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आमुख 

परीक्षणात्मक अभिकल्पनाओ ंमें प्रसरण के भिशे्लषण (ANOVA) प्रभिया पारंपररक रूप से नोममभिटी पर 

आधाररत होता ह,ै परन्त ु व्यिहार में नॉन-नॉममि भितरण नॉममि भितरण से अभधक उपयकु्त हो सकते हैं, 

इसभिए बहुउपादानी परीक्षणों में F-स्टेभटभस्टक्स पर नॉन-नॉममभिटी के प्रिाि का अध्ययन करना महत्िपूणम 

हो जाता ह ै। जब कई कारकों के प्रिािों की एक साथ जांच की जाती ह,ै तो कृभष और संबद्ध परीक्षणों में 

बहुउपादानी परीक्षण प्रायः उत्तम और सिामभधक उपयोग भकए जाने िािे अभिकल्पना माने जाते हैं। 

बहुउपादानी परीक्षण, कारकों के बीच अतंःभिया के प्रिाि के आकंिन की क्षमता िी प्रदान करते हैं । 

ितममान अध्ययन नॉन-नॉममि पररभस्थभतयों से भनपटने के भिए बहुउपादानी परीक्षणों के भिशे्लषणात्मक 

प्रभिया के भिकास पर कें भित ह ै । यहााँ, दो नॉन-नॉममि भितरणों पर भिचार भकया गया है भजनमें से एक 

सामान्यीकृत िॉभजभस्टक भितरण और दसूरा गोम्पटटमज भितरण ह ै । इस अध्ययन में संशोभधत अभधकतम 

संिािना आकंिन के भसद्धांत का प्रयोग भकया गया ह ैऔर कुशि आकंिक भिकभसत भकए गए हैं । दोनों 

पररभस्थभतयों के अन्तगमत, जहां त्रभुट िॉभजभस्टक तथा गोम्पटटमज भितरण का पािन करती हैं, के भिए SAS 

कोड िी भिकभसत भकया गया ह ै । यह उपयोगकतामओ/ंशोधकतामओ ं को एक तत्काि पररकिक प्रदान 

करने में सहायक होगा । 

संस्थान के भनदशेक डॉ. राजेंन्ि प्रसाद को उनके प्रोत्साहन और अनसंुधान कायम को सफितापिूमक परूा 

करने में सिी आिश्यक सभुिधायें उपिब्ध करान ेके भिए िेखक हाभदमक आिार व्यक्त करता ह ै। परीक्षण 

अभिकल्पना प्रिाग के अध्यक्ष डॉ. अभनि कुमार, पिूम प्रिागाध्यक्ष डॉ. सीमा जग्गी एि ंप्रिाग के अन्य 

सिी िैज्ञाभनकों से प्राप्त सहयोग के भिए आिार व्यक्त भकया जाता ह ै । िेखक अभयांतरीन समीक्षक का 

अत्यंत आिारी ह ैभजनके बहुमलू्य सझुािों ने इस पररयोजना ररपोटम की भिषयिस्त ुऔर प्रस्तभुत को बेहतर 

बनाने में सहायता प्रदान की । 

 

[सनुीि कुमार यादि] 
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PREFACE

 
Analysis of Variance (ANOVA) procedure in the framework of experimental designs 

has traditionally been based on assumptions of normality. However, in practical 

situations non-normal distributions may be more useful than the usual normal 

distributions. Therefore, it is of great interest to study the effect of non-normality on the 

F statistics used for testing main and interaction effects in factorial experiments. 

Factorial experiments are often considered as the best and most used designs in 

agricultural and allied experiments when the effects of multiple factors are investigated 

simultaneously. They also provide the estimates of interactions between the factorial 

effects. 

 

The present study focuses on the development of analytical procedure for the factorial 

experiments in order to tackle the non-normal situations. Here, two non-normal 

distributions have been considered out of which one is generalized logistic distribution 

and another is Gompertz distribution. The theory of modified maximum likelihood 

estimation has been applied and efficient estimators have been developed. SAS codes 

have also been developed for analysis of the data under both the situations where error 

follows logistic and Gompertz distribution. These would be helpful for providing a 

ready reckoner to the users/researchers. 

 

The author expresses his deep sense of gratitude to Dr. Rajender Parsad, Director, 

ICAR-IASRI for his support and providing all necessary facilities to carry out the 

research work successfully. The cooperation received from Dr. Anil Kumar, Head, 

Division of Design of Experiments, Dr. Seema Jaggi, former Head of Division and 

other Scientists of the division are thankfully acknowledged. Author is also thankful to 

the internal referee whose valuable suggestions helped in improving the content and 

presentation of the report. 
 

 

[Sunil Kumar Yadav]  
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 CHAPTER 1 
 

INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

Statistical methodology is used almost often in practice to analyze data of scientific 

experiments. For example, an agricultural scientist might wish to examine the effects of 

different fertilizer on the growth of plants. A geneticist might wish to assess the effects 

of various mutagens on bacterial cells. An engineer may be interested in tensile strength 

of different alloy used in bridge construction. In each of these cases, various treatments 

(fertilizer, mutagenic substance and type of alloy) are examined in a systematic way to 

see if their effects are same or not. For instance, in case of fertilizer, if the mean height of 

the plants grown with Fertilizer A is significantly larger than that of Fertilizer B or C, 

then this suggests that Fertilizer A is the best choice. 

In the light of a particular set of data, how does one decide if an observed difference is 

significant, or merely due to sampling fluctuation. Statistical techniques for answering 

this question are collectively termed as Experimental Design and Analysis.  

Factorial experiments that were introduced by Fisher (1935) and Yates (1937) are often 

the best and most used experiments in agricultural and industrial applications, when the 

effects of multiple factors are investigated simultaneously. Evaluation of equipments and 

materials, product designs, performance testing, process development, etc. are examples 

where factorial experiments are used.  

 

1.2 Genesis and rationale of the project: 

Analysis of variance (ANOVA) procedure in the framework of experimental designs has 

traditionally been based on assumptions of normality. However in practice non-normal 

distributions are more prevalent, that is seen in Pearson (1932), Geary (1947), Elveback 

et al. (1970), Huber (1981), Tiku et al. (1986) and Senoglu and Tiku (2001). It is 

therefore of great interest to study the effect of non-normality on the F statistics used for 

testing main and interaction effects in factorial experiments. 

Senoglu and Tiku (2001) gave the analysis in the frame work of two way classification 

model in experimental design, when the error follows the generalized logistic distribution 
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by adopting the procedure of modified maximum likelihood. Applying the modified 

likelihood estimation procedure he obtained efficient and robust estimators of the 

parameters, defined F statistics for testing main effects and interaction effects. Also 

analyzed the Box-Cox data and showed that the methodology developed gives accurate 

results besides being easy theoretically and computationally. 

 

Large number experiments have been conducted in Agricultural Field Experiments 

Information System (AFEIS). In AFEIS more than 20% of the experiments conducted do 

not follow the assumptions of Analysis of Variance and in 10 to 12% of the experiments 

the assumption of normality is violated. Blindly following statistical procedures without 

understanding the underlying assumptions may result in misleading or incorrect 

inference from the statistical analysis. 

 

Thus, it is desirable to extend or modify classical statistical procedures based on 

normality to include non-normal situations, and even to create entirely new approaches 

not related to the classical procedures. Some of the alternate methods are being used in 

an attempt to render the normality assumption less crucial. These are  

i) Transformation of data 

ii) Non-parametric methods 

iii) Employ robust procedures. 

One of the ways of handling non-normal data is to invoke Box and Cox transformation 

(1964) so that the transformed data is normal, at any rate close to it. This may not be the 

proper solution because according to Bickel and Doksum (1981) all non-normal data 

cannot be amenable to this transformation. Moreover, it is often difficult to interpret 

transformed data. So in general we can say that the procedure of transformation is not the 

appropriate procedure. Also non-parametric methods have been developed for some of 

the specific experimental situations. Alternate way is to develop the robust procedures 

for the analysis of data. When the data do not follow the normal distribution, the analysis 

of data becomes problematic because the normal equations obtained from the log- 

likelihood function are generally non-linear and so are not solvable as in case of normal 

distribution. One may use Modified Maximum Likelihood Method of estimation and 

then based upon this the analysis of variance can be performed.  
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Senoglu (2005) has investigated the robustness of 2
k
 factorial experiments when the error 

follows Weibull error distribution. He developed robust and efficient estimators for the 

parameters in 2
k
 factorial design and defined F-statistics based on modified maximum 

likelihood estimators (MMLE) for testing the main effects and interactions. He showed 

that these tests have high powers and better robustness properties as compared to the 

normal theory solutions.  

The methodology for factorial experiments with 2 levels when error follows logistic error 

distribution are developed and it performs well over the usual least square estimator 

based procedures Yadav (2013).  

Under the present investigation, factorial experiments have been considered when error 

follows non-normal distribution. More specifically, two non-normal distributions have 

been taken, one is generalized logistic distribution and other is Gompertz distribution. 

The theory of modified maximum likelihood estimation has been applied and efficient 

estimators have been developed.  

An experimental situation has been considered where error follows the Generalized 

Logistic distribution. The pdf of GL distribution is 

1

exp{ ( )}

( , , )

[1 exp{ ( )}]

x

GL
x 


   













 

 

where, ;  ;     0;    0x         . 

Here, µ is the location parameter σ is the scale parameter and θ is the shape parameter of 

the distribution. 

