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Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain
crop productivity. Although most of the agricultural soils have sufficient amounts of
phosphorus, low availability of native soil P remains a key limiting factor to increasing
crop productivity. Solubilization and mineralization of applied and native P to plant
available form is mediated through a number of biological and biochemical processes
that are strongly influenced by soil carbon/organic matter, besides other biotic and
abiotic factors. Soils rich in organic matter are expected to have higher P availability
potentially due to higher biological activity. In conventional agricultural systems mineral
fertilizers are used to supply P for plant growth, whereas organic systems largely rely
on inputs of organic origin. The soils under organic management are supposed to
be biologically more active and thus possess a higher capability to mobilize native
or applied P. In this study we compared biological activity in soil of a long-term
farming systems comparison field trial in vertisols under a subtropical (semi-arid)
environment. Soil samples were collected from plots under 7 years of organic and
conventional management at five different time points in soybean (Glycine max) -wheat
(Triticum aestivum) crop sequence including the crop growth stages of reproductive
significance. Upon analysis of various soil biological properties such as dehydrogenase,
β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate
induced respiration, soil microbial biomass carbon, organically managed soils were
found to be biologically more active particularly at R2 stage in soybean and panicle
initiation stage in wheat. We also determined the synergies between these biological
parameters by using the methodology of principle component analysis. At all sampling
points, P availability in organic and conventional systems was comparable. Our findings
clearly indicate that owing to higher biological activity, organic systems possess equal
capabilities of supplying P for crop growth as are conventional systems with inputs of
mineral P fertilizers.
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INTRODUCTION

Low availability of native soil phosphorus for plant growth acts
as a limiting factor to realize increased crop productivity (Lynch
and Brown, 2008; Khan and Joergensen, 2009; Malik et al.,
2012; Johnston et al., 2014). It is well known that most of the
soils contain appreciable amounts of total P, yet soil solution
P concentrations are ironically low and thereby an impediment
for sufficient plant P assimilation (Hinsinger, 2001). As P is
subjected to precipitation reactions and sorption reactions on
soil colloids, substantial proportions of applied and native soil
P are rendered unavailable (Alam and Ladha, 2004; Brady and
Weil, 2008; Khan and Joergensen, 2009). Therefore, owing to
the very low efficiency of applied P (Syers et al., 2008), large
amounts of fertilizer P are required to sufficiently increase soil
solution P concentrations for assimilation by crop plants to
sustain crop productivity (Zhang et al., 2010; Shen et al., 2011;
Bai et al., 2013). Inorganic P fertilizers are, however, costly and
are either out of the reach of resource poor farmers in most of
the developing countries or need to be heavily subsidized by tax
payers’ money. Furthermore, with rapidly diminishing accessible
natural P resources, relying solely on inorganic P fertilizers is not
a sustainable strategy (Cordell et al., 2009). Therefore, it is of high
importance that alternate agricultural management strategies are
devised that are cost effective, P efficient and sustainable (Harvey
et al., 2009; Sánchez, 2010). Apart from the input of mineral P
fertilizers, some of the agricultural strategies that can mobilize
soil P for plant assimilation include organic matter management
(Damodar Reddy et al., 1999; Aulakh et al., 2003; Singh et al.,
2007), tillage interventions (Basamba et al., 2006; Shi et al., 2013),
microbial inoculation (Ramesh et al., 2011, 2014; Kumar et al.,
2014), and crop rotation (Aulakh et al., 2003; Ciampitti et al.,
2011).

