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Modelling and Prediction of Soil Organic Carbon using Digital
Soil Mapping in the Thar Desert Region of India
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R.S. Singh, S.K. Singh7 and B.S. Dwivedi1

ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre,
Udaipur, 313001, Rajasthan, India

In the present study, the distribution of soil organic carbon (SOC) was investigated using digital soil
mapping for an area of ~29 lakhs ha in Bikaner district, Rajasthan, India. To achieve this goal, 187 soil
profiles were used for SOC estimation by Quantile regression forest (QRF) model technique. Landsat data,
terrain attributes and bioclimatic variables were used as environmental variables. 10-fold cross-validation
was used to evaluate model. Equal-area quadratic splines were fitted to soil profile datasets to estimate
SOC at six standard soil depths (0-5, 5-15, 15-30, 30-60, 60-100 and 100-200 cm). Results showed that the
mean SOC concentration was very low with values varied from 1.18 to 1.53 g kg-1 in different depths.
While predicting SOC at different depths, the model was able to capture low variability (R2 = 1–7%).
Overall, the Lin’s concordance correlation coefficient (CCC) values ranged from 0.01 to 0.18, indicating
poor agreement between the predicted and observed values. Root mean square error (RMSE) and mean
error (ME) were 0.97 and 0.16, respectively. The values of prediction interval coverage probability (PICP)
recorded 87.2–89.7% for SOC contents at different depths. The most important variables for predicting
SOC concentration variations were the annual range of temperature, latitude, Landsat 8 bands 2, 5 and 6.
Temperature-related variables and remote sensed data products are important for predicting SOC
concentrations in arid regions. We anticipate that this digital information of SOC will be useful for frequent
monitoring and assessment of carbon cycle in arid regions.

Key words: Digital soil mapping, quantile regression forest, soil organic carbon, desert regions of India

Digital soil mapping (DSM) has now been widely
used globally for mapping soil classes and properties
(Arrouays et al. 2014). In particular, DSM has been
used to map soil organic carbon (SOC) efficiently
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around the world. The DSM methodology has been
adopted by Food and Agriculture Organization (FAO)
and Intergovernmental Technical Panel on Soils
(ITPS) (2020) so that digital soil maps can be
produced reliably for sustainable land management.
Traditional soil mapping techniques mostly depend
on ground based surveys and rarely provide
information about the spatial distribution of soil
properties at the desired resolution over the landscape
(McBratney et al. 2003; Minasny et al. 2013).
Furthermore, mapping soil spatial variations by
traditional field surveys is time-consuming and
expensive, especially at national, regional or global
scales (Dharumarajan et al. 2019). Therefore, it is
necessary to have robust methods and models to
predict soil properties at a given location or scale.
Considerable advances in remote sensing techniques
and machine learning approaches have allowed
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accurate prediction of soil properties with new
methods like digital soil mapping (McBratney et al.
2003; Hengl et al. 2015). In recent years, DSM
techniques have been used to map soil properties using
environmental variables. These methods were
designed to overcome the limitations of the
conventional soil mapping approach and to estimate
soil properties based on relationships between soil
and environmental variables obtained from terrain
attributes and satellite imagery (McBratney et al.
2003; Minasny and Hartemink 2011). The
GlobalSoilMap consortium was established in
response to such a soaring demand for up-to-date and
relevant soil information (Arrouays et al. 2014). This
consortium has undertaken the task of producing soil
property maps at a fine resolution using DSM
techniques. Many countries have abundant legacy soil
data that include soil maps at a variety of scales, soil
point data collected over decades, environmental
covariate information and a network of partners that
have contributed to building the soil information over
many years.

Digital soil mapping methodology works are
based on SCORPAN model where soil class or soil
property (s) at particular location are derived
indirectly from the environmental variables: climate
(c), organisms (o), relief (r), parent material (p), age
(a), and spatial location (n) (McBratney et al. 2003).
Following the ideas of Dokuchaev (1883) and Jenny
(1941), they described the SCORPAN model as the
empirical quantitative relationship of a soil attribute
and its spatially implicit forming factors.