For θ<1, θ=1, and θ>1, represents negatively skewed, symmetric, and positively skewed 

distributions, respectively. In particular GL(µ, σ, 1) = L(µ, σ). Indeed, the logistic and 

normal distributions have a quite similar shape. The logistic distribution and the S-

shaped pattern of its cumulative distribution function (the logistic function) and quantile 

function (the logit function) have been extensively used in many different areas. One of 

the most common applications is in logistic regression, which is used for modelling 

categorical dependent variables (e.g. yes-no choices or a choice of 3 or 4 possibilities), 

much as standard linear regression is used for modelling continuous variables (e.g. 

income or population). Specifically, logistic regression models can be phrased as latent 

variable models with error variables following a logistic distribution. This phrasing is 
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common in the theory of discrete choice models, where the logistic distribution plays the 

same role in logistic regression as the normal distribution does in probit regression. 

We have also considered the experimental situation when error follows Gompertz 

distribution. The pdf of Gompertz distribution is 

 ( , ) exp exp( ) 1G x x


    


 
   

 
 

where, 0;       0;    0x     . 

Gompertz distribution is a continuous probability distribution, named after Benjamin 

Gompertz. The Gompertz distribution is often applied to describe the distribution of 

adult life spans by demographers and actuaries. The Gompertz distribution is important 

in describing the pattern of adult deaths Wetterstrand (1981) and Gavrilov and Gavrilova 

(1991). The Gompertz distribution has received considerable attention from 

demographers and actuaries. Pollard and Valkovics (1992) were the first to study the 

Gompertz distribution thoroughly. However, their results are true only in the case when 

the initial level of mortality is very close to zero. Kunimura (1998) arrived at similar 

conclusions. They defined the moment generating function of the Gompertz distribution 

in terms of the incomplete or complete gamma function and their results are either 

approximate or left in an integral form.  

Here is an example in the industry where one can find the use of Gompertz distribution 

in estimation of the time of dysfunction of the pot required in the smelting process of 

Aluminum from Alumina using the Hall-Héroult Process, Butler (2011). The entire 

smelting process (during extraction of Aluminum from Alumina) requires rows of 

reduction pots, or potlines, be in production 24 hours a day, 365 days a year. It is 

difficult to stop and start the smelting process because the result is a loss of money, 

energy, and product. Furthermore, if the temperature of the pots decreases and the molten 

aluminum hardens, the repair and cleanup is costly and time consuming. Unfortunately, 

as difficult as it is to change or repair the reduction pots, these pots do not last forever. It 

is very difficult to estimate when a pot stops working. Being able to estimate when a pot 

stops performing efficiently would not only save a company time, money, and energy but 

also reduces the costs to consumers. Four models for the pot survival data were fitted and 

it was found that the best model for the data is the Gompertz survival distribution. 

https://en.wikipedia.org/wiki/Continuous_probability_distribution
https://en.wikipedia.org/wiki/Benjamin_Gompertz
https://en.wikipedia.org/wiki/Benjamin_Gompertz
https://en.wikipedia.org/wiki/Demographer
https://en.wikipedia.org/wiki/Actuaries
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Similarly, there are many situations where this Gompertz distribution is more appropriate 

one, specifically in survival analysis. In that case there is a need to develop the analysis 

procedure for these experiments where the data obtained follows Gompertz distribution.  

In literature, robust procedures are available when error follows different forms of non-

normal distribution in designed experiments. But no work could be traced for the 

analysis of factorial experiments in general set-up (like asymmetrical factorial) when 

error follows the Logistic distribution and Gompertz distributions.  

Considering the above mentioned research gap, following objectives were framed: 

1.3  Objectives 

 To develop analytical procedure for factorial experiments when error follows    

generalized logistic distribution. 

 To develop analytical procedure for factorial experiments when error follows 

Gompertz distribution.  

 

1.4 Critical review of the technology at national and international levels 

Box and Cox (1964) made inferences about the transformation and about the parameters 

of the linear model by computing the likelihood function and the relevant posterior 

distribution. The contributions of normality, homoscedasticity and additivity to the 

transformation are separated. They discussed the relation of the present methods to 

earlier procedures for finding transformations. 

Tiku (1967) and Tiku and Stewart (1977) have developed the theory of modified 

maximum likelihood estimation (MMLE). The theory of MMLE has an explicit solution 

of these equations and is asymptotically identical with MLE. It has been shown (Tiku et 

al. (1986)) that modified maximum likelihood estimates (MMLEs) are almost as efficient 

as maximum likelihood estimates (MLEs). 

Tiku (1967, 1968a, 1968b) have examined the estimation of parameters of mean and 

standard deviation for the censored normal and log non-normal distributions. The 

estimation of coefficients in a simple regression model with auto-correlated errors is 

considered. The underlying distribution is assumed to be symmetric, one of Student's t 

family for illustration. Closed form estimators are obtained and shown to be remarkably 

efficient and robust. They assumed normality but based on their estimators on censored 
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samples, they showed that the resulting estimators are robust to plausible deviations from 

normality.  

Andrews et al. (1972) discussed various robust procedures for the estimation of location, 

the theory of robust estimation is based on specified properties of specified estimators 

under specified conditions, he showed the result of a study undertaken to establish the 

interaction of these three components while Schrader and McKean (1977) studied some 

robust methods of analysis. 

Tiku (1980) obtained the modified maximum likelihood estimates for the censored data 

and developed the robust procedures.  

Tiku, et al. (1986) made a detail study of robust estimation when error follows non-

normal distribution such as log-normal distribution, logistic distribution, etc. or for the 

censored data. 

Tiku and Suresh (1992) have pointed out that the maximum likelihood equations are 

(under some very general regularity conditions) asymptotically equivalent to the 

likelihood equations.  

Tiku and Kambo (1992) gave the method of estimation for a new family of bivariate 

non-normal distribution.  

Milosevic-Hill (1995) obtained the procedure of analysis of one-way and two-way 

classified data with equal number of observations per cell by using MML procedure 

when the errors follow symmetric t-family of distributions. The MML estimators 

Produced are found to be very similar in form to results from classical procedures, and 

not much more computationally intensive. From the simulation studies he showed that 

MML technique is remarkably efficient and powerful, even for small sample from a 

decidedly non-normal distribution.         

Vaughan and Tiku (2000) observed that in numerous situations, one deals with a random 

vector (X, Y), where Y is a consequence of X but not so much the other way round. Often 

in such situations, X has a non-normal distribution while the conditional distribution of Y 

given X = x may or may not be normal. So, they assumed the distribution of X to be the 

extreme value distribution and the conditional distribution of Y to be normal. They 
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derived the MML (modified maximum likelihood) estimators and showed that they are 

highly efficient. They also developed hypothesis testing procedures. 

Senoglu and Tiku (2001) gave the analysis in the frame work of two way classification 

model in experimental design, when the error follows the generalized logistic distribution 

by adopting the procedure of modified maximum likelihood. From an application of the 

modified likelihood estimation he obtained efficient and robust estimators of the 

parameters, defined F statistics for testing main effects and interaction. Also analyzed the 

Box-Cox data and showed that the method developed gives accurate results besides 

being easy theoretically and computationally. 

Suresh (2004) considered the estimation of scale and location parameters in the two-

parameter exponential distribution using type-II censored sample. They have derived the 

MML estimators using the approach of Tiku and Suresh (1992).  They have compared 

these estimators with the existing estimators and studied their properties.  

Wong and Bian (2005) develop the modified maximum likelihood (MML) estimators for 

the multiple regression coefficients in linear model with the underlying distribution 

assumed to be symmetric, one of Student's t family. Their empirical study reveals that 

the modified maximum likelihood (MML) estimators are more efficient than the Least 

Square Estimator (LSE) in terms of relative efficiency of one-step-ahead forecast mean 

square error for small samples. 

Senoglu (2005) has investigated the robustness of 2
k
 factorial designs when the error 

follows Weibull error distribution. From the methodology of modified likelihood, he has 

developed robust and efficient estimators for the parameters in 2
k
 factorial design and 

defined F statistics based on modified maximum likelihood estimators (MMLE) for 

testing the main effects and interaction. He showed that they have high powers and better 

robustness properties as compared to the normal theory solutions. 

Ayesen et al. (2008) derived modified maximum likelihood estimators and showed that 

they are robust and considerably more efficient than the least square estimators besides 

being insensitive to moderate design anomalies.  

Kantar and Senoglu (2008) made a comparative study for the location and scale 

parameters of the Weibull distribution with given shape parameter. Nine parametric 

estimators of the location and scale parameters of a two-parameter Weibull distribution 
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have been compared in terms of their bias and efficiency in a simulation study. The 

estimators considered were the maximum likelihood estimators (MLE), moment 

estimators (ME), generalized spacing estimators (GSE), modified maximum likelihood 

estimators I (MMLE-I), modified maximum likelihood estimators II (MMLE-II), Tiku’s 

modified maximum likelihood estimators (TMMLE), least-squares estimators (LSE), 

weighted least-squares estimators (WLSE) and percentile estimators (PCE). The aim of 

the comparisons was to identify the most efficient estimators among these nine 

estimators for different shape parameters and sample sizes. 

Tiku et al. (2008) have developed the procedure for estimation of non-normal bivariate 

distributions of stochastic variance functions. They showed that data sets in numerous 

areas of application can be modelled by symmetric bi-variate non-normal distributions. 

Estimation of parameters in such situations is considered when the mean and variance of 

one variable is a linear and a positive function of the other variable. This is typically true 

of bi-variate t-distribution. They found the resulting estimators remarkably efficient. 

