Proof:- Without loss of generality, in the evaluation of these covariances, one may assume the population means \bar{X} and \bar{Y} to be zeros.

Then

$$
\begin{aligned}
& \operatorname{cov}\left(\bar{y}, s_{x}^{2}\right)=\frac{1}{n(n-1)} E\left[\left(\sum_{i}^{n} y_{1}\right)\left(\sum_{i}^{n} x_{i}^{2}-\frac{\left.\left(\sum_{i}^{n} x_{i}\right)^{8}\right)}{n}\right]\right. \\
& =\frac{1}{n(n-1)}\left[\frac{n-1}{n}\left(\sum_{i}^{n} y_{1} z_{1}^{2}+\sum_{i \neq j}^{n} y_{i} x_{j}^{2}\right)-\frac{8}{n} \sum_{i \neq j}^{n} y_{i} x_{i} x_{j}-\frac{1}{n} \sum_{i \neq j \neq k}^{n} y_{i} x_{j} x_{j}\right] \\
& =\frac{2}{n(n-i)} \int \frac{n-1}{n}\left(c_{1} \sum_{i=1}^{N} y_{i} x_{i}^{2}+c_{2} \sum_{i \neq j}^{N} y_{i} x_{j}^{2}\right)-\frac{208}{n} \sum_{i \neq j}^{N} y_{i} x_{1} x_{j}-\frac{c_{3}}{n} \sum_{i \neq j \neq k}^{N} y_{j} x_{j} x_{k}
\end{aligned}
$$

where, $c_{1}=-\frac{n}{N}, \quad c_{2}=\frac{n(n-1)}{N(N-1)}$ and $c_{3}=\frac{n(n-2)(n-2)}{N(N-1)(N-2)}$.

Thus

$$
\begin{aligned}
\operatorname{Cov}\left(\bar{y}, \varepsilon_{x}^{2}\right) & =\frac{1}{n(n-1)}\left[\frac{n-1}{n}\left(c_{1} N \mu_{12}-c_{2} N \mu_{12}\right)+\frac{{ }^{2} c_{2}}{n} N \mu_{12}-\frac{80_{3}}{n} N \mu_{12}\right] \\
& =K_{n, N} \mu_{18}, \text { where } K_{n, N}=\left[\frac{1}{n}-\frac{n-3}{n(N-1)}-\frac{2(n-2)}{n(N-1)(N-2)}\right]
\end{aligned}
$$

Putting $x=y$ in this result have $\operatorname{Cov}\left(\bar{x}, s_{x}^{2}\right)=K_{n, N} \mu_{03^{*}}$
$\operatorname{Now}\left(\bar{x}, n_{x y}\right)=\frac{1}{n(n-1)} E\left[\left(\sum_{i}^{n} x_{1}\right)\left(\frac{n}{\left.\left(\sum_{i} x_{1} y_{1}-\frac{\left(\sum_{i}^{n} x_{1}\right)\left(\sum_{i}^{n} y_{1}\right)}{n}\right)\right]}\right]\right.$

$$
\begin{aligned}
& =n\left(\frac{1}{n-1}\right)\left[\frac{n^{n}-1}{n}\left(\sum_{i}^{n} x_{i}^{2} y_{1}+\sum_{i \neq j}^{n} x_{i} x_{j} y_{j}\right)-\frac{1}{n} \sum_{i \neq j}^{n} x_{j}^{2} y_{j}\right. \\
& \left.\quad-\frac{1}{n} \sum_{i \neq j}^{n} x_{1} x_{j} y_{j}-\frac{1}{n} \sum_{i \neq j \neq k}^{n} x_{i} x_{j} y_{k}\right]
\end{aligned}
$$

$$
=\frac{1}{n(n-1)}\left[\frac{n-1}{n}\left(c_{2} N \mu_{12}-c_{2} N \mu_{12}\right)+\frac{202}{n} N \mu_{12}-\frac{2 c_{3}}{n} N \mu_{12}\right]
$$

$$
=x_{n, N} \mu_{12}
$$

Similarly $\operatorname{Cov}\left(\bar{y}, s_{x y}\right)=K_{n_{1} N} / \mu_{21}$.
Q.E.D.

We now proceed to derive $V\left(T_{m}\right)$.
Since $T_{1 m}$ results from T_{m}, in its general form, by putting $p=1$ and a $\left(z_{m}\right)=R_{m s}$ we have from (1.20) Section 1 ,

$$
\begin{align*}
V\left(T_{m}\right) & \left.=\frac{(N-m)^{2}}{N^{2}} E / v\left(\bar{y}_{n-m}-R_{m} \bar{x}_{n-m} / m\right)\right] \\
& \left.=\frac{(N-m)(N-n)}{N^{2}(n-m)} E / \Omega_{N-m, y}^{2}+R_{m}^{2} \quad s_{N-m, x}^{2}-2 R_{m} s_{N-m, x y}\right], \tag{2.3}
\end{align*}
$$

where $s_{N-m, y}^{2}, s_{N-m, x}^{Z}$ and $s_{N-m, ~ x y}$ are the mean sums of squares and mean sum of products in the derived population of size $N-m$.

Write $\bar{y}_{m}=\bar{X}_{+\theta_{1}}, \bar{x}_{m}=\bar{x}+\theta_{2}, s_{\text {Al -mix }}^{2}=s_{x}^{\varepsilon_{+\theta_{3}}}$ and $s_{N-m, x y}=s_{x y}+\theta_{4}$, where s_{y}^{2}, s_{x}^{2} and $s_{x y}$ are the mean sums of squares and mean sum of products in the population of size N , and
$E\left(\theta_{2}\right)=E\left(\theta_{2}\right)=E\left(\theta_{3}\right)=E\left(\theta_{4}\right)=0$
$E\left(e_{2}^{3}\right)=\frac{N-m}{N m} s_{y}^{2}, B\left(e_{2}^{\dot{2}}\right)=\frac{N-m}{N} g_{x}^{2}$, and $E\left(e_{1} e_{2}\right)=\frac{N-m}{N m} s_{x y}$.

Also $E\left(\theta 1^{8 a}\right)=\operatorname{Cov}\left(\bar{y}_{m, ~}, 8\right.$ in $-m, \bar{x}^{2}$

$$
\begin{aligned}
& =-\frac{N-m}{m} \operatorname{Cov}\left(\bar{X}_{N-m}, s_{N-m, x}^{2}\right) \\
& =-\frac{N-m}{m} X_{N-m, N} \mu_{12}, \text { from the lemma } \\
& =-\frac{N}{(N-N(N-2)} \mu_{12} .
\end{aligned}
$$

Similarly

$$
\begin{align*}
E\left(\theta_{2} e_{3}\right) & =-\frac{N}{(N-1)(N-2)} \mu_{03} . \\
E\left(e_{1} e_{4}\right) & =-\frac{N}{(N-1)(N-2)} \mu_{21} . \\
\text { and } E\left(e_{2} e_{4}\right) & =-\frac{N}{(N-1)(N-2)} \mu_{12} . \tag{2.4}
\end{align*}
$$

Now in the formula (2.3), to evaluate the term $E\left(R_{m}^{2} s_{\mathbb{N}-m, x}^{2}\right.$) we assume that m is sufficiently large, and write $E\left(f_{m}^{2} s_{N-m, x}^{2}\right)=E^{8} s_{x}^{2} E\left[\left(1+\frac{\theta_{1}}{\bar{Y}}\right)^{2}\left(1+\frac{e_{2}}{X}\right)^{-2}\left(1+\frac{\theta_{3}}{\theta_{x}^{Z_{x}}}\right]\right.$

$$
=R^{2} s_{x}^{2} \mathrm{E}\left[\left(1+\frac{{ }^{2 e_{1}}}{\bar{Y}}+\frac{\theta_{I}^{2}}{\bar{z}^{2}}\right)\left(1-\frac{2 e_{2}}{\overline{\bar{x}}}+\frac{3^{2}}{\bar{x}_{2}^{2}}\right)\left(1+\frac{e_{3}}{s_{x}^{2}}\right)\right]
$$

$$
-R^{3} s_{x}^{2} E / 1+\frac{2 \theta_{1}}{\bar{Y}}-\frac{2 \theta_{2}}{\bar{X}}+\frac{\theta_{3}}{s_{x}^{2}}+\frac{2 e_{1} \theta_{3}}{\overline{y_{x}^{2}}}-\frac{4 \theta_{1} \theta_{2}}{\overline{Y X}}
$$

$$
\begin{equation*}
-\frac{2 \theta_{2^{\theta}}}{\bar{x} s_{x}^{2}}+\frac{\theta_{1}^{2}}{\bar{y}^{8}}+\frac{8_{2}^{2}}{\bar{x}_{2}^{2}} \eta, \quad \cdots \tag{2.6}
\end{equation*}
$$

neglecting expectations of cubic and higher powers in e^{8}.
Substituting the expected values from (2.4) in (2.5), we obtain, to the order of approximation $1 / m$,
$E\left(R_{m}^{2} s_{N-m, x}^{2}\right)=R^{2} g_{x}^{2}\left[1+\frac{N-m}{N-m}\left(C_{y}^{2}+3 C_{x}^{2}-4 C_{x y}\right)+\frac{2 N}{(N-1)(N-E)}\left(\frac{\mu_{03}}{\overline{X B}_{x}^{2}} \frac{\mu_{12}}{\overline{\mathrm{Y}} \mathrm{B}_{x}^{2}}\right)\right]$
(2.6)
where $\quad c_{y}^{2}=s_{y}^{2} / \bar{X}, c_{z}^{2}=s_{x}^{2} / \bar{X}^{2}$ and $c_{x y}=s_{x y} / \overline{X X}$.
Proceeding on similar ines, to the same order of approximation, it can be seen that
$E\left(R_{x y} S_{N-m, x y}\right)=R s_{x y}\left[1+\frac{N-m}{N m}\left(C_{x}^{2}-C_{x y}\right)+\frac{N}{(N-1)(N-2)}\left(\frac{\mu_{12}}{\bar{X} s_{x y}} \frac{\mu_{21}}{\bar{Y} s_{x y}}\right)\right]$

Substituting the results (2.6) and (2.7) in (2.3) and simplifying, we obtain

$$
\begin{align*}
V\left(T_{2 m}\right) & =\bar{Y}^{2} \frac{(N-m)(N-n)}{N^{2}(n-m)}\left[\left(C_{y}^{2}+C_{x}^{2}-2 C_{x y}\right)\left(2+\frac{N-m}{N m} C_{x}^{2}\right)+\frac{2(N-m)}{N m}\left(C_{x}^{2}-C_{x y}\right)^{2}\right] \\
& -2 \frac{(N-m)(N-n)}{N(N-\bar{L})(N-2 \underline{2}(n-m)}-\left[R^{2}\left(\frac{\mu_{18}}{\bar{y}}-\frac{\mu_{03}}{\bar{x}}\right)-R\left(\frac{\mu_{21}}{\bar{Y}}-\frac{\mu_{12}}{\bar{x}}\right)\right] . \tag{2.8}
\end{align*}
$$

If the finite population correction factor is negligible, then $V\left(T_{j m}\right)$ simplifies to

$$
\begin{equation*}
V\left(T_{1 m}\right)=\frac{\bar{x}^{2}}{(n-m)}\left[\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)\left(1+\frac{c_{x}^{2}}{m}\right)+\frac{2}{m}\left(c_{x}^{2}-c_{x y}\right)^{2}\right] \tag{2.9}
\end{equation*}
$$

Efficiency of Ty for large m

In large samples from a large population, the variance of the usual biased ratio estimator \bar{y}_{R} is given by

$$
\begin{equation*}
v\left(\bar{y}_{R}\right)=\frac{\bar{x}^{2}}{n}\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right) \tag{2.10}
\end{equation*}
$$

A comparison of (2.9) and (2.10) clearly shows that, when m is large and the finite population correction factor is negilgibie, the unblased ratio estimator $T_{\text {Im }}$ is less efficient than the usual Diased ratio estimator \bar{y}_{R}.

Also from (2.10), we can write

$$
V\left(T_{1 m}\right)=\frac{A}{n-m}+\frac{B}{m(n-m)}
$$

where A and B are constants independent of m; which indicates that $V(T y)$ increases as m increases $\operatorname{Irom} n / 2$ to $n-1$. Thus In large populations, with a sufficiently large samplo, efficlency of $\mathrm{I}_{\mathrm{y}} \mathrm{m}$ goes down es the choice of m is made closer and closer to the total sample size n.

It may be noted that I_{m} is mainly dependent on the unbiased estimator of the mean of the derived population and that this unbiased estimator is based on the derived semple of bize $n-m$. Now as the choice of m is made nearer and nearer to the total sample size n, the size of the derived sample decreases and consequentiy the precision of the unbiased estimator of the derived population is likely to decrease. This may be one of the reasons for the deorease in the efficiency of T_{Im} as w approaches the total sample size n , in large populations.

Variance of Ijn in large samples
Putting $k=\frac{(N-m) n}{N(n-m)}$, from the defintion (2.2) of T^{*}, we have

$$
\begin{align*}
V\left(T_{m}^{*}\right)= & \bar{x}^{2} v\left(R_{m}^{*}\right)+x^{2} v(\bar{y})+k^{2} V\left(\bar{x} R_{m}^{*}\right) \\
& +a k \bar{x} \operatorname{cov}\left(\bar{y}, R_{m n}^{*}\right)-2 k \bar{x} \operatorname{cov}\left(R_{m}^{*}, \bar{x} R_{m}^{*}\right)-2 k^{2} \operatorname{cov}\left(\bar{y}, \tilde{x} R_{m}^{*}\right) . \tag{2.11}
\end{align*}
$$

Now urite $\overline{\bar{y}}=\overline{\bar{X}}+\theta_{1} ; \overline{\mathrm{X}}=\overline{\mathrm{X}}+e_{2}$ and $\mathrm{B}_{\mathrm{m}}=\overline{\mathrm{H}}_{\mathrm{m}}+\theta_{3}$,
where $\bar{E}_{m a}=\frac{2}{\binom{N}{n}} \sum^{\binom{N}{n}} n_{m}$, the summation being taiken over all the
so that $B\left(e_{1}\right)=E\left(e_{2}\right)=B\left(e_{3}\right)=0$

$$
\begin{gathered}
V\left(\theta_{1}\right)=V(\bar{y}), V\left(\theta_{2}\right)=V(\bar{x}), V\left(\theta_{3}\right)=V\left(R_{01}\right) \\
\text { and } \operatorname{Cov}\left(\theta_{\mu_{2}}\right)=\operatorname{Cov}(\bar{y}, \bar{x}), \operatorname{Cov}\left(\theta_{2}, \theta_{3}\right)=\operatorname{Cov}\left(\bar{y}, R_{m i n}\right), \operatorname{Cov}\left(\theta_{2}, \theta_{3}\right)=\operatorname{Cov}(\bar{x}, \operatorname{Fim})
\end{gathered}
$$

Neglecting expectations of texms in $\theta^{\prime s}$ of order 3 or more, we have then

$$
\begin{align*}
& V\left(\bar{x} R_{m}\right)=V\left(\bar{E}_{m} \bar{x}+\theta_{8} \bar{x}+\theta_{2}{\overline{\Gamma_{m}}}_{m}+\theta_{2} \theta_{3}\right) \tag{2.12}
\end{align*}
$$

84milariy, to the same oxder of approximation,

$$
\begin{equation*}
\operatorname{cov}\left(\mathrm{a}_{\mathrm{m}}^{*}, \overline{\mathrm{x}} \mathrm{E}_{\mathrm{m}}^{*}\right) \simeq \overline{\mathrm{X}} \vee\left(\mathrm{E}_{m}^{2}\right) \rightarrow \bar{R}_{m} \operatorname{Cov}\left(\overline{\mathrm{x}}, \mathrm{R}_{m}^{*}\right) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Cov}\left(\bar{y}, \bar{x} R_{m}\right)=\bar{x} \operatorname{Cov}\left(\bar{y}, R_{m}\right)+\bar{x}_{m} \operatorname{Cov}(\bar{y}, \bar{x}) . \tag{2.16}
\end{equation*}
$$

Using (8.12), (2.13) and (8.14) in (2.12), obtain

$$
\begin{align*}
& V\left(T_{j m}^{*}\right) \quad=k^{2} V(\bar{y})+k^{2} \tilde{x}^{2} V(\bar{x})+(k-1)^{2} \bar{x}^{2} V\left(R_{m}^{*}\right)-2 k^{2} \bar{R}_{m} \operatorname{cov}(\bar{y}, \bar{x}) \\
& -2 k(x-1) \bar{x} \operatorname{cov}\left(\bar{y}, n_{m}\right)+2 k(k-2) \bar{x} \bar{x}_{m} \operatorname{cov}\left(\bar{x}, x_{n}\right) \tag{2.18}
\end{align*}
$$

Expression (2.16) provides the variance of $T_{i m}$ in large samples for any m less than n.

