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SUMMARY
Balanced treatment incomplete block (BTIB) designs are quite popular for comparing test versus a single control treatment. In this article, we extend 
the class of BTIB designs by introducing nearly BTIB designs. Nearly BTIB designs can act as a useful alternative to BTIB designs when the latter is 
not available for a given parametric combination. An algorithm is proposed to construct nearly BTIB designs and a list of such designs is also provided 
in a practically useful parametric range. 
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1.	 INTRODUCTION 
Experimentation is an integral part of a research 

investigation. The designs used for experimentation 
mostly focus on all possible paired comparisons 
among treatments. But there are situations where 
interest of the experimenter is only in some subset 
of all possible paired comparisons. The experimenter 
may be interested to compare a set of new treatments 
called test treatments with one established treatment 
called control. Often there may be a nuisance factor 
that needs to be taken care of during experimentation. 
Block designs are used in that situation. To make the 
exposition clearer, let the control be labelled as 1 and v 
test treatments be labelled as 2, 3, ..., v + 1 and these are 
to be compared with the control. Consider the additive 
fixed effect linear model

iju i j ijuy µ τ β ε= + + + � (1)
where ijuy  denotes the observation from 

experimental unit u in block j receiving ith treatment, 
µ  denotes the general mean, iτ  denotes the effect of 
ith treatment, jβ  denotes the effect of jth block and 

ijuε  are random uncorrelated errors with mean 0 and 
constant variance 2σ ; i = 1, 2, ..., v + 1; j = 1, 2, ..., b; 
u = 1, 2, ..., k. The contrasts of interest for comparing 

test treatments versus the control are 1iτ τ− , i = 2, 3, ..., 
v + 1.

A very important class of block designs namely 
balanced treatment incomplete block (BTIB) designs 
(Bechhofer and Turnbull, 1971) is available in literature 
for comparing test versus control problem. A number 
of work is available on obtaining BTIB designs and 
A-optimal BTIB designs for comparing test treatments 
with a single control, see for example, Hedayat and 
Majumdar (1984, 1985); Stufken (1987, 1988); Cheng 
et  al. (1988); Hedayat et  al. (1988); Jacroux (1989); 
Gupta (1989); Das et al. (2005); Mandal et al. (2017) 
and Mandal et al. (2020). However, there may be many 
parametric combinations for which a BTIB design does 
not exist. Sometimes for given parameters, even if a 
BTIB design exists, it may require large number of 
replications of the control. For example, there does not 
exist a BTIB design for v = 5, b = 10, k = 4 with less than 
10 replication of the control. A non-BTIB design with 
these parameters is given in Table 1 where the control 
has only 5 replications. Thus, in such situations there 
is a need to look beyond the class of BTIB designs for 
comparing test treatments with a control. One solution 
is to develop a class of designs which retains the most 
of the characteristics of BTIB designs. In this article, 
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we introduce one new class of such designs called 
nearly BTIB designs for comparing test treatments 
with a single control treatment.

Table 1. A Non-BTIB design for v = 5, b = 10, k = 4 with r1 = 5

(1 4 5 6)

(1 3 5 6)

(2 3 5 6)

(3 4 5 6)

(2 4 5 6)

(1 2 3 4)

(1 2 4 6)

(1 2 3 5)

(2 3 4 6)

(2 3 4 5)

The article is organized as follows. In Section 2, 
we give the definition of nearly BTIB designs. An 
algorithm is presented to construct nearly BTIB designs 
in Section 3. Working of the algorithm is illustrated in 
Section 4. A list of nearly BTIB designs constructed 
using the proposed algorithm is given in Section 5. 
Concluding remarks are given in Section 6.

2.	 NEARLY BALANCED TREATMENT 
INCOMPLETE BLOCK DESIGN
Let ( )ijn=N  denotes (v + 1) × b treatment versus 

block incidence matrix where ijn  denotes the number 
of times ith treatment (i = 1, 2, ..., v + 1) appears in 
jth block (j = 1, 2, ..., b). We define nearly balanced 
treatment incomplete block designs below.

