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ABSTRACT

Large scale surveys, for example, household surveys, are the most important components in every national
statistics system. These types of  large-scale surveys are the primary and sometimes unique source of  data
for measuring many of the variables relating to Sustainable Development Goals (SDG) indicators. The
problem of  missing observations is very common in large-scale surveys. Missing data occur in surveys
when an element of  the target population is not observed/included in the sampling frame of  the survey.
This seriously affects not only the accuracy of the estimates but also the reliability of the estimates of
population parameters. Imputation is a very popular method for dealing with the problem of missing
data. In this article, a Proportional Spatial Bootstrap (PSB) variance estimation method for the Spatially
Integrated (SI) estimator of  finite population total in the presence of  missing observations has been
proposed utilizing various spatial imputation procedures to impute missing observations in the observed
sample. The statistical properties of different spatial imputation techniques under the proposed PSB method
of  variance estimation were studied empirically through a spatial simulation study. The empirical results
reveals that the proposed PSB method is quite efficient for variance estimation while dealing with missing
observations.

Keywords: Geographically weighted regression, Proportional spatial bootstrap, Spatially integrated estimator,
Spatial imputation, Spatial simulation

INTRODUCTION

Large scale surveys, like household survey are the most
important components in every national statistics
system. They provide reliable data for compilation of
national accounts as well as a variety of socioeconomic
statistics and indicators that are critical for supporting
policymaking and investment decisions. Large-scale
surveys (i.e., household surveys) are the primary and
sometimes unique source of data for measuring many
of variables relating to the Sustainable Development
Goal (SDG) indicators. The Sustainable Development
Goals are a collection of seventeen interlinked global
goals formulated by the United Nations General
Assembly in 2015 and are intended to be achieved by
2030. It is very common problem to have missing
values in most of  the large-scale surveys. Missing
observation leads to incomplete dataset. Incomplete

data can occur when some or all of the responses for
the sampled element are not collected. When estimation
procedure is carried out on incomplete data set, this
will lead to increased bias and inflated estimate of
variance of the proposed estimator under
consideration. As a result, efforts were made during
the data collection and estimation phases of  the survey
to eliminate the effect of incompleteness in the dataset
by applying different imputation techniques in practice.
To tackle the problem of  non-response at estimation
stage, several imputation techniques available in the
literature are used (Little and Rubin, 1987; Rubin, 1987;
Ahmad et al., 2003). Imputation is the process of
replacing missing observations with a value that is
believed to be close to the true value. Imputation has
the advantage of allowing the standard estimation
methods to be used in the estimation process when
the data is complete. Mean imputation is most
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commonly used for imputing missing values with the
mean of  non-missing observations in the sample. Little
and Rubin (1987) presented various imputation
approaches. Some of  the traditional imputation
techniques include zero imputation, regression
imputation, random substitution, an average of
preceding and succeeding observations, the direct
substitution of  nearest available observations, etc. But
this traditional imputation techniques are not suitable
in the case of spatially correlated populations and they
ignore spatial correlation in the data and may not be
efficient. Furthermore, in spatial data location also plays
an important role in the imputation of missing
observations. Presence of  missing observations
seriously affect not only the accuracy of the estimates
but also the reliability of the estimates of population
parameters. Bootstrap is a commonly used resampling
technique introduced by Efron (1979) for obtaining
the estimates of the standard error of statistics of the
parameter of interest. Ahmad (1996,1997) proposed
a method of  variance estimation for complex survey
data known as the Rescaling Bootstrap Without
Replacement (RSBWO) method which estimates the
variance of  the statistics unbiasedly. Ahmad et al. (2003,
2005) proposed proportional bootstrap without
replacement method for dealing with missing
observations and investigated the efficacy of  various
imputation procedures. Biswas et al. (2020) proposed
proportional spatial bootstrap method of variance
estimation for the spatial estimator under a simple
random sampling design in presence of  missing values.
In this article, a Spatially Integrated (SI) estimator of
finite population total based on SRSWOR sampling
design under a model-based prediction approach
(Royall, 1970) by integrating data from two independent
surveys has been proposed. Furthermore, a
proportional spatial bootstrap (PSB) variance
estimation method has been proposed for estimating
the variance of the proposed spatially integrated
estimator in presence of  missing observations. For
imputation of  missing observations couple of  newly
developed spatial imputation techniques viz.
geographically weighted imputation and geographically
weighted mean imputation along with few existing
imputation methods i.e. substitution by nearest
neighbouring units and ordinary kriging have been
utilized. Before proceeding any further, it seems

appropriate to describe the spatial integration approach
for estimating the finite population total.

