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The paper presents a new hybrid ensemble approach consisting of a combination of machine learning
algorithms, a feature ranking method and a supervised instance filter. Its aim is to improve the perfor-
mance results of machine learning algorithms for multiclass classification problems. The performance
of new hybrid ensemble approach is tested for its effectiveness over four standard agriculture multiclass
datasets. It performs better on all these datasets. It is applied on multiclass oilseed disease dataset. It is
observed that ensemble-Vote performs better than Logistic Regression and Naïve Bayes algorithms. The
performance results of hybrid ensemble are compared with ensemble-Vote. The performance results
prove that the new hybrid ensemble approach outperforms ensemble-Vote with improved oilseed dis-
ease classification accuracy up to 94.73%.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Machine learning algorithms are useful in effective decision
making in agriculture. These algorithms possess a strong capability
of extracting complicated relationships that exist in the agricul-
tural data (Rocha et al., 2010). High dimensional agricultural data
requires the use of machine learning feature selection algorithms
when the most explanatory or important features or attributes
are to be selected from large datasets (EI-Bendary et al., 2015;
Hill et al., 2014; Kundu et al., 2011; Timmermans and
Hulzebosch, 1996). Machine learning classification algorithms
viz. Logistic Regression and Naïve Bayes are successfully used for
accurate identification of crop diseases (Phadikar et al., 2013;
Sankaran et al., 2010; Gutiérrez et al., 2008; Baker and Kirk, 2007).

Soybean, groundnut and rapeseed-mustard are the three most
important oilseed crops of the world. They play an important role
in the oilseed economy. One of the major concerns in increasing
and stabilizing the yield of oilseeds is the incidence of pests and
diseases which, to a greater extent are responsible for low and
unstable production of these crops. Oilseeds are susceptible to var-
ious diseases caused by bacteria, fungi, viruses, nematodes and
physiological disorders. Some diseases are largely spread and cause
great economic losses while others are limited in distribution and
are not of much economic importance during present times, but
may become major diseases in the course of time by favorable cli-
matic conditions. Oilseed diseases considered in the present work
include Alternaria leaf spot, Anthracnose, Cercospora leaf spot,
Charcoal rot, Collar rot, Myrothecium leaf spot, Powdery mildew,
Sclerotinia stem rot, Phyllosticta leaf spot and Rust. Crop disease
diagnosis is a multiclass classification problem.

In several classification problems ensembles have proved to be
effective as compared to single classification algorithm
(Bolón-Canedo et al., 2012; Sun et al., 2007; Stamatatos and
Widmer, 2005). Ensembles have great potential in the domain of
multiclass classification. Ensemble machine learning methods have
been recommended in the literature for different types of classifi-
cation problems (Hsu, 2012; Kotsiantis, 2007; Dietterich, 2000;
Bay, 1999; Opitz, 1999; Ting and Witten, 1999; Zheng and Webb,
1999; Ho, 1998; Breiman, 1996; Wolpert, 1992; Hansen and
Salamon, 1990; Schapire, 1990).

Vote is an ensemble of Logistic Regression and Naïve Bayes
algorithms in the present work. This work proposes a new hybrid
ensemble approach with an aim to improve the performance
results of machine learning algorithms for multiclass classification
problems. The aim of the present work is also to compare proposed
hybrid ensemble approach with ensemble-Vote. The proposed new
hybrid ensemble approach is applied on oilseed disease diagnosis
multiclass problem for accurate identification of disease(s).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2016.03.026&domain=pdf
http://dx.doi.org/10.1016/j.compag.2016.03.026
mailto:archana_scs@yahoo.in
mailto:archanaa2207@gmail.com
mailto:savitasoham@gmail.com
mailto:savita_dakhane@yahoo.com
mailto:dr_rajkamal@hotmail.com
http://dx.doi.org/10.1016/j.compag.2016.03.026
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag


66 A. Chaudhary et al. / Computers and Electronics in Agriculture 124 (2016) 65–72
The paper is organized as follows: Section 2 describes materials
and methods used in the present work. Section 3 presents new
hybrid ensemble approach for multiclass classification problems.
Section 4 describes results and discussion. Section 5 presents the
conclusions drawn.
2. Materials and methods

The tool WEKA (Hall Mark, 2009; Witten and Frank, 2005) is
used for the generation of predictive models. It is an open-source
tool developed at University of Waikato, New Zealand (http://
www.cs.waikato.ac.nz/ml/Weka/).
Table 1
Description of standard agriculture datasets.