Definition 1. A block design is said to be nearly 
balanced treatment incomplete block (nearly BTIB) 
design if the following conditions hold:

1 1
1

b

j
j

n r
=

=∑

2
1

2 3 1, , , ...,
b

ij
j

n r i v
=

= = +∑

1 1
1

2 3 1, , , ...,
b

j ij
j

n n i vλ
=

= = +∑  and

2 2
1

 or 1 2 3 1' , ' , , ...,
b

ij i j
j

n n i i vλ λ
=

= + ≠ = +∑

In other words, in a nearly BTIB design, the 
concurrence of each test treatment with the control is 1λ  
and the concurrence of a test treatment with any other 

test treatment is 2λ  or 2λ + 1. The statistical implication 
of this is that (a) test treatments are compared with the 
control with equal precision and (b) test treatments 
among themselves are not compared with equal 
precision and clearly, interest of the experimenter is 
protected with (a).

Example 1. A nearly BTIB design for v = 5, b = 5, 
k = 4, r1 = 5, r2 = 3, λ1 = 3, λ2 = 1 is given in Table 2.

Table 2. A nearly BTIB design with v = 5, b = 5, k = 4

(1 4 5 6)

(1 3 4 6)

(1 2 5 6)

(1 2 3 5)

(1 2 3 4)

From the above definition, it is clear that a nearly 
BTIB design may be binary or nonbinary in test and 
control treatments. However, for the sake of simplicity, 
we further assume in this article that the design is binary 
in test and control treatments. We further assume that 
each test treatment appears with n1 test treatments λ2 
times and with n2 test treatments λ2 + 1 times with n1 + 
n2 = v − 1. In that situation, it follows that each of the test 
treatments has equal number of replications, denoted as 
r2. Let the number of replications of the control be r1. 
Hence, the parameters of a nearly BTIB design are v, b, 
k, r1, r2, λ1, λ2, n1, n2. Parametric relations among these 
parameters are given below.

1 2r vr bk+ =

1 2 2 2 1 2( 1) ( 1)n n r kλ λ λ+ + + = −

such that 1 2 1n n v+ = − � (2)

1 1( 1)r k vλ− =

The first parametric relation follows from the fact 
that total number of units required with r1 replications 
of the control and r2 replications of v test treatments 
is r1 + vr2. Also, the total number of units from b 
blocks each of size k is bk. The second relation can be 
proved as follows. Consider any test treatment. Since it 
appears with n1 other test treatments in λ2 blocks and 
with n2 other test treatments in λ2 + 1 blocks and with 
the control treatment in λ1 blocks, hence total number 
of pairs with this test treatment is n1λ2 + n2(λ2 + 1) + 
λ1. But this test treatment appears in r2 blocks and in 
those blocks there are (k − 1) other positions. Hence, 
total number of pairs with this test treatment in these 
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r2 blocks is r2(k − 1), hence the equality. Next relation 
can be proved similarly. It may be mentioned here that 
the parametric conditions in (2) are necessary and not 
sufficient for the existence of a nearly BTIB design. 
The structure of the concurrence matrix of a nearly 
BTIB design is thus

1 1 1 1

1 2 2 2

1 2 2 2

1 2 2 2

1

1

r
r

r

r

λ λ λ
λ λ λ
λ λ λ

λ λ λ

 
 + 
 ′ =
 
 
 + 

NN







    

 � (3)
Clearly, the concurrence matrix is of order (v + 1) 

× (v + 1). In each of the rows, from the 2nd row to (v + 
1)th row, there are n1 positions with λ2 and n2 positions 
with λ2 + 1. The same is true for 2nd column to (v + 1)
th column also. However, varying positions of λ2 and of 
(λ2 + 1) in the concurrence matrix may lead to different 
efficiencies of the designs. We do not study this aspect 
in this article and may be explored while searching for 
‘efficient’ nearly BTIB designs for given parameters in 
a future article.