Spatially Integrated Estimator of Finite
Population Total

First, we have assumed a finite population U =
{1,2,…,N}of size N units such that each unit of the
population is indexed by ‘i’. It is assumed that two
surveys are conducted independently on the same finite
population. Let, first and second survey are denoted
by capital letter subscripts S1 and S2. The small letter
subscripts s1 and s2 denote the samples coming from
survey-I (S1) and survey-II (S2) respectively. It is further
assumed that second survey is much smaller in sample
size than the first survey (n1 > n2). A sample s2 of  size n2
from second survey (S2) collects data on study variable
y and on a common auxiliary variable x. The larger
survey S1 has not collected data on study variable y but
it has collected data on auxiliary variable x which is
common to the second survey. Beside this, first survey
(S1) collected information on another auxiliary variable
z  which is uncommon to the second survey (S2). Also
let k = (k1, k2,…, kN) be the vector of location of
population units, where ki (latitudei, longitudei); i =
1,…,N denotes the geographical location of  ith unit in
space. We also assumed that values of  the study
variable y is available only for the units sampled from
second survey (S2) and values of  common auxiliary
variable ‘x’ is available for all the units of the population.
Figure 1 shows the overall framework of the proposed
methodology.

There are three different cases of integrating sample
data from two independent surveys which include
complete overlapped, partial overlapped and non-
overlapped. In this article, we have considered the
completely overlapped case i.e., Survey-II is completely

Figure 1: Overall framework of the proposed
methodology
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overlapped within Survey-I. Thus, for a completely
overlapped case, the parameter of interest is the finite
population total of the study variable ‘y’ which is the
summation of three totals as defined below:
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Brunsdon et al. (1996, 1998) developed a
geographically weighted regression (GWR) model to
deal with the problem of  spatial non-stationarity. GWR
is a local spatial statistical technique that models spatially
varying relationships (Gollini et al., 2015). Unlike OLS,
the parameters of the GWR model are functions of
spatial location (Fotheringham et al., 2002).

Let ‘k i (latitude i, longitude i)’ denotes the
geographical location of  ith unit in space. We can define
a GWR model as

   
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where, yi is the dependent variable at location ‘ki’, is the
intercept parameter at location point ‘ki’,  represents
the coefficient of lth independent variable at location
‘ki’, xil is the value of lth auxiliary variable at location
‘ki’ and ei is the independent and identically distributed
random error term with mean ‘0’ and constant variance
2.

The GWR model is first fitted to the sample data
(S1) of  the first survey (S1)which has collected
information on a common auxiliary variable ‘x’ and
on an uncommon auxiliary variable ‘z’ and the estimate
of model parameters was obtained. The estimated
regression coefficient at ith sampled location (ki, i =
1...,n1) is given as

      
1 1 1 1

1ˆ gwr T T
xz i s i s s i sk k k


β X W X X W z   … (3)

where, W(ki)n1xn1 =diag (w1(ki),…, wn1(ki))  is the spatial
weight matrix of order (n1×n1) whose off-diagonal
elements are zero and each of the diagonal element
represents the geographical weight of ‘n1’ sample data
points. Similarly, the GWR model is fitted to the sample
data (s2) obtained from second survey S2 which has
collected information on the study variable y and
common auxiliary variable x . The estimate of

regression coefficient at ith sampled location (ki ;
i=1,…,n2) is given as

      
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
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The predicted value of the study variable i.e., ݕොݍ  ; q =
1,…,(n1 - n2) for the non-overlapped location is given
as

 ˆˆ gwr T gwr
q q xy qy k βx                                      … (5)

The predicted value of the study variable i.e., kh;
h=1,…,(N - n1) at each non-sampled location is given
as
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where,  . . 1 2
1T
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

x  is the common auxiliary
variable ‘x ’ at h th non-sampled location,

 11,...,h N n   .