S = f (s, c, o, r, p, a, n) …(i)
In the SCORPAN model, soil, either as point

observational data, existing soil maps, or remotely
sensed spectral properties, can be used as input data.
Environmental covariates are digital and spatially
explicit data in a raster that is processed using a
geographic information system (GIS). The SCORPAN
model facilitates the quantification of the relationships
between spatially explicit digital environmental
covariates and the soil classes or attributes to be
predicted in a spatial context. It also facilitates the
estimation of error or uncertainty of the spatial
prediction of soil classes or properties.

Soil organic carbon is more important in Indian
desert regions where soils are inherently low in
organic carbon content and the production system is
fragile (Singh et al. 2005; Kumar et al. 2009). The
desert regions are characterized by sparse and highly
variable precipitation and high evaporation. Drought

is characteristic of deserts due to lack of moisture.
Vegetation is sparse due to limited availability of
water and adverse climatic conditions. However,
information on changes in soil organic matter (SOM)
after agricultural interventions in arid regions is
meagre. Compared with other ecosystems, deserts
have received much less attention in this regard
because of their lower plant biomass and soil carbon
storage (Singh et al. 2005). Indeed, profound
variances in the vegetation pattern and large spatial
heterogeneity in available resources in desert
ecosystems contribute to significant uncertainty in
evaluating their roles as carbon sources or sinks which
can exhibit significant spatial variation.Therefore,
efficient modeling of SOC is important in arid regions
because it provides information about soil fertility,
water conservation, carbon sequestration, climate
change, and the effects of land use practices. The
digital mapping of SOC at fine resolution is a
challenging task and the mapping is also a high
priority for SOC assessment and monitoring. Several
researchers applied splines to model the vertical
distribution of SOC in the soil profiles and predicted
SOC at a landscape scale using data-mining tools and
environmental variables as predictors (Akpa et al.
2016). Recently, in several studies, soil properties
such as soil pH, SOM, electrical conductivity (EC),
phosphorus (P), and particle size distribution have
been predicted and mapped. Numerous prediction
models have been developed and introduced to
correlate ancillary variables and soil properties
through the DSM framework suggested by McBratney
et al. (2003).

Procedures and methodologies to produce this
information vary depending on the types and amount
of available data, but all information should meet the
GlobalSoilMap standards and specifications. In this
communication, we review the specifications and the
state of progress of GlobalSoilMap products delivery.
We focus on information on SOC and related soil
information useful for mapping and modelling SOC
and their changes over large areas. GlobalSoilMap
uses legacy soil data collected over many decades.
Data for any point reflect the state of the soil at the
time the point was sampled and analyzed. A major
challenge for SOC is to reconcile differences in SOC
reported for different times under different land uses.
In India, ICAR-National Bureau of Soil Survey and
Land Use Planning (ICAR-NBSS&LUP), Nagpur has
recently launched an ambitious program called
“IndianSoilGrids” with the objective to develop soil
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properties map as per GlobalSoilMap specifications.
As there is a lack of information about the spatial
variability of SOC in the Thar desert, the main aims
of this research is to spatially predict SOC through
Quantile Regression Forest (QRF) Model techniques.
The objectives of this study were to (1) predict the
spatial distribution of SOC using quantile regression
forest techniques and (2) to find the main
environmental covariates that control the SOC in the
desert regions of India. We expect that our outputs
would improve and update the current SOC
Information System with new fine-resolution SOC
maps that could be useful to end users and
stakeholders.

Materials and Methods

Study area
This study was conducted in Bikaner district,

located in the western plains of Rajasthan, India
(71°50′52′′ to 74°24′27′′ E longitudes and 27°09′20′′
to 29°05′14′′ N latitudes) (Fig. 1). This landscape is
dominated by eolian erosional and depositional
landforms. The study area is relatively flat with a
slope of 1–2% and covers an area about 29 lakhs ha.
Elevation ranges from 120 m to 312 m above sea
level. The climate of the area is hot arid, erratic
rainfall (100–450 mm yr-1 ~90% occurs during July–
September), extreme temperatures (often > 45 °C in
the peak of summer and sub-zero in winter), and high
summer winds (>30 km h-1 during sandstorms in
summer). The land use is mainly cropland including
mustard (Brassica juncea), moth bean (Vigna
aconitifolia), cluster bean (Cyamopsis tetragonoloba),
groundnut (Arachis hypogaea), chickpea (Cicer