Hypothesis testing procedures are developed and shown to be robust and powerful. 

Tiku and Akkaya (2010) derived Modified maximum likelihood estimators of the 

parameters in a second order polynomial regression model. These estimators are shown 

to be considerably more efficient and robust than the commonly used least squares 

estimators.  

Lal et al. (2012) developed the MMLE procedures for the analysis of designs of one-way 

elimination of heterogeneity, two-way elimination of heterogeneity and for factorial 

experiments when error follows t-family of symmetric distribution. They have developed 

the estimation and testing procedures using the modified maximum likelihood estimation 

for all the three kinds of designs.  

Yadav (2013) obtained the estimators of the model parameters by using the modified 

maximum likelihood methodology; proposed new test statistics based on these 

parameters in case of 2
k
 factorial experiments when error follows logistic distribution. 

 

 

 



9 
 

1.5 Scope of Present Study 

The present study focuses on the development of analytical procedure for the factorial 

experiments with Generalized logistic distribution and Gompertz error distribution in 

order to tackle the situations where the error term violated the normality assumptions. 

The present investigation would help agricultural scientist, research scholars and students 

under NARES dealing with factorial experiments where error term follows a non normal 

distribution specifically generalized logistic distribution and Gomperts error distribution. 

For easy accessibility by the users, the SAS codes were developed for the analytical 

procedure which provides a readymade solution to the users. 



CHAPTER 2 
 

FACTORIAL EXPERIMENTS WITH LOGISTIC ERROR DITRIBUTION 

 

2.1 Introduction: 

Factorial experiments that were introduced by Fisher (1935) and Yates (1937) are often 

the best and most used designs in agricultural experiments when the effects of multiple 

factors are investigated simultaneously. They also provide the ability to detect and 

estimate interactions between the factors. It indicates major trends to determine a 

direction for further experimentation Box et al. (1978), Montgomery (1984) and 

Hinkelmann & Kempthorne (1994). 

Under the assumption of normality and independence of observations, the normal 

equations obtained from maximum likelihood function are linear and hence solvable. On 

the other hand when the data do not follow the normal distribution, the equations 

obtained from maximum likelihood estimation are not linear and so these equations are 

not easy to handle. In this chapter, it is assumed that the error follows generalized 

logistic distribution.  

 

2.2 Modified Maximum Likelihood Procedures for 2×3×3 Factorial Experiments  

A case has been considered where three factors (say A, B and C), in which factor A has 2 

levels and factors B and C have 3 levels (2×3×3 factorial experiments) in unblocked 

situation. The statistical model for such experiment is  

 

 

where ijuly denotes the observation for of i
th

 level of factor A, j
th

 level of factor B, u
th

 

level of factor C, l = 1,…, n, µ is the overall mean, τi is the effect of the i
th

 level of the 

factor A, βj is the j
th 

effect of factor B, u is the effect of the u
th 

level of factor C, (τβ)ij is 

the effect of the interaction between τi and βj and eijul ~ Logistic Distribution and is a 

random error component. Without loss of generality, we assume that                   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0

i j ij ij iu iu ju ju

i j i j j u j u

iju iju iju

i j u

       

  

       

  

       

  
 

( ) ( ) ( ) ( )                  (2.1)
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ijul i j u ij iu ju iju ijuly e

i j u l n
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Furthermore, the factors are considered as fixed and the design is assumed to be 

completely randomized design. Since the error follows generalized logistic distribution, 

its functional form is 

 

 

 

 

 

 

 

The likelihood function L is 

 

 

 

 

Log likelihood function is  

 

 

 

 

  

*

( ) ( ) ( ) ( )1
Let   z ,         and  

iju l iju iju l iju l iju l

iju(l)

y z z z
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( )                                 (2.2)
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*
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y
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*

2 3 3
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n
ijul iju

i j u l

n
ijul iju

i j u l

y
L N

y
exp











   

   

  
      

   

   
            





 

 

2 3 3

1 1 1 1

2 3 3

1 1 1 1

log Constant log  - 

                                           ( 1) log 1                       (2.5)
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Let yiju(1) < yiju(2) < yiju(3) < … < yiju(n) be the order statistics of yijul (1 < l < n). Since 

complete sum is invariant to ordering then                        where, h(y) is any function of 

y. Now,  

 

 

2 3 3

( )

1 1 1 1

2 3 3

( )

1 1 1 1

log Constant log

            -( 1) log 1                                                   (2.6)

n

iju l

i j u l

n

iju l

i j u l

L N z

exp z





   

   

   

   
 




 

Differentiating with respect to the parameters and equating to zero, we have 
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The equations obtained from the first derivative of log likelihood function with respect 

to parameters do not yield the explicit solutions for the estimates due to non-linearity of 
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l l
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the function. Solving them by iterations is indeed problematic for reasons of (i) 

multiple roots, (ii) non-convergence of iterations, and (iii) convergence to wrong 

values; see, for example, Smith (1985), Puthenpura and Sinha (1986) and Vaughan 

(1992, 2002). To alleviate these problems modified likelihood equations are used by 

linearizing the intractable terms (in likelihood equations). The resulting equations have 

explicit solutions called MML estimators. The MMLE are known to be asymptotically 

fully efficient under regularity conditions Bhattacharyya, (1985); Vaughan and Tiku, 

(2000). 

2.3 Parameter Estimation 

For obtaining the solutions, the method given by Tiku and Suresh (1992) by expanding log- 

likelihood function using Taylor series is applied for attaining the estimates of parameters. 

These solutions are called modified maximum likelihood estimates. 
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 (2.15) 

 

(2.16) 

 

For large n, ziju(l) is close to its expected value. Let t(l)=E(ziju(l) ) ; 1≤ l ≤ n. The first two terms 

of the Taylor Series expansion namely,  
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Multiplying exp(2t(l)) in numerator and denominator, we have  

 

 (2.17) 

Although table of the expected values of tiju(l), 1≤ l ≤ n are available for n <15 [Balakrishnan 

and Leung(1988)] but, for convenience, we use their approximate values of tijk(l) obtained 

from the equations 

 

(2.18) 

 

Using approximate values instead of exact values does not adversely affect the efficiency of 

the MML estimators. [Senoglu and Tiku (2001)]  
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Putting the approximate value of g(ziju(l)) from equation in the normal equations (2.8) – (2.16) 

we have, 

Thus, 

                       ( ) ( ) ( ) ( )( )iju l l l iju lg z z    

Hence, 
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Now solving the normal equations one by one, we have: 
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Similarly, we can have 
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                           (2.28) 

It may be noted that, unlike the maximum likelihood (ML) estimator of , the Modified 

Maximum Likelihood estimator̂  is always real and positive. The MML estimators have 

closed forms and have the similar structure with the classical procedures irrespective of the 

underlying distribution. They can also be easily represented in matrix form. For these 

reasons, the MML procedures become very attractive for practitioners. The divisor N in the 

expression for ̂  has been replaced by ( 18)N N  , as a bias correction. 

2.4 Main and Interaction Effects  

The treatments consisting of all combinations that can be formed from the different factors 

may be represented as A, B, AB, B
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represent the weighted totals of n observations obtained from each treatment combination.  
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The contrast are obtained using Yates algorithm and consequently sum of squares and F 

statistics for the main effects, two-factor and three-factor interactions have been computed.  

 

 

 

 

 

The test statistics for testing the hypotheses are 
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For large n, their null distributions are central F with degrees of freedom 
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where   
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1 and  18( 1).n

     

        

     

          

 

The results are valid for different values of θ, (θ <1, θ =1, θ >1) of the logistic distribution 

when the distribution is negatively skewed, symmetric, and positively skewed, respectively. 

 

2.5 Discussion 

The analytical procedure have been developed for the 2×3×3 factorial experiments when 

error follows generalized logistic distribution. The estimates are obtained through Modified 

Maximum Likelihood Estimation procedure (MMLE) for the main effect and interaction 

effects. SAS code has been developed for the developed procedure. 
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CHAPTER 3 
 

FACTORIAL EXPERIMENTS WITH GOMPERTZ ERROR DITRIBUTION 

 

3.1 Introduction: 

Factorial experiments that were introduced by Fisher (1935) and Yates (1937) are often the 

best and most used designs in agricultural experiments when the effects of multiple factors 

are investigated simultaneously. They also provide the ability to detect and estimate 

interactions between the factors. It indicates major trends to determine a direction for further 

experimentation, see Box et al. (1978), Montgomery (1984) and Hinkelmann & Kempthorne 

(1994). 

Under the assumption of normality and independence of observations, the normal equations 

obtained from maximum likelihood function are linear and hence solvable. On the other hand 

when the data do not follow the normal distribution, the equations obtained of MLE are not 

linear and so these equations are difficult to handle. In this chapter, it is assumed that error 

follows Gompertz distribution.  

 

3.2 Modified Maximum Likelihood Procedures for 2×3×3 Factorial Experiments  

A case has been considered where three factors (say A, B and C), in which factor A has 2 

levels, factors B and C have 3 levels (2×3×3 factorial experiments) in unblocked situation. 

The statistical model for such experiments is  

 

(3.1) 

where ijuly denotes the observation for of i
th

 level of factor A, j
th

 level of factor B, u
th

 level of 

factor C, l = 1,…, n, µ is the overall mean, τi is the effect of the i
th

 level of the factor A, βj is 

the j
th 

effect of factor B, u is the effect of the u
th 

level of factor C, (τβ)ij is the effect of the 

interaction between τi and βj and eijul ~ Gompertz distribution and is a random error 

component. Without loss of generality, we assume that 
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Furthermore, the factors are considered as fixed and the design is assumed to be completely 

randomized design. Since the error follows Gompertz distribution, its functional form is 

                                                 
 ( , ) exp exp( ) 1

            where,  0;  0; 0

G x x

x


    



 

 
   

 

  

    (3.2) 

where, η and α are the shape and scale parameter of the distribution respectively. 