Efficiency of Φ^{*} im for small m, in large samples
Assume that m is so small as compared to n, so that
$k=\frac{N-m}{N} \cdot \frac{n}{n-I_{l}}=1$. Then, from (2.15), we have

$$
\begin{align*}
v\left(T_{i m}^{*}\right) & =v\left(\bar{y}_{j}^{*}\right)+\overline{\bar{R}}_{m}^{2} v(\bar{x})-2 \bar{R}_{m} \operatorname{Cov}(\bar{y}, \bar{x}), \tag{2.16}\\
& =\frac{N-n}{N n} \cdot \frac{1}{N-1} \sum_{j=1}^{N} \Gamma\left(y_{j}-\bar{y}\right)-\bar{x}_{m}\left(x_{j}-\bar{x}\right) 7^{2} \tag{2.17}
\end{align*}
$$

In large samples, the corresponding expression for the variance of the usual blased ratio estimator \bar{y}_{R} is given by

$$
\begin{equation*}
v\left(\vec{y}_{R}\right)=\frac{N-n}{N n} \cdot \frac{1}{N-1}\left[\left(y_{g}-\bar{Y}\right)-R\left(x_{g}-\bar{x}\right)\right]^{2} . \tag{2.28}
\end{equation*}
$$

Thus (2.17) and (2.18) show that T im is more precise than \bar{y}_{R}, in large semples for m amall compared to n, If and only if the line $\bar{Y}+\bar{E}_{n}\left(x_{j}-\bar{X}\right)$ fits the values y_{j} more closely than the line $R x_{j}$; in other words, if the slope of $\binom{N}{m}$ the regression ilne of y on x is closer to $\bar{E}_{m}=\frac{1}{\binom{N}{n}} \sum^{(N)} R_{m}^{*}=\frac{1}{\binom{N}{m}} \sum^{N}$ than to the population ratio $R=\overline{\mathrm{Y}} / \overline{\mathrm{X}}$.

In particular, when mal, $\mathbf{I}_{21}=\bar{y}_{r}{ }^{\prime}$, the Hartioy and Ross unblased estimator and $\bar{X}_{m}=\frac{1}{N} \sum_{j=1}^{N} y_{j} / x_{j}=\bar{F}_{p}$, so that we arrive at the conclusion of Goodman and Hartiey (1958) that \bar{y}_{r}^{\prime} is more epficient than \bar{y}_{R}, in large samples, if and only if the slope of the regression line of y on \times is oloser to \bar{r}_{p} than to .

Efficiency of In for large
To obtain the variance of the estimator T mm for m sufficient in large, we further evaluate the terms $V\left(R_{m}^{*}\right)$, $\operatorname{Cov}\left(\bar{y}, R_{m}\right)$ and $\operatorname{Cov}\left(\bar{x}, R_{m}\right)$ occurring inthe large sample variance expression (2.16) of the estimator $\boldsymbol{T}^{\boldsymbol{T}} \mathrm{m}$. In their evaluation we suppose that terms of order $1 / \mathrm{mn}$ or $1 / \mathrm{n}^{2}$ can be neglected.

苟e have

$$
V\left(R_{m}\right)=E\left[V\left(R_{m} / n\right)\right]+V\left[E\left(R_{m} / n\right)\right]
$$

But since $\mathrm{E}\left(\mathrm{R}_{\mathrm{m}} / \mathrm{n}\right)=\mathrm{R}_{\mathrm{m}}$,

$$
\begin{align*}
V\left(R_{m}^{*}\right) & =V\left(R_{m}\right)-E\left[V\left(R_{m} / n\right)\right] \\
& =\frac{N-m}{N m} R^{2}\left(C_{y}^{2}+C_{x}^{2}-2 C_{x y}\right) \\
& \therefore-E \frac{n-m}{n m} R_{n}^{2}\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right) \\
& \therefore \frac{N-n}{N n} R^{2}\left(c_{y}^{2}+C_{x}^{2}-2 c_{x y}\right) \tag{8.19}
\end{align*}
$$

where $=\bar{y} / \bar{x}, \quad c_{y}^{2}=s_{y} / \bar{y}^{2}, \quad c_{x}^{2}=\varepsilon_{x}^{2} / x^{2}$ and $c_{x y}=s_{x y} \sqrt{x y}$. Here $s_{y}^{2}, \mathbf{s}_{x}^{2}$, and any represent the mean sums of squares and sum of products in the sample of size n.

Proceeding on similar ines with the help of the formula t $\operatorname{Cov}\left(\bar{y}_{m}, B_{m}\right)=E\left[\operatorname{Cov}\left(\bar{y}_{m}, R_{m} / n\right)\right]+\operatorname{Cov}\left[E\left(\bar{y}_{m} / n\right), E\left(a_{m} / n\right)\right] ;$ It can be shown that

$$
\begin{equation*}
\operatorname{Cov}\left(\bar{y}, R_{m}^{*}\right) \simeq \frac{N-n}{N n} R \bar{Y}\left(C_{y}^{2}-C_{x y}\right) \tag{2.20}
\end{equation*}
$$

Again, by a similar argument, to the same order of approximation, we have

$$
\begin{equation*}
\operatorname{Cov}\left(\bar{x}, R_{m}^{*}\right) \simeq \frac{N-n}{N n} \bar{X}\left(c_{x y}-c_{x}^{2}\right) \tag{2.21}
\end{equation*}
$$

Using the results (2.29), (2.20) and (2.21) in (2.15) and observing that $\bar{R}_{m} \cong R$ when m is sufficiently large, we obtain, to the order of approximation $1 / n$,

$$
\begin{equation*}
v\left(T_{i m}^{*}\right) \quad=\frac{N-n}{N n} \bar{Y}^{2}\left(C_{y}^{2}+C_{x}^{2}-2 C_{x y}\right) \tag{2.22}
\end{equation*}
$$

This shows that, in large samples to the order of approximation $1 / n$, when \dot{m} is sufficiently large, the unbiased ratio estimator $T_{j m}^{*}$ and the conventional biased ratio estimator $\bar{y}_{\mathbb{R}}$ are of equal precision.
$V\left(P_{I m}\right)$ and $V\left(T_{I_{m}}\right)$ when m is Large,
In a large 'bivarlate normal' population
Assuming that the population is large and follows a bivariate normal distribution, the variances of the estimators $I_{I m}$ and $T_{I_{m}}^{*}$ are obtained here to the order of approximation $1 / \mathrm{m}^{2}$. In this sense the results, obtained here, may be considered as improved approximations over the corresponding results of above.

It has been shown by Sukhatme (1954) that in random samples of size n from a large population, following a bivarlate normal distribution, the expected value, the variance and the mean square error (M.S.E.) of the usual
biased ratio estimator $\overline{\mathrm{y}}_{\mathrm{R}}$, to the order of approximation $1 / n^{2}$, are given by

$$
\begin{align*}
& E\left(\bar{y}_{R}\right)=\bar{Y}\left[1+\frac{1}{n}\left(c_{x}^{2}-c_{x y}\right)\left(2+\frac{3}{n} c_{x}^{2}\right)\right] \tag{2.23}\\
& \left.V\left(\bar{y}_{R}\right)=\bar{Y}^{2} /\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)\left(\frac{1}{n}+\frac{3}{n^{2}} c_{x}^{2}\right)+\frac{5}{n^{2}}\left(c_{x}^{2}-c_{x y}\right)^{2}\right]
\end{align*}
$$

(2.24)
and

$$
\begin{equation*}
\text { M.S.E. }\left(\bar{y}_{R}\right)=\bar{Y}^{2}\left[\left(c_{y}{ }^{2}+c_{x}^{2}-2 c_{x y}\right)\left(\frac{1}{n}+\frac{3}{n^{2}}-c_{x}^{2}\right)+\frac{6}{n^{2}}\left(c_{x}^{2}-c_{x y}\right)\right)^{8} 7 \tag{2.23}
\end{equation*}
$$

Por the finite population of size N , the effect will be approximately to write $\mathrm{N}-\mathrm{n} / \mathrm{Nn}$ for n in the above expressions.

Variance of ${ }^{T}$ Im

From (8.3), we have

$$
\begin{equation*}
V\left(T_{1 m}\right)=\frac{1}{n-m} E\left[8_{N-m, y}^{2}+n_{m}^{2} s_{N-m, x}^{2}-2 R_{m} s_{N-m, x y}-7\right. \tag{2,26}
\end{equation*}
$$

when the Inite population correction factor is assumed to be negligible.

Now aince in samples from a bivariate normal population the sample means are independently distributed of the sample variances and covarlances, from (2.26) we obtain

$$
\left.V\left(T_{I m}\right)=\frac{1}{n-m} \int S_{y}^{2}+E\left(R_{m}^{2}\right) s_{x}^{2}-2 E\left(R_{m}\right) s_{x y}\right] \text { (2.27) }
$$

Also, based on the results (2.23) and (2.24), to the order of approximation $1 / \mathrm{m}^{2}$, we have
and

$$
\begin{align*}
E\left(R_{m}\right) & =R\left[1+\frac{1}{m}\left(C_{x}^{2}-C_{x y}\right)\left(1+\frac{3}{m} C_{x}^{2}\right)\right] \\
E\left(R_{m}^{2}\right) & =V\left(R_{m}\right)+\left[E\left(R_{m}\right)\right]^{2} \\
& =R^{2}\left[1+\frac{2}{m}\left(C_{x}^{2}-C_{x y}\right)+\frac{6}{m}\left(C_{x}^{2}-C_{x y}\right)^{2}\right. \\
& \left.=\frac{6}{m^{2}}\left(C_{x}^{2}-C_{x y}\right) C_{x}^{2}+\left(\frac{1}{m}+\frac{3}{m^{2}} C_{x}^{2}\right)\left(C_{y}^{2}+C_{x}^{2}-2 C_{x y}\right)\right] . \tag{2.29}
\end{align*}
$$

Substituting (2.28) and (2.29) in (2.27), we have, after a blt of simplification,

$$
\begin{align*}
V\left(T_{m}\right) \quad & \frac{\bar{y}^{2}}{n-m} /\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)\left(2+\frac{c_{x}^{2}}{m}+\frac{3 c_{x}^{4}}{m^{2}}\right) \\
& \left.+8\left(c_{x}^{2}-c_{x y}\right)^{8}\left(\frac{z}{m}+\frac{\theta}{m^{2}} c_{x}^{2}\right)\right] \tag{2.30}
\end{align*}
$$

Expression (2.30) provides the variance of the unbiased ratio estimator $T_{\text {I }}$, to the order of approximation $1 / m^{2}$, in samples from a large bivariate normal population. Variance of $\mathrm{T}_{\mathrm{Im}}{ }^{*}$

$$
\text { since } V\left(T_{3 m}\right)=E\left[V\left(T_{m m} / n\right)\right]+V\left(T_{j m}\right) \text {, }
$$

we have $\quad V\left(T_{I_{m}}^{*}\right)=V\left(T_{I_{m}}\right)-E\left[(\bar{X}-k \bar{x})^{2} V\left(R_{m} / n\right)\right],(2.31)$

$$
\text { where } k=\frac{(N-m) n}{N(n-m)} \text {. }
$$

Consequently to evaluate $(V)\left(T_{1 m}^{*}\right)$ to the order of approximation $1 / \min ^{2}$, we need to evaluate:

$$
\begin{equation*}
B\left[(\bar{X}-k \bar{x})^{2} V\left(R_{m} / n\right)\right] \tag{2.32}
\end{equation*}
$$

to the order $1 / m^{2}$ and use it in the formula (2.31) along with the result (2.30) for $V\left(T_{1 m}\right)$.

Now taking into account the finite population correction and applying the formula (2.24) for $V\left(R_{m} / n\right)$, we have $E\left[(\bar{X}-k \bar{x})^{2} V\left(R_{m y} / n\right)\right]=\frac{n-m}{n m} /\left(\bar{x}-2 k \bar{x} \bar{x}+\frac{k}{2} \bar{x}^{2}\right) R_{n}^{2}\left(\left(o_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)\left(1+3 \frac{n-m}{n m} c_{x}^{2}\right)\right.$

$$
\begin{equation*}
\left.\left.+B_{n=1}^{n-m}\left(c_{x}^{a}-c_{x y}\right)^{2}\right)\right] \tag{2.33}
\end{equation*}
$$

where $a_{n}, c_{y}^{2}, c_{z}^{8}$, and $c_{x y}$ refer to the total semple of size n.
8ince we are interested in evaluating expression (2.32) to the order $1 / \mathrm{m}^{2}$ only, the expectations of terms with coefficient $\left(\frac{n-m}{n m}\right)^{2}$ in the above equation can be replaced by the corresponding population terms. Thus the contribution of terms with coefficient $\left(\frac{n-m}{n m}\right)^{2}$ to (2.38) is given by
$G=\bar{X}^{2}\left(\frac{n-m}{n m}\right)^{2}(k-1)^{2}\left[3 c_{x}^{2}\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)+B\left(c_{x}^{2}-c_{x y}\right)^{2}\right] .(2.33)$
Now to obtain the contribution of the other term

$$
\begin{equation*}
\frac{n-m _E}{n m}\left[\left(\bar{x}^{2}-2 k \bar{x} \bar{x}+x^{2} \bar{x}^{2}\right) B_{n}^{2}\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)\right] \tag{2,34}
\end{equation*}
$$

of the R.H.S. of (2.33), the expected value is evaluated here to the order $2 / \mathrm{n}$. Since we have essumed a large blvarlate nomal population, in this evaluation we take $N-n / N n=1 / n$ and observe that the sample means \bar{y} and \bar{x} are alstributed independently of the sample mean squares s_{y}^{2} and s_{x}^{2} and the sample mean sum of products $s_{x y}$.