Finally, using the predicted values of  Equation (5)
and (6), the proposed Spatially Integrated (SI) estimator
of finite population total by integrating data from two
surveys is given as
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Since the form of  the estimator is non-linear in
nature, design based exact variance estimation is
cumbersome. In such situation, the original naïve
bootstrap method (Efron, 1979) may be utilized to
obtain approximately unbiased variance estimation of
the SI estimator of finite population total. But presence
of  missing observations will seriously affect the
performance of  the naïve bootstrap method. Thus, in
the next section, an alternative bootstrap variance
estimation procedure has been proposed using new
spatial imputation methods in presence of missing
observations.

Proposed Proportional Spatial Bootstrap Method
for Missing Data

In this article, we have suggested a proportional
spatial bootstrap (PSB) variance estimation technique
for the proposed estimator of finite population total
by integrating data from two independent surveys when
survey data contain missing observations. In this
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Figure 2: Overall framework of the proposed PSB method for missing data

proposed PSB method, a representative bootstrap
sample containing both complete and incomplete
sample observation is selected. Thus, each selected
bootstrap sample represents the original incomplete
sample. The flowchart of the proposed PSB method
for missing data is given below in Figure 2.

The steps involved in the proposed PSB method
for estimating variance of the SI estimator in presence
of  missing observations are listed below:

Step 1: Partition the original incomplete sample data
of study variable, y of size n2 obtained from second
survey into two parts in which first part consists of
data with observed values whereas other portion
consists of data with missing values i.e. y = {yobs, ymis},
where, yobs denotes the observe value of  the study
variable of  size n21 and ymis represents n22 observations
with missing values and n2 = n21 + n22.

Step 2: The following steps were used to draw a
proportional bootstrap sample of size n2 from the
second sample (s2)

a. Draw a resample y*obs,i  (i = 1,…,n21) from the
portion of  original sample containing observed
values i.e. yobs using SRSWR.

b. Draw a resample y*mis,j  (j = 1,…,n22) from the
portion of original sample containing missing
values i.e. ymis using SRSWR.

c. Combine the two resampled parts from a. and b.
to create an incomplete proportionate bootstrap
sample {y*obs, y*mis} of size n2 = n21 + n22 with
n22 missing observations..

d. Apply different spatial imputation procedures on
y*, to obtain imputed values of {y*mis} based on
observed {y*obs} values.

e. After imputing missing observations, we will get
the complete proportional bootstrap sample of
size n2.

f. Draw a simple random sample (݅ݔ∗, 1=݅(∗݅ݖ
(݊1−݊2)of

size (n1 - n2) with replacement from the set (s1 - s2)
of size (n1 - n2).

g. Using this resamples, compute the bootstrap
resample estimator of finite population total for
both non-overlapped and non-sampled part as
described previously.

h. Compute the value of the proposed estimator
using this bootstrap sample
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Step 3: Independently replicate Step 2 for a large
number of times, say ‘B’ times and compute the
corresponding estimates ෠ܻ11

∗ܫܵ , ෠ܻ12
ܫܵܤ෠ܻ1 , … ,∗ܫܵ

∗
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Step 4: Bootstrap variance estimator of ෠ܻ1ܵܫ
∗is given by
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where, E* and V* denotes the expectation and variance
respectively with respect to bootstrap sampling from
a given sample.

The Monte Carlo estimate of variance as an
approximation to ෠ܸܾ ݐ݋݋  is given by
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where, Monte Carlo mean is   11
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SPATIAL IMPUTATION TECHNIQUES

In the context of spatial population, traditional
imputation techniques are not very efficient for missing
value imputation. In this article, the following spatial
imputation techniques were considered for the
estimation of  missing observations under the proposed
variance estimation procedure of the spatially integrated
estimator as presented in section 2.

Proposed spatial imputation techniques: Under this
article, for imputation of  missing observations couple
of newly developed spatial imputation techniques viz.
geographically weighted imputation and geographically
weighted mean imputation along have been discussed
along with few existing imputation methods i.e.
substitution by nearest neighbouring units and ordinary
kriging.

a) Geographically Weighted Imputation method
(GWI): In this imputation method, we have used GWR
model for missing value imputation. We have
considered only one spatial weight function i.e.,
exponential during GWR model fitting. Regression
coefficients at missing data point (kj; j = 1,…,n22) are
estimated based on observed data point using
exponential spatial weight function W(kj) as given
below:

where, w(kj) is a spatial weight of  ith observed point
with respect to missing data point kj.

b) Geographically Weighted Mean Imputation
method (GWMI): In this imputation method, we have
considered all the four spatial weight functions for
imputing missing values, which are given in Table 1.
Missing values are imputed based on all the four weight
functions separately. That means, we got four different
sets of imputed values generated by four different
spatial weight functions. After that, we took the average
over all the four imputed datasets to get the
geographically weighted mean imputed value of the
study variable y.