arietinum), wheat (Triticum aestivum), green gram
(Vigna radiata) and pearl millet (Pennisetum
glaucum) but abandoned lands, saline lands, and sand
dunes also occur across the study area. Cereal and
legume based cropping systems are practised more
than last 30 years when Bikaner lift canal network
was started during late 1980. Much of natural
vegetation includes babul (Acacia Arabica), khejri
(Prosopis spicigera), neem (Azadirachta indica),
vilayati babul (Prosopis juliflora) and ber (Zizyus
jijuba). Common soils include Entisols, and Aridisols
according to US Soil Taxonomy. The dominant soils
are deep to very deep, either calcareous or non-
calcareous and sandy in nature. The area is
characterized by strong south westerly winds during
summer, which causes frequent sandstorm and sand
movement. Gypsite rich beds are found in shallow
depression surrounded by sand dunes. The soils of
this region have low SOC because of sparse natural
vegetation resulting from very low precipitation and
high evaporation, as well as management practices
that do not encourage SOC retention within the soil.

Soil data source
A total of 187 soil profiles were used in this

study (Fig. 1). They were obtained by a recent project
of “Land resource inventory of Bikaner district,
Rajasthan at 1:10000 scale for optimal agricultural
land use planning using geo-spatial technique”
conducted from 2017 to 2019. Typical soil profiles
representing main soil-landscapes were collected. The
geographical coordinates of each soil profile location
were recorded with a GPS receiver. The soil pits were
generally dug to a depth of 1.5–2 m or until a lithic or
paralithic contact. All soil profiles were divided
vertically into different pedological horizons
according to specific profile morphology, and soil
samples were collected from each horizon. In
laboratory, samples were air-dried at room
temperature and then passed through a 2 mm sieve.
The SOC was determined by the Walkley and Black
(1934) method.

Deriving sample data at predefined depths
For each profile of a SOC, we used equal-area

quadratic splines to fit a continuous depth function to
original horizon sample data. The GobalSoilMap
programme follows six standard depth horizons for
better comparison between profile characteristics e.g.
0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm
and 100–200 cm (Arrouays et al. 2014). Therefore,
soil properties of each profile were calculated for the

Fig. 1. Spatial distribution of profile sites in the study area of
desert regions of India
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above mentioned standard depths using mass
preserving spline method (Bishop et al. 1999). This
was done using equal-area spline functions
implemented in the GSIF R-package.

Environmental covariates
Environmental covariates are the variables

characterizing soil forming factors of climate, parent
material, topography, vegetation, human activities and
time. In the last decade, many efforts have been made
in sifting and developing effective environmental
covariates according to the targeted soil properties
and landscapes. Climate and terrain factors have been
widely used in DSM. A digital elevation model
(DEM) acquired with shuttle radar topographic
mission (SRTM) has a spatial resolution of 30 m and
processed using ArcGIS10 data management tool box.
The primary and secondary derivates of DEM like
elevation, slope, aspect, curvatures (plan and profile),
topographic wetness index (TWI) and topographic
position index (TPI), LS factor, multi-resolution ridge
top flatness (MrRTF) and multi-resolution index of
valley bottom flatness (MrVBF) were derived by using
Saga-GIS 6.3.0 version (Table 1). Along with DEM
attributes, all the bands of landsat-8 imagery (11
bands), normalized difference vegetation index
(NDVI) and enhanced vegetation index (EVI)
(MOD13Q1) were used as covariates for prediction
of SOC. Raster data on bioclimatic variables at

30 sec resolution were downloaded from http://
worldclim.org/current for the whole world and the
respective grids for study area were extracted from
these world grids. Nine bioclimatic variables were
selected for use as covariates in digital soil mapping
study and these variables are mean annual temperature
(MAT), temperature seasonality (TS), mean diurnal
range of temperature (MDRT), annual range of
temperature (ART), isothermality, annual precipitation
(AP), precipitation seasonality (PS), precipitation of
wettest month (PWM) and precipitation of driest
month (PDM).