Thus term by term, to the order $1 / n$ we have

$$
\begin{aligned}
& E\left(R_{n}^{2} c_{y}^{2}\right)=A^{2} c_{y}^{2}\left[2+\frac{3}{n} C_{x}^{2}\right] \\
& E\left(R_{n}^{8} c_{x}^{2}\right)=R^{2} c_{1}^{2}\left[1+\frac{1}{n}\left(c_{y}^{8}+10 c_{x}^{2}-8 c_{x y}\right)\right] \\
& E\left(R_{n}^{2} c_{x y}\right)=R^{2} c_{x y}\left[1+\frac{1}{n}\left(6 c_{x}^{2}-3 c_{x y}\right)\right] \\
& E\left(\bar{x} R_{n}^{2} c_{y}^{2}\right)=\bar{X} n^{2} c_{y}^{2}\left[1+\frac{1}{n} c_{x}^{2}\right] \\
& E\left(\bar{x} R_{n}^{2} c_{x}^{2}\right)=\bar{X} n^{2} c_{x}^{2}\left[1+\frac{1}{n}\left(c_{y}^{2}+6 c_{x}^{2}-6 c_{x y}\right)\right] \\
& E\left(\bar{x} R_{n}^{2} o_{x y}\right)=\bar{X} R^{2} c_{x y}\left[1+\frac{1}{n}\left(3 c_{x}^{2}-2 c_{x y}\right)\right] \\
& E\left(x^{2} A_{n}^{2} q^{2}\right)=s_{y}^{2} \\
& E\left(\bar{x}^{2} n_{n}^{2} c_{x}^{2}\right)=\bar{x}^{8} n^{2} c_{x}^{2}\left[1+\frac{1}{n}\left(c_{y}^{2}+3 c_{x}^{2}-4 c_{x y}\right)\right]
\end{aligned}
$$

and finally,

$$
\left.E\left(\bar{x}^{2} R_{n}^{2} c_{x y}\right)=\quad \bar{x}^{2} R^{2} c_{x y} \Gamma 1+\frac{1}{n}\left(c_{x}^{2}-c_{x y}\right)\right]
$$

baking use of these results in (2.34) and simplifying, we obtain the contribution H of the terms with coefficient ($\frac{n-m}{n m}$) as given by
$H \quad=T^{2} \frac{n-m}{n m}\left\langle\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)\left((k-1)^{2}+\frac{\left.(k-2)^{2} c_{x}^{2}\right)}{n}\right.\right.$

$$
\begin{equation*}
+\frac{2(k-1)(k-3)}{n}\left(c_{x}^{2}-c_{x y}\right)^{2} 7 \tag{2.35}
\end{equation*}
$$

Thus to the order of approximation-2/me, we have

$$
\begin{equation*}
\text { Expression (8.32) } \quad=0+H \tag{2.36}
\end{equation*}
$$

Now we observe $k=\frac{N-m}{N} \cdot \frac{n}{n-m} \cong \frac{n}{n-m}$ in a
large population and use the resulto (2.30) and (2.36) in the formula (2.31) to obtain

$$
\begin{align*}
& V\left(T_{2 m}\right)=\bar{Y}^{2}\left[(c _ { y } ^ { 2 } + c _ { x } ^ { 2 } - 2 c _ { x y }) \left(\frac{1}{n}+\frac{c_{x}^{2} 3 c_{z}^{4}}{\left.n^{2}+\frac{m^{2}(n-m)}{2}\right)}\right.\right. \\
&\left.+\left(\frac{s}{n^{2}}+\frac{2}{m}+\frac{12 c_{x}^{2}}{m^{2}(n-m)}\right)\left(e_{x}^{2}-c_{x y}\right)^{2}\right] \tag{2.37}
\end{align*}
$$

Expression (2.37) provides the vartance of $\mathrm{I}_{\mathrm{Im}}^{\mathbf{*}}$, to the order of approximation $1 / m^{2}$, in semples from a large bivariate normal population.

Enflcienoy of m
We now compare the variance of $\mathrm{P}_{\mathrm{in}}^{\mathrm{*}}$ given by (2.37) with the M.8.E. of \bar{y}_{R} given by (8.25).

$$
\begin{aligned}
& \text { Thus } \\
& \text { H.s.E. }\left(\bar{y}_{R}\right)-V\left(T_{j_{m}}^{*}\right)=\bar{y}^{2} /\left(c_{y}^{2}+c_{x}^{2}-2 c_{x y}\right)\left(\frac{2}{n^{2}}-\frac{3 c_{x}^{2}}{m^{2}(n-m)}\right) c_{x}^{2} \\
& +\left(\frac{5}{n^{2}}-\frac{8}{\operatorname{Hin}}-\frac{12 C_{x}^{2}}{n^{2}(n-m)}\right)\left(c_{x}^{2}-c_{x y}\right)^{2} 7 .
\end{aligned}
$$

From this it follows that I_{m} is more officient than \bar{y}_{R} if

$$
\begin{align*}
c_{x}^{2} & <M 1 n \cdot\left[\frac{2 n^{2}(n-m)}{3 n^{2}}, \frac{m(n-m)-(5 m-2 n)}{12 n^{2}}\right] \\
& =\frac{m(n-m)(5 m-2 n)}{12 n^{2}} . \tag{2,39}
\end{align*}
$$

In particular for the cholces m $=n / 2$, $m=3 n / 4$ and $m=n-1$, the conditions are obtained below. Numarically for $n=100$ the upper bounds for C_{x}^{2} are also given.

m	Opper bound for c_{x}^{2}		For $n=1$
$n / 2$	$n / 96$	$=$	1.04
$3 n / 4$	$7 n / 256$	$=$	2.74
$n-1$	$(n-1)(3 n-5) / 12 n^{8}$	$=$	0.24

In fact, for a large sample and a choice of 'm' near to the total sample size we have approximately

$$
\frac{m(n-m)(5 m-2 n)}{12 n^{2}}=0.25 .
$$

Thus in large semples, for a choice of m sufficiently near to the total sample size, $\mathrm{T}_{\mathrm{jm}}^{\boldsymbol{m}}$ will be more efficient than \bar{y}_{R} if $\mathrm{c}_{\mathrm{x}}^{2}<0.28$.
3. PRECISTON OF REGGRSSSION TYPE EST TMATORS WITH ONE AUXILIARY VARIABLE

Mickey's unblased regression type estimatora, utilizing information on only one auxillary variable, are $T_{2 m}$ and $T_{2 m}^{*}$, given by (1.8) and (1.9) or section 1. Por each m, q$_{2 m}^{*}$ is never less efficient than $T_{2 m}$, applied to any partioular permutation of the sample elements. Amons the unblased regression type estimators $I_{2 m}^{*}$; computationally the choice m=n-1 yields the most feasible estimator $T_{2}^{*}(n-1)$; for it is possible to exprese $?_{2}^{*}(n-1)$ in an alternative form:

$$
\begin{equation*}
T_{2(n-1)}^{*}=\left[\bar{y}-b^{-1}(\bar{x}-\bar{x})\right]=\frac{N-n}{N n}\left[\sum_{j}^{n} x_{j} b_{j}^{\prime}-\overline{n x} b^{\prime}\right], \tag{3.1}
\end{equation*}
$$

whare b_{j}^{\prime} is the value of the regresaion coefficient if the $j^{\text {th }}$ sample element is omitted

$$
\begin{equation*}
\text { (1.e. ,) by }=\frac{\sum_{i}^{n}\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right)-\frac{n}{n-1}\left(x_{j}-\bar{x}\right)\left(y_{j}-\bar{y}\right)}{\sum_{i}^{n}\left(x_{1}-\bar{x}\right)^{2}-\frac{n}{n-1}\left(x_{j}-\bar{x}\right)^{2}} \tag{3.2}
\end{equation*}
$$

and $\quad \bar{b}^{\prime}=\frac{1}{n} \sum_{j}^{n} b_{j}^{\prime}$.
The present investigation of the efficiency, confined to this most important practical case, shows that, to the ortier of approximation $1 / n, T_{a}^{*}(n-1)$ is as efficient as the usual biased regression estimator $\bar{y}_{1 r}$ given by

$$
\bar{y}_{1 x}=\bar{y}-b(\bar{x}-\bar{x}),
$$

where b is the sample regresaion coefficient. The ame result, though not formally established here, is expected to hold good for sufficientiy large m, since a corresponding result has been obtained in Section 2 in the case of Miczey's unbiased ratio type estimators $I_{i m}^{*}$ and the usual blased ratio estimator \bar{y}_{R}. It is interesting that this result leads to the conclusion that in large semples, for sufficiently large m, Mickey's unblased regression type estimators $T_{\text {2m }}^{*}$ are never less efficient than the unbiased ratio type estimatore I Im, aince it is known that in large samples the usual regression estimator $\bar{y}_{1 r}$ is never less efficient than the usual ratio estimator $\overline{\mathbf{y}}_{\mathrm{R}}$.

We now formally establish that $V\left(T_{2}^{*}(n-1)\right)=V\left(y_{1 r}\right)$, to the order of approximation $1 / n$.

Variance of $\mathrm{T}_{\mathrm{Q}(\mathrm{n}-1)}^{*}$
Neglecting the finite population correction fector, we have

	${ }^{*}{ }_{2(n-1)}$	=	'T1 - min
where	\$ ${ }^{\prime}$	=	$\bar{y}-\bar{b}^{\prime}(\bar{x}-\bar{X}) \quad$ (3.3)
and	m_{11}	$=$	$\frac{1}{n} \sum_{j}^{n}\left(x_{j}-\bar{x}\right) b_{j}^{\prime}, \text { the (3.4) }$
			$x_{j} \text { and } b_{j}^{\prime} \text {. }$
Hence	$(n-1)$	=	$V\left(I^{\prime}\right)+V\left(m_{11}\right)-2 \operatorname{Cov}\left(T^{\prime}, m_{12}\right.$.

In the following shail evaluate $V(T)$ to the order $1 / n$, and show that $V\left(m_{11}\right)$ and $\operatorname{Cov}\left(P^{\prime}, m_{11}\right)$ are at least of order $1 / n^{2}$.

To evaluate $V(T 1)$, we write

$$
\begin{align*}
& T 1=T-(\bar{b} \cdot-B)(\bar{x}-\bar{X}), \tag{3.6}\\
& T \quad=\quad \bar{y}-B(\bar{x}-\bar{X}), \tag{3.7}
\end{align*}
$$

and B is the population regression coefficient of y on x. Then, since T is unbiased for the population mean $\overline{\mathbf{Y}}$, we have

$$
\begin{align*}
V(T ')= & E(T-\bar{Y})^{2}+E[(\bar{b} L B)(\bar{x}-\bar{X})]^{2} \\
& -\left[E\left(\overline{b^{\prime}}-B\right)(\bar{x}-\bar{X})\right]^{2}-2 E\left[(T-\bar{Y})\left(\overline{b^{\prime}}-B\right)(\bar{x}-\bar{X})\right] . \tag{3.8}
\end{align*}
$$

Now whow that all the terms excopt the first one on the R.H.S. of equation (3.8) are of order $1 / n^{2}$.

For this, we note that
$E(T-\bar{Y})^{8}=O\left(n^{-1}\right), E(T-\bar{Y})^{4}=O\left(n^{-2}\right)$,
$E(\bar{x}-\bar{x})^{2}=O\left(n^{-1}\right), E(\bar{x}-\bar{x})^{4}=O\left(n^{-2}\right)$
and $E\left(\bar{b}^{\prime}-B\right)^{2}=O\left(n^{-1}\right), E\left(\bar{b}^{\prime}-B\right)^{4}=O\left(n^{-2}\right)$,
where $O\left(n^{-1}\right)$ and $O\left(n^{-2}\right)$ indicate that the terms are of order $1 / \mathrm{n}$ and $1 / \mathrm{n}^{2}$ respectively.

Resulta (3.9) follow from the fact that T and \bar{x} are arithmetic means, based on a simple random ample of size n, without replacement. Also, since

$$
E(b j-B)^{2}=E\left(b j-\bar{b}^{\prime}\right)^{2}+E\left(\bar{b}^{\prime}-B\right)^{2}
$$

We have

$$
\begin{aligned}
E(\bar{B},-B)^{2} & \leq E\left(D_{j}^{\prime}-B\right)^{2} \\
& =O\left(n^{-1}\right),
\end{aligned}
$$

by being the regression coefficient based on a simple random sample of size n-1.

$$
\text { Thus } E\left(\bar{b}^{\prime}-B\right)^{8}=O\left(n^{-2}\right) \text {. }
$$

Similarly it can be shown that

$$
E\left(\bar{D}^{\prime}-B\right)^{4}=\quad O\left(n^{-8}\right)
$$

To show that the three terms except the first one on the R.H.S. of equation (3.8) are of order $1 / n^{2}$, we repeatedly make use of the inequality

$$
\begin{equation*}
E(u v) \quad \leq \quad\left[E\left(u^{8}\right) E\left(v^{8}\right)\right]^{\frac{1}{2}} \tag{3.11}
\end{equation*}
$$

where u and v are any two random variables having finite second moments.
Thus $E\left[C\left(\bar{b}^{\prime}-B\right)(\bar{x}-\bar{X}) 7^{2} \leqslant\left[E\left(\bar{b}^{\prime}-B\right)^{4} \mathrm{E}(\overline{\mathrm{x}}-\overline{\mathrm{X}})^{4}\right]^{\text {t }}\right.$

$$
=\left[O\left(n^{-2}\right) O\left(n^{-2}\right)\right]^{1} \mathrm{rrom}(3.9)
$$ and (3.10).

Hence $E\left[\left(\bar{b}^{\prime}-B\right)(\bar{x}-\bar{X})\right]^{2}=O\left(n^{-2}\right)$

Again, since

$$
\begin{aligned}
\mathrm{E}\left[\left(\bar{b}^{\prime}-B\right)(\bar{x}-\bar{x})\right] & \leq\left[E\left(\bar{b}^{\prime}-B\right)^{2} E(\bar{x}-\bar{x})^{2}\right]^{\frac{1}{b}} \\
& =\left[o\left(n^{-1}\right) \circ\left(n^{-1}\right)\right]_{\text {and }}^{\frac{1}{2}} \operatorname{from}(3.10)
\end{aligned}
$$

wo obtain

$$
\begin{equation*}
[E(\bar{b} \cdot-B)(\bar{x}-\bar{x})]^{2}=0\left(n^{-2}\right) \tag{3.23}
\end{equation*}
$$

$$
\begin{aligned}
& \leq\left[\mathrm{B}\left(\overline{D^{\prime}}-\mathrm{B}\right)^{2}\right]^{\frac{1}{4}}\left[\mathrm{E}(T-\bar{Y})^{4} E(\bar{x}-\bar{X})^{4}\right]^{\frac{1}{4}} \\
& =\left[0\left(n^{-1}\right)\right]^{\frac{1}{4}}\left[0\left(n^{-4}\right)\right]_{\text {and }}^{\frac{1}{\text { som }}(3,10)}, \\
& =O\left(n^{-3 / 8}\right) .
\end{aligned}
$$

But expectations of products and ratios of arithmetic means must have integer orders. So it follows that

$$
\begin{equation*}
E\left[(T-\bar{Y})\left(\bar{B}^{2}-B\right)(\bar{X}-\bar{X})\right]=0\left(n^{-2}\right) \tag{3.14}
\end{equation*}
$$

Consequently from (3.8), (3.28),..(3.29) and (3.14) we obtain

$$
\begin{equation*}
V\left(T^{1}\right)=\quad=\quad(T-\bar{Y})^{2}+O\left(n^{-2}\right) \tag{3.15}
\end{equation*}
$$

Returning to equation (3.5), it remains to evaluate $V\left(m_{11}\right)$ and $\operatorname{Cov}\left(T^{1}: m_{21}\right)$.