      1

22
ˆ ; 1,...,gwr T T

j i j i i j ik k k j n


 β X W X X W y

       
21 21

21

1 2 1
11 21 1

1 1 1
; ; , ... , ,...,

T
T

i i n j j i j n j
n

y y y k diag w k w k w k
x x x
 

         
 

X y W





Table 1: Imputed datasets of  study variable y for different
spatial weight functions
Spatial weight Imputed datasets
function

Exponential ݕ݉ ݏ݅ , ݆
݌ݔܧ ݌݉݅. = ݌ݔܧ ,መ0ߚ
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… (9)

Equation 9 shows the geographically weighted mean
imputed value of study variable y for all the missing
data points.

Existing spatial imputation techniques: Few
existing spatial imputation techniques utilized under this
article are as under:

a) Substitution by Nearest Neighbouring (NN)
units: In this imputation method, missing observations
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are directly substituted by the nearest neighbouring
geographical units available in the spatial population
based on Cartesian distance from the missing
observations. Nearest neighbour imputation is based
on the assumption that a point value can be
approximated by the values of the points that are
closest to it. Here, we have considered four nearest
neighbours for missing value imputation.

b) Regression Imputation: This imputation method
can be applied when information on some auxiliary
variable for all sampling units is available but
information on study variable for some units is missing.
In such a situation, regression equation can be used to
estimate the missing values using values of the
respondents in the sample. Auxiliary variables (x) can
be regressed on the study variable (y) for non-missing
observations to obtain this regression model

 2
0 1 ; ~ ,i i i iy x N       

where, 0 and 1 are intercept and slope parameters
respectively and ei is the random error term follows
normal distribution with mean ì and variance 2. This
estimated model is then used to impute yi values when
information of  auxiliary variable x is available.

c) Ordinary Kriging (OK) based imputation:
Ordinary kriging is a commonly used geostatistical
spatial interpolation technique (Cressie, 1993). It uses
sampled data points to estimate the value of a variable
at non-sampled locations. Ordinary kriging is based
on the assumption that the mean and variance of the
values are constant across the spatial field and it is a
best linear unbiased predictor (BLUP) of the value of
a variable at non-sampled locations. But it is quite
sensitive to the mis-specification of the variogram
model and the interpolation accuracy will be limited if
the number of sampled data points is small.

SIMULATION STUDY

A spatial simulation study has been carried out to assess
the performance of  the proposed PSB method under
various spatial imputation procedures for various non-
response rates. A spatial finite population of  size N =

400 spatial sampling units was generated using spatial
variogram model. We have used the exponential
variogram model for generating study variable Y. We
have to specify the variogram model parameters in
such a way that the value of  Moran’s spatial
autocorrelation (Moran, 1948; Anselin, 1995) of the
study variable  should remain close to 1. The Moran’s
spatial autocorrelation value of study variable for the
generated spatial population is 0.78. These variogram
model parameters were based on results obtained by
Biswas et al. (2020). The ‘gstat’ package (Pebesma, 2004)
from R has been used for generating the spatially
dependent variable . The variogram model parameters
are given in Table 2. Figure 3 shows the two-
dimensional grid plot of the study variable  along with
spatial locations of  the observations under the
simulated spatial population. Auxiliary variables were
generated based on a bivariate normal distribution with
pre-specified model parameters. We have generated
two auxiliary variables X and Z. The pre-specified
bivariate normal model parameters are (µ1, µ2, 1, 2,
YX, XZ) = (25, 25, 2, 2, 0.7, 0.4).