In nature, phosphorus is known to occur in a number of
discrete chemical forms varying in solubility and availability. In
agricultural soils, P is found in both inorganic and organic forms,
of which organic forms of P are predominant (Turner et al., 2002;
Condron et al., 2005; Kong et al., 2009; Richardson et al., 2011).
Most of the organic P exists as phytate-P and in lesser amounts
as other phosphate esters such as phospholipids (Turner et al.,
2007; Richardson et al., 2011). The presence of high phytate-P
in soils could be attributed to its low solubility and close affinity
toward the solid phase (soil colloids) because of its higher stability
(George et al., 2005; Tang et al., 2006). This has been a major
impediment to P availability for plant uptake. Availability of P for
crop assimilation is net resultant of a number of simultaneously
occurring processes, predominantly the mobilization of inorganic
P, mineralization of organic P, immobilization of applied P and
the rates of P diffusion. These processes are influenced and
mediated by several bio-chemical and microbiological activities.
Though the roles of most of these biological activities in specific
processes are well understood, their synergistic or antagonistic
functions and their interactions under particular management
environments are still poorly studied.

By improving soil physicochemical and biological properties,
organic farming systems are known to play an important role
in agricultural ecosystems. They are also advocated for their

contribution to nutrient cycling in general and P in particular
(Malik et al., 2013; Masto et al., 2013; Tamilselvi et al., 2015).
Organic matter contributes 20–80% to the organic phosphorous
in soil (Richardson, 1994), which in turn is hydrolyzed by
phosphatases – enzymes of plant or microbial origin – to become
plant available P (Tarafdar and Claassen, 1988). Not only does
the mineralization of organic manure supplies available P for
plant uptake, it also plays a significant role in mobilization of
native P forms through an array of mechanisms. For instance,
organic anions evolved during manure decomposition, metal
complexation or dissolution reactions mediate release of P from
exchange sites (Bolan et al., 1994; Iyamuremye and Dick, 1996).
Also, the addition of organic matter serves as a substrate for
microbial proliferation that aides in changing the dynamics of P
(both organic and inorganic forms) in the rhizosphere thereby
positively affecting root architecture and biological properties
such as root released phosphatases or phosphatases of microbial
origin or both (Gichangi et al., 2009; Richardson et al., 2011;
Guan et al., 2012; Malik et al., 2013). The effectiveness of added
organic manures on microbial activity can be ascertained by
assessing its influence on pertinent changes in soil properties such
as pH, soil enzymatic activities, microbial biomass and its role
in P mobilization and assimilation. The assay of soil enzymatic
activities could provide an early and sensitive indication of
changes induced by management strategies such as organic
manuring, green manuring, crop residue incorporation, tillage
interventions, herbicide application etc. (Dick et al., 1988;
Nannipieri, 1994; Aparna et al., 2014; Tamilselvi et al., 2015).
Enzyme activity coupled with measurements of other relevant
biological and biochemical parameters (e.g., soil respiration,
microbial carbon biomass, soil pH etc.) provides indication on
the extent of biological activity in soil. Because of the inherent
complexity of multiple co-existing soil processes, it is, however,
challenging to quantify the net contribution of each of these
factors to plant P-availability under specific production systems.

The proclaimed effectiveness of organic management in
enhancing P availability could only be determined by systematic
comparison with conventional management systems under field
conditions. Such comparative studies need to also consider the
minimum time required for organic systems to become fully
functional. Despite the fact that P availability in soils is of high
scientific interest, systematic long-term comparisons of factors
contributing to P availability in organic and conventional farming
systems are lacking. In this study, we compared soil biological
activities pertaining to P availability at key crop growth stages
in agricultural plots that were subject to continuous organic
and conventional management for 7 years. The study was
conducted within the framework of a long-term farming systems
comparison trial in Vertisols of Central India, where soybean
(Glycine max) – wheat (Triticum aestivum) is a predominant
cropping system. We hypothesized that biological activity in
soils of organic production systems plays a significant role
in P mobilization in a soybean–wheat cropping system. The
specific objective of this study was to monitor changes in
and synergies among soil biological parameters contributing
to P availability such as soil dehydrogenase activity (DHA),
β-glucosidase (βGL), acid phosphatase (ACP) and alkaline
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phosphatase (ALP) activities, soil microbial respiration (SR),
substrate induced respiration (SIR) and soil microbial biomass
carbon (MBC) content at key growth stages of soybean and wheat
crops.