Datasets Classes Attribute types Instances No. of attributes

Soybean 19-Class Nominal 683 35
Iris plants 3-Class Real 150 4
Mushroom 2-Class Nominal 8124 22
Grub-damage 4-Class Real & nominal 155 8
2.1. Machine learning algorithms

Logistic Regression is a popular algorithm which does regres-
sion analysis and fits a sigmoid curve. It is selected in the design
of hybrid ensemble because it is a flexible estimator with low vari-
ance and is less susceptible to over-fitting. It is a simple maximum-
probability estimator that approximates the probability of every
class (given the features examined) and selects one with the
largest value (Hill et al., 2014; Silva et al., 2013). In case of oilseed
disease diagnosis problem, it will estimate the probability of each
disease class and select the class with maximum probability as an
answer.

Naïve Bayes is a well-known classification algorithm
(Kotsiantis, 2007; Wu et al., 2007). It calculates approximately
the conditional probability of every class given the observation,
selecting a class with the largest posterior probability as an answer
(Silva et al., 2013). It is used in the design of hybrid ensemble
because it requires minimum storage space in both the training
and classification phases to store the probabilities, hence it is a
suitable algorithm for high dimensional multiclass datasets like
oilseed disease dataset.

Ensemble algorithms are the methods that create a set of base
classifiers to merge and then classify new data samples by casting
a vote on their predictions. The ensemble learning consists of two
phases. The first phase consists of creation of the base classifiers
and the second phase consists of voting task. Vote is an ensemble
algorithm or meta-classifier for merging predictions from multiple
machine learning algorithms (Namsrai et al., 2013; Kotsiantis,
2007). The combined prediction is determined by a combination
rule (Bauer and Kohavi, 1999; Kittler, 1998; Battiti and Colla,
1994).

The rationale of using ensemble-Vote in the proposed hybrid
ensemble is that it is robust to noise and random errors of classifi-
cation. It attains considerably greater classification accuracy
trained on high dimensional datasets as compared to single
machine learning algorithm (Namsrai et al., 2013; Kotsiantis,
2007; Bauer and Kohavi, 1999; Battiti and Colla, 1994). Machine
learning algorithms Logistic Regression and Naïve Bayes are com-
bined using ensemble-Vote with a combination rule, in the pro-
posed new hybrid ensemble. The ensemble proposed is intended
to offer better classification accuracy as compared to ensemble-
Vote.

The feature selection phase, also called as attribute selection or
feature ranking is applied to datasets for choosing a subset or rank-
ing of relevant features. Gain Ratio (Hall and Smith, 1998) is a pop-
ular feature ranking algorithm. The purpose of using Gain Ratio in
the hybrid ensemble is that it is an enhancement of Information
Gain which resolves the issue of bias toward features with a larger
set of values (Ibrahim et al., 2012). Gain Ratio is applied to a variety
of classification problems (Silva et al., 2013; Shouman et al., 2011;
Danger et al., 2010; Yen and Mike Chu, 2007).
Real-world multiclass datasets, such as oilseed disease dataset,
have non-uniform class distribution. This non-uniformity of class
distribution considerably influences the performance of a classifi-
cation algorithm in training phase. A supervised instance filter
transforms instances so that they are classified in the context of
prediction. Filtering techniques like resampling or Resample or
simple random sampling is successful in scaling up the classifica-
tion accuracy attained by machine learning algorithms
(Özçift, 2011). In sampling there are two ways for making random
selection. The samples are chosen: (i) with substitution (ii) without
substitution. The difference among the two ways is that if a sample
is chosen more than once, the sampling strategy used is with sub-
stitution. The imbalanced distribution of oilseed disease classes
makes the dataset appropriate to test the consequence of resam-
pling strategy. Therefore we have used an instance filter - Resam-
ple (with substitution) to rescale class distribution of oilseed
disease dataset so that resulting class distribution is uniform.