Using the large sample theory, it can be shown that

$$
\begin{equation*}
V\left(m_{21}\right) \quad=\quad \frac{1}{n}\left(\mu_{22}-\mu_{11}^{2}\right) \tag{3.16}
\end{equation*}
$$

where $\mu 28$ and μ_{11} are the parent central moments of the joint distribution of x_{y} and by.

Now if B^{\prime} denotes the population value corresponding to bj_{j}, we have

$$
\begin{equation*}
E\left(b_{j}-B^{\prime}\right)^{2}=O\left(n^{-1}\right) \text { and } E\left(b_{j}-B^{\prime}\right)^{4}=O\left(n^{-2}\right) \tag{3.17}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \mu_{11}=E\left[\left(D_{j}-B^{\prime}\right)\left(x_{j}-\bar{X}\right)\right] \\
& \leq\left[E\left(b_{j}-B^{\prime}\right)^{2} E\left(x_{j}-\bar{X}\right)^{2}\right]^{\frac{1}{8}} \\
&=\left[0\left(n^{-1}\right)\right]^{t} \text { from (3.17). }
\end{aligned}
$$

Thus

$$
\begin{equation*}
\mu_{11}^{8} \quad=\quad 0\left(n^{-1}\right) \tag{3.18}
\end{equation*}
$$

Again

$$
=\left[O\left(n^{-2}\right)\right]^{\frac{1}{2}} \text { from (3.17). }
$$

Thus

$$
\begin{equation*}
\mu_{22}=O\left(n^{-1}\right) \tag{3.19}
\end{equation*}
$$

Consequently from (3.26), (3.18) and (3.18) we have

$$
\begin{equation*}
V\left(m_{I L}\right)=O\left(n^{-2}\right) \tag{3.20}
\end{equation*}
$$

Also from (3.15) and (3.20) by an application of the formula (3.11), It is easy to see that

$$
\operatorname{cov}\left(T^{\prime}, m_{11}\right) \quad \leq \quad 0\left(n^{-3 / 2}\right)
$$

But since m_{21} and $T^{\prime \prime}$ are built up as arithmetic means of products and ratios of arithmetic means, $\operatorname{Cov}\left(T^{\prime}, m_{11}\right)$ must have an integer order. Thus

$$
\begin{equation*}
\operatorname{Cov}\left(T^{1}, m_{11}\right)=O\left(n^{-2}\right) \tag{3.21}
\end{equation*}
$$

Now from (3.5), (3.15), (3.20) and (3.21) it follows that

$$
\begin{align*}
V\left(T_{2(n-1)}^{*}\right) & =E(T-\bar{y})^{2}+O\left(n^{-8}\right), \\
& =V(\bar{y})+B^{2} V(\bar{x})-2 B \operatorname{Cov}(\bar{y}, \bar{x})+O\left(n^{-2}\right) . \tag{3.22}
\end{align*}
$$

From this it is concluded that, to the order of approximation $1 / n, T_{2}^{*}(n-1)$ and the usual biased regression estimator $\bar{y}_{1 r}$ are of equal precision.

4. ERPICIENCY OP RATIO TYPE EST IMATORS
 WITH THO AXIL CARY VARIABLES

When information on two auxiliary variables x_{1} and x_{2} is available, for the choice

$$
a_{1}\left(z_{m}\right)=\frac{\bar{y}_{m}}{\overline{x_{2 m}}}=R_{m}\left(x_{1}\right) \text { and } a_{2}\left(n_{m}\right)=\frac{\bar{y}_{m}}{\bar{x}_{2 m}}=g_{m}\left(x_{2}\right),
$$

the unbiased estimator I_{m} expressed in the form (7.5) provides an unbiased ratio-type estimator:

$$
\begin{equation*}
T_{2 m}\left(x_{1}, x_{2}\right)=T_{I_{m}}\left(x_{1}\right)+T_{I_{m}}\left(x_{2}\right)+\frac{(N-n) l m}{N(n-m)} \bar{y}_{m}-\frac{(N-m) n}{N(n-m)} \bar{y} \tag{4,1}
\end{equation*}
$$

where $T_{1 m}\left(x_{1}\right)=E_{m}\left(x_{1}\right) \bar{x}_{1}+\frac{(N-m) n}{N(n-m)}\left\lceil\bar{y}-F_{n m}\left(x_{1}\right) \bar{x}_{2}\right]$
and $I_{I m}\left(x_{2}\right)=R_{m}\left(x_{2}\right) \bar{x}_{2}+\frac{(N-m) n}{N(n-m)}\left[\bar{y}-R_{m n}\left(x_{2}\right) \bar{x}_{2}\right]$
are the unbiased ratio type estimators obtained by using information on x_{1} and x_{2} separately.

Averaging $\mathrm{T}_{\mathrm{Im}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ over all permutations of the sample elements, we have the other unbiased ratio type estimator

$$
\begin{equation*}
T_{I_{m}}^{*}\left(x_{1}, x_{2}\right)=T_{m}^{*}\left(x_{1}\right)+T_{3 m}^{*}\left(x_{2}\right)-\bar{y} \tag{4.4}
\end{equation*}
$$

where $\left.\Psi_{I_{m}^{*}}^{*}\left(x_{1}\right)=R_{m n}^{*}\left(x_{1}\right) \bar{x}_{1}+\frac{(N-m) n}{N(n-m)} \Gamma \bar{y}-R_{\underline{m}}^{*}\left(x_{1}\right) \bar{x}_{1}\right]$
and $\quad T_{m}\left(x_{2}\right)=R_{m}^{*}\left(x_{2}\right) \bar{X}_{2}+\frac{(N-m) n}{N(n-m)}\left[\bar{y}-R_{m}^{*}\left(x_{2}\right) \overline{x_{2}}\right]$.

For any m less than $n, T_{\text {mm }}^{*}\left(x_{1}, x_{2}\right)$ is never less
efficient than $\mathbf{T}_{1 m}\left(x_{1}, x_{2}\right)$. In this section we shall discuss the relative efficiency of the estimator $T \mathrm{Im}_{\mathrm{m}}\left(\mathrm{x}_{1}, \mathrm{z}_{2}\right)$ with respect to Olkin's weighted ratio estimator in large samples for the two cases:
(1) m 10 small as compared to n and (11) m is sufficiently large: Also we shall investigate, when m is sufficiently large, whether there is an increase in precision by using

Olin's weighted Ratio estimator

When information on two auxiliary variables $x 1$ and x_{2} is available, the weighted ratio estimator, suggested by Olin (1958), is given by

$$
\begin{equation*}
\bar{y}_{w}=\nabla_{1} \bar{y}_{R_{1}}+\nabla_{2} \bar{y}_{R_{2}}, \tag{4,7}
\end{equation*}
$$

$$
\begin{align*}
& \text { where } \quad \vec{y}_{R_{1}} \quad=\frac{\bar{v}_{1}}{\bar{x}_{1}} \bar{x}_{1}, \quad \vec{y}_{R_{2}}=\frac{\bar{y}_{1}}{\bar{x}_{2}} \bar{x}_{2} ; \\
& v_{2}=\underline{v\left(\bar{y}_{R_{2}}\right)-\operatorname{Cov}\left(\bar{y}_{R_{2}}, \bar{y}_{R_{2}}\right)} \tag{4.8}\\
& v\left(\bar{y}_{R_{1}}-\bar{y}_{R_{2}}\right) \\
& \text { and } \quad W_{2}=\frac{V\left(\bar{y}_{R_{2}}\right)-\operatorname{Cov}\left(\bar{y}_{R_{2}}, \bar{y}_{R_{2}}\right)}{V\left(\bar{y}_{R_{2}}-\bar{y}_{R_{2}}\right)} \text {. } \tag{4.8}
\end{align*}
$$

The estimator \bar{y}_{w} is biased but consistent. The largo sample variance of \bar{y}_{w} is given by-

$$
\begin{equation*}
v\left(\bar{y}_{w}\right)=V\left(\bar{y}-w_{1} R_{1} \bar{x}_{1}-m_{2} R_{2} \bar{x}_{2}\right), \tag{4.10}
\end{equation*}
$$

where $R_{1}=\bar{Y} / \bar{X}_{1}$ and $R_{2}=\bar{Y} / \bar{X}_{2}$.

Variance of $\mathrm{P}_{\mathrm{m}}^{*}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ in large samples
From (4.4), we have

$$
\begin{aligned}
& V\left[T_{I m}^{*}\left(x_{1}, x_{2}\right)\right\rangle=V\left[T_{I_{m}}^{*}\left(x_{1}\right)\right]+V\left[T_{I m}^{*}\left(x_{2}\right)\right] \\
& +2 \operatorname{cov}\left[T_{\mathrm{Im}}\left(x_{1}\right), T_{\mathrm{im}}{ }^{*}\left(x_{2}\right)\right]+V(\bar{y}) \\
& -8 \operatorname{Cov}\left[\bar{y}, T_{i m}^{*}\left(x_{1}\right)\right]-2 \operatorname{Cov}\left[\bar{y}, T_{1 m}^{*}\left(x_{2}\right)\right] . \\
& \text { (4.11) }
\end{aligned}
$$

Now from result (2.15) of Section 2, to the order of approxmotion $1 / n$,

$$
\begin{aligned}
& V\left[T_{1 m}^{0}\left(x_{1}\right)\right]=k^{2} V(\bar{y})+k^{2} \bar{R}_{m}^{2}\left(x_{1}\right) V\left(\bar{x}_{1}\right)+(k-1)^{2} \bar{x}_{1}^{2} V\left[R_{m}^{*}\left(x_{1}\right)\right] \\
& -8 k^{2} \overline{\bar{m}}_{m}\left(x_{1}\right) \operatorname{Cov}\left(\bar{y}_{1} \bar{x}_{1}\right)-8 k(k-1) \bar{x}_{1} \operatorname{Cov}\left[\bar{y}, R_{m}^{2}\left(x_{1}\right)\right] \\
& +2 k(k-1) \bar{X}_{1} \bar{R}_{m}^{\prime}\left(x_{1}\right) \operatorname{Cov}\left[\bar{x}_{1}, R_{m}^{*}\left(x_{1}\right)\right], i=1,2, \\
& \text { (4.12) }
\end{aligned}
$$

where $k=\frac{(N-m) n}{N(n-m)}$.
Proceeding on similar ines as in the derivation of
$V\left[Y_{1 m}\left(x_{1}\right)\right]$, it can be seen that,

$$
\begin{aligned}
& \operatorname{cov}\left[T_{j m}\left(x_{1}\right), T_{I m}^{m}\left(x_{2}\right)\right\rangle=k^{2} v(\bar{y})+k^{2} \bar{R}_{m}\left(x_{1}\right) \bar{R}_{m}\left(x_{2}\right) \operatorname{Cov}\left(\bar{x}_{1}, \bar{x}_{2}\right) \\
& +(k-1)^{2} \bar{x}_{2} \bar{X}_{2} \operatorname{cov}\left[\mathrm{R}_{\mathrm{m}}^{\circ}\left(x_{1}\right), \mathrm{R}_{\mathrm{m}}^{*}\left(\mathrm{x}_{2}\right)\right\rceil \\
& \left.-k Z_{m} \bar{x}_{1}\right) \operatorname{Cov}\left(\bar{y}, \bar{x}_{1}\right)-k^{2} \bar{R}_{m}\left(x_{2}\right) \operatorname{Cov}\left(\bar{y}, \bar{x}_{2}\right) \\
& -k(k-1) \bar{x}_{1} \operatorname{cov}\left[\bar{y}, R_{m}\left(x_{1}\right)\right] \\
& -k(k-1) \bar{X}_{2} \operatorname{Cov}\left[\bar{y}, R_{m}^{*}\left(x_{2}\right) \square\right.
\end{aligned}
$$

$$
\begin{align*}
& +k(k-1) \bar{x}_{2} \bar{m}_{m}\left(x_{2}\right) \operatorname{cov}\left[\bar{x}_{i_{3}}, R_{m}^{*}\left(x_{2}\right)\right\rceil \\
& +k(k-1) \bar{x}_{2} \bar{m}_{m}\left(x_{2}\right) \operatorname{Cov}\left[\bar{x}_{2}, v_{m}^{*}\left(x_{1}\right)\right\rceil \tag{4.13}
\end{align*}
$$

8imilarly, to the order of approximation $1 / n$, for $1=1,2$, we have

$$
\begin{equation*}
\operatorname{cov}\left[\bar{y}, T_{i m}^{*}\left(x_{1}\right)\right]=k v(\bar{y})-k \vec{x}_{m}\left(x_{1}\right) \operatorname{cov}\left(\bar{y}, \bar{x}_{1}\right)-(k-1) \bar{x}_{1} \operatorname{cov}\left[\bar{y}, R_{m}^{*}\left(x_{1}\right)\right] \tag{4,14}
\end{equation*}
$$

Substituting in (4.12) for the various terms from (4.22), (4.13) and (4.14) and simplifying we have $V\left[\mathrm{r}_{\mathrm{Im}}^{*}\left(\mathrm{x}_{1}, x_{2}\right)\right]=(2 k-1)^{2} v(\bar{y})+k^{2} v\left[\bar{x}_{1} \bar{R}_{m}\left(x_{1}\right)+\bar{x}_{2} \bar{F}_{m}\left(x_{2}\right)\right]$

$$
+(x-1)^{2} v\left[\bar{X}_{2} R_{\underset{m}{*}}\left(x_{1}\right)+\bar{X}_{2} R_{m}^{*}\left(x_{2}\right)\right]
$$

$$
-2 k(2 k-1)\left[\bar{R}_{m}\left(x_{1}\right) \operatorname{Cov}\left(\bar{y}, \bar{x}_{1}\right)+\bar{R}_{m}\left(x_{2}\right) \operatorname{Cov}\left(\bar{y}, \bar{x}_{2}\right)\right]
$$

$$
-2(k-1)(2 k-1)\left(\bar{x}_{1} \operatorname{Cov}\left[\bar{y}, R_{m}^{*}\left(x_{1}\right)\right]+\right.
$$

$$
\left.\bar{X}_{2} \operatorname{cov}\left[\bar{y}, \mathrm{I}_{21}^{*}\left(x_{2}\right)\right]\right)
$$

$$
+2 k(k-1)\left(\bar{x}_{1} \bar{R}_{m}\left(x_{2}\right) \operatorname{Cov}\left[\bar{x}_{1}, R_{m}^{*}\left(x_{1}\right)\right]\right.
$$

$$
+\overline{\mathrm{X}}_{2} \overline{\mathrm{R}}_{\mathrm{m}}\left(\mathrm{x}_{2}\right) \operatorname{Cov}\left[\bar{x}_{2}, R_{m}^{*}\left(x_{2}\right)\right]
$$

$$
+\bar{x}_{2} \bar{E}_{m}\left(x_{2}\right) \operatorname{Cov}\left[\bar{x}_{2}, R_{m}^{*}\left(x_{1}\right)\right]
$$

$$
\begin{equation*}
\left.+\bar{x}_{2} \bar{R}_{m}\left(x_{1}\right) \operatorname{cov}\left[\bar{x}_{1}, R_{m}\left(x_{2}\right)\right]\right\} \tag{4.15}
\end{equation*}
$$

Expression (4.26) provides the variance of $\mathrm{T}_{\mathrm{m}}\left(\mathrm{x}_{2}, \mathrm{z}_{2}\right)$, to the order of approximation $1 / n$, for any m less than n.

