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Abstract

A panel of 60 genotypes comprising New Plant Types (NPTs) along with indica, tropical and

temperate japonica genotypes was phenotypically evaluated for four seasons in irrigated sit-

uation for grain yield per se and component traits. Twenty NPT genotypes were found prom-

ising with an average grain yield varying from 5.45 to 8.8 t/ha. A total of 85 SSR markers

were used in the study to identify QTLs associated with grain yield per se and related traits.

Sixty-six (77.65%) markers were found to be polymorphic. The PIC values varied from

0.516 to 0.92 with an average of 0.704. A moderate level of genetic diversity (0.39) was

detected among genotypes. Variation to the tune of 8% within genotypes, 68% among the

genotypes within the population and 24% among the populations were observed (AMOVA).

This information may help in identification of potential parents for development of transgres-

sive segregants with very high yield. The association analysis using GLM and MLM models

led to the identification of 30 and 10 SSR markers associated with 70 and 16 QTLs, respec-

tively. Thirty novel QTLs linked with 16 SSRs were identified to be associated with eleven

traits, namely tiller number (qTL-6.1, qTL-11.1, qTL-4.1), panicle length (qPL-1.1, qPL-5.1,

qPL-7.1, qPL-8.1), flag leaf length (qFLL-8.1, qFLL-9.1), flag leaf width (qFLW-6.2, qFLW-

5.1, qFLW-8.1, qFLW-7.1), total no. of grains (qTG-2.2, qTG-a7.1), thousand-grain weight

(qTGW-a1.1, qTGW-a9.2, qTGW-5.1, qTGW-8.1), fertile grains (qFG-7.1), seed length-

breadth ratio (qSlb-3.1), plant height (qPHT-6.1, qPHT-9.1), days to 50% flowering (qFD-

1.1) and grain yield per se (qYLD-5.1, qYLD-6.1a, qYLD-11.1).Some of the SSRs were co-

localized with more than two traits. The highest co-localization was identified with RM5709

linked to nine traits, followed by RM297 with five traits. Similarly, RM5575, RM204, RM168,

RM112, RM26499 and RM22899 were also recorded to be co-localized with more than one

trait and could be rated as important for marker-assisted backcross breeding programs, for

pyramiding of these QTLs for important yield traits, to produce new-generation rice for pro-

spective increment in yield potentiality and breaking yield ceiling.
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Introduction

Rice (Oryza sativa L.) is a staple food crop sustaining more than 3.5 billion people in the globe.

In current scenario, rice productivity is increasing at a rate of 1% per year which is less than

the required rate of 2.4% per year to double the global production by 2050 [1]. Considering a

glimpse of the history, a quantum jump in productivity was achieved due to the green revolu-

tion in mid-sixties, which drastically enhanced the rice production of the world. However, a

ceiling of productivity potential is reported by and large in semi-dwarf inbred indica genotypes

since release of IR-8 [2], in spite of substantial improvement in yield stability, per day produc-

tivity and grain quality [3]. A breakthrough in productivity barrier is necessitated because of

increasing competition for natural resources such as, land, water and others given population

explosion coupled with expanding industrialization, urbanization and diversion of agricultural

land [1,4,5]. This is further aggravated with the abnormal change in weather and climate with

significant influence on crop productivity and quality [6,7].

Rice scientists are facing many challenges for doubling rice production by 2050. Irrigated

rice has a share of 75% of total rice production in the world, although it has a share of about

55% of the total rice area [2]. Therefore, improvements and modification of rice genotypes for

this ecology are supposed to have significant impact on rice productivity in future. During the

past decade, there has been a significant slowdown in the production potential of modern rice

cultivars. In this context, physiologists and breeders hypothesised that this stagnation could be

overcome by improving the plant type. The existing plant type bears several unproductive til-

lers in high tillering type and limited sink size i.e., small panicles. The excessive leaf area causes

mutual shading, low light and a reduction in canopy photosynthesis [8,9]. Apart from that,

there are several bottlenecks viz., spikelet sterility, short panicle length, limited grain numbers,

lodging susceptibility, etc. Moreover, there is also the loss of genetic diversity in improved vari-

eties for which breeders are facing difficulties in finding divergent gene pools. Modern high

yielding rice varieties have been associated with some unfavourable traits/alleles, which may

be sensitive to biotic and abiotic stresses and may be responsible for lowering grain yield [9].

In this context, IRRI scientists developed “New Plant Type” (NPT-2nd generation) by

recombining some suitable features of tropical japonicas with indica [9]. The main idea behind

the 2nd generation NPT was development of high yielding super rice varieties, which could be

able to produce high yield lines endowed with stability. Some of the NPTs performed exceed-

ingly well and produced even more than 10t ha-1 in the Philippines [2]. During the process of

development, some of advanced generation segregating materials were shared with NRRI,

India. The materials were subjected to further selection at NRRI under irrigated ecology, as

appreciable variability was still available, with an objective of developing promising NPTs suit-

able for the climate specific to eastern region in particular and country in general. Trait specific

selections were done for few generations to establish fixed lines, i.e., NPT selections (NPTs). In

this context, NPTs were evaluated systematically under observational yield trial (OYT) for one

season and the number was narrowed down subsequently. Advanced Yield Trial (AYT) fol-

lowed it for four wet seasons at NRRI. Some of the highly promising NPTs were identified

with high-quality agronomic traits like higher grain number per panicle, panicle length, pani-

cle weight, grain size, ear bearing tiller number along with ideal plant height. Some of NPTs

performed exceptionally well and showed the productivity of more than 10.0 t ha-1 during dry

season 2011 [10].

With this backdrop, we wish to proceed for development of still higher yielding genotypes

or super rice kind of crop ideotype utilizing the existing set of highly promising NPTs, which

should have the productivity potential, at least 20% higher than the popular rice and check

varieties. The target was utilization of one of the most promising gene pools through
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conventional as well as molecular approach. The focus is to accumulate the thousands of

minor QTLs with additive genetic variance along with major ones. Here, the extent of genetic

variation and relationships between genotypes are more important for designing effective

breeding strategy [11].

The association mapping (AM) is an useful tools in identifying QTLs/genes associated with

different traits in plant species. It utilizes natural variation [12], and is supposed to have great

potential to evaluate and characterize a wide range of alleles. Several researchers have reported

the utility of association analysis in the identification of QTLs for different traits in rice, viz.,

grain yield [13], grain yield under water deficit [14], grain quality traits [15], agronomic traits

[16,17], grain yield under reproductive phase drought stress [18], panicle architecture and

spikelet’s/ panicle [19], plant height and grain yield [20].

However, there are meagre reports on QTLs association for grain yield and yield-related

complex traits particularly on NPT. The genes/ QTLs related to high grain yield would be of

great help in breaking yield ceiling. Moreover, it would be beneficial in identifying traits spe-

cific donors for designing effective breeding strategy for the development of super rice. The

present study was undertaken to identify QTLs associated with grain yield and yield-related

agronomic traits using diverse genotypes.

Materials and methods

Plant materials

A panel comprising sixty rice genotypes, including 48 NPTs, six highly popular released indica
varieties, three temperate japonica and three tropical japonica, most of them significantly

diverse and distinct, were used for identification of QTLs for 11 yield-related traits through

association studies (S1 Table). The NPTs were from 41 NPT populations collected from IRRI

at the advance segregating stage. From those populations, conscious trait specific single plant

selections (SPS) were made basically for yield-related traits for few generations and finally

~500 promising fixed SPS were identified and evaluated in OYT at ICAR-National Rice

Research Institute (NRRI) (coordinates 20.4539˚ N, 85.9349˚ E). Subsequently, the number

was drastically narrowed down to 48 strictly based on yield and important agronomic traits.

Forty-eight best performing NPTs were evaluated under four environments along with 12

checks (6 indica, 3 tropical japonica and 3 temperate japonica) and these were further studied

for molecular diversity and QTL association.

Phenotyping

All the 60 genotypes were grown in two replications, each genotype covering 5.04 m2 area

(800 m2 total plot size), following Randomized Complete Block Design (RCBD) during wet

seasons of 2011, 2012, 2013 and 2014 (S2 Table). The phenotypic data of yield per se and yield-

related traits were recorded at different phenological stages. Normal management practices

and plant protection measures were taken during crop growth. The genotypes were harvested

at maturity, i.e., after 30 to 35 days of flowering. The post-harvest data were recorded after the

crops were harvested, threshed and dried. This study primarily focused on 11 yield and yield-

related traits, namely, days to 50% flowering (DFF), plant height (PH), tiller number (TL),

panicle length (PL), flag leaf length (FLL), flag leaf width (FLW), no of fertile grains (FG), total

no of spikelets per panicle (TG), 1000-grain weight (TGW), seed length-breadth ratio (SLBR)

and grain yield t/ha (YLD). The yield per se was measured by weighing the plot yield (4m2

each) at 13% moisture level and converted it to tons/ha. Other yield contributing traits were

measured using standard procedure. The seed length-breadth ratio was measured using

Anndarpan machine and software developed by CDAC, Govt. of India [21]. The phenotypic
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data were used for statistical analyses viz. SD, CV, ANOVA, correlation, regression, and prin-

cipal component analysis (PCA), Bi-plots using XLSTAT software version 2019.1 (Addinsoft,

Paris, France). The ClustVis, an online web tool (http://biit.cs.ut.ee/clustvis/) was used for

analysis of phenotypic traits. The visualizing clustering of multivariate data of yield per se and

yield-related traits were analyzed by Heat-map and PCA [22]. The ClustVis has been written

in the Shiny web application framework by using R package version 0.10.2.1 for R statistics

software [15,23].