2.2. Datasets

The performance of hybrid ensemble approach is tested on
standard agriculture datasets. After testing hybrid ensemble suc-
cessfully on standard datasets, it is applied on high dimensional
multiclass oilseed disease dataset.

2.2.1. Standard datasets
Three real standard datasets from UCI machine learning repos-

itory (Frank and Asuncion, 2010) and one from WEKA repository
(http://www.cs.waikato.ac.nz/ml/weka/datasets.html) are used
for the purpose of testing the proposed hybrid ensemble approach.
The description of these standard agriculture datasets is shown in
Table 1.

2.2.2. Oilseed disease multiclass dataset
The oilseed disease dataset is created from different sources

(Gupta and Chauhan, 2005; Ghewande et al., 2002; Bartaria et al.,
2001; Hartman et al., 1999; Michalski et al., 1983) by considering
disease symptoms and plant-part(s) affected. There are 13,360
instances in oilseed disease dataset with no missing attribute val-
ues. There are 10 classes in our dataset. All attributes are of the
type nominal. There are 22 disease influencing attributes, one attri-
bute as the name of oilseed crop and one target class of oilseed dis-
eases as shown in Table 2.

2.3. Performance evaluation indices

The performance of hybrid ensemble approach is evaluated
with the help of performance indices viz. classification accuracy,
specificity, sensitivity, Receiver Operating Characteristics (ROC),
F-measure, Kappa Statistics (KS) and precision (Azar et al., 2014;
Özçift,, 2011). The main formulations of these indices are:

Classification accuracy ðin%Þ ¼ TP þ TN

TP þ TN þ FP þ FN
� 100 ð1Þ

Sensitivity ¼ TP

TP þ FN
ð2Þ
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Table 2
Description of oilseed disease dataset.

Attribute
number

Attribute
description

Possible values of attributes Assigned
values

1. Oilseed-crop Rapeseed-mustard, Soybean, Groundnut 1–3
2. Temperature Normal, lower-than-normal, greater-than-normal 1–3
3. Soil moisture High, normal, low 1–3
4. Relative-

humidity
High, normal, low 1–3

5. Severity Minor, severe 1–2
6. Leaves Normal, abnormal 1–2
7. Leaf-

symptoms
Angular, black-dots, blighting, brown, chlorotic, circular, circular-brown-with-yellow-margin, concentric-rings, crinkling,
dark-brown, dark-brown-with-purple-margin, dirty-white, epiphyllous, floury, grey-brown-with-minute-lesion, grey-
spots-with-chlorotic-halo, greyish-lesion, grayish-green, green-yellow-islands, irregular, large-and-wavy, leathery-and-
dark, light-brown, light-brown-to-dark-brown, light-purple, marginal-and-apical, marginal-zonate-irregular, necrotic,
orange-pustules, reddish-brown-to-purple, pale-green-to-dull-grey, small, tan-reddish-brown-pustules, tan-yellow-
pustules, water-soaked, white-creamy-yellow-pustules, white-powdery, white-sporodochia, wilting, yellow-halos, does-
not-apply

1–41

8. Seed Normal, abnormal 1–2
9. Seed-

symptoms
Black-discoloration, blighted, damping-off, dark-lesions, decay, discolored, drooping, irregular, pink-to-dark-purple-
discoloration, purple-stain, reddish-brown-discoloration, reddish-purple-to-reddish-black, rotten, shriveled, small,
sunken, wilting, does-not-apply