Spatial prediction of SOC using quantile regression
forest model

Quantile regression forest (QRF) model was
used for prediction of SOC and uncertainty estimates
in the study area. The QRF is an extension of random
forest model (RFM) and the advantage of QRF over
RFM is for each node in each tree, RFM keeps only
the mean of the observations that fall into this node
and neglects all other information whereas QRF keeps
the value of all observations in this node, and assesses
the conditional distribution based on the information
(Meinshausen 2006). For the present study, ranger
package was used for running the QRF algorithmin in
R environment (R Core Team 2019). Ranger package
helps to identify the best RF properties for running
the model. Ten folds cross validation techniques with

Table 1. Different covariates used for Quantile Regression Forest model

Predictor Source Resolution

Elevation (m) SRTM DEM 30 m
Slope SRTM DEM 30 m
Aspect SRTM DEM 30 m
Topographic position index (TPI) SRTM DEM 30 m
Terrain ruggedness index (TRI) SRTM DEM 30 m
Plan curvature SRTM DEM 30 m
Profile curvature SRTM DEM 30 m
Multi-resolution index of valley bottom flatness (MrVBF) SRTM DEM 30 m
Multi-resolution ridge top flatness (MrRTF) SRTM DEM 30 m
Normalized difference vegetation index (NDVI) MOD13Q1 250 m _16 days
Enhanced vegetation index (EVI) MOD13Q1 250 m _16 days
Landsat data 11 bands 30 m
Annual mean temperature (MAT) (°C) Worldclim2 30 sec
Temperature seasonality (TS) Worldclim2 30 sec
Mean diurnal range of temperature (MDRT) Worldclim2 30 sec
Annual range of temperature (ART) Worldclim2 30 sec
Isothermality Worldclim2 30 sec
Annual precipitation (AP) Worldclim2 30 sec
Precipitation seasonality (PS) Worldclim2 30 sec
Precipitation of wettest month (PWM) Worldclim2 30 sec
Precipitation of driest month (PDM) Worldclim2 30 sec
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20 times repetition was used to evaluate the
performance of QRF model.

Model accuracy assessment
Prediction performance of QRF was evaluated

based on three parameters viz. coefficient of
determination (R2) which is defined by percentage of
variation explained by the model, mean error (ME),
root mean square error (RMSE) and Lin’s
concordance correlation coefficient (CCC) which is a
measure of agreement between predicted and observed
values. The good models have coefficient of
determination and concordance correlation coefficient
is equal or close to 1 and root mean square error
close to 0.

…(ii)

…(iii)

…(iv)
where, pi and oi are predicted and observed values, pi

—

and oi
—

 are means of predicted and observed values.

                …(v)

where, µ0 and µp are the means of observed and
predicted values, σ0

2 and σp
2  are corresponding

variances ρ is pearson correlation coefficient between
observed and predicted values.

Uncertainty estimation
Uncertainty representation is a crucial aspect of

DSM (Arrouays et al. 2014). The DSM models are
not only expected to deliver accurate soil predictions
at a given location but their suitability to deliver maps

should encompass ability to predict the uncertainty
(Vaysse and Lagacherie 2017). Prediction interval
coverage percentage (PICP) was used to evaluate the
uncertainty of prediction. The PICP is simply the
proportion of observations at each depth that are
encapsulated by the corresponding prediction interval.
In this study, the uncertainties of the predicted maps
of SOC contents were estimated using QRF (Vaysse
and Lagacherie 2017). If the uncertainty estimates
have been reasonably defined, the PICP should result
in an estimate of 90% for a 90% prediction interval.
The estimation produced by differentiation of 0.05
and 0.95 quantiles for SOC in different depth and the
map produced for every pixel location of the study
area and every depth.

Results and Discussion

Statistical description of SOC
Table 2 lists statistical description of the splines-

fitted SOC percentages at different depths based on
the soil profiles. The SOC in the study area ranged
from 0.13 to 6.3 g kg-1 with a mean of 1.53 g kg-1 in
0-5 cm. The SOC in 5-15 cm ranged from 0.05 to
6.32 g kg-1 with a mean and standard deviation of
1.52 g kg-1 and 0.98 g kg-1, respectively. The spline-
predicted SOC content for the first three depths, i.e.,
0-5, 5-15, and 15-30 cm, for the profiles remained
more or less the same due to a ‘slicing’ pretreatment
applied to the splines to take account of the
homogeneity of the plough layer. The SOC content
decreases with increasing depth. The SOC of all layer
had high levels of variation (CV > 36%) according to
the guidelines provided by Wilding (1985). The SOC
content had the higher CV with depths and values
ranging from 65.1% for 0–15 cm to 83.9% for 100–
200 cm. The SOC content skewed positively with
skewness values to 1.51 to 2.29 for different depths.
Correlation analysis between SOC content in different