Genotyping

The genomic DNA was isolated from 3–4 g of fresh leaf tissues of each rice genotype following

Cetyl Trimethyl Ammonium Bromide (CTAB) method (Murray and Thompson, 1980). The

extracted genomic DNA samples were dissolved in TE buffer (10 mM Tris-base, 1 mM EDTA,

pH-8.0). The quality and quantity of DNA of each sample were measured by agarose gel elec-

trophoresis and spectrophotometer. The SSR markers were selected on the basis of the previ-

ous report associated with different yield QTLs [24–30] and polymorphic contents (http://

www.gramene.org). The polymerase chain reaction (PCR) was performed in a 20μl reaction

mixture containing 5 pM (pico-mole) of forward and reverse primers of each SSR locus, 200

mM of each dNTP, 0.5 U of Taq DNA polymerase, 10 mM Tris-HCl (pH = 8.3), 50 mM KCl

and 1.5 mM MgCl2. The PCR amplification was carried out in a thermal cycler (Veriti 96,

Applied Biosystems, USA) as per the following cycling parameters: initial denaturation at 940

C for 3 min, followed by 35 cycles of denaturation at 940 C for 1 min, annealing at 55−670 C

(depending upon primer) for 1 min and extension at 720 C for 1.5 min and final extension at

72˚C for 5 min. The amplified products were separated on 2.5% - 3% agarose gels using 1X

TBE buffer and stained with ethidium bromide (0.5 μg/μl). The gels were observed under

UV radiation and were photographed using a gel documentation system (G-Box, Syngene,

USA) to detect amplified fragments. The size of amplified bands was determined based on the

migration relative to molecular weight size markers (50 bp DNA ladder, MBI Fermentas,

Lithuania).

Genetic diversity

The amplified bands were scored as present (1) or absent (0) for each genotype and micro-sat-

ellite marker combination. Each band was considered as an allele. The data were entered into a

binary matrix as discrete variables and subsequently used for assessing allelic and molecular

diversity such as number of total alleles (TA), unique alleles (UA), rare alleles (RA), expected

alleles (Ne), polymorphism information content (PIC), gene diversity, homozygosity (Ho) and

heterozygosity (He) by using Power-Marker Ver 3.25 [31]. The polymorphism information

content (PIC) was calculated using the formula, “PICi ¼ 1 �
Pn

i¼0 P
2ij ” where Pij is the fre-

quency of jth allele for the ith marker and summation extend over k alleles [32].

The genotypic data of 66 polymorphic markers were utilized for genetic diversity analysis.

Jaccard’s similarity coefficient was calculated by using the NTSYS-PC software package

[33,34]. Cluster analysis was performed using UPGMA and sequential agglomerative hier-

archal nested (SAHN) module of NTSYS-PC. The Nei’s pairwise genetic distance neighbour-

joining [35] and Shannon’s diversity index (I) was calculated using POPGENE v 1.32 (http://

www.ualberta.ca/fyeh) and MEGA 6 software. The Power-Marker was used for better visuali-

zation and understanding the clustering pattern of genotypes. The estimation of population

differentiation among and within the genotypes was analyzed by Principal coordinates analysis

(PCoA) and AMOVA by using software GeneAlEx 6 version 6.501 [36]. AMOVA was used to

assess molecular variance within and between populations at 999 permutations.
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Structure analysis

Bayesian model-based clustering analysis available in STRUCTURE software 2.3.4 was used

for data analysis to obtain possible population structure [37,38]. The software provides the

likelihood, classifies according to their population types, and assumes as K. The highest likeli-

hood was interpreted by the corresponding estimate of the basic number of clusters [38]. Each

genotype was burned 10,000 and 150,000 steps, followed by 100,000 and 150,000, respectively,

using Monte Carlo Markov Chain replicates (MCMC). The K-value was run for 10 times with

a K-value ranging from 1 to 10. The optimum K-value was determined by plotting the log pos-

terior probability data to the given K-value. The ΔK value was estimated using the parameters

described by Evanno et al. (2005) [39] using online software program Structure Harvester v6.0

(http://btismysore.in/strplot). In structure, the value of K is not constant because the distribu-

tion of L (K) does not show a clear cutoff point for the true K. An ad hoc measure of ΔK was

used to detect the numbers of the subgroups. Some independent replicates, the admixture

model and allele frequency model (length of burn-in + length of an MCMC repetitions x,

number of independent replicates) were also calculated [13,38,40].

QTLs association

The GLM, MLM, Quantile-Quantile (Q-Q) plot and Manhattan plot were used for association

analysis of 11 yield related traits, by incorporating Q+K matrices using TASSEL version 5.2.9

[41]. The p-values at<0.005 level of significance were used to determine the significant associ-

ation of SSR markers. In GLM and MLM, association analysis was performed at 1000 permuta-

tions for the correction of multiple testing [42,43]. The False Discovery Rate (FDR) was

calculated using SPSS statistical v20. (http://www-01.ibm.com/support/docview.wss?uid=

swg21476447) at the 5% threshold level for multiple testing to standardise p-value [44]. The

false-positive markers-traits association was controlled by applying models Q, K, and Q+K

that were compared with each other using quantile-quantile (Q-Q) plot [45].

In-silico study

The in-silico study was carried out for analysis of previously reported QTLs and genes associ-

ated with respective traits using computer and web-based servers. For this study, several web-

servers were used i.e. http://www.gramene.org/, https://www.ncbi.nlm.nih.gov/ and https://

rapdb.dna.affrc.go.jp/ etc. This study helps in searching association between QTLs and genes

in rice population.

Results

Phenotypic variation

The grain yield in rice is considered to be one of the most important traits in crop improve-

ment which is influenced by several complex traits. The present study focused on ten yield-

related traits that directly or indirectly control the grain yield. The set of 60 genotypes was phe-

notypically evaluated for grain yield and associated traits under irrigated situation for four

consecutive wet seasons. A wide range of phenotypic variations was observed in all the grain

yield and 10 yield-related traits (Table 1).

Grain yield varied from 1.19 t/ha (Curinga, 2013) to 9.89 t/ha (N-129, 2014) with mean

yield varying from 1.82 t/ha to 8.8 t/ha. Similarly, a wide range of phenotypic variation was

observed for all the traits as could be observed from the value of range and mean as depicted in

Table 1. Other statistical parameters viz., CV, P value and correlation with grain yield were

also calculated to show their importance along the validity.
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Table 1. The performance of 60 genotypes in four seasons based on grain yield and yield-related traits.

Traits Wet Seasons Mean ± SD CV (%) Range Correlations (r) with yield P-value

DFF 2011 100.99±8.61 8.53 72.5–126.0 0.34 0.006

2012 101.78±8.02 7.88 75.78–123.74 0.49 0

2013 104.44±6.09 5.83 80.5–116.5 0.35 0.005

2014 102.03±7.72 7.56 78.25–124.65 0.5 0.0001

Mean 102.31±7.13 6.97 76.76–121.47 0.48 0

PH 2011 109.38±18.24 16.67 60.65–181.9 0.38 0.001

2012 115.40±16.66 14.43 58.34–186.41 0.51 < 0.0001

2013 109.04±14.00 12.84 66.96–178.76 0.37 0.004

2014 107.92±13.84 12.82 76.55–186.93 0.18 0.176

Mean 110.43±14.25 12.91 65.63–183.5 0.42 0.001

TL 2011 8.03±0.85 10.55 6.2–10.5 0.36 0.001

2012 8.71±1.40 16.13 5.83–12 0.31 0.015

2013 8.70±1.49 17.08 5–12.6 0.34 0.008

2014 7.43±0.85 11.41 5.625–9.55 0.44 0.0005

Mean 8.22±0.80 9.75 5.92–9.73 0.56 < 0.0001

PL 2011 28.21±3.12 11.08 18.25–33.15 0.68 < 0.0001

2012 28.24±3.27 11.57 17.19–34.8 0.67 < 0.0001

2013 27.60±2.74 9.94 21.27–32.65 0.51 < 0.0001

2014 27.12±2.00 7.37 21.26–31.6 0.41 0.0013

Mean 27.79±2.34 8.42 20.17–31.45 0.73 < 0.0001

FLL 2011 35.98±6.49 18.05 17.92–50.55 0.54 < 0.0001

2012 35.84±5.40 15.07 17.72–51.84 0.49 < 0.0001

2013 34.39±4.35 12.64 23.63–44.30 0.37 0.003

2014 34.64±3.72 10.75 26.51–46.12 0.46 0.0002

Mean 35.22±4.30 12.21 21.52–48.08 0.17 0.195

FLW 2011 1.43±0.23 16.35 0.65–1.81 0.53 < 0.0001

2012 1.55±0.28 17.86 0.74–2.1 0.49 < 0.0001

2013 1.46±0.23 15.88 0.92–1.9 0.28 0.029

2014 1.37±0.24 17.66 0.86–2.38 0.35 0.0054

Mean 1.46±0.20 13.82 0.78–1.82 0.55 < 0.0001

FG 2011 114.49±38.69 33.8 63.50–284.2 0.14 0.43

2012 98.10±34.95 35.63 59.22–282.22 0.04 0.776

2013 141.56±33.66 23.78 70.07–220.71 0.32 0.014

2014 218.85±71.19 32.53 75.88–417.5 0.44 0.0005

Mean 143.25±30.83 21.52 67.75–246.14 0.38 < 0.0001

TG 2011 136.92±37.02 27.04 83.28–270.2 0.14 0.431

2012 115.26±34.96 30.33 82.30–288.95 -0.02 0.87

2013 201.91±53.49 26.49 81.79–329.80 0.33 0.011

2014 253.05±87.34 34.51 82.57–517.7 0.37 0.0041

Mean 176.78±38.00 21.5 83.29–275.73 0.53 0.002

TGW 2011 24.05±3.27 13.59 14.77–32.0 0.17 0.239

2012 24.20±3.50 14.45 16.64–34.90 0.3 0.021

2013 22.85±3.01 13.18 15.24–29.02 -0.27 0.035

2014 26.25±4.61 17.57 17.08–38.58 0.02 0.8765

Mean 24.34±2.49 10.24 17.50–29.17 0.36 0.005

SLBR 2014 3.93±0.41 10.5 2.4–4.51 0.15 0.2481

Mean 3.57±0.41 11.55 2.44–4.52 0.17 0.566

(Continued)
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Some genotypes produced appreciably higher grain yield in respective seasons. Among

them, N-129 produced highest grain yield in all the four seasons (9.12 t/ha in 2011; 9.89 t/ha in

2012; 6.59 t/ha in 2013 (productivity affected due to Cyclonic Storm Phailin) and 9.60 t/ha in

2014). It was followed by R-261 (8.01 t/ha in 2011), N-370 (8.78 t/ha in 2012), N-8 (6.34 t/ha in

2013) and N-8 (8.86 t/ha in 2014), respectively. The mean of grain yield in four seasons varied

from 1.82 to 8.8 t/ha. Twenty NPTs performed very well consistently in all the four seasons (S2

Table). The average grain yield of four seasons of these 20 genotypes varied from 5.45 to 8.8 t/

ha, while popular varieties such as IR64 and MTU1010 produced the maximum yield of 4.80

to 4.99 t/ha (Fig 1A, 1B and 1C, S2 Table).