3.	 ALGORITHM 
In this Section, we propose an algorithm to construct 

nearly BTIB designs for specified parameters. This 
algorithm is a modification of the algorithm of Mandal 
et al. (2017) to construct BTIB designs. The steps of 
the algorithm are described in detail below.

Step 1: For given v, b, k, λ1, find r1, r2, λ2, n1, n2 
by using the necessary conditions given in (2). If all 
of these are integers, then proceed, otherwise a nearly 
BTIB design does not exist for given v, b, k, λ1. 

Step 2: Obtain a concurrence matrix NN′ as in (3) 
with the properties as described above. Denote this 
matrix as Λ for easy reference. 

Step 3: In this step, the algorithm tries to obtain an 
incidence matrix N so that this incidence matrix gives 
the concurrence matrix obtained in Step 2. The rows of 
the incidence matrix are obtained one by one. The first 
row is obtained at random such that randomly chosen 
r1 positions of the row are filled with 1 and remaining 
b − r1 positions of the row are filled with 0. Denote this 
1 × b matrix as N(1). Set another matrix T = Φ where 
Φ is a null matrix. Since ith (i = 2, 3, ..., v + 1) row of 
N is unknown, let the elements of ith row be (x1, x2, ..., 
xb). To obtain ith row, first obtain weights wj = 1/kj if 

kj> 0 and wj = 1 if kj = 0 where kj = 
1

1
'

'
,

i

i j
i

n
−

=
∑  j = 1, 2, ..., b 

with 'i jn  being the element at i ′ th row and jth column 
of N(i - 1), i′ = 1, 2, ..., i − 1; j = 1, 2, ..., b. Now, solve 
the following linear integer programming problem for 
the row i with respect to binary decision variables x1, 
x2, ..., xb :

Maximize 
1

b

j j
j

w xϕ
=

= ∑  subject to constraints

1

b

j ii
j

x
=

= Λ∑ � (4)
1 2, , , ...,j jx k k j b≤ − =

1
1 2  1

b

i j j i i
j

n x i i
=

= Λ =∑ ' ' , ' , , ..., -

where abΛ  denotes the (a, b)th element of Λ. If 
there exists an optimal solution of the formulation 

(4), then set 
1

0

( )
( )

'

i
i

− 
=  
 

N
N

x  where ( )0 01 02 0
' , , ..., bx x x ′
=x

denotes an optimal solution to the formulation (4) and 
then go to next i.

If there is no optimal solution of (4), select a 

random number m between 2 to (i – 1), set 1( )i
m
−

 
=  
 

T
T

n
where 1( )i

m
−n  denotes the mth row of the 1( )i−N  matrix, 

and then set 1( ) 'i
m
− =n 0  in the 1( )i−N  matrix. To obtain 

row m, solve the formulation (5) with respect to binary 
decision variables x1, x2, ..., xb:

Maximize 
1

b

j j
j

w xϕ
=

= ∑  subject to constraints

1

b
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j

x
=
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1
2 1 1 1

b
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j
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=
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2
1

1 2, , , ...,
b

qj j
j

t x r q p
=
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where p is the number of rows of the matrix T, 
and tqj is the element at the qth row and the jth column 
(q = 1, 2, ..., p, j = 1, 2, ..., b) of the T matrix. If there is 
an optimal solution to (5), then update 1( )i−N  by setting 

1
0

( ) 'i
m
− =n x . If there is no solution to (5), repeat this step 

by drawing another random number m. If the deleted 
row of 1( )i−N  is not obtained after a certain number say, 
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n0, of times, then start afresh with step 3 with i = 2. 
Starting afresh will be counted as one trial. Algorithm 
will terminate if no solution is obtained after number of 
trials reaches a threshold preset at say, 100.