The likelihood function L is 
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Log likelihood function is 
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                                                               (3.4) 

For obtaining the solutions, the method given by Tiku and Suresh (1992) by expanding log-

likelihood function using Taylor series is applied for obtaining the estimates of parameters.  
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                                           (3.6) 

The equations obtained from the log likelihood function do not yield the explicit solutions for 

the estimates, due to non-linearity of the function ( )exp( )iju lz   
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                  (3.7) 

The equations obtained from the first derivative of log likelihood function with respect to 

parameters do not yield the explicit solutions for the estimates due to non-linearity of the 

function. Solving them by iterations is indeed problematic for reasons of (i) multiple roots,       

(ii) non-convergence of iterations, and (iii) convergence to wrong values; see, for example, 

Smith (1985), Puthenpura and Sinha (1986) and Vaughan (1992, 2002). To alleviate these 

problems modified likelihood equations are used by linearizing the intractable terms (in 

likelihood equations). The resulting equations have explicit solutions called MML estimators. 

The MMLE are known to be asymptotically fully efficient under regularity conditions 

Bhattacharyya, (1985); Vaughan and Tiku, (2000). 

3.3 Parameter Estimation 

For obtaining the solutions, the method given by Tiku and Suresh (1992) by expanding log- 

likelihood function using Taylor series is applied for attaining the estimates of parameters. 

These solutions are called modified maximum likelihood estimates. 

For large n, z
iju(l) 

is close to its expected value. Let t
(l)

=E(z
iju(l)

); 1≤ l ≤ n. The first two terms of 

the Taylor Series expansion namely,  
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(l) ( )Let exp(z )=g(z )iju iju l  

( ) ( ) ( ) ( )g(z ) iju l l l iju lz    

( ) ( ) ( ) ( )g(z )  g( )  [z ]  ( )iju l (l) iju l l lt t g t    

( ) ( ) ( ) ( ) ( )g(z ) (1 )exp( )+exp( )iju l l l l iju lt t t z   

(l) ( ) ( ) ( ) ( )exp(z )=g(z ) iju iju l l l iju lz    

Approximate values of tiju(l) are obtained from the equation  

( )

( )

exp z (exp(z) 1) ;  
1

ln 1 ln 1
1

lt

l

l
dz

n

l
t

n

 

 







 
     

  
     

  


 

Thus ( ) ( ) ( )(1 )exp( )l l lt t   and ( ) ( )exp( )l lt  is computed.  

Using approximate values instead of exact values does not adversely affect the efficiency of 

the MML estimators. [Senoglu and Tiku (2001)]  

Putting the approximate value of g(ziju(l)) from equation in the normal equations (3.7) we 

have, 

Thus, 

                       ( ) ( ) ( ) ( )( )iju l l l iju lg z z    

2 3 3
*

( ) ( ) ( )

1 1 1 1

log
18 ( ) 0

n

l l iju l iju

i j u l

L
n y     
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3 3
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L
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log
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L
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            (3.16) 

Now solving the normal equations one by one (3.8 to 3.16), we have 

 ˆ ˆ18 18 18 .... 18 0 0n k m m         ;                       
( ) ( )

1 1

Here      and   
n n

l l

l l

k m 
 

    

ˆ ˆ....n k m m


 

    

1
ˆ ˆ....k m n

m


 

 

 
   

 
 

ˆ ˆ....
k n

m m
 

 
    

ˆ ˆ....
n k

m m
 

 
                 (3.17) 

 ˆ ˆ ˆ9 9 9 ... 9 9 0i in k m m m           

9
ˆ ˆ ˆ9 9 ... 9 9i i

n
k m m m


  


     

1
ˆ ˆ ˆ...i i

n
k m m

m


  

 

 
    

 
 

ˆ ˆ ˆ...i i

n k

m m
  

 
     

ˆ ˆ ˆ... ....   i i

n k n k

m m m m
  

   
       ; (substituting the value of ̂ ) 
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ˆ ˆ ˆ... ....i i                                                                                                                                                (3.18) 

ˆˆ ˆ6 6 6 . .. 6 6 0j jn k m m m          
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Simillarily, we can have 

ˆ ˆ ˆ.. . ....u u                                                                                                                                               (3.20) 

ˆˆ ˆ ˆ3 3 3 .. 3 3 ( ) 3 3 0ij ij i jn k m m m m m       
 

         
 

3 ˆˆ ˆ ˆ3 3 .. 3 3 ( ) 3 3ij ij i j

n
k m m m m m


     





       

ˆˆ ˆ ˆ( ) ..ij ij i j
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                    (3.21) 

ˆˆ ˆ ˆ( ) ..ij ij i j
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                  (3.22) 

ˆ ˆ ˆ ˆ( ) .. ... . .. ....ij ij i j    


                  (3.23) 

Similarily, 

ˆ ˆ ˆ ˆ( ) . . ... .. . ....iu i u i u    


                  (3.24) 

ˆ ˆ ˆ ˆ( ) . . . .. .. . ....ju ju j u    


                  (3.25) 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) . ... . .. .. . .. . . . . ....iju iju i j u ij i u ju        


                      (3.26) 

 

Where,  



 

26 
 

2 3 3

( ) ( )

1 1 1 1

1
ˆ....

18

n

l iju l

i j u l

y
m

 
   

  ; 
3 3

( ) ( )

1 1 1

1
ˆ ...

9

n

i l iju l

j u l

y
m

 
  

  ; 
2 3

( ) ( )

1 1 1

1
ˆ. ..

6

n

j l iju l

i u l

y
m

 
  

   

2 3

( ) ( )

1 1 1

1
ˆ.. .

6

n

u l iju l

i j l

y
m

 
  

  ; 
3

( ) ( )

1 1

1
ˆ ..

3

n

ij l iju l

u l

y
m

 
 

  ; 
3

( ) ( )

1 1

1
ˆ . .

3

n

i u l iju l

j l

y
m

 
 

   

2

( ) ( )

1 1

1
ˆ. .

2

n

ju l iju l

i l

y
m

 
 

  ; 
( ) ( )

1

1
ˆ .

n

iju l iju l

l

y
m

 


                 (3.27) 

  
2 3 3 2 3 3

* * *

( ) ( ) ( ) ( ) ( )2
1 1 1 1 1 1 1 1

1
18 ( ) ( ) ( ) 1 0

n n

iju l iju l l iju l iju iju l iju

i j u l i j u l

n y y y
 

        
         

         

 

Solving this equation we have, 
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           (3.28) 

The MML estimators have closed forms and have the similar structure with the classical 

procedures irrespective of the underlying distribution. They can also be easily represented in 

matrix form. For these reasons, the MML procedures become very attractive for practitioners. 
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3.4 Main and Interaction Effects  

The treatments consisting of all combinations that can be formed from the different factors 

may be represented as A, B, AB, B
2
, AB

2
, C, AC, BC, ABC, B

2
C, AB

2
C, C

2
, AC

2
, BC

2
, ABC

2
, 

B
2
C

2
, AB

2
C

2
   

Letters (1), a, b, ab, b
2
, ab

2
,
 
c, ac, bc, abc. b

2
c, ab

2
c, c

2
, ac

2
, bc

2
, abc

2
, b

2
c

2
 and ab

2
c

2
 

represent the weighted totals of n observations obtained from each treatment combination.  
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The contrasts are obtained using Yates algorithm and consequently sum of squares and F 

statistics for the main effects, two-factor and three-factor interactions have been computed.  

21
( ) ;   

18
A ASS Contrast

m
 21

( ) ;   
18

B BSS Contrast
m

 21
( ) ;   

12
C CSS Contrast

m
  

21
( ) ;   

12
AB ABSS Contrast

m
 21

( ) ;   
12

AC ACSS Contrast
m

 21
( ) ;   

8
BC BCSS Contrast

m
  

2 2 2 2

21
...,  ( ) . 

72AB C AB C
SS Contrast

m
  

The test statistics for testing the hypotheses are 
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For large n, their null distributions are central F with degrees of freedom 
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3.5 Discussion 

The analytical Procedure have been developed for the 2×3×3 factorial experiments when 

error follows Gompertz distribution. The estimates are obtained through Modified Maximum 

Likelihood Estimation procedure (MMLE) for the main effect and interaction effects and F 

statistics have been obtained. SAS code has been developed for the developed procedure. 



CHAPTER 4 
 

APPLICATION OF THE MODIFIED MAXIMUM LIKELIHOOD ESTIMATION 

PROCEDURE ON SIMULATED DATA  

 

 

4.1 Introduction: 

 

In this Chapter, a factorial experiment has been considered in which there are three factors A, 

B and C. In which factor A has 2 levels, factor B and C have 3 levels. Data sets for 2×3×3 

factorial experiments have been obtained for both the situations of non-normality. The 

developed procedure has been applied on the generated data and sum of squares and F 

statistics have been obtained for all the treatment combinations. The analysis of the datasets 

of 2×3×3 factorial experiments considering the two cases generalized logistic distribution and 

Gompertz distribution have been given.  

 

Probability density function of generalized logistic distribution  
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Procedure for calculation of sum of squares has been worked out for 2×3×3 factorial 

experiments. 