MATERIALS AND METHODS

Site and Trial Description
This study was conducted on the field site of the long term
farming systems comparison (SysCom) trial running since 2007
in the Nimar valley of Madhya Pradesh state in central India.
The trial site is located at an altitude of 250 m above sea
level (22◦8′30.28′′N; 75◦37′48.97′′E) in a subtropical (semi-arid)
climate with an average temperature of 25◦C (temperature range
05–48◦C) of which the maximum temperature occurs during
May/June and minimum temperature during January/February.
This region receives an average precipitation of 800 mm, most
of which comes during monsoon period from June to September
(Figure 1). The experimental site belongs to Vertisols (Fine,
iso-hyperthermic, montmorillonitic, Typic Haplusterts) and the
pertinent soil characteristics at the start of the experiment in
2007 were pH 8.7, organic carbon content 5.0 gkg−1, clay content
600 gkg−1, CaCO3 55 gkg−1, and available (Olsen’s) P content of
7.0 mg kg−1 (Forster et al., 2013). Cotton/ soybean–wheat is the
predominant cropping pattern in Nimar valley, though farmers
also grow other crops such as sugarcane, vegetables, fodder, and
pulses.

As described by Forster et al. (2013), the field site of SysCom
trial was under conventional management until December
2006, when a test crop of unfertilized wheat was grown to

assess the homogeneity of the terrain before setup of the trial.
The trial consists of four treatments – two organic farming
system, i.e., organic (BIOORG) and biodynamic (BIODYN)
and two conventional farming systems, i.e., conventional
(CON) and conventional including Bt-cotton (CONBtC). These
management systems are replicated four times in a randomized
block design in two stripes of plots with gross plot size of
16 m × 16 m and net plot size of 12 m × 12 m. While
designing the treatment compositions, due consideration was
given to prevalent practices of local farmers as well as standard
recommendations. As a rule of thumb, organic management
systems are implemented according to the standards prescribed
by International Federation of Organic Agriculture movements
(IFOAM, 2006) and conventional management is carried out in
line with the recommendations of Indian Council of Agricultural
Research, with slight adaptations to suit the prevailing local
situations (Forster et al., 2013). The nutrient inputs in organically
managed plots are mainly supplied by compost, castor cake, rock
phosphate, and farm yard manure (FYM), while in conventional
management systems, inorganic fertilizers are applied in the form
of urea, diammonium phosphate (DAP), Single super phosphate
(SSP) and muriate of Potash. It is noteworthy that following
the principle of good agricultural practices (and practice of local
farmers) every alternative year conventional plots also receive
a basal application of 4 t ha−1 FYM. This dose of FYM was
applied in the previous year (2013). In 2014, conventional system
(Soybean + wheat) received a total of 178 kg N ha−1, 78 kg
P ha−1, and 88 kg K ha−1 from synthetic mineral fertilizers;
whereas organic system received a total of 151 kg N ha−1, 79 kg
P ha−1, and 173 kg K ha−1from organic inputs. Soybean crop
(variety JS 93-05; seed rate 80 kg ha−1) was applied with a basal

FIGURE 1 | Rainfall, minimum and maximum temperatures of the experimental site during the period of study (2014–2015). Where, vertical arrows from top
horizontal axis represent the time of sampling and gradient bars indicate the crop growth periods for Soybean and wheat; +, Farmyard + rock phosphate and
compost application in organic systems; x, fertilizers application in conventional systems.
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application of 45 kg P ha−1 and 52.5 kg K ha−1 from SSP and
MOP, respectively, in conventional system. Single dose of 28.5 kg
N ha−1 from urea was applied at 19 DAS. In organic system,
2.5 t ha−1 of FYM and 2.4 t ha−1 of acidulated rock phosphate
was applied and incorporated in soil by bullock drawn harrow
at 34 days before sowing of soybean. Application of FYM and
acidulated rock phosphate provided 47 kg N ha−1, 33 kg P ha−1,
and 47 kg K ha−1 to wheat crop in organic system. In wheat
[variety HI-1544 (Purna), seed rate 100 kg ha−1], after soybean,
basal application of 33 kg P ha−1 and 35 kg K ha−1 was applied
with SSP and MOP, respectively, in conventional. A total of
149 kg of N ha−1 was applied in two identical splits at 19 and
43 DAS. Three days before sowing 13 t ha−1 of compost was
applied to organic system and incorporated in soil by bullock
drawn harrow, which provided 105 kg N ha−1, 47 kg P ha−1,
and 126 kg K ha−1. All the cultural management practices such as
weed and pest management were followed as per standard norms
prescribed for organic and conventional systems (Forster et al.,
2013).