Table 1. (Continued)

Traits Wet Seasons Mean ± SD CV (%) Range Correlations (r) with yield P-value

YLD 2011 5.54±1.60 28.92 1.22–9.12 - -

2012 5.63±1.61 28.56 1.73–9.89 - -

2013 4.55±1.35 29.67 1.19–6.59 - -

2014 5.90±1.68 28.41 1.95–9.6 - -

Mean 5.41±1.48 27.33 1.82–8.80 - -

Significant level of alpha at 0.05% significant and p-<0.0001; the correlation and p-values in bold are different from 0 with a significance level alpha = 0.05%.

DFF-Days to 50% flowering, PH-Plant height in cm, TL-Tiller number, PL-Panicle length in cm, FLL-Flag leaf length in cm, FLW-flag leaf width in cm, FG-No of fertile

grains, TG-Total no of spikelets per panicle, TGW-1000-grain weight in gm, SLBR-Seed length-breadth ratio (SLBR), YLD-Grain yield t/ha.

https://doi.org/10.1371/journal.pone.0227785.t001

Fig 1. (A,B) Performance of New Plant Types (NPTs) with reference to check varieties based on high grain yield in different seasons. (C) The working hypothesis fulfil

the objective of the study. The circle of (A) indicates the performance of standard check varieties i.e. IR-64 and MTU1010.

https://doi.org/10.1371/journal.pone.0227785.g001
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The CV%, correlation and linear regression analysis of all traits were calculated at 5% level

of significance (Table 1, S3 Table). Eight traits viz. DFF, PH, PL, TL, FLW, FG, TG and TGW

were positively correlated with grain yield (mean of four-season data) (S3 Table). Similarly, linear

regression showed a positive association of six yield contributing traits (PL, DFF, TL, FG, FLL,

FLW) with grain yield while four traits (PH, TG, TGW, and SLBR) showed a negative association

with grain yield (S4 Table, Fig 2A). The standardized coefficient plots showed that PH, SLBR and

TG, were negatively associated grain yield, whereas DFF, TL, PL, FLL, FLW and FG were posi-

tively associated with grain yield (S4 Table, Fig 2A). The standardized plot also showed that PH,

SLBR, TG and TGW were not directly involved in controlling grain yield. Their significance level

might be influenced by environmental factors. The standardized coefficient plot was shown with

positive bars for genotypes, which showed grain yield of more than 6.0 t/ha. Similarly, a negative

bar of traits having less grain yield is not associated with the traits (S4 Table, Fig 2A).

The PCA Biplot analysis was carried out for focusing on dominant phenotypic traits (Fig

2B). The first PC1 explained 45.67%, while PC2 explained an additional 12.18% of the pheno-

typic variance. The analysis indicated that the traits viz., TGW, SLBR, TL, FLL, FLW, PL and

YLD were predominant for the genotypes situated in the green circle in quadrant I (S5 Table).

Similarly, the genotypes belonging to the pink circle were having a preponderance of traits

viz., DFF, TG, FG and PH. However, these traits were dominant in quadrant IV (lower right

side) (Fig 2B).

The circle represents genotypes are close to each other and have many similarities between

them. The genotype belonging to the green and pink circles produced approximately 6–10 t/ha

grain yield. The Red and Blue circles were represented by genotypes having less grain yield, i.e.

3–4 t/ha and it was distinguished from corresponding right-side circles. The present study

reported a broad range of grain yield in different years, (Table 1, Fig 1). The current study

identified sixteen NPT genotypes, which performed better than standard check variety IR64

and MTU1010 (Fig 1). The three best NPT genotypes were identified and the highest grain

yield was recorded in N-129 i.e. 9.12 t/ha (WS 2011), 9.59 t/ha (WS 2012), 6.59 t/ha (WS 2013)

and 9.6 t/ha (WS 2014), respectively. N-8 showed second highest grain yield in four seasons

i.e. 6.63 t/ha (2011), 6.88 t/ha (2012), 6.34 t/ha (2013) and 8.86 t/ha (2014). Similarly, third-

highest grain yield was reported for R-255 i.e., 7.30 t/ha (2011), 6.72 t/ha (2012), 5.85 t/ha

(2013) and 8.72 t/ha (2014) in four consecutive years. Therefore, these genotypes could be

used as a donor for yield-related specific traits.

Heat map helps to understand the specific diversity and dominance pattern between geno-

types and traits. Heat map showed that dominant traits were grouped into two significant clus-

ters of genotypes based on certain similarities. Among the traits, the 1st cluster included FG,

TG, YLD, TL, FLW, and SLBR, whereas the 2nd cluster comprised TGW, PH, FLL, DFF and

PL, which were found very important for specific genotypes (Fig 3). In map red colour traits,

i.e., FG, TG, PH and DFF in their particular clusters were showed dominance for respective

genotypes. The trait, thousand grain weight (TGW) was dominant in most of the NPT geno-

types which belonged to 2nd cluster (Fig 3).

Allelic diversity

Sixty-six (77.65%) out of 85 SSRs were found to be polymorphic. A total of 154 alleles were

amplified by 66 polymorphic microsatellite markers with an average of 2.33 alleles per locus.

Five markers viz., RM154, RM5709, RM204, RM70 and RM1132 amplified the highest number

of alleles (i.e., 4). Two unique alleles (amplified by RM6266 and RM489) and eight rare alleles

(5.19%) were identified (Table 2). The marker RM5709 amplified two rare alleles while mark-

ers RM168, RM6266, RM489, RM3276, RM528, and RM70 amplified one rare allele each (S6
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Table). The major allele frequency (MAF) varied from 0.33 (RM1132) to 0.98 (RM6266) with

an average frequency of 0.71. The genetic diversity varied from 0.033 (RM6266) to 0.732

(RM1132) with an average of 0.39 per locus. The number of effective alleles (Ne) varied from

1.034 (RM489) to 3.733 (RM1132) with an average of 1.78 per locus. The homozygosity (Ho)

ranged from 0.262 (RM1132) to 0.967 (RM6266) with an average of 0.60, while genetic hetero-

zygosity (He) varied from 0.033 to 0.732. Shannon’s information/diversity index (I) ranged

from 0.085 (RM6266) to 1.347 (RM1132) with an average of 0.39 and 0.63 per locus for both

the parameters, respectively. The polymorphism information content (PIC) indicates the alle-

lic diversity and frequency of a marker locus with respective genotypes. It varied from 0.516

(RM6266 and RM489) to 0.92 (RM204) with an average of 0.70 (S6 Table). Positive correla-

tions were observed between the total number of alleles (TA), low-frequency alleles (LFA),

high-frequency alleles (LFA) and PIC (S6 Table, S7 Table).

Genetic diversity

The Nie’s pairwise genetics analysis by Neighbour-joining tree grouped all the 60 genotypes

into three clusters/populations (POP1, POP2 and admixture) (Fig 4A). The first cluster

included four sub-clusters containing Indica, Trop. Japonica, Tem. Japonica and one NPT

Fig 2. (A) The standardized coefficient plot has shown the correlation between yield and yield-related traits and genotypes in a regression analysis. The

positive bar indicates having a positive correlation with the traits and vice versa for the negative bar. (B) In PCA Biplot analysis, the genotypes were scattered

along with their similarity and performance.

https://doi.org/10.1371/journal.pone.0227785.g002

Fig 3. Heat Map showing that both genotypes and traits are grouped into rows and columns by using correlation distance and average matrix.

https://doi.org/10.1371/journal.pone.0227785.g003
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genotypes. However, first and second clusters included all of the NPT genotypes, while some

of NPTs were found as an admixture in the second cluster (Fig 4A). The NPT genotypes have

been derived from indica, tropical and temperate japonica. Hence, two types of populations

were observed along with admixture cluster. Both the populations in the trees were observed

to be distinctly different (Fig 4A, Table 3, S6 Table).

Table 2. Unique and rare alleles amplified by microsatellite loci in different rice genotypes.

Chromosome No. Primers bp Genotypes

a)Unique allele

3 RM 6266 160 N-361

3 RM 489 300 N-34

b)Rare alleles

3 RM168 80 Lalat, Samba Mahsuri

3 RM 6266 160 N-361

3 RM 489 300 N-34

4 RM 3276 190 N-334, N-110, N-318

4 RM 5709 200 C105A-51, AC41009, Nipponbare, N-48

4 RM 5709 220 N-2, N-333, N-320

6 RM 528 260 MTU1010, Samba Mahsuri, R-260

7 RM 70 200 R-266, N-306

https://doi.org/10.1371/journal.pone.0227785.t002

Fig 4. (A) The pairwise genetic distance (Nei, 1973) was calculated by POPGENE v 1.32, and it shows genotypes distributed according to their archetypes. (B) The

Principal Coordinate analysis (PCoA) of 60 genotypes based on 66 SSR markers. The graph shows the position, and the distribution pattern of each genotype in

population space spanned by coordinate 1st versus coordinate 2nd.

https://doi.org/10.1371/journal.pone.0227785.g004
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The Principal Coordinate Analysis (PCoA) differentiated all the 60 genotypes and separated

NPTs from indica and japonica genotypes (Fig 4B). Japonica and indica genotypes were

grouped separately and slightly different from each other. However, many NPT genotypes

were grouped into the separate cluster as per neighbour-joining cluster and structure analysis.