4.2 Generation of data in case of logistic error distribution 

In some situations, when the errors are non-normal, the distribution of test statistic is 

unknown. It is, therefore, necessary to generate empirical critical values in order to test H0 

against H1. This is done by means of simulation studies. In this Section, data has been 

generated for which error follows the logistic distribution for different values of θ which 

gives different shape of the distribution.  A real data set has been taken in 2×3×3 factorial set 

up with three observation per cell (54 observations0 and predicted values and residuals have 

been obtained then a sample of 54 observations of logistic error has been generated with the 

parameter values θ =0.5, 1 and 2 for which the data is positively skewed, symmetric and 
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negatively skewed respectively. The predicted values are added with the logistic error and 

therefore we have three sets of data for the 2×3×3 Factorial experiments where error follows 

logistic distribution. The generated data for θ =0.5, 1 and 2 has been given in Table: 4.1, 4.2 

and 4.3 respectively.    

 

Table: 4.1 Data generated for 2×3×3 factorial experiment when error follows logistic 

distribution for θ =0.5 

Treatment 

effects 

mean A B AB B
2
 AB

2
 C AC BC 

 000 100 010 011 020 120 001 101 011 

Observations 

Generated  

Per cell 

46.600 85.510 39.367 78.188 91.575 75.483 79.415 77.445 88.546 

46.996 86.546 57.851 95.894 91.920 79.452 81.132 78.751 89.907 

47.965 91.348 58.888 97.297 97.552 81.559 87.255 80.108 101.604 
 

         

ABC B
2
C AB

2
C C

2
 AC

2
 BC

2
 ABC

2
 B

2
C

2
 AB

2
C

2
 

111 021 121 002 102 012 112 022 122 

Observations 

Generated  

Per cell 

82.349 66.439 71.914 67.579 78.601 55.315 74.496 66.271 82.349 

84.240 68.450 73.483 85.913 78.681 74.976 78.088 69.679 84.240 

91.306 73.036 73.517 92.569 84.751 78.099 82.332 72.187 91.306 

 

Table: 4.2 Data generated for 2×3×3 factorial experiment when error follows logistic 

distribution for θ =1 

Treatment 

effects 

mean A B AB B
2
 AB

2
 C AC BC 

 000 100 010 011 020 120 001 101 011 

Observations 

Generated  

Per cell 

49.076 93.326 63.210 97.339 98.980 78.881 82.652 82.655 76.091 

54.074 96.483 66.496 98.388 99.516 84.450 86.161 84.171 77.578 

58.041 98.360 69.754 101.581 102.059 89.242 91.532 87.465 79.757 
 

         

ABC B
2
C AB

2
C C

2
 AC

2
 BC

2
 ABC

2
 B

2
C

2
 AB

2
C

2
 

111 021 121 002 102 012 112 022 122 

Observations 

Generated  

Per cell 

81.430 81.502 69.237 78.890 79.159 76.033 72.382 79.171 65.790 

88.182 83.077 69.254 79.646 82.162 80.455 76.224 81.099 68.286 

93.432 87.729 73.805 80.923 94.030 82.140 79.452 85.431 72.087 
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Table: 4.3 Data generated for 2×3×3 factorial experiment when error follows logistic 

distribution for θ =2 

Treatment 

effects 

mean A B AB B
2
 AB

2
 C AC BC 

 000 100 010 011 020 120 001 101 011 

Observations 

Generated  

Per cell 

51.268 95.302 65.432 99.452 100.865 82.320 85.302 84.911 78.385 

55.885 98.292 68.389 100.388 101.374 86.591 88.217 86.226 79.662 

59.790 100.130 71.533 103.397 103.838 91.048 93.309 89.297 81.655 

 
         

ABC B
2
C AB

2
C C

2
 AC

2
 BC

2
 ABC

2
 B

2
C

2
 AB

2
C

2
 

111 021 121 002 102 012 112 022 122 

Observations 

Generated  

Per cell 

85.257 84.742 71.756 80.939 82.300 79.883 75.766 81.398 69.981 

90.315 85.868 71.769 81.623 84.562 82.999 78.612 83.095 71.594 

95.225 89.728 75.721 82.810 95.772 84.372 81.418 87.216 74.439 

 

4.3 Analysis 2×3×3 factorial experiment when error follows logistic distribution 

A dataset for 2×3×3
 
factorial experiments with three observations per cell is taken with total 

of 54 observations for which error follows the logistic distribution which have been generated 

in above section 4.2. This data has been analyzed with the methodology developed and 

presented in Table: 4.4, 4.5 and 4.6 for the different values of the distribution parameter θ 

(0.5, 1 and 2). SAS code has been developed for the analysis with modified maximum 

likelihood procedure developed and given in ANNEXURE. 

 

Table: 4.4 Analysis of 2×3×3 factorial experiments for θ = 0.5 

Source DF Mean 

Square 

F
*
 Value 

A 1 96.9584 5.52785* 

B 1 29.0356 1.65539 

AB 1 387.597 22.0979* 

B
2
 1 0.26204 0.01494 

AB
2
 1 132.118 7.53237* 

C 1 0.39498 0.02252 

AC 1 287.006 16.3629* 
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BC 1 160.285 9.13824* 

ABC 1 106.141 6.05139* 

B
2
C 1 8.31018 0.47378 

AB
2
C 1 136.191 7.7646* 

C
2
 1 67.7792 3.86426 

AC
2
 1 57.0143 3.25053 

BC
2
 1 46.4333 2.64728 

ABC
2
 1 59.0471 3.36643 

B
2
C

2
 1 29.8689 1.7029 

AB
2
C

2
 1 64.4351 3.67361 

Error 36 
3.107 

 
 

 

Note: F*
 Value is obtained from the procedure of MMLE methodology. 

 

Table: 4.5 Analysis of 2×3×3 factorial experiments for θ = 1 

Source DF Mean 

Square 

F
*
 Value 

A 1 60.682 9.989* 

B 1 0.651 0.107 

AB 1 401.210 66.042* 

B
2
 1 0.065 0.011 

AB
2
 1 97.348 16.024* 

C 1 43.566 7.171* 

AC 1 260.292 42.846* 

BC 1 184.508 30.371* 

ABC 1 125.465 20.652* 

B
2
C 1 0.010 0.002 

AB
2
C 1 37.050 6.099* 

C
2
 1 2.755 0.454 

AC
2
 1 58.745 9.670* 

BC
2
 1 75.838 12.483* 

ABC
2
 1 74.974 12.341* 
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B
2
C

2
 1 2.487 0.409 

AB
2
C

2
 1 8.341 1.373 

Error 16 
           2.465 

 
 

 

Table: 4.6 Analysis of 2×3×3 factorial experiments for θ = 2 

Source DF Mean 

Square 

F
*
 Value 

A 1 57.2572 9.61416* 

B 1 2.32479 0.39036 

AB 1 358.294 60.1618* 

B
2
 1 0.00912 0.00153 

AB
2
 1 84.8404 14.2457* 

C 1 31.558 5.29897* 

AC 1 240.451 40.3745* 

BC 1 165.154 27.7313* 

ABC 1 130.723 21.95* 

B
2
C 1 0.00219 0.00037 

AB
2
C 1 37.34 6.26983* 

C
2
 1 2.95179 0.49564 

AC
2
 1 56.3878 9.46819* 

BC
2
 1 68.5124 11.504* 

ABC
2
 1 61.956 10.4031* 

B
2
C

2
 1 1.45181 0.24378 

AB
2
C

2
 1 7.38491 1.24001 

Error 36 
2.440 

 
 

 

4.4 Computation of Size of the Test  

The probability P (F
*
>F0.05) (v1, v18) is calculated empirically. The computation of size of the 

test is done by using a program in SAS-IML. Further, the size of the test has been obtained by 

re-sampling technique to obtain the distribution using Monte Carlo simulation in 5000 runs 
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and SAS code has been developed for the purpose which is given in ANNEXURE-2 and the 

results are given in the Table: 4.7. 

 

Table: 4.7 Size of the Test from Monte Carlo simulation of 5000 runs 

 For n=3 

Source θ=1 θ =0.5 θ =2 

A 0.0742 0.303 0.1334 

B 0.1392 0.2842 0.4098 

AB 0.0028 0.1052 0.0432 

B
2
 0.2006 0.1092 0.0594 

AB
2
 0.0278 0.2682 0.1572 

C 0.0758 0.1402 0.2706 

AC 0.0052 0.1076 0.1146 

BC 0.0286 0.2122 0.0624 

ABC 0.0286 0.1592 0.1958 

B
2
C 0.0222 0.3482 0.0242 

AB
2
C 0.1162 0.2648 0.1718 

C
2
 0.3422 0.161 0.3978 

AC
2
 0.0956 0.2946 0.1462 

BC
2
 0.0592 0.2268 0.1794 

ABC
2
 0.0904 0.2358 0.1126 

B
2
C

2
 0.3156 0.3202 0.4116 

AB
2
C

2
 0.1696 0.2768 0.3234 

 

From the above it can be seen that size of the test is approximate 0.05 for some of the main 

effects and some of the interactions for the parameter value θ = 1. For other parameter values 

it considerably deviates from the value 0.05. This also validates the procedure of modified 

maximum likelihood estimation.  