Table 2. Statistical description of the splines-soil organic carbon at different depths in the study area of desert regions of India

Parameters                        Soil organic carbon (g kg-1)
0-5 cm 5 -15cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm

Minimum 0.13 0.05 0.11 0.00 0.01 0.11
Maximum 6.33 6.32 7.28 6.01 5.22 4.35
Mean 1.53 1.52 1.44 1.31 1.22 1.18
SE 0.073 0.072 0.07 0.069 0.065 0.098
SD 1.00 0.98 0.95 0.94 0.89 0.99
CV (%) 65.1 64.5 66.3 71.7 72.4 83.9
Skewness 1.58 1.61 2.29 2.2 1.76 1.51
Kurtosis 3.67 3.90 8.80 6.24 3.90 1.77
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depths and covariates used in the model (Table 3)
showed that TRI, MDRT, ART and landsat 8 band 1,
2, 3 and 8 have a significant correlation with SOC
content in the surface soil (0-5 and 5-15 cm) whereas
TS, MDRT, ART, latitude and landsat 8 band 1, 2, 3,
5 and 8 have a significant correlation with SOC
content in the 15-30 cm soil depth. At below 100 cm
soil depth, TS, ART, AP and PWM have a significant
correlation with SOC. Bioclimatic covariates have
significant negative correlation with SOC content.
These results revealed that the mean SOC
concentration was extremely low. The main reasons
for low SOC concentration in the study area which
part of Thar Desert include the high temperature, high
evaporation rates, lack of precipitation, intense wind
erosion, and spare natural vegetation. The lower SOC

Table 3. Correlation analysis between covariates and soil organic carbon with soil depths in the study area of desert regions of
India

Covariates                            Soil organic carbon
0-5 cm 5 -15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm

Elevation 0.013 0.021 0.040 0.110 0.164* 0.054
Slope -0.102 -0.096 -0.086 -0.072 -0.115 -0.089
Aspect -0.001 -0.007 -0.033 -0.011 -0.028 -0.036
Plan_Curva -0.002 -0.003 -0.005 -0.007 -0.002 0.069
Profile_Cu -0.059 -0.062 -0.067 -0.043 -0.010 0.113
TPI -0.076 -0.070 -0.026 -0.035 -0.013 0.069
TRI -0.152* -0.146* -0.124 -0.075 -0.082 -0.079
TWI 0.057 0.057 0.062 0.009 -0.003 0.211**

MrVBF 0.063 0.053 0.056 0.045 -0.012 0.001
MrRTF -0.111 -0.112 -0.126 -0.118 -0.024 -0.174*

NDVI -0.017 -0.021 -0.056 -0.094 -0.069 -0.071
EVI -0.017 -0.020 -0.049 -0.089 -0.067 -0.055
B1_landsat 0.202** 0.205** 0.191** 0.166* 0.073 0.037
B2_landsat 0.192** 0.195** 0.187* 0.169* 0.076 0.040
B3_landsat 0.168* 0.170* 0.163* 0.164* 0.100 0.076
B4_landsat 0.134 0.138 0.139 0.151* 0.087 0.054
B5_landsat 0.120 0.124 0.149* 0.186* 0.104 0.215**

B6_landsat 0.111 0.115 0.118 0.151* 0.122 0.062
B7_landsat 0.080 0.085 0.100 0.136 0.101 0.056
B8_landsat 0.148* 0.151* 0.146* 0.142 0.063 0.048
B9_landsat 0.080 0.080 0.073 0.045 -0.054 -0.027
B10_landsat 0.016 0.016 -0.001 0.065 0.167* 0.070
B11_landsat 0.005 0.007 0.003 0.082 0.175* 0.059
MAT 0.042 0.042 0.034 -0.022 -0.055 -0.030
TS -0.121 -0.130 -0.145* -0.199** -0.207** -0.166*

MDRT -0.214** -0.216** -0.178* -0.145* -0.137 -0.032
ART -0.163* -0.170* -0.166* -0.185* -0.180* -0.071
Isothermal -0.125 -0.118 -0.060 0.023 0.030 0.051
AP 0.047 0.053 0.062 0.109 0.157* -0.037
PS -0.001 0.003 0.027 0.090 0.106 0.101
PWM 0.081 0.086 0.087 0.128 0.177* 0.003
PDM 0.030 0.032 0.069 0.117 0.101 0.012
Longitude -0.076 -0.075 -0.059 -0.024 0.009 -0.181*