The PCoA percentage of molecular variance explained by three axes was found to be 12.43%,

7.93%, and 7.45%. In PCoA, the 4th quadrant group showed that some NPTs having an admix-

ture of indica and japonica populations were intermixing (Fig 4B).

The UPGMA cluster analysis grouped all the 60 genotypes into two major clusters at 54%

genetic similarity. The first major cluster (I) was sub-grouped into four sub-clusters, i.e., A, B,

C, and D with similarity index varying from 0.54 to 0.92. These sub-clusters contained all the

six indica, three tropical japonica, and three temperate japonica and one NPT, respectively

(Fig 5, Table 3). Second major cluster (II) contained 47 NPTs with similarity index varied

from 0.56 to 0.91. Further, it was sub-grouped into four sub-clusters i.e., E, F, G, and H con-

taining 5, 37, 4 and 1 genotypes, respectively. The sub-cluster D and H contained only one

genotype each, i.e., N-110 and N-129, respectively (Fig 5, Table 3).

Analysis of molecular variance (AMOVA)

The two populations obtained through STRUCTURE analysis were used to know the genetic

variation between and within clusters using AMOVA. The analysis indicated that there was

8% variation within individuals (genotypes), 68% among individuals within a population,

whereas 24% among populations (Fig 6, Table 4). The F-statistics on all three groups was

found to be highly significant (P<0.001). The overall Fst (Fst = 0.240) had significant

(P<0.001) genetic variation among the three populations (Fig 6, Table 4).

Population structure

The true value of K was identified according to the maximum value of LnP (D) (Pritchard

et al., 2000). Structure harvester of Evano table (http://taylor0.biology.ucla.edu) analysis

showed that at K = 2, the ΔK = 179.57, where value was the highest in both independent burns

[39]. The ΔK values were decreased from K = 2 to 10 in general but had a moderate value of

56.29 at K = 4. At K = 4, all the 60 genotypes were divided into four subpopulations, POP1,

POP2, POP3, and POP4, which contained 6 indica, 3 temperate japonica, 3 tropical japonica,

and 48 NPT genotypes, respectively (Fig 7). The populations POP2, POP3, and POP4 showed

Table 3. Grouping of 60 genotypes based on the UPGMA analysis.

Major

Clusters

Sub

Clusters

Sub-sub

clusters

No. of

genotypes

Genotypes Types/ecology

I 1st A 6 Naveen, IR-64, Lalat, Swarna, Samba Mahsuri, MTU 1010, Irrigated

2nd B 3 Azucena, Curinga, WC-8 Tropical

Japonica

3rd C 3 C105A51, Nipponbare, AC41009 (Peta) Temperate

japonica

4th D 1 N-110 Irrigated

II 5th E 5 N-334, N-333, N-65-1, N-65, N-66 Irrigated

F 37 N-323, N-89, N-41, N-91, N-316, N-34, R-260, N-26, N-43, N-49, N-320, R-255, N-306, N-

358, N-135, R-261, N-100, N-337, N-2, N-76, N-331, N-79, N-352, N-370, N-374, N-3, N-5,

N-17, N-353, N-373, N-8, N-312, N-309, N-310, N-302, N-39, N-318

Irrigated

G 4 N-366, N-369, N-336, N-361 Irrigated

H 1 N-129 Irrigated

https://doi.org/10.1371/journal.pone.0227785.t003
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admixture types. Both Pritchard’s and Evonne’s methods confirmed the K-value as 2. Further-

more, analysis of POP gene software showed that 60 genotypes were grouped into two major

populations, followed by one admixture group (Fig 7, S1 Fig). The STRUCTURE analysis

grouped the genotypes into two types of populations at K = 2, while at K = 3 and K = 4, 60

genotypes were grouped into three and four types of populations, respectively.

QTL association

Marker-trait in general. The GLM and MLM models were used for association analysis

at p-value <0.005 and FDR at 5% level. A total of 31 SSR markers were found to be associated

with grain yield and other 10 related traits based on individual seasons and their mean data

using GLM and MLM models (Table 5, Fig 8). A total 30 and 10 SSRs identified by GLM and

MLM models were associated with 70 and 16 QTLs, respectively. Fifteen SSRs (RM6100,

RM1132, RM222, RM297, RM154, RM168, RM551, RM5709, RM5575, RM20285, RM5711,

RM234, RM26499, RM19 and RM204) were identified to be associated with grain yield per se

Fig 5. The genotypes clustering based on UPGMA analysis. The 60 genotypes were assigned into four groups (A-1st, B-2nd, C-3rd, and D, E, F, G, H-4th) and

similarity varied between 0.54 to 0.92%.

https://doi.org/10.1371/journal.pone.0227785.g005
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(YLD). Similarly, association analysis led to the identification of five SSRs with DFF, three

each with PH, FG and TG, four each with TL, FLL and SLBR, seven SSRs with TGW, 13 SSRs

with PL and 14 SSRs with FLW (Table 5, Fig 8).

Fig 6. AMOVA-showing molecular distribution pattern within and among populations.

https://doi.org/10.1371/journal.pone.0227785.g006

Table 4. Analysis of molecular variance (AMOVA) among and between populations.

Source of variation df SS MS Estimated Variation % of variation F statistics Value P value

Among Populations 2 198.9 99.5 3.8 24% Fst 0.240 <0.001

Among Individuals within populations 57 1288.8 22.6 10.7 68% Fis 0.898 <0.001

Within Individuals (genotypes) 59 73.0 1.3 1.3 8% Fit 0.922 <0.001

Total 118 1560.7 15.7 100%

MS-Mean sum of square

Fst- F-statistics; subpopulations within the total population

Fis- F-statistics; individuals within subpopulations

https://doi.org/10.1371/journal.pone.0227785.t004
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The MLM analysis identified 10 SSRs that are significantly associated (p-value <0.005) with

16 QTLs, which were associated with six traits based on the mean data of four seasons at 5%

FDR (Table 5). Four SSRs were found to be associated with QTLs considering four seasons

data separately as well as their mean data (viz., qPHT4-a; qPL-4.1 (qSPP-4.1); qFLW-4.1 and

qTGW-2.1 (qTGW-2.1, qGn2.1, qYLD-2.1). The SSR marker RM5709 was found to be associ-

ated with nine traits, i.e. DFF (qFD-4.1), PH (qPHT4-a), PL (qPL-4.1/ qSPP-4.1) FLL, FLW

(qFLW-a4.1 and qFLW-4.1), FG (qFGP4.1), TG (qTG2.2) SLBR (qSlb-4.1) and YLD (qYLD4.1)

indicating its association with these major traits. Three markers RM285, RM3827 and

RM5709 were found to be associated with QTLs for plant height, qPHT-6.1, qPHT-9.1 and

qPHT4-a, respectively (Table 5; Fig 8). Similar marker-QTL association was also recorded

for complex traits like TGW (qTGWa1.1 and qTGW-2.1, qGn2.1, qYLD-2.1), FLL (qFLL-9.1),

TG (qTG-2.1) and FG (qFG-7.1) (Table 5). As two different models have different association

with respective traits and therefore, reliability of marker-traits, association would be on the

basis of the number of times it was showing association with respective traits in different

seasons.

The phenotypic variance contributed by QTLs/SSRs were found to be 13.51% (RM20285)

to 26.16% (RM5709, qFD4.1) for DFF; 15.15% (RM3827, qPHT6.1) to 32.96% (RM5709,

qPHT4a) for PH;13.71% (RM3276, qTL4.1) to 17.34% (RM287, qTL11.1/qgpl11.1) for TL;

13.89% (RM171) to 45.85% (RM5709, qPL4.1, qSPP4.1) for PL; 16.84% (RM447, qFLL8.1) to

25.43% (RM5709) for FLL; 0.7% (RM447, qFLW-8.1a) to 30.72% (RM5709, qFLW4.1) for

FLW; 14.74% (RM324, qFG7.1) to 26.19% (RM5709, qFGP4.1) for FG; 13.58% (RM324,

qTG2.1) to 24.30% (RM5709, qTG2.2) for TG; 13.20% (RM171, qTGWa10.1) to 35.74%

(RM263, qTGW2.1, qYLD2.1, qGn2.1) for TGW; 13.57% (RM287, qSlb11.1) to 26.79%

(RM5709, qSlb4.1) for SLBR and 13.14% (RM26499, qYLD11.1) to 37.85% (RM5709,

qYLD4.1) for grain yield (Table 5; Fig 8). More than 25% phenotypic variance was explained

Fig 7. The true value of K was determined by STRUCTURE harvester in K-2 Plot of change in the likelihood of the data, L(K),

at values of K from 1 to 10 K = 2.

https://doi.org/10.1371/journal.pone.0227785.g007
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Table 5. Identification of SSR markers associated with grain yield and yield-related traits by using GLM and MLM models.

Traits Marker Marker Chr cM GLM at p<0.005 MLM at p<0.005 QTLs associated Years/Seasons Reported

byP-Value R2 q-Value P-Value R2 q-

Value

DFF 212 RM_212�� 1 180.2 2.95E-

03

0.1849 5.00E-

03

- - - qFD-1.1 WS11, WS13 Nov.

DFF 20285 RM_20285 6 121.6 3.86E-

03

0.1351 4.00E-

03

- - - qFD-6.1 WS11 #

DFF 25 RM_25 8 52.2 1.65E-

03

0.2046 0.00E

+00

- - - qFD-8.1 WS13 #

DFF 5709 RM_5709 @���� 4 109.9 7.67E-

04

0.2616 0.00E

+00

7.43E-

04

0.33692 1.00E-

03

qFD-4.1 WS11, WS13,

WS14, MEAN

#

DFF 219 RM_219��� 9 11.7 3.06E-

03

0.1437 0.00E

+00

- - - qFD-9.1 WS11, WS14,

MEAN

#

PH 3827 RM_3827 @ 6 80.4 1.92E-

03

0.1566 0.00E

+00

4.42E-

03

0.15149 1.00E-

03

qPHT-6.1 WS14 Nov.