If all v + 1 rows of the incidence matrix is obtained, 
then the 1( )v+N  matrix is a desired incidence matrix of 
a nearly BTIB design. Calculate A-efficiency eA(d) of 
this design using the following formula:

( , )( )
( ')

d

A
g t se d

Trace −=
PC P � (6)

where g(t, s) is the minimum value of g(x, z) defined 
in equation (2.5) of Hedayat and Majumdar (1984), 

( )v v= −P 1 I  with Iv denoting an identity matrix of 
order v and 1v denoting a v × 1 column vector of 1’s and 

d d
1 =    d d-
k

′C R N N  with Rd being the diagonal matrix 

of number of replications of treatments in design d. 
The output is, thus, the required design along with its 
A-efficiency.

Remark 1. The formulation (4) allocates 
treatments to the ith row of the incidence matrix N 
with xj = 1 means jth block is allocated treatment i. The 
objective function maximizes allocation of treatment i 
to those blocks where least number of allocations has 
been done till (i − 1) rows of N. The first constraint 
ensures treatment i is allocated to as many blocks as 
equal to its number of replications. The second set of 
constraints ensure block sizes do not exceed k. The 
third set of constraints ensure that the concurrences of 
the ith treatment with treatments 1 to i − 1 are achieved. 
The formulation (5) is to obtain another solution for 
deleted row m, m ∈ {2, 3, ...,(i − 1)} of N with similar 
interpretations for constraints. The additional fourth 
constraint in formulation (5) does not allow already 
deleted row to be a solution.

Remark 2. The algorithm terminates in two 
conditions: firstly, when a nearly BTIB design is 
obtained or secondly when the number of trials exceeds 
the preset threshold number of trials. It may happen that 
even if a nearly BTIB design exists, proposed algorithm 
may not give us a design. Proposed algorithm can be 
used to generate nearly BTIB designs for v ≤ 30 and 
k ≤ 10. For larger values of v, the chances of entering 
improper candidate rows in N matrix increases in the 
intermediate steps which leads to no solution in the 
subsequent steps and ultimately complete N is not 
obtained. Identifying culprit rows could be a game 

changer. However, we not have any clue on this till 
now and it is an open problem.

4.	 WORKING OF THE ALGORITHM 
In this Section, we illustrate the working of the 

algorithm with the help of an example. Consider 
construction of a nearly BTIB design with parameters 
v = 4, b = 6, k = 3, λ1 = 1. Step 1 of the algorithm gives 
r1 = 2, r2 = 4, n1 = 2, n2 = 1 from necessary conditions. 
Step 2 of the algorithm gives a concurrence matrix with 
properties as in (3) as given below

2 1 1 1 1
1 4 3 2 2
1 3 4 2 2
1 2 2 4 3
1 2 2 3 4

 
 
 
 ′ =
 
 
 
 

NN

In Step 3, first N(1) is obtained as N(1)= (1 0 1 0 0 0). 
To obtain row 2 of the incidence matrix, the algorithm 
computes weights wj = 1, j = 1, 2, ..., 6 and solves the 
linear integer programming problem

Maximize 
6

1
j

j
xϕ

=

= ∑  subject to constraints 
6

1
4j

j
x

=

=∑

x1 ≤ 2 
x2 ≤ 3 
x3 ≤ 2 
x4 ≤ 3 
x5 ≤ 3 
x6 ≤ 3 
x1 + x3 = λ1 = 1
An optimal solution to this formulation and hence, 

the second row of N matrix is (0 0 1 1 1 1). Thus, 

N(2) = ‌
1 0 1 0 0 0
0 0 1 1 1 1
 
 
 

. For i = 3, the weights are 

obtained as wj = 0.5, ∀ j = 3, and wj = 1 for all other j’s. 
Hence, the formulation for i = 3 is the following

Maximize ϕ = x1 + 0.5x3 + x4 + x5 + x6 subject to 
constraints 

6

1
4j

j
x

=

=∑

x1 ≤ 2 
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Table 3. Nearly BTIB designs in P

k
Total

2 3 4 5 6 7 8 9 10

Number of 
designs

60 111 96 89 103 63 32 50 31 635

Number of 
designs obtained

30 111 95 69 93 59 32 47 29 595

Number of 
designs for 

which solution is 
unknown

0 0 1 20 10 4 0 3 2 40

Distribution of A-efficiencies of obtained designs 
is given in Table 4.