Latitude -0.125 -0.134 -0.148* -0.199** -0.226** -0.236**

*Correlation is significant at the 0.05 level; **Correlation is significant at the 0.01 level

mainly found in the sand dunes area which may be
due to low vegetation and exposure of soils to the
scorching sun causes oxidation of SOC (Singh et al.
2009). The highest SOC concentration in our study
may be due to adoption of different soil management
practices including variation in fertilizer application
and other crop management practices (Sharma and
Singh 2015; Moharana et al. 2017).

Performance of model prediction and uncertainty es-
timation

The performance of quantile regression forest
model was evaluated by calculating statistical
indicators viz., coefficient of determination (R2), mean
error (ME) and root mean square error (RMSE). The
cross validation results showed that the combination
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of different covariates explained the variability of
predicted SOC (Table 4 and Fig. 2). The model could
capture low variability (R2 = 1–7%) while predicting
SOC for different depths. Overall, the mean CCC
values ranged from 0.01 to 0.18, indicating poor
agreement between the predicted and observed values.
The R2 and RMSE values slightly decreased
downward from the depth of 5 cm while the ME
values increased, exhibiting a vertical decline of
predictability of SOC. The mean ME values were very
close to zero, suggesting overall unbiased predictions.

The 0–5 cm depth interval had a better model
performance than the 5-15 cm depth interval, with the
higher R2 values. The performance of organic carbon
prediction is related to its dynamic nature and poor
performance may be related to the low levels of SOC
compared to soils having high organic carbon (Sharma
and Singh 2015; Dharumarajan et al. 2021). The
values of prediction interval coverage probability
(PICP) recorded 87.2-89.7% for SOC contents at
different depths. For a 90% prediction interval, we
would expect 90% of observations to fall within the

Table 4. Performance of quantile regression forest model for prediction of soil organic carbon in the study area of desert
regions of India

Parameters                             Soil organic carbon
0-5 cm 5 -15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm

Mean error 0.16±0.01 0.16±0.01 0.16±0.01 0.25±0.01 0.20±0.01 0.31±0.01
RMSE 0.97±0.01 0.96±0.01 0.94±0.01 0.96±0.00 0.91±0.00 1.02±0.01
R2 (%) 7.0±2.0 6.0±2.0 5.0±2.0 2.0±1.0 1.0±1.0 3.0±2.0
PICP (%) 88.4±1.12 89.1±0.86 87.6±0.85 88.2±0.72 89.7±0.58 87.2±1.7

Fig. 2. Depth wise predicted vs observed soil organic carbon by quantile regression forest model in the study area of desert
regions of India
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lower and upper prediction limits. It can be seen that
all the fractions achieved PICP values very close to
90%, suggesting that these lower and upper prediction
limits estimated by the QRF method were of an
appropriate magnitude. That is to say, the uncertainty
estimations, to a large extent, were reliable. This can
also be indicated by the small values of standard
deviation of overall prediction accuracy indicators.
Overall, the prediction performance of this model was
low for SOC. Higher sample density is required for
better findings in regions with a wide range of
environmental covariates such as soil properties,
climate variables, land cover and relief factors.

Importance of predictor variables for predicting SOC
Fig. 3 shows relative importance of the 32

important covariates used in the predictions of SOC
at multiple depths. In SOC predictions, the importance
of the covariates did not have obvious changes with
depth. The most important variables for predicting

SOC variations were the annual range temperature
(ART), latitude and landsat 8 bands 2, 5 and 6.
Temperature-related variables (ART and TS) were the
second important covariates in surface soil (0-5 cm).
It appeared that changes of air temperature at diurnal
and seasonal and even annual scales became more
important than its mean status with the increase in
depths. Relatively temperature changes and low
moisture conditions in the hot arid region of India
lead to relatively importance of predictor variables
for predicting SOC. The MrRTF was the second
important covariates as most important predictor for
prediction in 100-200 cm soil. Different bands of
landsat 8 imagery occupies in the top position for
prediction of SOC in most of soil depths. Different
researchers recorded usefulness of landsat 8 imageries
in prediction of SOC (Dharumarajan et al. 2021). The
NDVI and EVI were not important variables in this
study. This could be because of the sandy arid nature
of the study area or because of sparse natural

Fig. 3. Depth wise importance of variables for prediction of SOC by quantile regression forest model in the study area of desert
regions of India

(a) 0-5 cm (b) 5-15 cm (c) 15-30 cm

(a) 30-60 cm (b) 60-100 cm (c) 100-200 cm
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vegetation and less agricultural practices. Overall
these results indicate that both temperature-related
variables and imagery products are important for
predicting SOC concentrations in sandy desert
regions.