Efficiency of T_{m} (x_{1}, x_{2}) for amall m , in large samples

Ehen m is small as compared to $n, k=\frac{N-m}{N} \cdot \frac{n}{n-m} \simeq 1$ and consequently the variance expression (4.15) reduces to

A comparison of (4.20) and (4.18) shows that, when m is small as compared to $n_{1} T_{i m}^{*}\left(x_{1}, x_{2}\right)$ is more efficient than Olkin's biased estimator \bar{y}_{w}, if and only if the plane $\bar{Y}+\bar{H}_{m}\left(x_{1}\right)\left[x_{1 g}-\bar{x}_{1}\right]+\bar{R}_{m}\left(x_{2}\right)\left[x_{2 j}-\bar{x}_{2}\right]$ 11ts the values y_{f} more closely than the plane

$$
\bar{X}+m_{2} R_{1}\left[x_{1 j}-\bar{x}_{1}\right]+w_{2} R_{2}\left[x_{2 j}-\bar{x}_{2}\right]={w_{1} R_{1} x_{1 j}+w_{2} R_{2} x_{2 j}, ~}_{\text {, }}
$$

where ∇_{1} and W_{2} are the optimum weights given by (4.8) and (4.9).

Efficiency of $T_{I_{m}}\left(x_{1}, x_{2}\right)$ for large m
From result (2.20) of section 2 , when m is large, . to tho order of approximation $1 / \mathrm{n}$,

$$
\begin{equation*}
v\left[R_{m}\left(x_{1}\right)\right]=\frac{1}{\frac{x_{1}}{2}}\left[v(\bar{y})+R_{i}^{2} v\left(\bar{x}_{1}\right)-2 R_{1} \operatorname{cov}\left(\bar{y}, \bar{x}_{1}\right)\right], 1=1,8 \tag{4.17}
\end{equation*}
$$

8imilarly

$$
\begin{align*}
\operatorname{cov}\left[\mathrm{R}_{\text {m }}^{n}\left(x_{1}\right), R_{m}\left(x_{2}\right)\right]=\frac{1}{\bar{x}_{1} \bar{x}_{2}}\left[\begin{array}{l}
v(\bar{y})+R_{1} R_{2} \operatorname{Cov}\left(\bar{x}_{1}, \bar{x}_{2}\right)-R_{1} \operatorname{Cov}\left(\bar{y}, \bar{x}_{1}\right) \\
\\
-R_{2} \operatorname{Cov}\left(\bar{y}, \bar{x}_{2}\right)
\end{array}\right] .
\end{align*}
$$

Again from result (8.20) of section 2, we have

$$
\begin{equation*}
\operatorname{Cov}\left[\bar{y}, B_{\underline{m}}^{*}\left(x_{1}\right)\right\rceil=\frac{1}{\bar{x}_{1}}\left[v(\bar{y})-R_{1} \operatorname{Cov}\left(\bar{x}_{1} ; \bar{y}\right)\right], 101,2 \tag{4.29}
\end{equation*}
$$

From result (2.21), we have
$\operatorname{Cov}\left[\bar{x}_{1} ; R_{i p}^{*}\left(x_{1}\right)\right]=\frac{1}{\bar{Y}}\left[R_{1} \operatorname{Cov}\left(\bar{x}_{1}, \bar{y}\right)-E_{1}^{2} v\left(\bar{x}_{1}\right)\right], 1 m, 2$.

Similarly, it can be seen that
$\operatorname{cov}\left[\bar{x}_{i}, R_{m p}^{*}\left(x_{j}\right)\right] \quad \frac{1}{\bar{y}}\left[R_{j} \operatorname{Cov}\left(\bar{x}_{i}, \bar{y}\right)-R_{j}^{2} \operatorname{Cov}\left(\bar{x}_{1}, \bar{x}_{j}\right)\right]$
fortify.
Making use of the results (4.17) to (4.21) in (4.25) and observing that in this case $\bar{R}_{51}\left(x_{1}\right) \cong R_{1}$, we obtain on simpleelation,

$$
\begin{equation*}
v\left[T_{j m}^{*}\left(x_{1}, x_{2}\right)\right] \quad v\left[\vec{y}-R_{1} \bar{x}_{1}-R_{2} \bar{x}_{2}\right] \tag{4,22}
\end{equation*}
$$

Now from (4.10) and (4.28), we have

$$
\begin{aligned}
v\left[\bar{y}_{w}\right]-v\left[T_{j m}^{*}\left(x_{1}, x_{2}\right)\right\rceil= & w_{1}\left[2 R_{2} \operatorname{Cov}\left(\bar{y}, \bar{x}_{2}\right)-R_{2}^{2} v\left(\bar{x}_{2}\right)\right\rceil \\
& +w_{2}\left[2 R_{2} \operatorname{Cov}\left(\bar{y}_{1}, \bar{x}_{1}\right)-R_{1}^{2} v\left(\bar{x}_{2}\right)\right\rceil \\
& +W_{1} w_{2}\left[2 R_{1} R_{2} \operatorname{Cov}\left(\bar{x}_{2}, \bar{x}_{2}\right)-R_{1}^{2} v\left(\bar{x}_{1}\right)-R_{2}^{2} v\left(\bar{x}_{2}\right)\right] \\
& -2 R_{1} R_{2} \operatorname{Cov}\left(\bar{x}_{1}, \bar{x}_{2}\right) .
\end{aligned}
$$

From this it follows that $T_{\text {mm }}^{*}\left(x_{2}, x_{g}\right)$ is more efficient, equally efficient or less efficient than Oikin's estimator according as

$$
\begin{equation*}
2\left\lceil w_{1} c_{y x_{2}}+w_{2} c_{y x_{1}}+\left(w_{2} w_{2}-1\right) c_{x_{2} x_{2}}\right] \geqslant w_{1}\left(1+w_{2}\right) c_{x_{2}}^{2}+w_{8}\left(1+w_{2}\right) c_{x_{2}}^{2} \tag{4.23}
\end{equation*}
$$

where $c_{x_{1}}^{2}=s_{x_{1}}^{2} / \bar{X}_{1}^{2}$, etc.
Inequality (4.23) is difficult to interpret. However,
if we assume

$$
c_{x, 2}^{2}=c_{x_{2}}^{2}=c_{x}^{2} \text { and } c_{y x_{1}}=c_{y x_{2}}=c_{y x},
$$

than $W_{1}=W_{2}=1 / 2$ and (4.23) reduces to the inequality

$$
e_{x y} \geqslant \frac{c_{x}}{c_{y}}\left(2+e_{2 z}\right)
$$

where $C_{x y}$ is the correlation between an auxiliary variable and the principle variable y and $f_{j 2}$ is the correlation between x_{1} and x_{2}.

Thus for sufficiently large m, under the conditions $c_{x_{2}}^{8}=c_{x_{2}}^{2}=c_{x}^{2}, \quad c_{y_{x}}=c_{y x_{2}}=c_{y x}$,
$T_{\mathrm{Im}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is more precise or equally precise or less precise than Oikin's estimator according as

$$
\begin{equation*}
e_{x y} \geqslant \frac{c_{x}}{c_{y}}\left(5 c_{z z}\right) . \tag{4.24}
\end{equation*}
$$

Effect on the precision by introducing a nom auxiliary variable

Since the weights \mathbb{W}_{1} and $W_{2}, ~ u s e d$ in Oikin's estimator; are determined by minimising the variance of $\psi_{1} \overline{\bar{y}}_{\mathrm{R}_{2}}+w_{2} \overline{\mathrm{y}}_{\mathrm{R}_{2}}$ with respect to W_{1} and W_{2}, subject to the condition $W_{1}+W_{2}=1$; for any combination of the weights other than the optimum combination the variance of $w_{1} \bar{y}_{R_{2}}+\bar{y}_{\mathrm{R}_{8}}$ is more than the variance of Oikin's estimator. Thus, in particular alice $v_{2}=1, v_{2}=0$, gives $\bar{y}_{R_{1}}$, the introduction of a new auxiliary variable always results in obtaining a more precise ratio estimator.

But in Mickey's unbiased ratio type estimators, $\operatorname{Im}\left(x_{1}, x_{2}\right)$ is not constructed as the optimum weighted average of
$T_{1 m}^{*}\left(x_{1}\right)$ and $T_{1 m}^{*}\left(x_{2}\right)$, but $1 s$ formed simply as

$$
T_{1 m}^{*}\left(x_{1}, x_{2}\right)=T_{1 m}^{*}\left(x_{1}\right)+T_{1 m}^{*}\left(x_{2}\right)-\bar{y}
$$

As such, we cannot say without any reservation that $T_{1 m}\left(x_{1}, x_{2}\right)$ always provides a more efficient estimator than $\mathrm{T}_{\mathrm{Im}}^{*}\left(x_{1}\right)$ or $\mathrm{T}_{\mathrm{im}}^{*}\left(\mathrm{x}_{\mathrm{c}}\right)$.

In fact, when mas sufficiently large, we have
$v\left[T_{1 m}^{*}\left(x_{1}\right)\right]-v\left[T_{1 m}^{*}\left(x_{1}, x_{2}\right)\right] \geqslant 0$, according as

$$
2 c_{y x_{2}}-c_{x_{2}}^{2}-2 c_{x_{2} x_{2}} \geqslant 0 .
$$

Thus, in particular, when $c_{x 1}^{2}=c_{x 2}^{2}=c_{x}^{8}$ and $c_{x_{1} y}=c_{x_{2} y}=C_{x y}$, $x_{i m}^{*}\left(x_{1}, x_{2}\right)$ is more precise or equally precise or lease precise than $T_{1 m}^{*}\left(x_{2}\right)$ according as

$$
\begin{equation*}
\rho_{x y} \geqslant \frac{c_{x}}{c_{y}}\left(1+2 \rho_{12}\right) . \tag{4,28}
\end{equation*}
$$

This result shows the need for caution in introducing a new auxiliary variable in the case of Mickey's unbiased ratio type estimators.

From (4.24) and (4.25) it follows that, when m is sufficiently large, and $C_{x_{1}}^{2}=c_{x}^{2}=c_{x}^{2}, C_{x_{2} y}=C_{x y y}=C_{x y}$, TIm $\left.{ }^{*} x_{1}, x_{2}\right)$ is more precise than Olin's estimators as well as $T_{I m}^{*}\left(x_{2}\right)$, is

$$
\begin{align*}
e_{x y} & >\operatorname{sax} \cdot\left[\frac{3}{4} \frac{c_{x}}{c_{y}}\left(1+\rho_{12}\right), \frac{c_{x}}{c_{y}}\left(1+2 \rho_{12}\right)\right. \\
& =\frac{c_{x}}{c_{y}}\left(1+\rho_{12}\right) . \tag{4.30}
\end{align*}
$$

In the following, a table of values of the function $\frac{3}{4} \frac{C_{x}}{C_{y}}\left(1+\rho_{12}\right)$ for different values of $\left(C_{y}\right)$ and C_{12} 19 given to see how much the correlation $f_{x y}$ should be In order to make an efficient use of the eatimator $\mathrm{T}_{\mathrm{Im}}^{\boldsymbol{Z}}\left(x_{2}, x_{2}\right)$.

		0.10	0.20	0.30	0.40	0.60	0.75
t							
0.26	1	0.206	0.223	0.244	0.263	0.281	0.328
0.60	:	0.413	0.450	0.488	0.626	0.663	0.656
	:						
0.76	:	0.619	0.675	0.731	0.788	0.844	0.984
	:						
2.00	:	0.826	0.800	0.975	\#.A.*	N.A.	N.A.
	1						

- N.A.- denotes that the value is not admissible, being greater than 1.

6. EXTENSION TO DOUBLE SAMPLINO

In constructing the general class of unblased estimators, Mickey has assumed that the population means of all the auxiliary variables are known. Ehen, however, the population means of the auxiliary variables are not known in advance, using the technique of 'double sampling', we shall develop in this section a general olass of unblased estimators of which 'unbiased ratio and regression type' estimatora are special cases. This section also gives unblased estimators of the variance of the proposed estimators and a discussion concerning the efficiency of unblased ratio and regression type estimators.

Ereliminarios

of

Consider a sinite population/size N, represented by the set of ($p+1$) vectors:

$$
\left(y_{j}, x_{1 g}, x_{2 g}, \ldots \ldots, x_{p j}\right) \quad y=1,2, \ldots, N .
$$

Let a simple random sample of size n ' be drawn without replacement from the population and observations be made on all the auxiliary characteristics. Let $\overline{X_{1}}, i=1,2, \ldots, p$, represent the means of the auxiliary variables, based on the sample of size $n '$. Now let a sub-semple of size n be drawn with equal probabilities without replacement from the sample of aize n' to observe the variable y under study. Further, let \bar{y} and $\bar{x}_{1} 2=1,2, \ldots ., p$, denote the means based on the sub-semple.