Soil Sampling and Analysis
Organic (BIOORG) and conventional (CON) system plots were
sampled during soybean and wheat crops at five different time
points, i.e., from fallow land before sowing of soybean, R2 stage
of soybean, before sowing of wheat, panicle initiation stage of
wheat and after harvest of wheat (Figure 1). R2 stage of soybean
and panicle initiation stage of wheat are of high reproductive
significance and thus important for crop productivity. Each
plot was sampled to 0–20 cm depth from six random locations
and collected samples were pooled for analysis. DHA was
assessed through the reduction of 2,3,5- triphenyltetrazolium
chloride (TTC) to triphenylformazan (TPF) using colorimetric
procedure (Shimadzu UV-VS, Model- 1800) of Tabatabai (1994)
and expressed as µg triphenylformazan g−1 soil h−1 (Klein
et al., 1971). βGL activity was determined using p-nitrophenyl-
β-D-glucopyranoside (PNG, 0.05M) as a substrate (Sinsabaugh
et al., 1999) and the amount of p-nitrophenol released was
determined spectrophotometrically at OD420 and expressed as µg
p-nitrophenol g−1 soil h−1 (Tabatabai, 1994). ACP and ALP were
assayed by the standard method of Tabatabai and Bremner (1969)
in acetate buffer (pH 5.4) and borax-NaOH buffer (pH 9.4),
respectively, using p-nitrophenyl phosphate as a substrate. Soil
pH was determined in a soil: water ratio of 1:2.5 with intermittent
stirring for 30 min and feeding directly to a pH meter (Baruah
and Barthakur, 1999). SR was determined by quantifying the
carbon dioxide released in the process of microbial respiration
during 10 days of incubation (Anderson and Domsch, 1990).
SIR was determined by quantifying the carbon dioxide released
in the process of microbial respiration during 2 h incubation
after adding (0.0625 g) glucose and (2.5 g) talc to soil (Anderson
and Domsch, 1978). Microbial biomass-Carbon was estimated by
employing the fumigation-extraction procedure of Vance et al.
(1987) and was calculated from the relationship Bc = Fc/Kc,
where Fc is the difference between extractable carbon from
fumigated soil and non-fumigated soil; Kc is conversion factor,
which is 0.45 and the value has been expressed in mg C kg−1 soil
(Joergensen and Mueller, 1996). Olsen P was extracted with 0.5 M

sodium bicarbonate (pH 8.5) in 1:5 ratio of soil to extractant
and shaken for 30 min at 150 rpm (Olsen et al., 1954). After
filtration of suspension, phosphorus concentration in the extract
was estimated colorimetrically by ascorbic acid reductant method
(Watanabe and Olsen, 1965). For P content of seed and straw,
samples collected from soybean and wheat crops were air-dried
and kept in an oven at 65◦C till constant weight. Upon grinding
the samples were passed through 0.5 mm sieve and digested
in acid mixture of HNO3:HClO4, 5:4 ratio. The phosphorus
concentration in the digest was determined colorimetrically using
vanadomolybdate yellow color method. The seed and straw yield
of each net plot was recorded and converted to kg ha−1.