 

4.5 Generation of data in case of Gompertz error distribution 

In this Section, data has been generated for which error follows the Gompertz distribution for 

different values of η. A real data set has been taken in 2×3×3 Factorial set up with three 

observation per cell (54 observations) and predicted values and residuals have been obtained 
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then a sample of 54 observations of error has been generated which follows Gompertz 

distribution with the parameter values η =1 and 2. The predicted values are added with these 

errors and therefore we have two data sets for the 2×3×3 Factorial experiments where error 

follows Gompertz distribution. The data generated for η =1 and 2 has been given in Table: 4.8 

and 4.9 respectively.    

Table: 4.8 Data generated for 2×3×3 factorial experiment when error follows Gompertz 

distribution for η =1 

Treatment 

effects 

mean A B AB B
2
 AB

2
 C AC BC 

 000 100 010 011 020 120 001 101 011 

Observations 

Generated  

Per cell 

49.248 91.689 63.407 96.926 95.670 84.135 85.087 83.281 76.732 

49.466 91.943 63.666 96.959 95.976 84.362 85.753 83.451 76.991 

49.747 92.071 63.799 97.487 96.397 84.480 85.784 83.535 77.274 

 
         

ABC B
2
C AB

2
C C

2
 AC

2
 BC

2
 ABC

2
 B

2
C

2
 AB

2
C

2
 

111 021 121 002 102 012 112 022 122 

Observations 

Generated  

Per cell 

87.673 86.224 71.128 78.322 83.513 82.835 77.505 79.334 73.249 

87.896 86.273 71.246 78.379 83.583 82.864 77.627 79.449 73.569 

88.190 86.743 71.307 78.911 83.789 82.893 77.696 79.766 73.791 

 

Table: 4.9 Data generated for 2×3×3 factorial experiment when error follows Gompertz 

distribution for η =2 

Treatment 

effects 

mean A B AB B
2
 AB

2
 C AC BC 

 000 100 010 011 020 120 001 101 011 

Observations 

Generated  

Per cell 

49.086 91.475 63.398 96.670 95.704 84.057 85.151 83.131 76.698 

49.182 91.636 63.748 96.944 95.804 84.286 85.299 83.204 76.838 

49.280 91.737 64.061 97.139 95.844 84.406 85.358 83.540 76.886 

 
         

ABC B
2
C AB

2
C C

2
 AC

2
 BC

2
 ABC

2
 B

2
C

2
 AB

2
C

2
 

111 021 121 002 102 012 112 022 122 

Observations 

Generated  

Per cell 

87.949 86.249 71.027 77.667 83.542 82.345 77.357 79.382 73.211 

88.060 86.469 71.281 77.980 83.568 82.915 77.456 79.394 73.317 

88.347 86.566 71.439 78.016 83.947 83.217 77.921 79.442 73.351 
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4.6 Analysis of 2×3×3 factorial experiment when error follows Gompertz distribution 

A SAS code has been developed (which in given in ANNEXURE) to analyse the data sets 

which follows Gompertz error distribution for the above mentioned factorial setup. The data 

sets generated in the above section have been analysed and presented in tables 4.10 and 4.11. 

 

Table: 4.10 Analysis of 2×3×3 factorial experiments for η = 1 

Source DF Mean 

Square 

F
*
 Value 

A 1 270.157 113.823
* 

B 1 51.747 21.802
* 

AB 1 924.881 389.672
* 

B
2
 1 3.912 1.648 

AB
2
 1 216.694 91.298

* 

C 1 6.792 2.862 

AC 1 748.180 315.224
* 

BC 1 523.071 220.381
* 

ABC 1 418.124 176.165
* 

B
2
C 1 2.787 1.174 

AB
2
C 1 158.786 66.900

* 

C
2
 1 31.040 13.078

* 

AC
2
 1 251.824 106.099

* 

BC
2
 1 207.316 87.347

* 

ABC
2
 1 114.996 48.450

* 

B
2
C

2
 1 0.014 0.006 

AB
2
C

2
 1 67.047 28.248

* 

Error        36 
            1.541 

 
 

 

Table: 4.11 Analysis of 2×3×3 factorial experiments for η = 2 

Source DF Mean 

Square 

F
*
 Value 

A 1 278.895 106.155
* 

B 1 57.489 21.882
* 
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AB 1 944.362 359.449
* 

B
2
 1 5.381 2.048 

AB
2
 1 213.847 81.395

* 

C 1 7.059 2.687 

AC 1 731.705 278.506
* 

BC 1 522.991 199.064
* 

ABC 1 400.743 152.533
* 

B
2
C 1 2.722 1.036 

AB
2
C 1 157.216 59.840

* 

C
2
 1 34.607 13.172

* 

AC
2
 1 248.788 94.695

* 

BC
2
 1 205.700 78.295

* 

ABC
2
 1 117.856 44.859

* 

B
2
C

2
 1 0.008 0.003 

AB
2
C

2
 1 73.705 28.054

* 

Error        36 
             1.621 

 
 

 

4.7 Discussion 
 

Error has been generated which follows logistic distribution for different values of θ which 

gives different shapes of the distribution. The distribution is negatively skewed, positively 

skewed or symmetric for the values of θ = 0.5, 1 and 2, respectively. Using these generated 

logistic error 3 sets of 54 observations in 2×3×3 factorial setup has been obtained. The model 

is assumed to be fixed effect model and design considered is completely randomized design 

for equal number of observations per cell. These sets are analysed through the developed 

modified maximum likelihood estimation procedure and sum of squares and F statistics have 

been computed. Similarly two data sets have been generated for Gomperz error distribution 

with the parameter values η =1 and 2 The SAS code have been developed and generated data 

sets have been analyzed and presented. Finally, SAS code has been developed for the 

computation of size of the test. 



 
 

 SUMMARY 

Factorial experiments are widely used in agriculture and allied sciences. In the present study, 

2×3
2 

factorial experiments have been considered under the assumption that the error follows 

non-normal distribution. Under the assumption of normality and independence of 

observations, the normal equations obtained from maximum likelihood function are linear 

and solvable. On the other hand when the data do not follow the normal distribution, the 

equations obtained of MLE are not linear and so these equations are difficult to handle.  

 

The present study focuses on the development of analytical procedure for the factorial 

experiments in order to tackle the situations where error term violates normality assumptions. 

Here, factorial experiments have been considered where error follows non-normal 

distribution. Two non-normal distributions have been considered from which one is 

generalized logistic distribution and another is Gompertz distribution. The theory of modified 

maximum likelihood estimation has been applied and efficient estimators have been 

developed. New modified maximum likelihood estimates have been developed and the 

estimates of parameters are obtained for both the situations of non-normality.  

The developed procedure is applied in the analysis of 2×3
2 

factorial experiments in which 

error follows the generalized logistic and Gompertz error distributions. Data have been 

generated for the simulation studies for which error follows generalized logistic distribution. 

Three data sets have been generated for parameter values (θ =0.5, 1 and 2) in 2×3
2 

factorial 

set up where the data are positively skewed, symmetric and negatively skewed respectively. 

In the same way, two data sets have been generated with the parameter values (η =1 and 2) 

where error follows Gompertz distribution. These data sets are analyzed through developed 

procedure.  

SAS codes have been developed for analysis of the data sets generated through 2×3
2 

factorial 

experiments where error follows logistic and Gompertz distributions. The output for the data 

sets of all mentioned five parameter values i.e. θ =0.5, 1, 2 and η =1, 2  are given in table 4.4, 

4.5, 4.6, 4.10 and 4.11 of Chapter 4 where sum of squares and F
*
 statistics have been given. 

The probability P (F
*
>F0.05) (v1, v18) is calculated empirically for the developed F

*
 statistics. 

Further, size of the test is computed with 5000 Monte Carlo runs using re-sampling 

technique. 



39 
 
 

 

This present investigation would help scientist, research scholars and students under NARES 

dealing with factorial experiments where error follows generalized logistic distribution and 

Gompertz distribution. For easy accessibility by the users, the SAS codes have been 

developed which provide a readymade solution. 



साराांश

 
बहुउपादानी परीक्षण कृषि और सम्बद्ध षिज्ञान में व्यापक रूप से उपयोग षकए जाते हैं। िततमान अध्ययन में, 2×3

2
 

बहुउपादानी परीक्षणों के अन्तगतत माना गया ह ैषक त्रषुि नॉन-नॉमतल षितरण का अनसुरण करती ह।ै नॉमतलिी और 

अिलोकनों की स्ितंत्रता की के अन्तगतत, अषिकतम संभािना आकंलन से प्राप्त नॉमतल समीकरण रैषिक और 

हल करने योग्य होते हैं। दसूरी ओर जब अिलोकन नॉमतल षितरण का पालन नहीं करते हैं, तो अषिकतम 

संभािना आकंलन के प्राप्त समीकरण रैषिक नहीं होते हैं और इसषलए इन समीकरणों को हल करना मषुककल हो 

जाता ह।ै  

 

िततमान अध्ययन उन पररषस्िषतयों से षनपिने के षलए बहुउपादानी परीक्षणों के षलए षिशे्लिणात्मक प्रषिया के 

षिकास पर कें षित ह,ै जहां त्रषुि नॉमतलिी का उल्लंघन करता ह।ै यहााँ, बहुउपादानी परीक्षणों पर षिचार षकया गया 

ह ैजहां त्रषुि नॉन-नॉमतल षितरण का अनसुरण करती ह।ै दो नॉन-नॉमतल षितरणों पर षिचार षकया गया उनमें से एक 

सामान्यीकृत लॉषजषस्िक षितरण और दसूरा गोम्पिटतज षितरण ह।ै संशोषित अषिकतम संभािना आकंलन के 