1–18

10. Pod Normal, abnormal 1–2
11. Pod-

symptoms
Black-sporodochia, circular, circular-to-linear, dark-brown, decay, dirty-white, elongated, floury, reddish-purple-to-
reddish-black, rotten, sunken, white-powdery, yellow-to-brown-discoloration, does-not-apply

1–14

12. Stem Normal, abnormal 1–2
13. Stem-

symptoms
Black-and-sooty, circular, circular-brown-with-yellow-margin, circular-to-linear, dark-brown, dirty-white, distortion,
dull-gray-to-dark-brown, elongated, floury, grey-to-brown, grey-to-white, irregular, light-brown-discoloration, necrotic,
purple-brown-border, reddish-dark-brown, reddish-purple-to-reddish-black, shredded, sunken, swollen, tan-white,
water-soaked, white-pustules, white-powdery, wilting, does-not-apply

1–27

14. Root Normal, abnormal 1–2
15. Root-

symptoms
Black-and-rotten, light-brown-discoloration, shredded, does-not-apply 1–4

16. Collar Normal, abnormal 1–2
17. Collar-

symptoms
Dark-brown, decay, light-brown, shredded, water-soaked, does-not-apply 1–6

18. Leaf-surface Upper, lower 1–2
19. Mycelia White-cottony-mats, white, white-fluffy, does-not-apply 1–4
20. Sclerotia Black, globose-to-subglobose, minute, mustard-sized, reddish-brown-to-dark-brown, silvery-white-to-light-black, does-

not-apply
1–7

21. Fruiting-
bodies

Black, black-with-concentric-rings, minute-spherical, does-not-apply 1–4

22. Plant-effect Drying, normal, wilting, withering, premature-ripening, stunted-growth 1–6
23. Leaf-

defoliation
Present, absent 1–2

24. Target class Anthracnose, Alternaria leaf spot, Cercospora leaf spot, Charcoal rot, Collar rot, Myrothecium leaf spot, Phyllosticta leaf
spot, Powdery mildew, Rust and Sclerotinia stem rot or blight

1–10
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Precision ¼ TP

TP þ FP
ð3Þ

Specificity ¼ TN

FP þ TN
ð4Þ

In the Eqns. above TP and TN represent the number of true positives
and true negatives, FP and FN signify the number of false positives
and false negatives for classification. Another performance metric
F-measure is a weighted average of precision and recall.

F-measure ¼ 2� Precision� Sensitivity
Precisionþ Sensitivity

ð5Þ

KS is used to measure the agreement between forecasted and
experimental values of a dataset, while correcting the agreement
that occurs by chance. If KS value for any machine learning algo-
rithm approaches near to 1, its performance is considered to be
appreciable and is less driven by chance (Azar et al., 2014). It is a
recommended metric for estimation purposes and it is calculated
by

KS ¼ PTA � PHY

1� PHY
ð6Þ
where PTA denotes total agreement probability, and PHY represents
the hypothetical probability of chance agreement.

ROC curves are also found useful to evaluate the performance
of a disease diagnosis test (Azar et al., 2014). It has sufficient
information for clarity and improving the performance of any
machine learning algorithm. It offers a trade-off between sensitiv-
ity and specificity. Therefore, in the present work ROC is also
observed when hybrid ensemble is applied on oilseed disease
dataset.

3. The proposed hybrid ensemble approach

The hybrid ensemble design is based upon the principle that
combining the results of multiple machine learning algorithms is
superior to the result of single algorithm.

3.1. Algorithm of hybrid ensemble

Hybrid ensemble approach uses hybridization at two levels. First
level of hybridization is achieved by combining Gain Ratio feature
ranking and supervised instance filter- Resample methods. Second
level of hybridization is achieved by merging the predictions of
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Logistic Regression and Naïve Bayes using ensemble-Vote.
The pseudo-code of hybrid ensemble approach is shown in
Algorithm 1.

Algorithm 1. Hybrid ensemble.

Input: DT = {x1, x2, . . . xn} // Training dataset which contains a
set of training instances and their associated class labels.

N = Number of machine learning algorithms selected for
classification.