Statistical Analysis
The data was analyzed by using SAS statistical software (ver.9.2;
SAS Institute., Cary, NC, United States). For microbiological
parameters and available P content, three way analysis was
carried out involving treatments (Organic, conventional) crops
(Soybean, wheat) and periods of sampling and their interactions
as fixed factors. The significant differences between means were
identified using Fisher least significant differences (LSD) and
Tukeys multiple comparison tests at P = 0.05. For crop yield
and uptake parameters, one way analysis of variance (ANOVA)
was carried out using the ANOVA procedure in SAS enterprise
guide 4.2 and means separated with LSD and Tukeys multiple
comparison tests. In order to obtain a comprehensive picture of
potential synergistic interactions among the observed biological
and microbiological parameters, a Principle Component Analysis
(PCA) was carried out. Principle components thus constructed
allowed to define which original variables are responsible for the
mean difference between systems. PCA was performed using JMP
(©SAS Institute Inc.) (Goupy and Creighton, 2007).

RESULTS

First objective of this study was to monitor changes in
soil biological properties pertaining to P cycling in organic
and conventional management systems. The assessed soil
microbiological and chemical parameters showed considerable
variation across systems and crop growth stages. Soil DHA did
significantly vary between organic and conventional systems at
sowing under soybean cropping. Significant increase of up to
16.3% (66.3 µg triphenylformazon g−1 soil 24 h−1) and 8.7%
(58.7 µg triphenylformazon g−1 soil 24 h−1) was observed in
organic and conventional systems, respectively, at R2 stage as
compared to sowing (Table 1). At R2 stage, organic management
registered 12.9% increase in DHA over conventional system.
At harvest, there was a significant decline in DHA in both
the agricultural systems as compared to its activity at R2 stage
and also it showed significant variation between the agricultural
management systems with higher DHA in organically managed
systems. In wheat crop, DHA was significantly higher by 49%
(100.6 µg triphenylformazon g−1 soil 24 h−1) in organic
management as compared to the conventional system (71.2 µg
triphenylformazon g−1 soil 24 h−1). DHA was relatively higher
at active crop growth stages in both soybean and wheat while
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it decreased at harvest. Organically managed system exhibited
higher DHA activity throughout the experimental period, which
was on an average 17.2% higher than conventional system
(Table 1).

Significantly higher βGL activity under organic management
system was observed at R2 stage of soybean with a difference
of 15.3% (215.4 µg p-nitrophenol g−1 soil h−1) to conventional
management system (Table 1). From sowing to R2 stage of
soybean, βGL activity saw a significant increase of 52.4% in
organic (215.4 µg p-nitrophenol g−1 soil h−1) and 41.2%
(186.8 µg p-nitrophenol g−1 soil h−1) in conventional system
and there was a significant decline at harvest. At panicle initiation
stage of wheat, βGL activity was 15.7% (337.8 µg p-nitrophenol
g−1 soil h−1) higher in organic management system than
conventional management system.

Acid phosphatase activity was significant at R2 stage of
soybean and at harvest of wheat. In contrast, ALP activity
was significantly higher in organic systems as compared to
conventional at all the sampling times except for R2 stage
of soybean (Table 1). Considering the overall average of the
soybean–wheat system 24% higher (413.4 µg p-nitrophenol g−1

soil h−1) ALP activity was recorded under organic management
compared to the conventional management. MBC increased
during the active crop growth stages and decreased toward
harvest of soybean and wheat. At each of the sampling points,
MBC tended to be higher under organic management than
conventional, but the differences were never significant (Table 2).
Similar was the case of SIR, which increased from second
sampling (R2 stage) onward and decreased at harvest of wheat.
Organic system exhibited slightly higher MBC than conventional
system throughout the experiment but did not attain the level of
significance (Table 2). SR was higher in organically managed soil
before sowing of soybean, at R2 stage and at harvest of soybean.
Whereas, in case of wheat, organic and conventional systems
were statistically not different for SR at both the sampling points
(Table 2). Within each management system, SR did not exhibit
a major change during the different sampling points except for a
significant decline at the harvest of wheat.