षसद्धांत को लाग ूषकया गया ह ैऔर कुशल अनमुानक षिकषसत षकए गए हैं। नये संशोषित अषिकतम संभािना 

आकंलक षिकषसत षकये गए ह ै और त्रषुि षितरण के दोनों नॉन-नॉमतल पररषस्िषतयों के षलए मापदडंों का 

आकंलन प्राप्त षकया जाता ह।ै  

 

षिकषसत प्रषिया, 2×3
2
 बहुउपादानी परीक्षणों के षिशे्लिण में लाग ू की गयी ह ै षजसमें त्रषुि लॉषजषस्िक और 

गोम्पिटतज षितरण का अनसुरण करती ह,ै षसमलेुशन अध्ययन के षलए अिलोकनों को उत्पन्न षकया गया ह।ै 

पैरामीिर मानों जो  θ = 0.5, 1 और 2  के षलए 2×3
2
 बहुउपादानी परीक्षणों में अिलोकनों के तीन सेि उत्पन्न 

षकए गए हैं षजनके षलए अिलोकन िमशः ििैम्य, समषमत और ऋणात्मक िैिम्य ह।ै उसी तरह, पैरामीिर मान η 

= 1 और 2 के साि अिलोकनों के दो सेि उत्पन्न षकए गए हैं जहां त्रषुि गोम्पिटतज षितरण का अनसुरण करती ह।ै 

इन अिलोकनों के सेिों का षिशे्लिण षिकषसत प्रषिया के माध्यम से षकया गया ह।ै  

 

2×3
2
 बहुउपादानी परीक्षणों के माध्यम से उत्पन्न अिलोकनों के षिशे्लिण के षलए SAS कोड षिकषसत षकए गए 

हैं जहां त्रषुि लॉषजषस्िक और गोम्पिटतज षितरण का अनसुरण करती ह।ै सभी उषल्लषित पााँच पैरामीिर मानों जोषक 

θ = 0.5, 1, 2 और η = 1, 2 के अिलोकनों के सेि के षलए आउिपिु, अध्याय 4 के ताषलका-4.4, 4.5, 4.6, 

4.10 और 4.11 में षदए गए हैं षजनमें िगों का योग और F स्िेषिषस्िक्स हैं । संभाव्यता P (F *> F0.05) (v1, v18) 

की गणना आनभुषिक रूप से की गयी ह।ै इसके अलािा, परीक्षण के आकार की गणना 5000 मोंिे कालो के 

साि की गयी ह,ै जो पनुनतमनूे की तकनीक का उपयोग करता ह ै।  
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यह िततमान अध्ययन, िजै्ञाषनकों, एनएआरईएस के अन्तगतत अनसंुिान षिद्वानों और छात्रों को बहुउपादानी 

परीक्षणों के षिशे्लिण में मदद करेगी जहां त्रषुि सामान्यीकृत लॉषजषस्िक षितरण और गोम्पिटतज षितरण का 

अनसुरण करती हैं। उपयोगकतातओ ं की सगुमता के षलए , SAS कोड षिकषसत षकए गए हैं जो एक रेडीमेड 

समािान प्रदान करते हैं। 



ANNEXURE 

 

 

SAS code for the analysis when error follows logistic error distribution 
 

data mrin; 

input x; 

datalines; 

<data set> 

; 

proc iml; 

use mrin; 

read all into data; 

obs=data(|,1|); 

b=1;/* value of parameter b*/ 

trt=18;/* number of treatment*/ 

n=3;/* number of replication*/ 

dfc={-1 1 -1 1 -1 1 -1 1 -1 1 -1 1

 -1 1 -1 1 -1 1, 

-1 -1 0 0 1 1 -1 -1 0 0 1 1 -1

 -1 0 0 1 1, 

1 -1 0 0 -1 1 1 -1 0 0 -1 1 1

 -1 0 0 -1 1, 

1 1 -2 -2 1 1 1 1 -2 -2 1 1 1

 1 -2 -2 1 1, 

-1 1 2 -2 -1 1 -1 1 2 -2 -1 1 -1

 1 2 -2 -1 1, 

-1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1

 1 1 1 1 1, 

1 -1 1 -1 1 -1 0 0 0 0 0 0 -1

 1 -1 1 -1 1, 

1 1 0 0 -1 -1 0 0 0 0 0 0 -1

 -1 0 0 1 1, 

-1 1 0 0 1 -1 0 0 0 0 0 0 1

 -1 0 0 -1 1, 

-1 -1 2 2 -1 -1 0 0 0 0 0 0 1

 1 -2 -2 1 1, 

1 -1 -2 2 1 -1 0 0 0 0 0 0 -1

 1 2 -2 -1 1, 

1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1

 1 1 1 1 1, 

-1 1 -1 1 -1 1 2 -2 2 -2 2 -2 -1

 1 -1 1 -1 1, 

-1 -1 0 0 1 1 2 2 0 0 -2 -2 -1

 -1 0 0 1 1, 

1 -1 0 0 -1 1 -2 2 0 0 2 -2 1

 -1 0 0 -1  1, 

1 1 -2 -2 1 1 -2 -2 4 4 -2 -2 1

 1 -2 -2 1 1, 

-1 1 2 -2 -1 1 2 -2 -4 4 2 -2 -1

 1 2 -2 -1 1};/* define contrast*/ 

k=nrow(obs); 

c=sum(obs); 

mean=b/k; 

p=j(k,1,mean); 

sq=obs-p; 

f1=sq#sq; 

f2=sum(f1); 

var=f2/k; 

sd=sqrt(var); 
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Z=sq/sd; 

%let h=n; 

p2=j(&h,1,0); 

do t=1 to &h; 

 p2[t,]=t; 

 a=exp(t); 

 end; 

 qr=p2/(n+1); 

 ql=repeat(qr,trt); 

 g1=-(1/b); 

 mq1=ql##g1; 

 p1=j(k,1,1); 

 dmq1=mq1-p1; 

 tl=-log(dmq1); 

 %let h=k; 

dell=j(&h,1,0); 

gal=j(&h,1,0); 

do t=1 to &h; 

a=exp(tl[t]); 

b1=tl[t]; 

 dell[t,]=(a/((1+a)*(1+a))); 

 gal[t,]=((1+b1*a+a)/((1+a)*(1+a))); 

 end; 

 cont=dell#obs; 

%let h1=trt; 

pc1=j(&h1,1,0); 

do t=1 to &h1; 

 pc1[t,]=t; 

 end; 

 pc2=repeat(pc1,n); 

 call sort(pc2,1); 

 pc3=design(pc2); 

 cont1=cont`; 

 contf=cont1*pc3; 

 contfn=contf`; 

 m=sum(dell)/trt; 

 muij=contfn/m; 

 muijj=pc1||muij; 

 crast=dfc*contfn; 

 muijjj=repeat(muijj,n); 

 call sort (muijjj,1); 

 start delcol(x,i); 

return(x[,setdif(1:ncol(x),i)]);  

finish;  

muijl=delcol(muijjj,1); 

 new=obs-muijl; 

 f=1/(b+1); 

 new1=repeat(f,k); 

 new2=new1-gal; 

 new3=new2#new; 

 f1=1+b; 

 new4=repeat(f1,k); 

 bij=new4#new3; 

 new5=new#new; 

 new6=dell#new5; 

 cij=f1#new6; 

 ray=sum(bij); 

 ray1=sum(cij); 

 nume=ray+sqrt(ray*ray+4*k*ray1); 

 denom=2*sqrt(k*(k-18)); 

 sigma=nume/denom; 
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 jani=crast#crast; 

 trtdiv={18 12 12 36 36 12 12 8 8 24 24 36

 36 24 24 72 72}` *m; 

 sss=jani/trtdiv; 

 sig=sigma*sigma; 

 fstat=sss/sig; 

print sigma sss fstat; 

 %mend; 

 

 

 

 

 

SAS Code for computation of Size of the Test 

 

dm output 'clear' output; 

dm log 'clear' output; 

%let b=1;/* value of parameter b*/ 

%let trt=18;/* number of treatment*/ 

%let n=3;/* number of replication*/ 

%let obs=54;/*total number of observations */ 

%let rep=10;/*total number of iterations */ 

data mrin; 

input id x; 

datalines; 

<data set>; 

run; 

data mrin2; 

input g a b ab b2 ab2 c ac bc abc b2c ab2c c2 ac2 bc2

 abc2 b2c2 ab2c2 ; 

cards; 

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

 1 -1 1 -1 1 

-1 -1 0 0 1 1 -1 -1 0 0 1 1 -1

 -1 0 0 1 1 

1 -1 0 0 -1 1 1 -1 0 0 -1 1 1

 -1 0 0 -1 1 

1 1 -2 -2 1 1 1 1 -2 -2 1 1 1

 1 -2 -2 1 1 

-1 1 2 -2 -1 1 -1 1 2 -2 -1 1 -1

 1 2 -2 -1 1 

-1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1

 1 1 1 1 1 

1 -1 1 -1 1 -1 0 0 0 0 0 0 -1

 1 -1 1 -1 1 

1 1 0 0 -1 -1 0 0 0 0 0 0 -1

 -1 0 0 1 1 

-1 1 0 0 1 -1 0 0 0 0 0 0 1

 -1 0 0 -1 1 

-1 -1 2 2 -1 -1 0 0 0 0 0 0 1

 1 -2 -2 1 1 

1 -1 -2 2 1 -1 0 0 0 0 0 0 -1

 1 2 -2 -1 1 

1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1

 1 1 1 1 1 
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-1 1 -1 1 -1 1 2 -2 2 -2 2 -2 -1