PH 285 RM_285 @@�� 9 1.8 1.62E-

04

0.26777 0.00E

+00

2.36E-

03

0.23285 2.00E-

03

qPHT-9.1 WS13, WS14 Nov.

PH 5709 RM_5709
@@@@�����

4 109.9 5.96E-

05

0.32965 0.00E

+00

9.37E-

04

0.3262 1.00E-

03

qPHT4-a WS11, WS12,

WS13, WS14,

MEAN

# [27]

TL 26499 RM_26499 11 0 2.99E-

03

0.14213 0.00E

+00

- - - qTL-11.1 WS11 Nov.

TL 3276 RM_3276 4 102.4 3.89E-

03

0.13714 0.00E

+00

- - - qTL-4.1 WS12 Nov.

TL 3827 RM_3827 6 70.4 3.81E-

03

0.13769 0.00E

+00

- - - qTL-6.1 MEAN Nov.

TL 287 RM_287 @ 11 68.6 2.46E-

03

0.17314 3.00E-

03

qTL-11.1/gpl 11.1 WS12 #

PL 168 RM_168 3 171.2 3.66E-

05

0.30126 3.00E-

03

- - - qPL-3.1 WS11 #

PL 171 RM_171 10 92.8 3.36E-

03

0.13887 1.00E-

03

- - - qPL-10.1 WS11 #

PL 297 RM_297���� 1 161.3 6.15E-

05

0.2473 0.00E

+00

- - - qPL-1.1 WS11, WS12,

WS13, MMEAN

Nov.

PL 154 RM_154�� 2 4.8 3.36E-

03

0.21864 0.00E

+00

- - - qPL-2.1 WS11, MEAN #

PL 551 RM_551�� 4 15 1.79E-

03

0.15855 0.00E

+00

- - - qPL-4.1 WS11, MEAN #

PL 5709 RM_5709 @@���� 4 109.9 1.96E-

07

0.45846 0.00E

+00

3.23E-

03

0.2663 2.00E-

03

qPL-4.1, qSPP-4.1 WS11, WS12,

WS13, WS14,

MEAN

# [27]

PL 5575 RM_5575���� 5 0 8.08E-

06

0.29704 0.00E

+00

- - - qPL-5.1 WS11, WS12,

WS13, MMEAN

Nov.

PL 204 RM_204�� 6 25.1 3.43E-

04

0.28381 0.00E

+00

- - - qPL-6.1 WS11, MEAN # [3]

PL 5711 RM_5711�� 7 24.2 2.40E-

03

0.19376 0.00E

+00

- - - qPL-7.1 WS11, MEAN Nov.

PL 234 RM_234���� 7 88.2 2.14E-

04

0.21538 0.00E

+00

- - - qPL-7.2 WS11, WS12,

WS14, MEAN

#

PL 22899 RM_22899�� 8 0 3.20E-

03

0.14251 0.00E

+00

- - - qPL-8.1 WS11, MEAN Nov.

PL 447 RM_447 8 124.6 2.44E-

03

0.15 0.00E

+00

- - - qPL-8 MEAN # [46]

PL 17 RM_17�� 12 109.1 6.48E-

04

0.18603 1.00E-

03

- - - qPL-12b WS12, MEAN # [47]

(Continued)
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Table 5. (Continued)

Traits Marker Marker Chr cM GLM at p<0.005 MLM at p<0.005 QTLs associated Years/Seasons Reported

byP-Value R2 q-Value P-Value R2 q-

Value

FLL 447 RM_447 8 124.6 1.25E-

03

0.16838 1.00E-

03

- - - qFLL-8.1 WS14 Nov.

FLL 297 RM_297��� 1 161.3 8.23E-

04

0.17964 1.00E-

03

- - - qFLL-1.1 WS13, WS14,

MEAN

# [28]

FLL 5709 RM_5709�� 4 109.9 9.92E-

04

0.25432 1.00E-

03

- - - qFLL-4.1a WS11, WS12,

MEAN

Nov.

FLL 285 RM_285 @@ 9 1.8 3.05E-

03

0.22189 3.00E-

03

qFLL-9.1 WS13 Nov.

FLW 204 RM_204 6 25.1 1.37E-

04

0.30374 0.00E

+00

- - - qFLW-6.1 WS11 #

FLW 20285 RM_20285 6 121.6 3.39E-

03

0.13864 0.00E

+00

- - - qFLW-6.2 WS11 Nov.

FLW 206 RM_206 11 102.9 4.51E-

03

0.17541 1.00E-

03

- - - qFLW-11.1 WS12 #

FLW 19 RM_19 12 20.9 4.33E-

03

0.13413 1.00E-

03

- - - qFLW-12.1 WS12 #

FLW 297 RM_297���� 1 161.3 7.77E-

06

0.29796 1.00E-

03

- - - qFLW-1.1 WS11, WS12,

WS13, MEAN

# [28]

FLW 154 RM_154�� 2 4.8 2.79E-

03

0.22419 1.00E-

03

- - - qFLW-2.1 WS11, MEAN #

FLW 168 RM_168�� 3 171.2 2.38E-

03

0.19404 1.00E-

03

- - - qFLW-3.1 WS12, MEAN #

FLW 470 RM_470 @�� 4 115.5 6.68E-

04

0.18523 1.00E-

03

7.78E-

04

0.2171 3.00E-

03

qFLW-4.1a WS13, MEAN #

FLW 5709 RM_5709 @��� 4 109.9 1.43E-

04

0.30717 1.00E-

03

4.22E-

03

0.25441 3.00E-

03

qFLW4.1 WS11, WS12,

MEAN

# [27]

FLW 5575 RM_5575��� 5 0 2.19E-

04

0.21472 1.00E-

03

- - - qFLW-5.1 WS11, WS12,

MEAN

Nov.

FLW 1132 RM_1132 7 83.3 2.59E-

03

0.22647 1.00E-

03

- - - HFLW-7 MEAN # [30]

FLW 22899 RM_22899���� 8 0 6.24E-

04

0.18707 2.00E-

03

- - - qFLW-8.1 WS11, WS12,

WS13, MEAN

Nov.

FLW 5711 RM_5711 @ 7 24.2 3.46E-

03

0.21637 3.00E-

03

qFG-7.1 WS12 Nov.

FLW 447 RM_447 8 124.6 0.0013 0.073 0.001 qFLW-8.1a WS14 #

FG 1132 RM_1132 7 83.3 1.30E-

03

0.2465 1.00E-

03

- - - qFG-7.1 WS14 Nov.

FG 5709 RM_5709 4 109.9 7.60E-

04

0.26185 2.00E-

03

- - - qFGP-4.1 MEAN # [27]

FG 324 RM_324 @ 7 68.9 4.59E-

03

0.14743 4.00E-

03

qFG-7.1 WS11 #

TG 1132 RM_1132 7 83.3 4.34E-

03

0.21091 2.00E-

03

- - - qFG-a7.1 WS14 Nov.

TG 324 RM_324 @ 2 68.9 4.08E-

03

0.13583 2.00E-

03

3.43E-

03

0.15788 3.00E-

03

qTG-2.1 MEAN #

TG 5709 RM_5709�� 4 109.9 1.47E-

03

0.24301 2.00E-

03

- - - qTG-2.2 WS13, MEAN Nov.

TGW 297 RM_297 @�� 1 161.3 9.08E-

05

0.23383 0.00E

+00

4.24E-

03

0.15024 3.00E-

03

qTGW-a1.1 WS11, WS12 Nov.

TGW 201 RM_201�� 9 81.2 2.29E-

03

0.14928 0.00E

+00

- - - qTGW-a9.1 WS11, WS12 #

(Continued)
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Table 5. (Continued)

Traits Marker Marker Chr cM GLM at p<0.005 MLM at p<0.005 QTLs associated Years/Seasons Reported

byP-Value R2 q-Value P-Value R2 q-

Value

TGW 219 RM_219 9 11.7 2.87E-

03

0.14557 2.00E-

03

- - - qTGW-a9.2 WS13 Nov.

TGW 171 RM_171 10 92.8 4.68E-

03

0.13202 2.00E-

03

- - - qTGW-a10.1 WS14 #

TGW 263 RM263 @���� 2 127.5 5.75E-

07

0.3574 2.00E-

03

1.58E-

03

0.18982 3.00E-

03

qTGW-2.1,

qGn2.1, qYLD-2.1
WS12, WS13,

WS14, MEAN

# [48]

TGW 5575 RM_5575��� 5 0 2.12E-

03

0.15383 2.00E-

03

- - - qTGW-5.1 WS11, WS12,

MEAN

Nov.

TGW 22899 RM_22899�� 8 0 1.99E-

03

0.15563 2.00E-

03

- - - qTGW-8.1 WS12, MEAN Nov.

SLBR 204 RM_204 6 25.1 9.68E-

04

0.25113 0.00E

+00

- - - qSlb-a6.1 WS11 #

SLBR 1256 RM_1256����� 3 48.2 3.95E-

04

0.19923 4.00E-

03

- - - qSlb-3.1 WS11, WS12,

WS13, WS14,

MEAN

Nov.

SLBR 5709 RM_5709
@@@@�����

4 109.9 1.47E-

03

0.24306 5.00E-

03

3.18E-

03

0.26788 4.00E-

03

qSlb-4.1 WS11, WS12,

WS13, WS14,

MEAN

#

SLBR 287 RM_287���� 11 68.6 4.09E-

03

0.13571 5.00E-

03

- - - qSlb-11.1 WS12, WS13,

WS14, MEAN

#

YLD 6100 RM_6100 @ 10 53.9 3.10E-

03

0.16153 2.00E-

03

qYLD-10.1 WS11 Nov.