For any choice of m of the sub-sample elements (ε_{m}), suppose \bar{y}_{m} and $\bar{x}_{j m}(1=1,2, \ldots \ldots, p)$ are the means based on z_{m}. Let $a_{1}\left(z_{m}\right)$ be some known real valued functions of z_{m}. Further, define

$$
\begin{aligned}
& \text { Further, define } \\
& \vec{y}_{n-m}=\frac{n y-m \bar{y}_{m}}{n-m}, \bar{x}_{i n-m}=\frac{\bar{x}_{i}-m \bar{x}_{i m}}{n-m} \text {, and } \bar{x}_{i n^{\prime}-m}=\frac{n^{\prime} \bar{x}_{i}^{\prime}-m \bar{x}_{i m}}{n^{\prime}-m}, \\
& i=1, \varepsilon, \ldots \ldots, p .
\end{aligned}
$$

Finally, let

$$
\begin{equation*}
u_{m a} \quad=\bar{y}_{n-m}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(\bar{x}_{1 n-m} \bar{x}_{p n^{\prime}-m}\right) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{r a d} \quad=\frac{\left(n^{\prime}-m\right) U_{m d^{2}+m \bar{y}_{m}}}{n^{\prime}} \tag{5.2}
\end{equation*}
$$

A general class of unbiased estimators

By an argument similar to the one used in section i, it can be shown that;

$$
E\left(T_{m d} / m, n^{\prime}\right)=\bar{y}^{\prime}
$$

where \bar{y}^{\prime} is the mean based on the sample of size n^{\prime}.
Consequently $E\left(T_{m d}\right)=E\left(\bar{y}^{\prime}\right)=\overline{\mathrm{Y}}$, the population mean. Thus

$$
\begin{align*}
& I_{m d}=\frac{\left(n^{\prime}-m\right) U_{m q}+m \bar{y}_{m}}{n^{\prime}} \\
& =\bar{y}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(\bar{x}_{1}-\bar{x} \mid\right)-\frac{m\left(n^{\prime}-n\right)}{(n-m) n^{\prime}}\left[\bar{y}_{m}-\bar{y}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(\bar{x}_{1 m}-\bar{x}_{1}\right)\right] \\
& \text { (5.3) } \\
& =\frac{\left(n^{\prime}-m\right) n}{n^{\prime}(n-m)}\left[\bar{y}-\sum_{i=1}^{p} a_{1}\left(m_{m}\right)\left(\bar{x}_{1}-\bar{x}_{i}\right)\right] \\
& -\frac{\left(n^{\prime}-n\right) m}{n^{\prime}(n-m)}\left[\bar{y}_{m}-\sum_{i=1}^{p} a_{i}\left(z_{m}\right)\left(\bar{x}_{i m}-\bar{x}_{i}^{\prime}\right)\right] \tag{5.4}
\end{align*}
$$

$$
\begin{gather*}
=\quad \sum_{i=1}^{p} a_{1}\left(\varepsilon_{m}\right) \bar{x}_{1}^{\prime}+\frac{\left(n^{\prime}-m\right) n}{n^{\prime}(n-m)}\left(\bar{y}-\sum_{i=1}^{p} a_{1}\left(z_{m}\right) \bar{x}_{1}\right) \\
\quad-\frac{\left(n^{\prime}-n\right) m}{n^{\prime}(n-m)}\left(\bar{y}_{m}-\sum_{i=1}^{p} a_{i}\left(\varepsilon_{m}\right) \bar{x}_{i m}\right), \tag{5.6}
\end{gather*}
$$

is an unbiased estimator of the population mean \bar{Y}.
Now a general class of unbiased estimators may be constructed by including all estimators of the form $\mathrm{Tm}_{\mathrm{md}}$, applied to all possible permutations of the subsample elements and weighted averages of such estimators. of all the estimators of the class, $T_{m i}^{*}$, obtained as average of the estimators $T_{m d}$, applied to all the possible permutations of the subsample elements, if of more interest since the variance of $T_{m i}^{*}$ is never greater than the variance of $T_{m d}$.

It may be noted that, by putting $n^{\prime}=N$ in (5.3), (6.4) and (5.6), we obtained the general class of unbiased estimators given by Mickey (2959).

Unbiased patio type estimators

When information on only one auxiliary variable is taken, for the choice $a\left(z_{m a}\right)=R_{m}=\bar{y}_{m} / \bar{x}_{m n}, \underline{L} \leq \leq n-1$, we obtain the unbiased ratio type estimators, given by

$$
\begin{equation*}
T_{I_{m d}}=R_{m i x} \overline{x^{\prime}}+\frac{\left(n^{\prime}-m\right) n}{n^{\prime}(n-m)}\left(\bar{y}-R_{m} \bar{x}\right) \tag{6,6}
\end{equation*}
$$

where $\mathrm{R}_{\mathrm{p}}^{*}$ is the average of R_{m}, taken over all the permutations of the subsample elements.

$$
\text { In particular, when } m=1, \quad R_{m}^{*}=\frac{1}{n} \sum_{j} \frac{y_{j}}{x_{j}}=\bar{x}_{n} \text {, and }
$$

$$
\begin{equation*}
r_{11 d}^{*}=\bar{r}_{n} \bar{x}^{\prime}+\frac{\left(n^{\prime}-\lambda\right) n}{n^{\prime}(n-1)}\left(\bar{y}-\bar{x}_{n} \bar{x}\right) . \tag{5.8}
\end{equation*}
$$

The estimator $T_{\text {IId }}$ is a modified form of Hartley and Rose unblased ratio estimetor and has been studied by Sukhatme (1962).

Unbiased Regression type estimators

Using information on only one auxiliary variable, with the choice $a\left(z_{m}\right)=b_{m}$, we obtain the unbiased regression type estimators given by,

$$
T_{\text {mad }}=\left[\bar{y}-b_{m}\left(\bar{x}-\bar{x}^{\prime}\right)\right]-\frac{m\left(n^{\prime}-n\right)}{(n-m) n^{\prime}}\left[\bar{y}_{m}-\bar{y}-b_{m}\left(\bar{x}_{m}-\bar{x}\right)\right]
$$

and
$x_{m a d}^{*}=\left[\bar{y}-b_{m}^{*}\left(\bar{x}-\bar{x}^{\prime}\right)\right]+\frac{m\left(n^{\prime}-n\right)}{(n-m) n^{\prime}} \cdot \frac{1}{\binom{n}{m}} \sum b_{m}\left(\bar{x}_{m}-\bar{x}\right)$,
where $b_{\text {m }}$ is the regression coefficient based on mm and b_{H} is the everage of b_{m} over all permutations of the sub-sample elements.

Estimation of variance of T_{md}
We have

$$
\begin{align*}
V\left(T_{m a}\right) & =E\left[V\left(T_{m d} / n^{\prime}\right)\right]+V\left[E\left(T_{m d} / n^{\prime}\right)\right] \\
& =E\left[V\left(T_{m a} / n^{\prime}\right)\right]+V\left(\bar{y}^{\prime}\right) \tag{5.11}
\end{align*}
$$

From result (1.12) of seotion 1, a non-negative unbiased estimator of $\mathrm{V}\left(T_{\mathrm{md}} / n^{\prime}\right) \mathrm{Is}_{\mathrm{g}}$ given by

$$
\begin{equation*}
\frac{\left(n^{\prime}-n\right)\left(n^{\prime}-m\right)}{n^{\prime 2}(n-m)} \cdot \frac{1}{(n-m-1)} \sum_{j}^{n-m} \cdot\left[\left(y_{1}-\bar{y}_{n-m}\right)-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(x_{1 g}-\bar{x}_{1 n-m}\right)\right]_{(5.12)}^{q} \tag{5.12}
\end{equation*}
$$

where the sumation is taken over all sub-sample elements excluding z_{m}.

Albo a non-ve unbiased estimator of $V\left(\bar{y}^{\prime}\right)$, based on sub-sample elements only, is given by

$$
\begin{equation*}
\left(\frac{N-n}{N n^{1}}\right) \cdot \frac{1}{n-1} \sum_{j}^{n}\left(y_{j}-\bar{y}\right)^{2} \tag{5.13}
\end{equation*}
$$

From (5.11), (5.12) and (5.13), it follows that a non-ve unbiased estimator of the variance of $T_{m d}$ is provided by Est. $\left.V\left(T_{m d}\right)=\frac{\left(n^{\prime}-n\right)\left(n^{\prime}-m\right)}{n^{\prime}(n-m)} \cdot \frac{1}{(n-m-1} \sum_{j}^{n-m} \sqrt{4\left(y_{j}\right.}-\bar{y}_{n-m}\right)-\sum_{i=1}^{p} a_{1}\left(z_{m}\right)\left(x_{1 g}-\bar{x}_{i n-m}\right)$

$$
\begin{equation*}
+\frac{(N-n!)}{N n!} \cdot \frac{1}{n-i} \sum_{j}^{n}\left(y_{j}-\bar{y}\right)^{a} \tag{5.14}
\end{equation*}
$$

Estimator of the variance of $T_{\text {ma }}^{*}$
Following on similar lines, as in single-phase sampling, section 2 , it can be shown that an estimator of the variance of $T_{\mathrm{md}}^{\mathrm{md}}$ is given by Est. $V\left(T_{m d t}^{*}=\frac{1}{\binom{n}{m}} \sum^{\binom{n}{m}}\left[E_{s t} \cdot v\left(T_{m d}\right)-\left(T_{m d}-T_{m d}^{m}\right)^{2}\right], \quad\right.$ (5.15) where the sumbation is taken over all the possible $\left(\frac{n}{m}\right)$ estimators of the form $T_{m d}$ for a given sub-sample.

Efficiency of Retio type estimators Ifind *

If $\overline{\mathrm{y}}_{\text {Rd }}$ denotes the usual diased ratio estimator,
$-\overline{\bar{y}} \overline{\bar{x}} \bar{x}^{\prime}$, in double sampling, then to the order of approximation $1 / n$, we have

$$
\begin{equation*}
V\left(\bar{y}_{R Q}\right)=\left(\frac{1}{n}-\frac{1}{n^{1}}\right)\left(s_{y}^{2}+R^{2} s_{\frac{1}{x}}^{2}-2 R s_{x y}\right)+\frac{N-n^{1}}{N n^{1}} \cdot s_{y^{*}}^{2} \tag{6.16}
\end{equation*}
$$

Also we can write

$$
\begin{align*}
& V\left(T_{i m d}^{*}\right)=E\left[V\left(T_{\text {imp }}^{*} / n^{\prime}\right)\right]+V\left[E\left(r_{\text {amd }}^{*} / n^{\prime}\right)\right] \\
& =E\left[V\left(T_{\text {md }}^{*} / n^{\prime}\right)\right]+V\left(\bar{y}^{\prime}\right) . \tag{6.17}
\end{align*}
$$

Now from results (2.16) and (2.22) of section 2 , to the order of approximation $1 / n$, we have

$$
\begin{align*}
& \text { when miss small; } \\
& \text { (8.18) } \\
& =\left(\frac{2}{n}-\frac{1}{n^{1}}\left(s_{y, n^{\prime}}^{2}+R_{n^{\prime}}^{2} s_{x, n^{\prime}}^{2}-2 R_{n}, s_{x y, n}\right)\right. \text {, } \\
& \text { when mas sufficiently large; } \tag{5.19}
\end{align*}
$$

where $\quad \vec{X}_{m, n^{\prime}}=E\left(R_{m^{\prime}} / n^{\prime}\right), R_{n^{\prime}}=\frac{\bar{y}^{\prime}}{\underline{\underline{y}}^{\prime}}$,
and $s_{y, n \prime}^{2}, s_{x, n \prime}^{2}$, and $a_{x y}, n \prime$ are the mean sums of squares and sum of products based on the sample of size n '.

Case 1) mic mall as compared to n
In this case, from (5.27) and (5.18) to the order $1 / n$, we have

$$
\begin{align*}
& +V\left(\bar{y}^{\prime}\right) . \\
& =\left(-\frac{1}{n}-\frac{1}{n^{\prime}}\right)\left(s_{y}^{2}+\bar{E}_{m}^{2} s_{x}^{2}-2 \bar{R}_{m} s_{x y}\right)+\left(\frac{1}{n},-\frac{1}{N}\right) 8_{y,}^{2}, \tag{3.20}
\end{align*}
$$

where $\bar{K}_{m}=E\left(R_{m}\right)$.
In particular, when $m=1$, estimator $T_{i l d}$ is a modified form of Hartley and Ross unbiased estimator and its variance is given by

$$
\begin{equation*}
V\left(x_{11 d}^{*}\right)=\left(\frac{1}{n}-\frac{1}{n^{1}}\right)\left(s_{y}^{2}+\bar{r}_{N}^{2} s_{x}^{2}-2 \bar{r}_{N} s_{x y}\right)+\left(\frac{1}{n^{1}}-\frac{1}{n}\right) s_{y}^{2}, \tag{5.21}
\end{equation*}
$$

where

$$
\bar{x}_{k}=\frac{1}{N} \sum_{j=1}^{N} \frac{y_{j}}{x_{j}}=\frac{1}{N} \sum_{j=1}^{N} x_{j} .
$$

Neglecting the finite population correotion factor, Sukhatme (1962) has given the variance of T ild in the forms

$$
\begin{align*}
& +\frac{1}{n^{\prime}}\left(\bar{x}_{\mathbb{N}}^{a} \frac{2}{\sigma_{X}}+2 \bar{r}_{N} \bar{x} \sigma_{r x}+2 \bar{r}_{N} E(\stackrel{q}{\Delta x \Delta y)})\right. \tag{6.82}
\end{align*}
$$

where

$$
\Delta x=x-\bar{X}, \quad \Delta x=r-\overline{\mathbf{r}}_{N},
$$

$\frac{2}{\sigma_{y}}=V(y), \sigma_{x}=V(x), \sigma_{x y}=\operatorname{cov}(y, x)$ and $\sigma_{x x}=\operatorname{Cov}(x, x)$.
When the inite population correotion factor is
ignored, it can be easily shown that expressions (5.21)
and (5.82) are identical by making use of the identity

$$
\begin{equation*}
\sigma_{x y} \equiv \bar{x}_{N}^{2} \sigma_{x}^{2}+\bar{x} \sigma_{y x}+E\left(\Delta^{8} x \Delta x\right) . \tag{8.83}
\end{equation*}
$$

The advantage of the form (5.81) and in general (5.20)
Is that it is easily comparable with the variance of the biased ratio estimator $\bar{y}_{\text {Rd }}$, given by (5.16). Thus a comparison of (5.16) and (5.20) shows that the unbiased ratio estimator $T_{2}{ }^{*}$ is more efficient than the biased ratio eatimator $\overline{y_{i d}}$, if and only if the population regression coefficient of y on x is nearer to $\bar{K}_{m \in}=\frac{2}{\binom{N}{m}} \sum^{(N)} B_{m}$ than to the population ratio $\mathbf{R}=\overline{\mathbf{Y}} / \overline{\mathbf{X}}$.

Case ii) m is sufficientiy larse

In this case from (5.17) and (5.19), to the order of approximation $1 / n$, we have

$$
\begin{align*}
V\left(T_{m a}^{*}\right) & =\left(\frac{1}{n}-\frac{1}{n^{\prime}}\right) B\left(s_{y, n}^{2},+R_{n}^{2} \theta_{x, n}^{2}-2 R_{n^{\prime}} s_{x y, n}\right)+\left(\frac{1}{n^{\prime}}-\frac{1}{n}\right) s_{y}^{2} \\
& =\left(\frac{1}{n}-\frac{1}{n^{\prime}}\right)\left(s_{y}^{2}+R^{2} s_{x}^{2}-8 R s_{x y}\right)+\left(\frac{1}{n^{\prime}}-\frac{1}{n}\right) s_{y}^{8} \cdot(8.24) \tag{8.24}
\end{align*}
$$

Results (6.16) and (5.24) establish that, when m is sufficiently large, $T_{\text {imd }}^{*}$ is as efficient as the blased ratio estimator $\overline{\mathbf{y}}_{\text {Re }}$.

Efficiency of Regression type estimators $T_{\text {2ind }}^{*}$

In double sampling, the usual blesed regression estimator is given by $\bar{y}_{1 r d}=\bar{y}+b\left(\bar{x}-\bar{x}^{\prime}\right)$, where b is the regression coefficient based on the eub-sample of size n.