Output: Classification prediction P.
Method:

step 1. Obtain suitable ranking of features of DT by
applying Gain Ratio over DT.
step 2. Apply supervised instance filter-Resample

(with substitution) on the result of (step 1) and obtain
Dgain-ratio-resample.

(This step is optional and is used only in case of
non-uniform datasets).
step 3. For each i from 1 to N do
i. Apply machine learning classification algorithmi on

the attributes of Dgain-ratio-resample.
ii. Obtain classification prediction Pi from machine

learning classification algorithmi.
step 4. Apply ensemble-Vote with a combination rule for

merging the predictions P1 . . . Pi.
step 5. Obtain classification prediction P.
3.2. Design of hybrid ensemble

The proposed hybrid ensemble approach is used for multiclass
classification tasks. The design of hybrid ensemble approach is
shown in Fig. 1. First we select the multiclass dataset for classifica-
tion. Gain Ratio feature selection results in ranking of the features
of multiclass dataset (step1 of Algorithm 1). After applying Gain
Ratio feature ranking algorithm, supervised instance filter-
Resample is applied for balancing the class distribution (step 2 of
Algorithm 1).

The use of sampling through Resample is optional in this
approach. If the dataset already has uniform class distribution,
then there is no need of using Resample. Now we choose machine
learning algorithm Logistic Regression (step 3(i) of Algorithm 1)
and obtain classification prediction – P1 (step 3(ii) of Algorithm
1). Next we select Naïve Bayes algorithm (step 3(i) of Algorithm
1) and obtain classification prediction – P2 (step 3(ii) of Algorithm
1). Subsequently the predictions from Logistic Regression (P1) and
Naïve Bayes (P2) are combined using ensemble-Vote with a combi-
nation rule (step 4 of Algorithm 1). Finally the classification predic-
tion of hybrid ensemble is obtained (step 5 of Algorithm 1).
Consequently we examine the performance of hybrid ensemble.

3.2.1. Combination rules
The choice of a suitable combination rule or fusion method in

ensemble design can further enhance the performance of the hybrid
ensemble. In case of oilseed disease diagnosis dataset, the probabil-
ity rules estimate the disease prediction with the assumption that
all the disease classes are a priori equi-probable and the product
will be dominated by the expert decision outcome which provides
the maximum (maximum probability) or least (minimum
probability) support for a particular hypothesis – occurrence of a
disease. The product of probabilities rule estimates the probability
of occurrence of a disease by merging the posterior probabilities
produced by individual classification method with the help of
product of probabilities. The average of probabilities rule assigns
an instance to a disease class whose average of posterior probabil-
ities is the maximum. Majority voting calculates the votes received
for a hypothesis – occurrence of a particular disease from the indi-
vidual classification methods. The disease class which obtains
greatest number of votes is then chosen as the majority decision
outcome.

An important observation is that the minimum probability rule
performs better when there are no estimation errors or missing
values in the dataset. Maximum probability and majority voting
rules are less sensitive to estimation errors (Kittler, 1998). A com-
parison of combination rules – maximum probability, minimum
probability, product of probabilities, average of probabilities and
majority voting is performed on all standard datasets considered
in the present work and the rule selected is shown in Table 3.
The combination rule or fusion method that performs the best in
forming hybrid ensemble is shown as ‘U’ and other rules(s) as
‘ ’ in Table 3.

3.3. Functionality of hybrid ensemble

The functionality of hybrid ensemble is shown in this section
with the help of standard agriculture dataset- Soybean. Prior to
the demonstration of functionality of hybrid ensemble, we observe
that for Soybean dataset the ensemble-Vote performs better than
Logistic Regression and Naïve Bayes individual classification algo-
rithms. Gain Ratio feature ranking method is applied on Soybean
dataset to rank the attributes in order of their ranks (step 1 of Algo-
rithm 1). In (step 2 of Algorithm 1) supervised instance filter-
Resample is applied on the result obtained from the previous step.
We combine the classification predictions of algorithms Logistic
Regression (step 3(ii) of Algorithm 1) and Naïve Bayes (step 3(ii)
of Algorithm 1) using ensemble-Vote with a combination rule-
maximum probability or average of probabilities (step 4 of Algo-
rithm 1). The resultant disease classification accuracy of hybrid
ensemble obtained is observed as 95.46% (step 5 of Algorithm 1)
which is greater than ensemble-Vote (94.43%).
4. Results and discussion