YLD 1132 RM_1132�� 7 83.3 3.86E-

03

0.21448 3.00E-

03

- - - qYLD-a7.1 WS13, WS14 Nov.

YLD 222 RM_222 10 11.3 2.33E-

03

0.15124 4.00E-

03

- - - qYLD-a10.1 WS13 #

YLD 297 RM_297�� 1 161.3 2.76E-

03

0.14664 2.00E-

03

- - - qYLD-1.1 WS13, MEAN #

YLD 154 RM_154���� 2 4.8 4.40E-

04

0.27707 3.00E-

03

- - - qYLD-2.1, qts1 WS12, WS13,

WS14, MEAN

# [26]

YLD 168 RM_168��� 3 171.2 4.79E-

03

0.17369 3.00E-

03

- - - qYLD-3.1 WS13, WS14,

MEAN

#

YLD 551 RM_551��� 4 15 3.27E-

03

0.14196 3.00E-

03

- - - qYLD-4, qPL-4.1 WS11, WS13,

MEAN

# [25]

YLD 5709 RM_5709����� 4 109.9 7.93E-

06

0.37847 3.00E-

03

- - - qYLD-4.1 WS11, WS12,

WS13, WS14,

MEAN

#

YLD 5575 RM_5575����� 5 0 6.43E-

06

0.30246 3.00E-

03

- - - qYLD-5.1 WS11, WS12,

WS13, WS14,

MEAN

Nov.

YLD 20285 RM_20285����� 6 121.6 5.89E-

04

0.18858 3.00E-

03

- - - qYLD-6.1 WS11, WS12,

WS13, WS14,

MEAN

Nov.

YLD 5711 RM_5711��� 7 24.2 2.54E-

03

0.19217 3.00E-

03

- - - qYLD-7.1 WS12, WS13,

MEAN

# [24]

YLD 234 RM_234����� 7 88.2 1.43E-

03

0.16474 3.00E-

03

- - - qPpl7.1 WS11, WS12,

WS13, WS14,

MEAN

# [29]

YLD 26499 RM_26499 11 0 4.78E-

03

0.1314 4.00E-

03

- - - qYLD-11.1 MEAN Nov.

YLD 19 RM_19���� 12 20.9 1.10E-

03

0.17176 4.00E-

03

- - - qYLD-12.1, qSpn-
12.1

WS12, WS13,

WS14, MEAN

# [49]

(Continued)
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by QTLs bracketing RM5709 for each of nine traits, DFF, PH, PL, FLL, FLW, FG, TG, SLBR

and YLD. This indicated that RM5709 would be useful for transfer of above nine traits into

popular rice varieties.

Table 5. (Continued)

Traits Marker Marker Chr cM GLM at p<0.005 MLM at p<0.005 QTLs associated Years/Seasons Reported

byP-Value R2 q-Value P-Value R2 q-

Value

YLD 204 RM_204�� 6 25.1 0.00027 0.28637 0.00E

+00

- - - qYLD-6.1 WS11, WS14 #

Total Association of Markers 70 16

MLM = @ -Markers associated with MLM in the specific -season /environment

�� = Indicates SSR markers associated in two seasons/ environments

��� = Indicates SSR markers associated in three seasons/ environments

���� = Indicates SSR markers associated in four seasons/ environments

# = Indicates the QTLs association with SSRs, estimated map-position (cM) and physical position (bp) were reported in a gramene web (http://www.gramene.org/

markers) and NCBI (http://blast.ncbinlm.nih.gov/Blast.cgi).

Nov. = Indicates Novel QTLs identified, supposed to be linked to respective traits

WS-Wet season

https://doi.org/10.1371/journal.pone.0227785.t005

Fig 8. The 2D-Plot showing SSR marker association with respective phenotypic traits using GLM (p-0.005) and MLM (p-0.005) models. MLM =@ -Markers
associated with MLM in the specific -season /environment; ��/ @@ = Indicates SSR markers associated in two seasons/ environments; ���/ @@@ = Indicates SSR markers
associated in three seasons/ environments; ����/ @@@@ = Indicates SSR markers associated in four seasons/ environments.

https://doi.org/10.1371/journal.pone.0227785.g008
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Twenty SSR markers were found to be significantly associated with more than one trait

(Table 6). RM5709 was found to be associated with nine traits while RM275 was found to be

associated with five traits. Similarly, RM5575, RM204 and RM1133 were found to be associ-

ated with four traits each, while RM154, RM168, RM20285, RM5711, RM447, RM22899 were

found to be associated with three traits each. Nine SSR markers were found to be associated

with two traits (Table 6).

Nineteen SSR markers were found to be associated with different traits in more than one

season. Four SSRs i.e., RM5709, RM5575, RM20285 and RM234 were found to be associated

with PL, PH, SLBR and YLD and common for 4 seasons. Among them, RM5709 is co-localized

Table 6. Identification of SSR markers associated with more than one trait.

Marker Chr Position Co-localization

Traits

Gene ID Locus ID Function Reference

RM_297 1 32,099,566–

32,099,760

PL, FLL, FLW, TGW,

YLD

[50]

RM_154 2 1,083,820–

1,084,090

PL, FLW, YLD Os02g0120800 LOC_Os02g02840.1 Similar to Small GTP-binding protein,

EST Rice root cDNA, mRNA

[50–52]

RM_168 3 28,091,534–

28,091,727

PL, FLW, YLD [50, 53]

RM_5709 4 31,875,481–

31,875,663

DFF, PH, PL, FLL,

FLW, FG, TG, YLD,

SLBR

Os04g0619500 LOC_Os04g52850.1 Ovarian tumour, otubain domain

containing protein.

[50–52]

RM_551 4 177,080–

177,271

PL, YLD [50, 53]

RM_5575 5 23,345,264–

23,345,401

PL, FLW, TGW, YLD Os05g0474600 LOC_Os05g39680.1,

LOC_Os05g39690.1

Similar to Aldose reductase-related

protein

[50–52]

RM_20285 6 22,420,889–

22,421,088

DFF, FLW, YLD Os06g0561800 LOC_Os06g36650.1 ABC transporter, transmembrane

domain containing protein

[50–52]

RM_204 6 3,168,314–

3,168,547

PL, FLW, YLD, SLBR Os06g0162800 LOC_Os06g06750.1 MADS-box transcription factor,

Control of spikelet morphogenesis,

Regulation of floral meristem

[50–52]

RM_3827 6 22,297,146–

22,297,320

PH, TL Os06g0560300 LOC_Os06g36480.1 Similar to NAC-type transcription

factor.

[50–52]

RM_1132 7 23,984,489–

23,984,581

FLW, FG, TG, YLD [50]

RM_324 7 11,389,704–

11,389,942

FG, TG [50]

RM_5711 7 3,141,181–

3,141,329

PL, FLW, YLD Os07g0157700 LOC_Os07g06390.2,

LOC_Os07g06390.3,

LOC_Os07g06390.4

Conserved hypothetical protein. [50–52]

RM_234 7 25,472,688–

25,472,820

PL, YLD [50]

RM_447 8 26,546,992–

26,547,102

PL, FLL, FLW Os08g0531200 LOC_Os08g41900.1 WD40 repeat domain containing

protein

[50–52]

RM_22899 8 14,762,955–

14,763,118

PL, FLW, TGW Os08g0331900 LOC_Os08g24310.1 Similar to Leucine Rich Repeat family

protein, expressed

[50–53]

RM_285 9 1.8–1.8 cM PH, FLL [50]

RM_171 10 19,048,795–

19,049,123

PL, TGW Os10g0489900 LOC_Os10g34820.1,

LOC_Os10g34820.2

Similar to CDT1a protein [50–52]

RM_26499 11 11,001,140–

11,001,342

TL, YLD [50] IRGSP-

1

RM_287 11 16,767,319–

16,767,617

TL, SLBR [50] IRGSP-

1

RM_19 12 20.9–20.9 cM FLW, YLD [50]/IRGSP-

1 (2005)

https://doi.org/10.1371/journal.pone.0227785.t006
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with PH, PL, SLBR and YLD in four seasons. Ten SSRs were co-localized in three seasons with

seven traits i.e., RM5709 (DFF, PH), RM297 (PL), RM5575 (PL), RM234 (PL), RM22899

(FLW), RM263 (TGW), RM1256 (SLBR), RM287 (SLBR), RM154 (YLD) and RM19 (YLD). Simi-

larly, 12 SSRs were found to be associated with two seasons viz., RM212 (DFF), RM219 (DFF),

RM285 (DFF), RM297 (FLL, TGW), RM5709 (FLW, FLL), RM201 (TGW), RM5575 (TGW),

RM1132 (YLD), RM168 (YLD), RM551 (YLD), RM5711 (YLD) and RM204 (YLD). Thirty QTLs

were identified as novel based earlier information. At least one QTL was found to be novel for

each of 11 traits. Number of novel QTLs found to be 1, 2, 3, 4, 3, 4, 1, 2, 4, 1 and 5, respectively for

DFF, PH, TLL, PL, FLL, FLW, FG, TG, TGW, SLBR and YLD traits (Tables 5 and 6).

The association of traits with markers could be confirmed in the 2D plot and Q-Q Plot (Fig

8, S2 Fig, Table 5, Table 6). The QQ-plot showed a similar distribution of marker-trait associa-

tion for 11 traits (S2 Fig). The GLM Manhattan plot shows 26 SSR markers associated with

grain yield at p-value at 0.05 (S3 Fig). However, seven SSRs were associated with grain yield-

related traits in MLM Manhattan plot at p-value 0.005 (S4 Fig). The lowest p-value 8.73E-04

was found with marker RM5709 for plant height trait, followed by 0.00158 (Thousand-grain

weight) with RM263 and 0.00266 (Flag leaf width) with RM5709 (Table 5).