Table 2: Spatial exponential variogram model parameters
Parameter Mean Sill Range Nugget effect Partial sill Model
Value 30 46.29 30.62  0.88 15.67 Exponential

Figure 3: Two-dimensional grid plot of study variable
along with locations
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We have generated auxiliary variable X for fixed value
of simulated study variable Y in the following way

ܺ ∼ ܰ ൤1ߤ + ܻܺߩ
1ߪ

0ߪ
ݕ) − ,(0ߤ 1ߪ

2(1 − 2ܻܺߩ )൨ 

where, µ1 is the mean of  X, µ0 is the mean of  Y, 1 is
the standard deviation of  X, 0, is the standard
deviation of Y and XY is the correlation between X
and Y which is fixed at 0.7 .

In similar way, auxiliary variable Z is generated as
given below:

ܼ ∼ ܰ ൤2ߤ + ܼܺߩ
2ߪ

1ߪ
(ܺ − ,(1ߤ 2ߪ

2(1 − 2ܼܺߩ )൨ 

where, µ2 is the mean of Z, 2 is the standard deviation
of Z and XZ is the correlation between X and Z which
is fixed at 0.4. Figure 4 shows the surface plot of
spatially varying estimated parameters of the GWR
model under the generated spatial population.

 Initially, 500 independent samples of  size {(n1, n2)
= (160, 64)} each have been selected using SRSWOR
scheme from the generated spatial population. To apply
the bootstrap method in case of  missing observations
and to compare the performance of  different spatial
imputation procedures for different non-response rate
viz. 5, 10, 15 and 20%, a fixed proportion of units in
the small sample (s2) were identified at random as non-
respondents and their y values deleted in order to make
the sample incomplete. From each of this selected

Figure 4: Surface plot of  spatially varying estimated parameters of  the GWR model

samples with missing observations, 200 bootstrap
samples have been drawn following the proposed
proportional spatial bootstrap (PSB) procedure. For
each of these incomplete bootstrap sample for each
non-response rate i.e., (0.05, 0.10, 0.15 and 0.20),
different spatial imputation procedures were employed
to impute the missing values and estimate of variance
for proposed spatially integrated estimator Y1

SI has been
obtained. Furthermore, different statistical measures
like absolute mean departure (MD), absolute standard
deviation departure (SDD) and absolute percentage
relative bias (%RB) have been obtained.

Measures for comparison of the proposed PSB
method using different imputation techniques:
The following measures were used to compare the
statistical performance of  the proposed PSB method
for variance estimation using different spatial
imputation techniques in the case of missing data.

a. Absolute Percentage Relative Bias (%ARB): The
bias that resulted from use of various imputation
techniques was assessed using absolute percentage
relative bias, which is given by

ܤܴܣ %  = ቮ
1
ܴ ∑ ൛ ෠ܸݎ൫ ෠ܻ1ܵܫ

∗൯ൟ − ܸ൫ ෠ܻܲ ݎ൯ܧܵ

ܸ൫ ෠ܻܲ ൯ܧܵ
× 100ቮ 

where, ෠ܸݎ൫ ෠ܻ1ܵܫ
∗൯  is the Monte Carlo estimate of

variance of SI estimator in presence of missing
observations obtained through the proposed PSB
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method at rth bootstrap sample, whereas, ܸ൫ ෠ܻܲ ൯  isܧܵ
the simulated variance for the proposed spatially
integrated estimator obtained based on r = 500
samples.

b. Absolute Mean Departure (MD): Absolute Mean
Departure (MD) depicts the difference between mean
of bootstrap estimates with true values for the missing
units and imputed values through some imputation
techniques.

 * * * *

1

1 B
b b

i i
b

AMD Y Y Y Y
B 

   

where, തܻ∗ is the average of B independent bootstrap
sample estimates obtained by the SPB method in case
of complete response and തܻ݅∗  is the average of B
independent bootstrap sample estimates obtained by
PSB method for missing values imputed by i th

imputation technique respectively.