Ten-fold cross validation has been successfully used for evaluat-
ing the performance of a machine learning algorithm(s) as it offers
reliable approximates for classification accuracy on each classifica-
tion task (Arora and Jain, 2014; Azar et al., 2014; Baldi et al., 2000).
The experiments conducted for evaluating theperformance of hybrid
ensemble are performed using 10-fold cross validation strategy.

4.1. Performance analysis of hybrid ensemble on standard agriculture
datasets

The performance of hybrid ensemble approach is tested on four
standard agriculture datasets viz. Soybean, Iris Plants, Mushroom
and Grub-damage using three performance indices – classification
accuracy or accuracy, F-measure and precision (Azar et al., 2014;
Özçift,, 2011). It is an important observation that ensemble-Vote
performs better than Logistic Regression and Naïve Bayes algo-
rithms for standard agriculture datasets in the context. Table 4
shows the performance observations for ensemble-Vote and
hybrid ensemble for indices classification accuracy or accuracy
(in%), F-measure and precision as weighted average. It is clear from
Table 4 that the hybrid ensemble approach performs better than
ensemble-Vote.

Substantial rise in classification accuracy is observed for Grub-
damage dataset. Applying ensemble-Vote on Grub-damage dataset
results in classification accuracy as 47.74% and after applying
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Table 3
Combination rules selected for standard datasets.

Standard agriculture datasets

Combination rule Soybean Iris plants Mushroom Grub-
damage

Maximum probability U U

Minimum probability U U U

Product of probabilities U

Average of probabilities U U

Majority voting
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hybrid ensemble approach (steps 1–5 of Algorithm 1) the classifi-
cation accuracy significantly increases to 71.61%. The accuracy
results shown in Table 4 confirm that the proposed hybrid ensem-
ble performs better than ensemble-Vote. F-measure and precision
values shown in Table 4 also show significant increase with hybrid
ensemble as compared to ensemble-Vote.

4.2. Application of hybrid ensemble on oilseed disease multiclass
dataset

Before applying hybrid ensemble it is important to note the per-
formance of ensemble-Vote on oilseed disease dataset. Logistic
Regression on oilseed disease dataset results in classification accu-
racy 68.88%. Naïve Bayes algorithm shows disease classification
accuracy as 70.97%. Ensemble-Vote shows better performance as
Table 4
Performance index values obtained for ensemble-Vote and hybrid ensemble using standa

Standard agriculture datasets

Machine learning ensemble method Performance indi

Ensemble-Vote Accuracy
F-measure
Precision

Hybrid ensemble (After applying steps 1–5 of Algorithm 1) Accuracy
F-measure
Precision

Bold text indicates performance improvement.

Table 5
Class distributions in oilseed disease dataset before and after sampling.

Class Class labels of oilseed disease dataset

01 Alternaria leaf spot
02 Anthracnose
03 Cercospora leaf spot
04 Charcoal rot
05 Collar rot
06 Myrothecium leaf spot
07 Powdery mildew
08 Sclerotinia stem rot
09 Phyllosticta leaf spot
10 Rust

Table 6
The classification accuracies obtained for oilseed disease dataset with 10-fold cross valida

Machine learning method

Logistic Regression
Naïve Bayes
Ensemble-Vote
Logistic Regression (After applying steps 1–3 (ii) of Algorithm 1)
Naïve Bayes (After applying steps 1–3 (ii) of Algorithm 1)
Hybrid ensemble (After applying steps 1–5 of Algorithm 1)

Bold text indicates performance improvement.
compared to Logistic Regression and Naïve Bayes algorithms and
results in the disease classification accuracy as 71.67%.