Soil pH did not differ significantly between organic and
conventional management practices in soybean at any stage,
however, a significant decline in both the management systems
was observed at harvest of soybean (Table 2). The available
phosphorus content was highest at R2 stage of soybean,
irrespective of the production system. Though the availability
of P tended to be slightly higher under organic management at
different sampling points, the differences were not statistically
significant (Table 2). Seed yield of soybean was statistically
similar under organic (1902 kg ha−1) and conventional
management (1848 kg ha−1). Similarly, soybean straw yield was
also comparable in organic (1756 kg ha−1) and conventional
system (1723 kg ha−1). However, in case of wheat, conventional
system produced significantly higher seed and straw yield than
organic.

The results of PCA analysis provided a comprehensive picture
of parameters that work synergistically in each management
system. In the bi-plot (Figure 2), length of the vector
corresponding to a particular soil parameter demonstrates the
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FIGURE 2 | Bi-plot for the principal component analysis of organic and
conventional soybean and wheat management systems at five different times
of sampling: Before sowing of Soybean (# CONV, •ORG), 50 DAS (4 CONV,
N ORG), before sowing of wheat (× CONV, + ORG), 60 DAS (� CONV, �
ORG), and after wheat harvest (♦ CONV, � ORG). Soil pH (pH), microbial
biomass carbon (MBC), acid phosphatase (ACP), alkaline phosphatase (ALP),
arylsulphatase (ASP), β-glucosidase (βGL), dehydrogenase (DHA), microbial
soil respiration (SR), and substrate induced respiration (SIR).

extent of relative contribution of that parameter. Whereas,
the proximity of a vector to a symbol cluster indicates the
association of that biological parameter to the particular farming
system and sampling time represented by that symbol cluster.
Cumulative variability of 84.2% was captured by first three
principal components (PC) (Table 3). Distinguished presence
of farming systems’ clustered replicates in different quadrates
indicated the extent of activities of variables at different sampling
times (Figure 2). Dissociation between systems and variables
at soybean sowing, wheat harvest and wheat sowing (only
conventional) clearly came out in PCA from the presence of
respective points in 2nd and 3rd quadrate, which are aloof
from vectors of variables. In organic systems, the main active
variable selected by PCA was the MBC at R2 stage of soybean
and DHA was the main active variable at panicle initiation
stage of wheat (Figure 2). No such association of a particular
variable at active crop growth stages of soybean and wheat was
found in conventional system. The first PC explained 46.6% of
variability with major contribution of MBC, ACP, and ALP. In
2nd component major contribution comes from βGL and DHA
which explained variability of 25.9%. Soil pH was the only major
contributor for the PC3 and explained the variability of 11.9%.

DISCUSSION

The overall hypothesis of this study was supported by finding
of higher biological activity in organic systems that resulted
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TABLE 3 | Eigenvectors corresponding to principal components including
eigenvalues and cumulative proportion variance of measured variables.