In-silico study for marker co-localization

The present study has used the computer and web-based servers’ big data to confirm the asso-

ciation of co-localizing genes and QTLs linked with yield-related traits of rice. Twenty SSRs

were identified that co-localized with grain yield and related traits (Table 6). Using in-silico
approach, it was found that 10 out of 20 co-localized SSR markers were in agreement with pre-

vious reports. These 10 co-localized SSRs viz., RM154, RM5709, RM5575, RM20285, RM204,

RM3827, RM5711, RM447, RM22899 and RM171 were found to be very important because of

their association with grain yield-related traits. RM5709 found to be highest co-localized on

4th chromosome (associated with 9 yield-related traits viz., DFF, PH, PL, FLL, FLW, FG, TG,

YLD and SLBR), followed by RM297 (associated with PL, FLL, FLW, TGW and YLD) and

RM5575 (associated with PL, FLW, TGW and YLD) (Table 6).

Discussion

Phenotypic variance

Improving rice yield potential is one of the primary breeding objectives in many countries for

several decades [5]. In 1960s and 1980s, the green revolution was initiated with the develop-

ment of semi-dwarf High Yielding Varieties (HYVs) like IR 8 and IR 36 [2,9,54–57]. The main

objective of the green revolution was to fulfil and achieve self-sufficiency in food requirement,

which helped the developing countries around the world especially in South Asia. It was real-

ized in rice due to development of semi-dwarf, lodging resistant and fertilizer responsive high

yielding varieties. It led to stability in rice production and mitigating the hunger of growing

population. It was accomplished in mid-sixties with the development of miracle variety IR8.

Since then, a stagnant in yield potential of semi-dwarf indica inbred varieties was noticed in

indica inbreds, which needs to be cracked [54].

New Plant Types (NPTs) was a potential approach for breaking the yield ceiling. The initial

effort on NPT was made by IRRI scientists to develop 2nd generation NPT genotypes accumu-

lating favorable alleles from tropical japonicas and popular indica for yield-related traits with

multi-environment testing [5,54]. The main idea behind NPT development was to develop a

plant type endowed with combination of unique traits that would help for efficient photosyn-

thesis and biomass partitioning for very high grain yield in irrigated ecology. In this process,

favorable tropical japonica genes were accumulated in indica background in second-
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generation NPT lines. IRRI scientists identified highly potential genotypes, i.e., IR 72967-12-2-

3 which reportedly produced 10.16 ton/ha [9]. Our main target area for breaking yield ceiling

was in eastern zone of India, which has many climatic constraints particularly low light due

cloudy weather in wet season. In current study, the advance generation 2nd generation NPTs

were phenotypically screened for high grain yield and associated traits in four seasons at

NRRI, Cuttack, India. Phenotyping is the most crucial step for crop improvement. Identifica-

tion of suitable transgressive segregants for the specific quantitative trait in any crops is a chal-

lenging task for the breeders. At the outset, a set of such elite materials of NPTs was chosen

(advance generation segregating materials) as initial materials. Trait specific selection and eval-

uation of these materials subsequently led to identification 48 NPTs with variable grain yield,

which were subjected to multi-environment testing. In this study, potential 20 NPTs were

identified with an average yield in the range of 5.45 to 8.8 tons/ha. These genotypes could be

utilised directly or as prospective parents based on yield per-se.
PCA Bi-plot analysis showed association with major yield-related traits (Fig 2B, S5 Table).

The PC1 and PC 2 explained 45.67% and 12.18% of the total variance, respectively. Similar var-

iability were also reported for PC1 and PC2 viz. 35.2% and 14.4%, respectively [58]. The distri-

bution pattern of traits clearly differentiated the genotypes and relative importance of traits,

which influenced the grain yield (YLD). The positive relation was observed among genotypes

in the first quadrant, which showed the importance of traits viz., PL, FLL, FLW, TL, YLD,

SLBR, and TGW particularly in NPTs. The genotypes were associated with respective traits in

a 1st quadrant, which could be responsible for better average grain yield. The first quadrant

consisted of important traits and the genotypes endowed with those traits predominantly,

hence could be selected as donor parents for specific traits in NPTs. Similarly, traits viz., TG,

FG, DFF, and PH were predominant for the genotypes in quadrant IV (S5 Table), and it could

be selected as a donor based on a number of fertile spikelets and effective tiller number.

The present study reported that dominant phenotypic traits such as PL, TL, FLL, FG and

TG, had a positive correlation with yield. However, the more focused selection should be done

for those traits (PH, FLW, TGW and SLBR) that are showing weak correlation with grain

yield, because of environmental effects (Table 1, S3 Table). The best genotypes were assigned

for grain yield based on phenotypes which are N-129, N-8, and R-255 (Fig 1A and 1B, S2

Table, S3 Table). The dominant specific traits and genotypes for high grain yield could be

selected for designing effective breeding strategy. This would be helpful to the breeder for the

proper choice of a parent/donors for bi-parental/multi-parental mating vis-à-vis during the

process of selection in segregating generations. Therefore, present study reports phenotyping

followed by different statistical analysis which suggests trait-specific genotypes for prospective

parents in the hybridization programs for breeding super rice [22,58]

The Heatmap shows a data matrix in the form of the colour pattern due to the numeric dif-

ferences in multivariate data. In ClustVis, hierarchical clustering can be optionally applied on

specific traits those were linked with particular genotypes and observations [22]. The Heatmap

analysis showed the order of colour merging with the specific traits that are playing a vital role

in the association for targeted trait. The different colouring patterns were linked with respec-

tive traits starting from deep green to red (Fig 3). Apart from green, the white and light colour

traits indicated relatively poor association with yield-related traits viz., PH, DFF and SLBR

traits. As the colour moves along the colour chart from green to red, the association with yield

improves with grain yield that means the red colour especially was strongly associated. In this

context, the order of association based on the colour intensity starts with FG, followed by TG,

TGW, FLL, TL, PL and FLW. The respective genotypes have been depicted with their strong

associated traits colours. The dense colour gives ideas for a strong character. So that breeder

can easily choose donor parents that are actively associated with specific traits [22] (Fig 3).
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Allelic and genetic diversity

The utility of SSR markers for population structure, diversity and association mapping

depends on the quality of information they provide. The allelic and genetic diversity helps the

breeder to understand genetic constitution of germplasm makeup and target donor selection

for designing effective future breeding strategy. The 66 out of 85 SSR markers (77.64%)

showed polymorphism, which amplified 154 alleles. Similarly, Anandan and his team reported

the 39 polymorphic SSRs which amlified 128 alleles [59]. The average PIC value in this study

was found to be 0.70, which was similar to previous reports [22,58,60–63]. The lower rate of

the average PIC was reported in association studies by several workers {0. 31[64]; 0.47 [65,66]}.

The PIC value showed a positive correlation with the total number of alleles (S6 Table, S7

Table). Similar findings were reported by previous researchers [42,60]. Moderate levels of

genetic diversity (i.e. 0.39) was observed among 60 genotypes used in the present association

study. Similarly, Cui et al. (2013) detected an average diversity of 0.34 in 347 genotypes used

for association mapping in cold tolerance at the booting stage [64]. However, a higher rate of

average genetic diversity was reported by some workers (0.69: Zhao et al., 2013; 0.52: Nachi-

muthu et al., 2015; 0.76: Edzesi et al., 2016) [15,66,67].

Population structure

The population structure analysis helps to understand and differentiate the types of population

groups existing in a set of genotypes. The population structure based on Bayesian clustering

model [15, 66, 67] has been most frequently used to correct spurious associations. The delta K

value was measured by ad-hoc and based on the relative rate of change in likelihood LnP (D).

The Delta k = 2 was set to get a higher likelihood optimal number of LnP (D) among groups.

The 60 genotypes were differentiated into four sub-populations. Similar sample sizes were

used by several researchers in association analysis in rice [68,69] and alfalfa [70]. The UPGMA

cluster analysis grouped 60 genotypes into two major groups at 54% of genetic similarity. The

Nei’s pairwise genetic distance showed three types of populations, i.e. POP1, POP2, and one

admixture population. Similarly, at K = 2, STRUCTURE analysis could differentiate entire

populations into two subpopulations (Fig 7). Genotypes in these populations along with high

mean values could be utilized as potential parents for transgressive segregants with high yield

and yield attributing traits towards breaking yield ceiling

The mining through the Power Marker into the details of individual groups revealed that

the first population (POP1) contained hardcore NPTs, which was distinctly different from

indica (Ind), temperate japonica (Temp.) and tropical japonica (Trop.) (2nd population, POP2,

which also includes few NPTs along with Ind, Temp. and Trop.). However, all NPTs contain

the genomes of indica as well as temperate and tropical japonicas. Moreover, the population

has one admixture group, which lies in between the two classes comprising the characters of

both populations. Therefore, a targeted hybridization between consciously selected parents of

these two distant groups might result in transgressive segregants with super rice traits for

future yield enhancement. At K = 4, the population was clustered into four groups viz., Ind
(1st), Trop (2nd), Temp (3rd) and NPTs (4th) according to their genotypic and evolutionary

significance. However, this study suggested that popular varieties clustered together according

to their ecology, morphology and inter-varietal hybrid fertility of rice varieties in indica and

japonica [58,71]. Here, almost all the NPTs were grouped separately, except one i.e., N-129.

Moreover, the genotypes in the 4th group comprised the genomes from indica, and japonica
and supposed to have a relationship with the first three clusters. The population cluster 1, 2

and 3 were purer and divergent, but in the 4thcluster, genotypes were intermediates of first

PLOS ONE “Identification of QTLs for high grain yield in new plant types of rice”

PLOS ONE | https://doi.org/10.1371/journal.pone.0227785 July 16, 2020 23 / 32

https://doi.org/10.1371/journal.pone.0227785


three clusters. This could help breeders in devising necessary breeding strategy and choosing

parents for yield improvement.