 1 -1 1 -1 1 

-1 -1 0 0 1 1 2 2 0 0 -2 -2 -1

 -1 0 0 1 1 

1 -1 0 0 -1 1 -2 2 0 0 2 -2 1

 -1 0 0 -1 1 

1 1 -2 -2 1 1 -2 -2 4 4 -2 -2 1

 1 -2 -2 1 1 

-1 1 2 -2 -1 1 2 -2 -4 4 2 -2 -1

 1 2 -2 -1 1 

; 

run; 

%macro sunil; 

proc iml; 

use sunil1; 

read all into data; 

obs=data(|,1|); 

b=&b; 

trt=&trt; 

n=&n; 

use mrin2; 

read all into dfc; 

k=nrow(obs); 

c=sum(obs); 

mean=b/k; 

p=j(k,1,mean); 

sq=obs-p; 

f1=sq#sq; 

f2=sum(f1); 

var=f2/k; 

sd=sqrt(var); 

Z=sq/sd; 

%let h=n; 

p2=j(&h,1,0); 

do t=1 to &h; 

 p2[t,]=t; 

 a=exp(t); 

 end; 

 qr=p2/(n+1); 

 ql=repeat(qr,trt); 

 g1=-(1/b); 

 mq1=ql##g1; 

 p1=j(k,1,1); 

 dmq1=mq1-p1; 

 tl=-log(dmq1); 

 %let h=k; 

dell=j(&h,1,0); 

gal=j(&h,1,0); 

do t=1 to &h; 

a=exp(tl[t]); 

b1=tl[t]; 

 dell[t,]=(a/((1+a)*(1+a))); 

 gal[t,]=((1+b1*a+a)/((1+a)*(1+a))); 

 end; 

 cont=dell#obs; 

%let h1=trt; 

pc1=j(&h1,1,0); 

do t=1 to &h1; 

 pc1[t,]=t; 

 end; 

 pc2=repeat(pc1,n); 
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 call sort(pc2,1); 

 pc3=design(pc2); 

 cont1=cont`; 

 contf=cont1*pc3; 

 contfn=contf`; 

 m=sum(dell)/trt; 

 muij=contfn/m; 

 muijj=pc1||muij; 

 crast=dfc*contfn; 

 muijjj=repeat(muijj,n); 

 call sort (muijjj,1); 

 start delcol(x,i); 

return(x[,setdif(1:ncol(x),i)]);  

finish;  

muijl=delcol(muijjj,1); 

 new=obs-muijl; 

 f=1/(b+1); 

 new1=repeat(f,k); 

 new2=new1-gal; 

 new3=new2#new; 

 f1=1+b; 

 new4=repeat(f1,k); 

 bij=new4#new3; 

 new5=new#new; 

 new6=dell#new5; 

 cij=f1#new6; 

 ray=sum(bij); 

 ray1=sum(cij); 

 nume=ray+sqrt(ray*ray+4*k*ray1); 

 denom=2*sqrt(k*(k-18)); 

 sigma=nume/denom; 

 jani=crast#crast; 

 trtdiv={18 12 12 36 36 12 12 8 8 24 24 36

 36 24 24 72 72}` *m; 

 sss=jani/trtdiv; 

 sig=sigma*sigma; 

 fstat=sss/sig; 

 print fstat; 

 %mend; 

  

 

%macro resampling1; 

*dm log 'clear' output; 

proc surveyselect data=mrin out=sunil method=srs sampsize=&obs seed=-20141 

noprint; 

run; 

 

proc sql; 

create table sunil1 as select x from sunil; 

quit; 

 

%sunil; 

 

create Temp_org from fstat[colname="fstat_org"]; 

append from fstat; 

quit; 

 

data final_fstat_org; 

set Temp_org ; 

run; 

%mend; 
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%macro resampling2; 

%do i=1 %to &rep; 

*dm log 'clear' output; 

%put ...............; 

%put iteration no.&i; 

%put ...............; 

 

proc surveyselect data=mrin out=sunil method=urs sampsize=&n outhits seed=-

20141 noprint; 

strata id; 

run; 

 

proc sql; 

create table sunil1 as select x from sunil; 

quit; 

 

%sunil; 

 

create Temp_&i. from fstat[colname="fstat_&i."]; 

append from fstat; 

quit; 

%end; 

 

data final_fstat; 

%do i=1 %to &rep; 

set Temp_&i. ; 

%end; 

run; 

 

proc iml; 

use final_fstat_org; 

read all into data2; 

fmat1=data2; 

use final_fstat; 

read all into data1; 

fmat=data1; 

finmat=fmat1||fmat; 

power1=1/fmat1; 

power2=finmat#power1; 

power3=j(nrow(power2), ncol(power2),0); 

do i=1 to nrow(power2); 

do j=1 to ncol(power2); 

if power2[i,j]< 1 then power3[i,j]=1; 

end; 

end; 

power4=power3[,+]; 

rep=&rep; 

power=power4/rep; 

print power; 

quit; 

%mend; 

%resampling1; 

%resampling2; 
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SAS code for the analysis when error follows Gompertz error distribution 

 

data mrin; 

input x; 

datalines; 

<Data set> 

; 

proc iml; 

use mrin; 

read all into data; 

obs=data(|,1|); 

b=1;/* value of parameter b*/ 

trt=18;/* number of treatment*/ 

n=3;/* number of replication*/ 

dfc={ -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

 -1 1 -1 1 -1 1, 

-1 -1 0 0 1 1 -1 -1 0 0 1 1 -1

 -1 0 0 1 1, 

1 -1 0 0 -1 1 1 -1 0 0 -1 1 1

 -1 0 0 -1 1, 

1 1 -2 -2 1 1 1 1 -2 -2 1 1 1

 1 -2 -2 1 1, 

-1 1 2 -2 -1 1 -1 1 2 -2 -1 1 -1

 1 2 -2 -1 1, 

-1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1

 1 1 1 1 1, 

1 -1 1 -1 1 -1 0 0 0 0 0 0 -1

 1 -1 1 -1 1, 

1 1 0 0 -1 -1 0 0 0 0 0 0 -1

 -1 0 0 1 1, 

-1 1 0 0 1 -1 0 0 0 0 0 0 1

 -1 0 0 -1 1, 

-1 -1 2 2 -1 -1 0 0 0 0 0 0 1

 1 -2 -2 1 1, 

1 -1 -2 2 1 -1 0 0 0 0 0 0 -1

 1 2 -2 -1 1, 

1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1

 1 1 1 1 1, 

-1 1 -1 1 -1 1 2 -2 2 -2 2 -2 -1

 1 -1 1 -1 1, 

-1 -1 0 0 1 1 2 2 0 0 -2 -2 -1

 -1 0 0 1 1, 

1 -1 0 0 -1 1 -2 2 0 0 2 -2 1

 -1 0 0 -1  1, 

1 1 -2 -2 1 1 -2 -2 4 4 -2 -2 1

 1 -2 -2 1 1, 

-1 1 2 -2 -1 1 2 -2 -4 4 2 -2 -1

 1 2 -2 -1 1};/* define contrast*/ 

k=nrow(obs); 

c=sum(obs); 

mean=b/k; 

p=j(k,1,mean); 

sq=obs-p; 

f1=sq#sq; 

f2=sum(f1); 

var=f2/k; 

sd=sqrt(var); 

Z=sq/sd; 

%let h=n; 
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p2=j(&h,1,0); 

do t=1 to &h; 

 p2[t,]=t; 

 a=exp(t); 

 end; 

 qr=p2/(n+1); 

 q1=repeat(qr,trt); 

 p1=j(k,1,1); 

 q2=p1+q1; 

 q3=log(q2); 

 q4=b*q3; 

 dmq1=p1-q4; 

 tl=log(dmq1); 

 %let h=k; 

dell=j(&h,1,0); 

gal=j(&h,1,0); 

do t=1 to &h; 

a=exp(tl[t]); 

b1=tl[t]; 

 dell[t,]=(a); 

 gal[t,]=((1-b1)*a); 

 end; 

 cont=dell#obs; 

%let h1=trt; 

pc1=j(&h1,1,0); 

do t=1 to &h1; 

 pc1[t,]=t; 

 end; 

 pc2=repeat(pc1,n); 

 call sort(pc2,1); 

 pc3=design(pc2); 

 cont1=cont`; 

 contf=cont1*pc3; 

 contfn=contf`; 

 m=sum(dell)/trt; 

 muij=contfn/m; 

 muijj=pc1||muij; 

 crast=dfc*contfn; 

 muijjj=repeat(muijj,n); 

 call sort (muijjj,1); 

 start delcol(x,i); 

 return(x[,setdif(1:ncol(x),i)]);  

 finish;  

 muijl=delcol(muijjj,1); 

 new=obs-muijl; 

 new1=new#new; 

 new2=sum(new1); 

 A=b*new2; 

 new3=gal-dell; 

 new4=new#new3; 

 new5=sum(new4); 

 B=b*new5; 

 new6=sum(gal); 

 new7=b*new6; 

 new8=b*k; 

 C=new7-new8; 

 nume=-B+sqrt(B*B-4*A*C); 

 denum=2*A; 

 sigma=nume/denum; 

 jani=crast#crast; 
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 trtdiv={18 12 12 36 36 12 12 8 8 24 24 36

 36 24 24 72 72}` *m; 

 sss=jani/trtdiv; 

 sig=sigma*sigma; 

 fstat=sss/sig; 

 print sigma sss fstat; 

 %mend; 
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