Table 3: Various measures for comparing different spatial imputation techniques following the proposed PSB variance
estimation method for incomplete data at various non-response rates for the sample size (n1, n2) = (160, 64)
Non-response Rate Imputation Techniques MD SDD ARB
5 % GWI 2.778 26.941 1.930

GWMI 0.463 21.066 1.230

Substitution by NN 1.315 22.673 1.543

Regression Imputation 1.661 26.404 3.639

Substitution by OK 6.955 32.252 3.725

10% GWI 4.135 33.028 3.106

GWMI 1.733 28.842 1.961

Substitution by NN 2.088 29.916 2.650

Regression Imputation 2.541 31.905 5.668

Substitution by OK 7.677 35.144 5.334

15% GWI 5.906 36.367 8.971

GWMI 4.978 32.708 5.659

Substitution by NN 5.522 34.342 7.937

Regression Imputation 6.111 34.244 8.290

Substitution by OK 7.188 37.936 9.759

20% GWI 7.165 38.846 13.695

GWMI 5.960 36.614 7.017

Substitution by NN 6.810 36.616 9.798

Regression Imputation 7.130 35.957 10.807

Substitution by OK 5.951 42.122 16.020

c. Absolute Standard Deviation Departure (SDD):
It is used to investigate the impact of various
imputation methods on the distribution of the character
under consideration. The formula for Standard
Deviation Departure (SDD) is given by

 * * * *

1

1 B
b b

i i
b

SDD
B

   


   

where, ߪത∗  is the average of the standard deviations of
B independent bootstrap sample estimates obtained
by naïve-based SPB method in case of complete
response and ߪത݅∗ is the average of the standard
deviations of B independent bootstrap sample
estimates obtained by the PSB method for missing
values imputed by ith imputation technique respectively.

RESULTS AND DISCUSSION

The results of the proposed PSB method for variance
estimation of the SE in presence of missing
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observations using different spatial imputation
techniques for 200 independent bootstrap samples at
different non-response rates are obtained and presented
in Table 3. Furthermore, all the spatial imputation
techniques used in the PSB method were compared in
detail with the help of absolute percentage relative bias
(ARB), absolute mean deviation (MD) and absolute
standard deviation (SDD) and presented in Figure 5
respectively.

The following points can be noted from the results
given in Table 3 and Figure 5.

Figure 5: Comparison of different spatial imputation
techniques used in PSB variance estimation method
using absolute percentage Relative Bias (RB), absolute
Mean Departure (MD) and absolute Standard Deviation
Departure (SDD) at various non-response rates

 It was found that the proposed PSB method is
quite efficient for variance estimation while dealing
with missing observations. As the non-response
rate rises, the performance of  the PSB method
decreases. It has also been observed that the best
results were obtained at 5% non-response rate for
all the spatial imputation methods.

 Under different spatial imputation techniques, PSB
method using GWMI performed better with
respect to all the measures considered in this study.
GWMI has the least value of RB and SDD for all
the non-response rates.

 GWMI provides the least mean departure (MD),
next best is nearest neighbour based imputation.
However, as the non-response rate increases the
departure increases for all the spatial imputation
procedures.

 Performance of  the ordinary kriging imputation
method is poor among all the spatial imputation
techniques considered for the study. Pre-
specification to exponential variogram model may
be the reason for poor performance of  ordinary
kriging imputation method.

 The proposed PSB method employing GWMI,
substitution by NN shows best results than any
other spatial imputation techniques with respect
to all the statistical measures considered in this
study.

CONCLUSION

Different types of  large-scale surveys based on their
objectives collect comprehensive and diverse socio-
economic data and important indicators like SDG
indicators for monitoring the development policies are
frequently derived from such surveys. Missing
observations is a common problem in many large-
scale surveys. To compensate for missing survey data,
a variety of imputation methods have been developed.
Presence of  missing observations in survey data
seriously affects not only the accuracy of the estimates
but also the reliability of the estimates of population
parameters. Thus, there is always a need to develop
variance estimation procedures of important estimators
in presence of  missing observations in survey data. In
this article, a variance estimation method, namely
Proportional Spatial Bootstrap (PSB) has been
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proposed to estimate the variance of a spatially
integrated estimator of population total in presence
of  missing observations using suitable spatial
imputation techniques. Different spatial imputation
techniques were used under the framework of the
proposed PSB method to impute missing values. The
performance of  all the spatial imputation techniques
was evaluated through a spatial simulation study. Based
on simulation results, it was found that the proposed
PSB method of variance estimation provides reliable
variance estimates of spatially integrated estimator of
population total in presence of  missing observations.
Further, the PSB method using GWMI imputation
techniques results in most efficient variance estimates
of spatially integrated estimator of population total in
comparison to all the other imputation techniques.
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