After testing successfully hybrid ensemble approach on four
standard agriculture datasets, it is applied on real-life oilseed dis-
ease multiclass dataset for accurate diagnosis of oilseed disease
(s). The attributes of oilseed disease dataset after applying Gain
Ratio (step 1 of Algorithm 1) are ranked for each oilseed-crop in
order with respect to target class as Relative-humidity, Root-
symptoms, Collar-symptoms, Plant-effect, Root, Pod, Soil moisture,
Leaves, Leaf-defoliation, Mycelia, Pod-symptoms, Stem-symptoms,
Sclerotia, Collar, Seed-symptoms, Fruiting-bodies, Temperature,
Stem, Leaf-symptoms, Leaf-surface, Severity and Seed.

Class distributions in case of oilseed disease dataset are bal-
anced by using Resample. The instance filter-Resample is used
with substitution for maintaining uniformity of class distributions.
The effect of using supervised instance filter-Resample on class dis-
tributions of oilseed disease dataset (after applying step 2 of Algo-
rithm 1) is shown in Table 5.

Table 6 shows the performance observations for classification
accuracies as observed for hybrid ensemble approach using
10-fold cross validation in comparison to ensemble-Vote. After
successfully completing – steps 1–2 of Algorithm 1, we apply
Logistic Regression (step 3(i) of Algorithm 1) and then Naïve Bayes
(step 3(i) of Algorithm 1) on the result of previous step. By applying
(step 3(ii) of Algorithm 1), increase in disease classification accura-
cies is observed as 90.32% (P1) and 88.88% (P2) as compared to
Logistic Regression (68.88%) and Naïve Bayes (70.97%) respectively.
rd agriculture datasets.

ces Soybean Iris plants Mushroom Grub-damage

94.43 96.00 66.58 47.74
0.944 0.960 0.687 0.473
0.947 0.960 0.789 0.472

95.46 99.33 67.09 71.61
0.953 0.993 0.690 0.716
0.954 0.993 0.787 0.718

Before sampling After sampling

1680 1690
1170 1160
1200 1290
1200 990
720 720

1320 1220
1320 1350
950 960

1400 1440
2400 2540

tion.

Classification accuracies (in%)

68.88
70.97
71.67
90.32
88.88
94.73



Fig. 2. Performance graph of hybrid ensemble and ensemble-Vote for identification of oilseed disease(s).
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Ensemble-Vote with a combination rule (maximum probability) is
used for combining the predictions (step 4 of Algorithm 1) of Logis-
tic Regression (P1) and Naïve Bayes (P2). The resultant disease clas-
sification accuracy of hybrid ensemble (step 5 of Algorithm 1)
significantly increases to 94.73% as shown in Table 6.

The performance indices – precision, sensitivity, specificity, KS,
F-Measure and ROC as observed for Vote and hybrid ensemble are
shown in Fig. 2.

It is clear from Fig. 2 that all the six performance indices show
significant increase with hybrid ensemble approach on oilseed dis-
ease features as compared to the ensemble-Vote.
5. Conclusions

The paper proposes a new hybrid ensemble approach for
improvement of classification accuracy for multiclass classification
problems. It is successfully applied for accurate diagnosis of oilseed
diseases. The performance of proposed hybrid ensemble is tested
for classification accuracy with 10-fold cross validation on four
standard agriculture datasets. The accuracy results obtained for
these standard datasets prove that the hybrid ensemble approach
shows better classification accuracies as compared to ensemble-
Vote for all of these standard datasets. The hybrid ensemble
approach is applied to oilseed disease diagnosis multiclass classifi-
cation problem. The disease classification accuracy is improved up
to 94.73% by applying hybrid ensemble approach as compared to
ensemble-Vote which yields accuracy 71.67%. Hence it is con-
cluded that hybrid ensemble approach might be a good alternative
for accurate classification in similar multiclass classification or pre-
diction problems.
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