Prediction of soil organic carbon
Spatial predictions of SOC contents are

presented in table 5 and fig. 4. The predicted SOC
content varied from 0.58–4.88 g kg-1 in 0-5 cm, 0.58–
2.91 g kg-1 in 5-15 cm and 0.40–4.83 g kg-1 in 15-30
cm, respectively. The mean predicted SOC were 1.29,
1.29, 1.24, 1.07, 1.00 and 0.84 at 0-5, 5-15, 15-30,
30-60, 60-100 and 100-200 cm depth, respectively.
Predicted SOC had the lower CV with the depths and

values ranging from 6.63% for 60–100 cm to 36.19%
for 100–200 cm. The SOC skewed positively with
skewness values to 0.19 to 2.27 for different depths.
The predicted SOC maps in different depths are
presented in fig. 4. The SOC concentrations were
predicted highest in the south part of the study area
and lower in the north-east, east and south-east parts
of the study area where sand dunes, eroded soils and
wind-eroded sediments are located. The SOC
concentration was also low in the north of study area
where the sand dunes and sand deposits have high
percentages of light textured soils with low organic
matter. Eroded soils have lost topsoil where most of
the SOC is presumed to exist. Fig. 5 shows maps of
the uncertainties in predictions of SOC contents for

Table 5. Prediction of soil organic carbon by quantile regression forest model in the study area of desert regions of India

Parameters                          Soil organic carbon (g kg-1)
0-5 cm 5 -15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm

Minimum 0.58 0.58 0.40 0.83 0.80 0.19
Maximum 4.88 2.91 4.83 1.50 1.16 3.55
Mean 1.29 1.29 1.24 1.07 1.00 0.84
SE 0.001 0.0009 0.001 0.0005 0.0002 0.0009
SD 0.35 0.31 0.36 0.16 0.07 0.3
CV (%) 27.3 23.92 28.8 15.11 6.63 36.19
Skewness 0.7 0.19 2.27 0.90 0.71 0.58
Kurtosis 4.42 -0.93 -0.56 -0.36 -0.32 -0.32

Fig. 4. Map of soil organic carbon spatial prediction by quantile regression forest model in the study area of desert regions of
India
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Fig. 5. Uncertainity map of soil organic carbon spatial prediction by quantile regression forest model in the study area of desert
regions of India

each depth. The uncertainty was expressed as
difference between lower and upper prediction limits
at a 90% confidence interval. The wide range of
uncertainty suggests that there is room to improve the
current spatial predictions of SOC.

Conclusions
We developed baseline data for SOC map for

desert regions of India using quantile regression forest
(QRF) model. The prediction of SOC and uncertainty
by QRF model was reasonable with R2 of 0-7%.
Higher sample density is required for better results in
desert regions where soil and climatic pattern are
complex in nature. The most important variables for
predicting SOC concentration variations were the
ART, latitude and landsat 8 bands 2, 5 and 6.
Temperature-related variables and remote sensed data
products are important for predicting SOC
concentrations in arid regions. The vast range of
uncertainty in the desert environment shows that
spatial modelling should be improved. It’s possible
that the current QRF model’s ability to capture low
variability is attributable to the covariate selection.
We anticipate that these predictions can be used to
assist comprehensive planning for arid regions to

increase SOC content. This raster based digital
information of SOC will be useful for frequent
monitoring and assessment of carbon cycle, carbon
trading, soil health sustainability and environmental
stability. Several countries have already produced
maps according to the GlobalSoilMap specifications
and the project is rejuvenating soil survey and
mapping in many parts of the world. We believe that
GlobalSoilMap constitutes the best available
framework and methodology to address global issues
about SOC mapping.
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