Variables PC

1 2 3

pH 0.03 −0.01 0.95

MBC 0.45 −0.06 −0.01

ACP 0.40 −0.30 −0.07

ALP 0.41 −0.24 0.05

ASP 0.36 −0.37 0.11

βGL 0.14 0.60 0.07

DHA 0.26 0.47 0.14

SR 0.33 0.25 −0.03

SIR 0.38 0.25 −0.23

Eigenvalue 4.18 2.33 1.07

Cumulative proportion 46.4 72.3 84.2

in attaining P availability equivalent to conventional systems.
Soil microbiological parameters such as DHA, βGL, ACP,
ALP, SIR, SR, and MBC were in general higher in soil of
plots under 7 years of organic management compared to
those under conventional systems, particularly at key growth
stages of both soybean and wheat crops. Soil enzymes have
been suggested as potential indicators of soil quality because
of their ease of measurements, relationship to belowground
microbiological processes and rapid response to changes in
agricultural management (Dick et al., 1996; Dick, 1997; Jimenez
et al., 2002). Measurement of soil enzyme activities also provides
an integrative response to changes in soil chemical, physical
and biological characteristics under different management
induced perturbations and is used to monitor the effects
of different agricultural management strategies on long-term
productivity (Doran and Parkin, 1994; Ndiaye et al., 2000;
Acosta-Martinez et al., 2007). These measurements also provide
credible information on the key reactions that participate in
the rate limiting steps in the decomposition of soil organic
matter and nutrient transformation in soils and are thus of
high relevance in understanding P availability under different
management systems. The soil enzyme activities measured in this
study increased from sowing to R2 stage in soybean and to panicle
initiation stage in wheat crop and again declined toward harvest.
This increase in soil enzyme activities during active crop growth
stages can be ascribed to increased rhizo-deposition (Gregory,
2006; Mandal et al., 2007; Nayak et al., 2007; Masto et al., 2013;
Tamilselvi et al., 2015). The higher enzyme activity in organic
agricultural system can also be attributed to enhanced nutrient
availability from added organic inputs, increased root exudation
owing to improved crop growth and conducive environment
for microbial proliferation (Burns et al., 2013; Tamilselvi et al.,
2015). PCA results showed that DHA was main contributing
factor in organic systems at panicle initiation stage of wheat.
Dehydrogenase is an oxidoreductase enzyme that is present only
in viable cells and measurement of DHA provides an index
of endogenous soil microbial activity as its assay involves no
addition of substrate that preferentially stimulates any particular
group of soil microorganisms (Biederbeck et al., 2005). For this

reason, DHA assay has been used as a potential soil quality
indicator to discriminate changes under different agricultural
management systems (Kandeler et al., 1999; Aseri and Tarafdar,
2006; Aparna et al., 2014).

Similarly, βGL is involved in decomposition of cellulose
compounds and is synthesized by soil microorganisms in the
presence of suitable substrates. Therefore, it has been used
as sensitive indicator of microbially mediated soil processes
(Sinsabaugh, 1994; Lagomarsino et al., 2009; Stott et al.,
2010). Phosphatase activity in the soils may originate either
from plant roots or from microorganisms such as fungi and
bacteria (Tarafdar and Chhonkar, 1979; Tarafdar et al., 1988;
Dinkelaker and Marschner, 1992) and changes in its activity
could indicate changes in the quantity and quality of soil
phosphoryl substrates (Rao and Tarafdar, 1992). Apart from
creating conducive environment for increased biological activity,
organic amendments are rich in microbial biomass and may also
contain intra- and extracellular enzymes that stimulate microbial
activity in soil (Liang et al., 2005; Tejada et al., 2006). Our findings
are consistent with earlier studies that showed an increase in
enzyme activities with the application of organic amendments
(Marinari et al., 2006; Tejada et al., 2006; Aparna et al., 2014).

Generally, organic inputs increase C and energy availability to
microorganisms, thereby stimulating indigenous soil microbial
biomass and activity, especially in C-depleted agricultural soils.
In a long-term study conducted under temperate environmental
conditions, Fließbach and Mäder (2000), found 45–64%
higher microbial biomass in bio-dynamic farming systems
than conventional systems after18 years of respective crop
management. In contrast, our results show only an average
increase of about 6% MBC under organic management after
7 years of experimentation, while the differences are non-
significant at individual sampling points. This indicates that
due to higher turnover rates under tropical environments (as
in our study), 7 years is probably not a long enough period to
see clearly distinguishable differences in MBC. Moreover, owing
to the concept of good agricultural practices, conventionally
managed plots in this field trial also receives four tons of FYM
every alternate year (Forster et al., 2013), which contributes to
MBC in conventional plots and hence might have acted as a
confounding factor minimizing differences among productions
systems. Nevertheless, PCA results showed that MBC was the
main factor contributing to biological activities at R2 stage
of soybean in organic systems. Soil microbial respiration rate
gives an indication of microbiological activity in the soil and is
influenced by carbon availability to microorganisms in the soil
environment. We found higher rates of microbial respiration in
organically amended soils, which could be attributed to greater
labile fractions of organic matter in the added organic manures
(Tu et al., 2006; Chinnadurai et al., 2014; Tamilselvi et al., 2015;
Hernández et al., 2016). Similarly, SIR, another soil quality
indicator that provides us information on the metabolic and
physiological state of soil microorganisms (Anderson, 1994),
tended to be higher under organic management (Chinnadurai
et al., 2014; Tamilselvi et al., 2015). Moreover, both SR and SIR
were found to be significantly higher at active crop growth stages
that could be attributed to increased rhizo-deposition which is
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conducive for microbial proliferation (Mandal et al., 2007; Li
et al., 2012; Masto et al., 2013; Tamilselvi et al., 2015).