QTL association

QTL association has been widely used for the identification and mapping of QTLs for various

traits such as tolerance to biotic and abiotic stresses, quality and grain yield in different crops

[11,12,18,30,48,72]. This study also targets findings new QTLs, alleles, and genes [73] and vali-

date the previously reported QTLs. The present association study was conducted on 60 diverse

genotypes panel and 85 SSR markers The present association study focused on identification

QTLs associated with yield and related traits in relatively small population and with limited

markers [74]. Therefore, our study is analogous to previous reports with a small, focused

group of genotypes and limited marker pairs combination [12,13,59,66,68,74–76].

In association studies, both GLM and MLM models are used. Population stratification and

cryptic relationships are two common reasons for the inflation of false-positive association

[38]. GLM model has more false positive association as compared to MLM model analysis

[19,41,70,72,77]. It does not consider to influence the population structure and kinship

[70,78]. MLM model has higher accuracy and a smaller number of spurious marker-trait asso-

ciation with genotypes as compared to GLM model. This model is having a powerful algo-

rithm, which systematically increases power, improves calibration and reduce computational

cost to structured populations generally used for SNPs in GWAS [45,72]. The MLM model

integrates structure and kinship matrix (Q+K) which supposedly corrects the false-positive

error to the tune of 62.5%. Hence, MLM model has been popularly used in several cases for

marker-traits association [12,18,43,45,71,79–83].

In association mapping, mixed model (Q+K) showed a significant improvement in good-

ness of fit and reducing spurious associations. The K and Q matrix corrected the association

between eleven phenotypic traits with markers [43,70] at permutation value is 1000 at p<0.005

for GLM and MLM for the level of significance. In association mapping, p-value plays an

essential role because it controls over the level of false-positive association between traits and

markers. It means that if the p-value is minimized, there is less chance of a false positive associ-

ation of markers with respective traits and vice-versa [45]. The value of p is in agreement with

previous reports [70–72,84]. However, some researchers reported their results at p<0.05–0.01

value, which is much higher compared to our study, where the number of markers is apprecia-

bly high [43,70].

GLM identified 30 SSRs which shows 70 associations with grain yield per se and yield-

related traits based on the four-season mean data (mean value of 4 seasons) (Fig 8). It was

found that 11 common SSRs were found between GLM and MLM model and had a positive

association with yield-related traits based on four-season mean data (Table 5). Twenty-three

SSR markers have been reported previously and these markers have a positive association with

QTL regions based on mean data. There were 15 SSRs linked with different QTLs responsible

for grain yield per se in four different seasons. Out of them, five SSR loci were in aggrement to

the previous studies. Previous reports indicated that the markers RM154, RM551, RM5711,

RM234 and RM19 were associated with grain yield QTLs, (Table 5) viz., qYLD2.1 & qts1,

qYLD-4 & qPL-4.1, qYLD-7.1, and qYLD-12.1, qSpn-12.1, respectively [12,24,25,29,58,85]. Sim-

ilarly, the marker RM5709 has been well documented in the www.gramene.org database for its

association with grain yield QTL. Five SSR markers, RM6100, RM1132, RM5575, RM20285

and RM26499 are linked with novel QTLs, qYLD10.1, qYLDa7.1 qYLD-5.1, qYLD6.1 and

qYLD11.1 responsible for imparting high grain yield. In case of tiller number, three out of four

SSR markers RM26499, RM3276 and RM3827 were found to be associated with the novel
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QTLs, i.e. qTL-11.1, qTL-4.1 and qTL-6.1, respectively. For panicle length (PL), previous

researchers have reported the association of RM5709 with qPL-4.1 and qSPP-4.1 [27]; RM204

with qPL-6.1 [3]; RM234 with qPPL-7.2 [29]; RM447 with qPL-8 [20,86] and RM17 with qPL-
12b. Four out of 13 SSRs viz., RM297, RM5575, RM5711, and RM22899 were found to be asso-

ciated with four novel QTLs, qPL-1.1, qPL-5.1 and qPL-8.1, respectively for panicle length

(PL). However, Marathi et al. (2012) reported that RM5709 marker was linked with qSPP-4.1,

indicating the pleiotropic effect of qPL4.1 on panicle length. The present study reported that a

total of 14 SSRs were associated with FLW and out of them, 3 SSRs (RM297, RM5709,

RM1132) were reported previously [27,28,30,66,67]. Four SSRs, RM447, RM297, RM5709 and

RM285 have been identified for flag leaf length (FLL) in QTL regions of qFLL8.1, qFLL-1.1
[28], qFLL-4.1a and qFLL9.1, respectively. Out of the above, two markers, RM297 and

RM5709 were also associated with QTLs for flag leaf width (FLW), qFLW-1.1 and qFLW4.1,

respectivelly due to pleiotropic effects [27,28]. Similar reports corroborate the present finding

of marker-trait association for RM1132 apart from three other reported markers [30]. It is sug-

gested that one locus may be involved in conferring multiple traits, which may be the result of

the gene to gene interactions and pleiotropic effect. Three markers QTL associations viz.,

RM154~ qFLW2.1, RM168 ~qFLW3.1, and RM470 ~ qFLW4.1 were identified for the flag leaf

width (FLW) (http://wwww.gramene.org/). Four novel QTLs, qFLW-6.2, qFLW-5.1, qFLW-8.1
and qFLW-7.1 were identified for controlling FLW trait in our study.

The RM5709 was reported to be linked with QTL, qPHT4-a for plant height [27]. Number

of fertile grains is considered as important trait, because of its link with grain yield. Same SSR

marker (RM5709) was also found to be associated with qFGP4.1 [27]. Thousand-grain weight

(TGW) is another crucial trait supposedly linked to yield. Our study identified seven QTLs

viz., qTGW-a1.1, qTGW-a9.1, qTGW-a9.2, qTGW-a10.1, qTGW2.1 qTGW-5.1 and qTGW-8.1
associated with SSRs viz., RM297, RM201, RM219, RM171, RM263, RM5575 and RM22899,

respectively. These QTLs might be highly useful in the rice breeding programs. Four QTLs

were found to be novel i.e., qTGW-a1.1, qTGW-a9.2, qTGW-5.1 and qTGW-8.1, which could

be emphasized because of their better grain filling and boldness leading to higher grain yield.

Marri et al. (2005) reported the link of RM263 with qTGW-2.1, qGn2.1, and qYLD-2.1, indicat-

ing the possibility of pleiotropic effects of qGn2.1 [48].

Twenty SSRs were having association with more than one traits and have been reported in

the gramene-database (http://www.gramene.org/) by earlier studies (Table 6) [27,28,48,87].

These were significantly associated with yield controlling complex traits viz., PH, DFF, SLBR,

TL, PL, FLL, FLW, FG, TG, TGW and YLD and supposed to have played a significant role in

yield enhancement (Table 5, Table 6, Fig 8). Similar reports by Zhang and team (2014)

revealed the pleiotropic effect of gene LSCHL-4, in influencing increment of leaf chlorophyll,

enlargement of flag leaf size, higher panicle branch and grains per panicles [30]. The previous

report suggests that specific marker association with more than one trait might be either due

to the linkage of genes or pleiotropic effects of a single locus [88–90]. However, variation in

population structure, QTL detection methods and environmental conditions restrict our

choices to compare the newly identified QTLs with the already reported QTLs. Therefore, we

do have a need for further study on these potential trait-specific genotypes. It would lead to

design effective breeding strategy for introgression of high grain yielding traits associated

QTLs into popular rice varieties for obtaining super rice targeting to overcome yield ceiling.

The in-silico study of co-localization of SSR markers with respective traits would be helpful

to the breeders to confirm the association of trait-specific SSRs. The present study has reported

10 SSR markers, which are associated with grain yield-related traits and found with gene IDs

(Table 6). Most of the SSRs were co-localized with more than two traits. The highest co-locali-

zation was identified in RM5709 linked with nine traits followed by RM297 co-localized with
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five traits. Similarly, RM5575, RM204 and RM22899 were also recorded to be co-localized

with more than one trait and could be rated as important. This marker could be useful in

marker-assisted backcross breeding program to produce next-generation super rice.

Conclusion

Breaking yield ceiling in rice warrants conscious selection of parents. Sufficient variability was

available in NPT genotypes, because of the genetic distance of parents using tropical japonicas
and indicas, leading to fixation of distinct lines. In the present study, microsatellite markers

were used for association studies for grain yield and ten yield-related traits. Few highly-potential

genotypes with high yield along with variation in morpho-physiological traits were identified

after conducting the trial in four consecutive years. Wide variations were found in all the traits,

which would be helpful for the identification of genotypes required for bi-parental/multi-paren-

tal crosses in developing super rice genotypes with higher grain yield. The STRUCTURE and

tree diagrams were helpful in the classification of populations into distinct clusters vis-à-vis

uniqueness among them and helped in the identification of a diverse gene pool for necessary

parental selection for targeted transgressive segregants. The in-silico study reported twenty SSR

markers; those were associated with more than one trait. Nineteen, SSR markers were found to

be associated with different traits in more than one season. Four SSRs such as, RM5709,

RM5575, RM20285 and RM234 were found to be associated with PL, PH, SLBR and YLD and

common for four seasons. More than 25% phenotypic variance was explained by QTLs bracket-

ing RM5709 for each of nine traits, DFF, PH, PL, FLL, FLW, FG, TG, SLBR and YLD. RM5709

would be useful for transfer above nine traits into popular rice varieties. The present study

reported that 16 SSRs were linked with 11 yield traits and were found to be associated with 30

novel QTLs. Some of the QTLs are very important viz., TL (qTL-6.1), PL (qPL-1.1, qPL-5.1,

qPL-7.1, qPL-8.1), FLL (qFLL-9.1), FLW (qFLW-5.1, qFLW-8.1), TGW (qTG-2.2, qTGW-5.1,

qTGW-8.1), SLBR (qSlb-3) and YLD (qYLD-5.1, qYLD-6.1a, qYLD-7.1, qYLD-11.1) because of

their association with important yield contributing traits or yield per se for multiple seasons.

Hence, these could be pyramided in elite background for realization of higher yield and break-

ing yield ceiling. The study would be immensely helpful for selecting target donors with requi-

site traits for designing effective future breeding strategy for super rice.
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