Table 4. Distribution of A-efficiencies of nearly BTIB designs

A-efficiency ≤ 0.5 0.5-
0.6

0.6-
0.7

0.7-
0.8

0.8-
0.9

0.9-
1.00 Total

Number of 
designs

0 9 218 283 85 0 595

The list of 595 nearly BTIB designs along their 
layouts is available at the webpage https://drs.icar.gov.
in/nbtib/NBTIB.htm (Singh et al. 2017).

Nearly BTIB designs which were obtained in P 
were also compared with BTIB designs available in 
Mandal et al. (2013). There are 1361 A-efficient BTIB 
designs listed by Mandal et al. (2013). There are 314 
nearly BTIB designs and BTIB designs with same v, b, 
k. Out of these 314 designs, there are 182 nearly BTIB 
designs which are more A-efficient than corresponding 
BTIB designs of Mandal et al. (2013).

Remark 3. Experiments for test versus control 
comparisons are often conducted in many research 
investigations and for this purpose, designs for test 
versus control comparison are useful. List of nearly 
BTIB designs presented above will be further addition 
in the kitty of available designs such as BTIB designs 
for such experiments and will be useful to researchers 
especially agricultural experimenters who require 
designs for test versus control comparisons. Depending 
on the requirement of an experiment with regards to 
number of treatments, number of blocks, block size, 
number of replications of the test treatments and 
control, experimenters can suitably choose a BTIB or a 
nearly BTIB design.

6.	 CONCLUDING REMARKS 
We have introduced a new class of designs 

called nearly balanced treatment incomplete block 
designs for comparing test treatments with a single 

x2 ≤ 3 
x3 ≤ 1 
x4 ≤ 2 
x5 ≤ 2 
x6 ≤ 2 
x1 + x3 = λ1 = 1 
x3 + x4 + x5 + x6 = 2
An optimal solution to this formulation is 

(0 1 1 0 1 1) and hence N(3) =
1 0 1 0 0 0
0 0 1 1 1 1
0 1 1 0 1 1

 
 
 
 
 

. This 

process is continued for i = 4, 5, and at the end of Step 
6, we get the following N matrix

5

1 0 1 0 0 0
0 0 1 1 1 1
0 1 1 0 1 1
1 1 0 1 0 1
1 1 0 1 1 0

( )

 
 
 
 =
 
 
 
 

N

.
This is an incidence matrix of a nearly BTIB design 

with the given parameters and the block contents are
(1 4 5) 
(3 4 5)
(1 2 3)
(2 4 5)
(2 3 5)
(2 3 4)

5.	 LIST OF NEARLY BTIB DESIGNS
In this Section, we provide a list of nearly BTIB 

designs constructed using the proposed algorithm in 
Section 3. Though the algorithm proposed is general 
in nature, however, we have used the algorithm to 
construct designs in a restricted parametric range v ≤ 
30, b ≤ 40, 2 ≤ k ≤ min(v, 10), λ1 ≤ 5. We denote this 
restricted parametric range as P. In the above parametric 
range, a total of 635 sets of parameters satisfy necessary 
conditions in (2). Block size wise distribution of these 
635 designs along with number of designs obtained 
through the proposed algorithm and number of designs 
for which solution could not be obtained is given in 
Table 3.
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control. These designs will enrich the class of block 
designs for test versus control comparisons. We have 
proposed an algorithm to construct such designs and 
also obtained a number of such designs in a practically 
useful parametric range. It is natural to believe that 
most of these are new. Further research efforts may be 
directed towards characterization of these designs and 
development of algebraic methods of constructions.
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