Also it is known that, to the order of approximation 1/n,

$$
\begin{equation*}
v\left(\bar{y}_{1 r d}\right)=\left(\frac{1}{n}-\frac{1}{n^{1}}\right)\left(s_{y}^{2}+B^{8} s_{x}^{2}-2 B \theta_{x y}\right)+\left(\frac{1}{n^{\top}}-\frac{1}{N}\right) s_{\frac{1}{8}}^{8}, \tag{5.26}
\end{equation*}
$$

where B is the population regression coefficient. For the unbiased regression estimator $T_{2 m d}^{*}$ we write

$$
V\left(T_{2 m d}^{*}\right)=E\left[V\left(r_{2 m d}^{*} / n^{\prime}\right)\right]+V\left[E\left(T_{2 m d}^{*} / n^{\prime}\right)\right] .
$$

Here substituting for $V\left(T_{\text {ma }}^{*} / n\right)$ from the results of section 4, we have, when m is sufficiently large, to the order $1 / n$,

$$
\begin{aligned}
V\left(T_{2 m d}^{\bullet}\right)=E\left[(\frac { 1 } { n } - \frac { 1 } { n } ,) \left(s_{y, n}^{2}+b_{n}^{2}\right.\right. & \left.\left.s_{x, n}^{2},-2 b_{n}, s_{x y, n},\right)\right] \\
& +\left(\frac{1}{n^{1}}-\frac{2}{n}\right) s_{y}^{2}
\end{aligned}
$$

$$
\begin{equation*}
=\left(\frac{1}{n}-\frac{1}{n^{\prime}}\right)\left(s_{y}^{2}+B^{2} g_{x}^{8}-2 \theta 8_{x y}\right)+\left(\frac{1}{n^{\prime}}-\frac{1}{N}\right) 8_{y^{\prime}}^{8} \tag{5.26}
\end{equation*}
$$

where $b_{n \prime}$ is the regression coefficient besed on the sample of size n^{\prime}.

Thus from (5.25) and (5.28) if follows that, when m is sufficiently large, the unbiesed regression estimator $\mathrm{T}_{2 m d}^{*}$ is as efficient as the biased regression estimator $\bar{y}_{1 r d}$. Also a comparison of (6.24) and (5.26) proves that the unblased regression estimators $T_{\text {qind }}$ are never less efficient than the unbiased ratio estimators T ind, when m is sufficientiy Iarge.

Finaliy, it is interasting to note that the results conceming the relative efficiency of the unbiased ratio and regression estimators with respect to the usual biased ratio and regression eatimators, in double sampling, are. exactiy the sams as those obtained in the single-phase sampling.

In this section, a stratified population with one auxiliary variabie is considered. Assuming that the strata maans of the auxiliary variable are known, two sete of 'combined' and 'separate' unblased ratio type estimators based on a stratified simple random sample, drawn without replacement, are obtained together with unblased estimators of their precision.

Rxeliminaries

Let the finite population of size \mathbb{N} be divided into L strata with E_{h} units in the $\mathrm{h}^{\text {th }}$ stratum, for $\mathrm{h}=2, \mathrm{z}_{\mathrm{i}}, \ldots .$. , . Let ($y_{h 1}, x_{h 1}$) denote the observations on the prinoiple variable y and the auxiliary variable x for the $1^{\text {th }}$ unit in the $h^{\text {th }}$ stratum. Suppose \bar{Y}_{h} and \bar{X}_{h} represent the $h^{\text {th }}$ stratum means.. Define the population means $\bar{Y}=\sum_{h=1}^{L} P_{h} \bar{Y}_{h}$ and $\bar{X}=\sum_{h=1}^{L} P_{h} \bar{X}_{h}$, where $P_{h}=N_{h} / N$.

Let a simple random sample of size n_{h} be drawn without replacement from the $h^{\text {th }}$ stratum $(h=1,2, \ldots, L)$ with $\sum_{h=1}^{L} n_{h}=n$. Further, let \bar{y}_{h} and \bar{x}_{h} denote the means based on the sample Prom the $n^{\text {th }}$ stratum and $\bar{y}=\frac{1}{n} \sum_{h=1}^{L} n_{b} \bar{y}_{h}, \bar{x}=\frac{1}{n} \sum_{h=1}^{h} n_{h} \bar{x}_{h}$, be the means based on the total stratifled sample.

Suppose $z_{m_{h}}, 1 \leq m h \leq n_{h}-1$, represent aset of m_{h} elements, chosen out of the n_{h} sample elements from the $h^{\text {th }}$ stratum, with $\sum_{h=1}^{L} m_{h}=m$. Based on the set $\varepsilon_{m_{h}}$, let $\bar{y}_{m_{h}}$ and $\bar{x}_{m_{h}}$ represent the means and $R_{m_{h}}$, the ratio $\bar{y}_{m_{h}} / \bar{x}_{m_{h}}$.

Further, let, $\overline{y_{m}}=\frac{\lambda}{m} \quad m_{h} \bar{y}_{m_{h}} ; \bar{x}_{m}=\frac{\lambda}{m} m_{h} \bar{x}_{m_{h}}$ and

$$
\mathrm{R}_{\mathrm{m}}=\overline{\mathrm{y}}_{\mathrm{m}} / \overline{\mathrm{x}}_{\mathrm{m}}
$$

Finaliy, derine

$$
\bar{y}_{n_{h}}-m_{h}=\frac{n_{h} \bar{y}_{h}-m_{h} \bar{y}_{m_{h}}}{n_{h}-m_{h}}, \bar{y}_{k_{h}}-m_{h}=\frac{v_{h} \bar{y}_{h}-m_{h} \bar{y}_{m_{h}}}{N_{h}-m_{h}}
$$

and

$$
n_{h} \bar{x}_{h}-m_{h} \bar{x}_{x_{h}}
$$

$$
\bar{x}_{n_{h}}-m_{h}=\bar{n}_{n_{h}-m_{h}}^{\bar{x}_{N_{h}-m_{h}}=N_{h}-m_{h}}
$$

Geparate unbiased ratio type ostimators
As usual, a separate unblesed ratio type estimator Is formed by estimating the strata maans $\bar{Y}_{h}(h=1,2, \ldots, L)$ with the help of unblased ratio type estimators within different atrata.

For the $h^{\text {th }}$ stratum mean \bar{Y}_{h}, Mickey's unbiased ratio type eatimators are given by

$$
\begin{align*}
& \left.{ }^{2} m_{h} \quad=R_{m_{h}} \bar{x}_{h}+\frac{\left(N_{h}-m_{h}\right) n_{h}}{N_{h}\left(n_{h}-m_{h}\right)}<\bar{y}_{h}-R_{m_{h}} \bar{x}_{h}\right]_{0} \\
& \text { and } T_{m_{h}}^{*}={\dot{R_{m}}}_{m_{h}} \bar{X}_{h}+\frac{\left(n_{h}-m_{h}\right) n_{h}}{N_{h}\left(n_{h}-m_{h}\right)}-\left[\bar{y}_{h}-\dot{R}_{m_{h}} \bar{x}_{h}\right] \text {. } \tag{6.2}
\end{align*}
$$

Consequentiy
$\boldsymbol{I}_{\operatorname{In}(\mathrm{s})}=\sum_{h=1}^{L} P_{h} T_{\boldsymbol{I m}_{h}}$,

provide separate unblased ratio type estimators for the population mean $\overline{\mathbf{Y}}$.

Now since m_{h} elements of the $n_{h_{-}}$gample elements can be chosen in ($n_{m_{h}}$) ways, for a given stratified random eample, we have $\prod_{h=1}\left(n_{h}\right)$ estimators of the form $T_{m(s)}$.

Averaging over all such estimators elso we obtain

As the atratified random sample plays the role of a cufficient statistic, from this it follows that ${ }^{*} \operatorname{Im}(s)$ is never less efficient than $\mathrm{T}_{\mathrm{lm}(\mathrm{s})}$.

Combined unblased ratio type estimators

Following Mickey's principle, we now obtain combined unbiased ratio type estimators.

For this we define

$$
v_{m}=\left(z_{m_{n}}\right), n=1,2, \ldots \ldots, 1,
$$

and

$$
\begin{equation*}
u_{m}=\sum_{h=1}^{L} \theta_{h} \bar{y}_{n_{h}-m_{h}}-\bar{a}_{m} C \sum_{h=1}^{L} \theta_{h}\left(\bar{x}_{n_{h}}-m_{h}-\bar{x}_{N_{h}}-m_{h}\right)>0 \tag{6.5}
\end{equation*}
$$

whare

$$
\nabla_{h}=\frac{v_{h}-m_{h}}{v_{-m}} .
$$

Now since the sampling within different strata is independent, for a given set z_{m}, the $n_{h}-w_{h}$ elements, obtained by excluding the set $k_{m_{h}}$ irom the n_{h} sample elements of the $n^{\text {th }}$ stratum, constitute a simple random sample without replacement from the $N_{h}-m_{h}$ elements of $h^{\text {th }}$ atratum, ($h=1,2, \ldots,{ }^{2}$

Consequently, for a given set I_{m}, we have

$$
\begin{align*}
& E\left(U_{m} / m\right)=\sum_{h=1}^{L} Q_{h} B\left(\bar{y}_{n_{h}-m_{h}} / m\right)-R_{m} L \sum_{h=1}^{L} Q_{h} B\left(\bar{x}_{n_{h}}-m_{h} / m\right)-\sum_{h=1}^{L} Q_{h} \bar{x}_{N_{h}}-m_{h} 7 \\
& =Q_{h} \bar{Y}_{\mathbf{N}_{h}-m_{h}} \\
& =\frac{\mathrm{N} \overline{\mathrm{Y}}-\overline{\mathrm{Y}}_{\mathrm{I}}}{\mathrm{~N}-\mathrm{m}} . \tag{6,6}
\end{align*}
$$

thus

$$
\begin{equation*}
T_{m(c)}=\frac{(N-m) U_{m}+m \bar{y}_{m}}{N} \tag{6.7}
\end{equation*}
$$

1 conditionally and hance unconditionally unbiased for the population mean $\overline{\mathbf{Y}}$.

Substituting for U_{m} from (6.5) in (6.7), it can be seen that the combined unbiased ratio type estimator $\boldsymbol{I}_{\mathrm{m}}(\mathrm{c})$ is also given by

$$
I_{m}(0)=P_{m} \bar{x}+\frac{1}{1} \sum_{h=1}^{L}\left(N_{h}-m_{h}\right)\left(\bar{Y}_{n_{h}-m_{h}}-R_{m} \bar{x}_{n_{h}-m_{h}}\right) \cdot(6.8)
$$

Averaging over all the possible $\prod_{h=1}^{L}\binom{n_{h}}{m_{h}}$ estimators of the form $\mathrm{I}_{\mathrm{Im}}(\mathrm{c})$: for a given stratified random sample we obtain the combined unbiased ratio type estimator
which is never less efficient than $T \operatorname{lm}(0)$.

Further, if for a given m, the $m_{n}\left(h=2,2, \ldots, L_{0}\right)$ are so chosen that $\frac{n_{h}-m_{h}}{n_{h}-m_{h}}=$ constant, (1.e.) $\frac{N_{h}-m_{h}}{n_{h}-m_{h}}=\frac{N_{-m}}{n-\infty}$, then $T \operatorname{Im}(c)$ and $T \operatorname{In}(c)$ assume simpler forms given by

$$
\begin{equation*}
\operatorname{I}_{2 m}(c)=g_{m} \bar{X}+\frac{(N-m) n}{N(n-m)}\left[\bar{y}-A_{m}=7\right. \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.T_{I_{m}(c)}=E_{m} \bar{X}+\frac{(N-m) n}{N(n-m)}<\bar{y}-R_{m} \bar{x}\right] \tag{6.21}
\end{equation*}
$$

where $\mathrm{E}_{\mathrm{m}}^{\circ}=$
27. ${\underset{h}{n=1}}_{k_{n}^{n}}^{1}$

It $1 s$ interesting to note that estimators (6.10)
and (6.11) are remarkably similar in form to the unblased ratio type estimators, based on an unstratified random sample of size n. Further, in proportional allocation (1.0 , when $n_{h}=n P_{h}$), for a given $m_{\text {; }}$ the condition
$\frac{N_{h}-m_{h}}{n_{h}-m_{h}}=\frac{N-m}{n-m}$ is sativilied $1 f$ the choice of m_{h} is also proportional to $P_{h}\left(1 . e . m_{h} \equiv \mathrm{mP}_{\mathrm{h}}\right.$),

Thus in proportional allocation for the choice $\mathrm{m}_{\mathrm{h}}=\mathrm{mP}_{\mathrm{h}}$; estimatore (6.10) and (6.12) provide combined unblased ratio type estimators.

Eatimation of variance

We first give unbiased estimators of the variance of the separate ratio type estimators and then obtain unbiased estimation of the varlance of the combined estimators.
(1) Beparat unblased ratio type ostimatore

From result (1.15) of section 1, a non-ve unblased estimator of the variance of Lickey's unblased ratio type eatimator $T_{I_{m}}$ in the $h^{\text {th }}$ stratum is given by Bst. $V\left(T_{m_{h}}\right)=\frac{\left(N_{h}-n_{h}\right)\left(N_{h}-m_{h}\right)}{\left(n_{h}-m_{h}\right) N_{h}^{2}} \cdot \frac{1}{\left(n_{h}-m_{h}-1\right)} \sum_{i}^{n_{h}-m_{h}} \Gamma\left(y_{h 1}-R_{m_{h}} x_{h 1}\right)-$

$$
\begin{equation*}
\left.\left(\bar{y}_{n_{h}}-m_{h}-\dot{g}_{m_{h}} \bar{x}_{n_{h}}-m_{h}\right)\right)_{3} \tag{6,12}
\end{equation*}
$$

except for the choice $\mathrm{mh}_{\mathrm{h}}=\mathrm{nh}_{\mathrm{h}}-1$.

Consequently, a non-ve unbiased estimator of
the variance of the separate unbiased ratio type estimator $T_{\text {m }}(s)$ is provided by

$$
\begin{equation*}
\text { Est. } V\left(T_{1 m(s)}\right) \quad=\sum_{h=1}^{L} P_{h}^{2} E_{s t} . V\left(T_{1 \pi m h}\right) \tag{6.13}
\end{equation*}
$$

Also, since for a given stratified random sample,
$E\left[r_{1 m(s)} / H_{h} h=1,2, \ldots \ldots, \downarrow\right]=T_{1 m(s)}$
an unbiased estimator of the variance of the separate unbiased ratio type estimator $T_{\mathrm{Im}}^{*}(\mathrm{~s})$ Is given by

(ii) Combined unbiased ratio type estimators

To obtain a non-ve unbiased estimator of the variance of the combined ratio type estimator $\operatorname{TIm}(c)$, we note that

$$
\begin{aligned}
& V\left(T_{1 m(c)}\right)=E\left[V\left(T_{m(c)} / m\right)\right]+V\left[E\left(T_{2 m(o)} / m\right)\right] \\
& =\frac{(N-m)^{2}}{\mathbb{N}^{2}} \text { B }\left[V\left(U_{m} / m\right)\right\rceil \text {, from (6.7) } \\
& \begin{aligned}
=\frac{(N-m)^{2}}{N^{2}} \mathbb{E}\left[\sum_{h=1}^{L} Q_{h}^{2} v\left(\bar{y}_{n_{h}}-m_{h}-p_{m} \bar{x}_{n_{h}-m_{h}}(m)\right],\right. \\
\text { from (6.5). }
\end{aligned}
\end{aligned}
$$

Now, clearly, a non-ve unbiased estimator of

$$
\begin{aligned}
& V\left(\bar{y}_{n_{h}}-m_{h}-\dot{f}_{m} \bar{x}_{h_{h}}-m_{h} / m\right) \text { is provided by } \\
& \frac{\left(n_{h}-n_{h}\right)}{\left(n_{h}-m_{h}\right)\left(N_{h}-m_{h}\right)} \cdot \frac{1}{\left(n_{h}-m_{h}-1\right)} \sum_{i}^{n_{h}-m_{h}}\left[\left(y_{h 1}-n_{m x_{h 1}}\right)-\left(\bar{y}_{n_{h}-m_{h}}-n_{m} \bar{x}_{n_{h}-m_{h}}\right)\right]_{\text {(6.16) }}^{8},
\end{aligned}
$$

except for the choice $m_{h}=n_{h}-2$.