Soil pH is considered an important factor influencing P
availability in soils and it could play a crucial role in alkaline soils
of our experimental site. However, in this study the differences in
pH among organic and conventional systems on an average were
not significant enough to exert a major influence per se. The most
interesting observation in this regard was the dip in pH at the
harvest of soybean, which recovered in organic systems (8.12) in
the subsequent sampling (panicle initiation stage of wheat) but
not in conventional (7.83). The reduction in pH at the harvest
of soybean is plausible as the leguminous plants are known to
reduce soil pH (Yan et al., 1996; Opala et al., 2012). However,
the observed differences in pH at panicle initiation stage of wheat
seem strongly influenced by management practices. The organic
systems received a basal dose of FYM based compost at the
planting of wheat, which seems to have contributed to quick
recovery in pH (Whalen et al., 2000). Whereas, conventional
systems received a basal dose of mineral P and K fertilizers
(SSP and MOP) at sowing of wheat and two split doses of
N (Urea) at 19 and 43 DAS, which might have resulted in a
lower pH. Use of acidifying inorganic mineral fertilizers over
considerably longer periods is known to result in a decline in soil
pH (Birkhofer et al., 2008), which could in turn affect aggregate
stability and loss of organic matter (Mäder et al., 2002; Mikha and
Rice, 2004). Inputs of organic manures applied every alternate
year to conventional plots in this study might be an important
contributing factor in slowing down the acidification of soil over
longer term.

On an average, P availability in the soil under organic
management tended to be higher (5.9 µg g−1) than that under
conventional management (5.6 ± 0.1 µg g−1). However, at any
particular sampling time, differences in P availability among
the two management systems were not statistically significant.
It is noteworthy that despite the application of mineral P in
conventional plots at sowing of wheat, the availability of P tended
to be slightly lower than that under organic management. The
values of P availability at panicle initiation stage of wheat under
organic (5.6 µg g−1) and conventional (5.1 µg g−1) management
indicate that most of the P applied to conventional plots in
the form of mineral fertilizer was either utilized by the crop
or fixed by the soil. Since yield of wheat was considerably
higher under conventional management, it is plausible that the
P applied at sowing was taken up by the crop by panicle initiation
stage. Comparing the P availability among two management
systems at all the five sampling times, we can conclude that P

availability was not a limiting factor for organic at any of these
time points. However, utilization of available P by crop plants
depends on several factors and N availability could be one of
them (Riar and Coventry, 2012). Since soybean can symbiotically
assimilate atmospheric nitrogen, probably it had relatively higher
capability of utilizing available P compared to wheat. Therefore,
soybean yield under organic management was equivalent to
conventional management, which was not the case of wheat.
Further investigations would be needed to identify the factors
responsible for yield difference in wheat, however, yield is a
complex trait influenced by multiple factors discussion of which
is beyond the scope of this study.

From the findings of this study, we conclude that owing
to higher biological activity, organically managed agricultural
soils could attain equivalent or higher P availability than
conventionally managed soils receiving regular inputs of mineral
P fertilizers. These results are of particular relevance to alkaline
vertisols, wherein sorption and precipitation are important
influencing factors in determining the availability of P. These
findings also carry a high global applicability, for instance,
P-fixing soils are widely prevalent in Africa, where P-inputs
through mineral fertilizers are ineffective. Organic management
over a considerable time period could support in building up
fertility and enhancing P availability in these soils. Moreover, it
also offers a suitable alternative to resource poor small holder
farmers of developing countries who cannot afford the expensive
mineral fertilizers.
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