Consequently from (6.15) and (6.16), a non-ve unbiased estimator of I Info) is given by

Est. $V\left(T_{m}(c)\right)=$

Again, since for a given stratified random sample,

$$
B\left[I_{\operatorname{Im}(c)} / n_{h}, m=1,2, \ldots \ldots, L\right] \quad \operatorname{P}_{\operatorname{Im}(0)}^{*}
$$ an unbiased estimator of the variance of $\operatorname{tim}(\mathrm{e})$ is provided by

7. NUMERICAL EXAMPLEB

The theoretical investigation of the efficiency of Mickey's unblased ratio and regression type estimators presented many difficult problems in view of the complexity of the estimators themselves and in fact no theoretical appralsal of their performance in small samples has been possible. Even the verification of the results, obtained in respect of their efficiency in large samples, involves heavy computations and is possible only with the help of the electronic computer. Also one of the interesting problems still remained unsolved 18 the behaviour of these estimators for increasing values of 'm!., In this section, however, e few numerical examples have been taken up in these directions for the unbiased ratio type estimators. Unleas extensive. comparisons are made, no general conclusions can be dram regarding their performance in small samples; for increasing values of m ; etc.

The first example demonstrates the construction of an exact unbiased estimator of the variance of Hartiey and Ross estimator, as has been suggested by the results (1.15) and (1.16) of section 1 , for a sample of size 9 . In the second, example, a sample of size 15 has been taken to obtain consistent estimators of the variance of the unblased ratio type estimators $T_{\text {Im }}(m=1,2 \mathrm{an}$ 3), with help of the result (2.26) of section 8. In the third example, a sample of size 100 , with known population coefficients of variation and covariation, is taken up
to study the veriance of $\mathrm{T}_{\mathrm{im}}^{*}$ for the choice of m ranging from 78 to 98, with the help of the bivariate normal approximation formula (2.37) of section 2. Finally, an artificial stratified population consisting of 3 strata, given by Cochran (II edition, page 179), has been considered to study the efficiency of the combined unblased ratio type estimator $\mathrm{T}_{\mathrm{il}}(\mathrm{c}$ (of section 6 .

Example I:
The data for this example come from a simple random sample of size 9, drawn without replacement from the 91 villages of the Venkatagiri Taluq in Neilore distriot In order to study the yield and cultivation practices of Lime. In Table 7.1, yg represents, the number of bearing trees and x_{j} the area (in acres) reported initially under Lime, for the $\mathrm{g}^{\text {th }}$ village. The problem is to estimate the average number of bearing trees per village in Venkatagiri stratum.

$$
\text { - Table } 7.1
$$

Sampled viliage Code number	No of bearing trees $\left(y_{j}\right)$	Area (in acres) raported initialiy
1	291	5.60
2	263	2.95
3	78	7.05
4	261	5.36
5	1802	13.50
6	604	6.69
7	1403	26.81
8	1703	12.63
0	554	6.68

Table 7.2

Illustration of computation for unbiased estimator of the variance of Hartley and Ross estimator Ti j specified by (1.16) of section 1. ($\mathrm{m}=1$)

$$
\begin{aligned}
& R_{1}=\frac{7}{9} \sum R_{1}=72.859 \text {, } \\
& \frac{2}{9} \sum \operatorname{Est} \cdot V\left(T_{11}\right)=16457,\left(\bar{X}-\frac{(N-2) n}{N(n-1)} \bar{x}\right)^{2} \frac{1}{9} \sum\left(R_{2}-R_{1}\right)^{2}=6100 . \\
& \text { Est.V(} \left.\text { Ti }_{11}\right)=16457-6100=10357 . \\
& \text { Estimated relative efficiency of Hartley and Ross } \\
& \text { unbiased estimator with respect to } \bar{y}_{\mathrm{R}}, \text { is, therefore, given }
\end{aligned}
$$

by $\frac{10104}{10357} \times 100=97.568 . \mathrm{T}_{21}^{*}$ is hence preferable in view of its property of unblasedness.

Exemple II

The data for this example if based on a aimple random sample of size 15 , drawn without replacement from the population of 91 villages of example I. Unblased ratio type estimators $T_{j m}, m=1,2$ and 3 ate compared with \bar{y}_{R} by caloulating consistent estimstes of their variance, obtained from the formula (2.16) of section 8.

$$
\text { Table } 7.3
$$

1	698	6.16
8	1403	16.81
3	873	8.78
4	232	5.34
5	588	4.60
6	78	7.05
7	1308	13.50
8	571	7.05
9	0	5.01
10	1302	23.50
11	291	5.60
13	307	13.54
13	1063	13.23
14	168	2.60
16	1470	14.77

For this saraple $\begin{aligned} \mathrm{R}_{2} & =74.896, \mathrm{R}_{2}^{*}=70.810 \\ \mathrm{~F}_{2}^{*} & =72.843, \mathrm{~B}_{3}^{*}=73.680\end{aligned}$
Also

$$
\begin{aligned}
a_{y}^{2} & =266248, \varepsilon_{x}^{8}=20.706 \\
\varepsilon_{x y} & =1896.94, b_{n}=91.612,
\end{aligned}
$$

where, D_{n} is the sample regression coefficient.
. Using the formula (2.16) of section 2 , for mall
values of m, a consistent estimate of the variance of
$T_{3 m}^{*}$ is given by
Est. $V\left(T_{y m}^{*}\right) \quad=$ Est. $V(\bar{y})+\dot{R}_{m}^{*}$ Est. $V(\bar{x})-2 R_{m}^{2}$ Est.Cov. (\bar{y}, \bar{x}).
Also a consistent estimate of the variance of \bar{y}_{R} is given by
Est. $V\left(\bar{y}_{R}\right)=E s t . V(\bar{y})+R_{n}^{2}$ Est. $V(\bar{x})-2 R_{n}$ Est.Cov. (\bar{y}, \bar{x}).
Consequently, since in this example

$$
a \& R_{1}^{*}<R_{2}^{*}<R_{3}^{<R_{n}}<b_{n} \text {, }
$$

we expect the inequality

$$
E_{s t} . V\left(\bar{y}_{R}\right)<E_{s t} . V\left(T_{13}^{*}\right)<E_{s t} . V\left(T_{12}^{*}\right)<E_{s t} . V .\left(T_{11}^{*}\right) \text {. }
$$

Table 7.4 gives the estimates of the variance and the relative efficiencies compared to $\overline{\mathbf{y}}_{\mathrm{R}}$.

Table 7.4

Estimator Estimate of the variance Relative efficiency

\bar{y}_{R}	5470.393	100.00
Hartley and Ross T_{11}^{*}	5647.148	96.87
$\mathrm{~T}_{12}^{*}$	5564.387	98.49
T_{13}^{*}	-5521.458	99.08

Although the unblased estimators are all less efficient than the blased estimator, their varlance is not aignificantly more than that of \bar{y}_{R}. Thus thay compare satiafactorily with $\overline{\mathbf{y}}_{\mathrm{R}}$, from the point of view of efficiency. On the other hand computation of the blased estimator is the easiest. Among the unbiased estimators, $T_{i s}^{*}$ is the best from the point of view of efficiency, but its computetion is relatively diffioult. For this particular example, for increasing values of mfrom below, there is an increase in the efficiency of the unbiased estimator.

Example III

The data for this example are teken from pase 171, edilion second volume of Cochran's Sampling Techniques'. From a census of all the 2010 ferma in Jefferson County in respact of the acreage under the corn crop (y) and the total acreage (x) of the farm, the following are the population means and the coefficients of variation and covariation.

\bar{Y}	$=86.80, \quad \bar{X}=117.88$
c_{y}^{2}	$=0.896355, c_{x}^{2}=0.853924$,
$c_{x y}$	$=0.471071$.

A simple random ample of size 200 is assumed to be drawn from this population. The blvariate normal approximations (2.26) and (2.37) of section 2 , are calculated respectively for the M.S.E. of $\overline{\mathrm{y}}_{\mathrm{R}}$ and the variance of T_{j}, m ranging from 75 to 99. The varlances together with the relative efficiencies are tabulated in Table 7.5.

Table 7.6

Estimator	M.8.E./vartance	Relative officlenoy
\bar{y}_{R}	35.7587	100.000
$\mathrm{T}_{\text {m }} \mathrm{m}^{m}=75$	35.3848	101.059
80	35,3862	101.055
85	36,8910	101.048
90	35.4014	101.018
98	85.4353	100.916
99	35.7189	100. 114

The results show a steady decrease in the efficiency of $T_{1 m}^{*}$ as m increases from 76 to 99 , although the decreass is not quite significant. For all m ranging from 75 to 99 , Pim is more efficient than \bar{y}_{R}; although once again the gain in efficiency is not significant. The results confirm that to the ifrst order of approximation, when m is suffioientiy large, If is as efficient as the blased ratio estimator \bar{y}_{R}.
Example IV
In this example, an artipicial stratiried population of 3 strata, constructed by Cochran (Edn. Vez . II, page 279), is considered. Each stratum contains 4 units out of which 2 units are selected at random without replacement. Thus the allocation of the total sample size $n=6$ is proportional to the strata sizes $N_{h}(h=1,2$ and 3). The population was constructed in such a way that (a) R_{h} varies maricediy from stratum to stratum, thus favouring a separate ratio
estimator, and (b) the ratio estimator within each stratum is badly biased. The choice of m_{h} is equal to 1 In each stratum, so that the averaged 'separate' and 'combined' unbiased ratio type estimators for the population total X are respectively given by the separate Hartley and Ross estimator $\mathrm{NT}^{*} \mathrm{~T}_{2(\mathrm{~s})}$ of (6.4) and the combined unbiased ratio type estimator $N X^{\boldsymbol{T}}(\mathrm{a}(\mathrm{c})$ of (6.11).

Five methods of estimating the population total are compared.

1. 8 dimple expansion
2. The combined biased ratio estimator
3. The separate biased ratio estimator

($\bar{y} / \bar{x}) x$.

$$
\sum_{h=1}^{L}\left(\bar{y}_{h} / \bar{x}_{h}\right) x_{h} .
$$

4. The separate Hartley and Ross unbiased ratio estimator
5. The combined unbiased: ratio type estimator

There are $6^{3}=216$ possible samples. The biases and variances are exact, since all possible samples are taken into account.

Table 7.6
A small artificial population
Stratum

Results for the differant estimators of Y

Method	Varlance	[B1asl ${ }^{2}$	M.S.8.
Simple expansion	820.3	0.0	820.3
Combined blased ratio	262.8	6.5	269.3
Separate blased ratio ..	35.9	24.1	60.0
Soparate Lartiay and Roos	183.6	0.0	263.6
Combined unblased ratio	348.4	0.0	148.4

Irrespective of the extreme conditions, the contribution of the (bias) ${ }^{2}$ to the mean square arror of the combined blased ratio estimator is trivial. Because of considerable variation in R_{h}, the separate blased ratio estimator is much more accurate than the combined blased ratio estimator, but it is badiy blased. The Bartiey and Ross separate unbiased ratio estimator is superior to the combinod blased ratio estimator, but inferior to the combined unbiased ratio estimator as well as to the separate biased ratio estimator, as judged by the M.S.F. of the latter. The combined unbiased ratio estimator is more efficient than any other estimator except the separate blased ratio estimator.

Cochran has included separate Lahiri unbiased ratio estimator also in the comparisona, but in the author's view It is not comparable as it is based entirely on a different probability sempling scheme. The Pive estimators compared here are all based on stratified simple random sampling without replacement.

Lahiri, D.B. (1851). A method of sample selection providing unbiased ratio estimators. Buil. Inst. Internat. 8tat1st., $33,8,233-140$.

Midzuno, H. (2858). On the sampling systam with probability proportionate to sum of aizes. Ann. Inst. Statist. wath. , 3, 89-107.

Sen, A.R. (1952). Further developments of the theory and application of the selection of primary units with special reference to the Forth Carolina agricultural population. Ph.D. Thesis, Univ. North Carolina.

Des Rag (1954). Ratio estimation in sempling with equal and unequal probabilities. J. Indian soc. Agric. Statist., 6, 127-138.

Hartiey, B.O. and Ross, A. (2054). Unbiased ratio estimators. Nature, 174, 270-271.

Quenouilie, M.E. (1958). Notes on blas in estimation. Biometrika, 43, 353-360.

Robson, D.S. (2957). Applications of multivariate polykays to the theory of unbiased ratio type estimation. Jour. Amer. Stat. Assoc., 52, 511-522.

Godidman, L.A. and Hartiey, H.O. (1958). The preoision of unbiased ratio type estimators. Jour. Amer. Stat. Assoc., 53, 491-508.

Mickey, M.R. (2959). Some flnite population unblased ratio and regression estimators. Jour. Amer. Stat. Assoc., 64, 594-612.

Lurty, M.N. and Nanjamma, N.S. (1959). Almost unbiased ratio estimates based on interpenetrating sub-sample est1matee. Sankhya, 21, 381-392. sampling systems providing unblased ratio estimators. Sankhya, 21, 299-314.

Y111Lams, খ.H. (1861). Generating unbiased ratio and regression estimators. Biometrios, 17; 267-74.

Jose Nieto Pascual (1961). Unblased ratio ostimators In stratified aampling. Jour. Aner. Stat. Asвос. : 56, 70-87.

Sukhatme, B.V. (2962). Bome ratio type estimators in two-phase sampling. Jour. Amer. Stat. Asaoc., 57. 628-632.
(1068). Gensrailed Hartley-Ross unbiased ratio type estimator. Nature, vol. 196, 1238.

Ravindre 8ingh (1962). Bome estimation procedures in fruit surveys. Unpublished Thesis for Diploma of I.C.A.R.Dew Deinl.

Williams, W.H. (1063). The precision of some unbiased regression estimators. Biometrics, 19, 352-361.

Pathok, P.K. (1964). On sampling schemes providing unbiased ratio estimators. Ann. Nath. Stat., 35, 222-231.

Sukhatme, P.V. (1963). Gampling theory of surveys with applications. Iawa State College Press.

Hansen, H.H. Furwitz. W.N. and Madow, W.0. (1053). Sample survey methods and theory. vol.IT; John wiley and Bons.

Cochran, w. G. (1963). Sampling Techniques. Gecond edition, John wiley and Song.

